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To Pirjo, Lauri, Eero, and Santeri 



When I started my computing career by programming a PDP-11 computer 
as a freshman in the university in early 1980s, I could not have dreamed 
that one day I’d be able to design a processor. At that time, the freshmen 
were only allowed to use PDP. Next year I was given the permission to use 
the famous brand-new VAX-780 computer. Also, my new roommate at the 
dorm had got one of the first personal computers, a Commodore-64 which 
we started to explore together. Again, I could not have imagined that 
hundreds of times the processing power will be available in an everyday 
embedded device just a quarter of century later. 

Little by little I delved into the design of digital circuits, and computer 
architecture. I finally learned my lessons in RISC philosophy when I was 
teaching computer architecture classes in early 1990s according to the 
famous groundbreaking book by Hennessy and Patterson. At that time, I 
had already started to design processors, first some simple configurable fil-
ters and then straightforward DSP cores. The story continued in a number 
of different kinds of design projects purely in academia, as academia-
industry cooperation projects and as commercial developments in industry. 

For me, this decade has meant the time to be back in academia, where I 
have taught processor-design courses since 1999. A characteristic feature 
to these courses has been the lack of a good course textbook. I have tried 
out a few books, and used a scattered set of my own material trying bridge 
the gaps that I perceived. Year after year I got more annoyed with the 
absence of a textbook, until, after gaining some editor experience in an-
other book project, I decided that the book needed to be written. 

I would like to thank my contact person at Springer, Mark de Jongh, 
who believed in me right from the start, and all the contributors of this 
book. A big part of the success of this project was that I knew some good 
people and asked for their contribution. I had worked with many of them 
previously in the annual International Symposium on System-on-Chip 
since 1999, without realizing what kind of assets they represented. Thanks 
also to all the people who used their valuable time to review the book 
chapters. 

Preface 

 vii



I hope that you will find this book to be beneficial to you whether you 
are a student, engineer, teacher or engineering manager. This book defi-
nitely fills the gap that I had recognized, so I hope that we shared the same 
gap. 

In Tampere, April 2007 
 
   Jari Nurmi 
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Jari Nurmi 

Tampere University of Technology 

merged with circuit design. As a visible symptom of this, the term System-
on-Chip (SoC) [225] has been coined and increasingly used wherever 
highly integrated embedded systems emerge. This trend has been one of 
the enablers for processor design to come at reach for digital circuit and 
system designers. 

The demands for low cost and low power consumption are characteristic 
to embedded processors. These requirements have in part been drivers of 
higher degree of integration, but they are also pushing designers more and 

1 

© 2007 Springer. 

Embedded systems are “computers in disguise,” systems carrying along a 
computer or processor-based system that are not programmable by the user 
and in most cases do not have any observable resemblance to a computer 
[36]. The software is typically developed by the designers of the system, 
downloaded or hard-coded to the system at manufacture-time, and inacces-
sible to the end-user. Such systems can be found at home (washing machine, 
DVD-player, game console), in the office (printer, WLAN base station, 
building automation), cars (engine control, ABS brakes, security system), 
aeroplanes (fly-by-wire, navigation, autopilot), industrial, forest, and har-
vesting machines (process monitoring, process control, robotics), in your 
pocket (mp3 player, mobile phone, PDA) and even in your wallet (electro-
nic bus tickets, credit cards, keycards). The most high-end embedded sys-
tems, e.g., game consoles and cell phone base stations, may have processing 

small size, low cost and low power consumption of embedded computation. 

capacity supreme to the desktop PC. In the progress towards a more noma-
dic lifestyle, various mobile gadgets and ubiquitous services in the every-
day surroundings have emerged, further emphasizing the importance of 

1 Introduction 

:

design and implementation of embedded systems has increasingly been 
Due to rapid technology advancement in integrated circuit era, the 

J. Nurmi (ed.), Processor Design  System-on-Chip Computing for ASICs and FPGAs, 1–6. 



more towards the design of application-specific processor architectures

specific performance, the designers are able to keep the overhead of pro-
grammable processors at minimum while maintaining the flexibility they 
provide. The overhead refers to area overhead of the general-purpose 

processor resources, and power consumption overhead due to the general-
ized control and high clock rate requirements of the multiplexed computa-
tional blocks. The flexibility means here mainly the programmability 
which allows changing or incrementally improving the functionality of the 
design. However, there exists a trade-off between the flexibility and appli-

completely different. 
Integrated circuit technologies have evolved during the past four dec-

ades following Moore’s Law [293] which states that the achievable transis-
tor count on a single integrated circuit doubles every 18 to 24 months. This 
exponential growth has brought the technology over the border where it 
can now accommodate complete embedded systems on a single chip. 
While a typical circuit in early 1990s was fabricated in 1 µm technology 
and could contain merely 100,000 transistor devices, the contemporary 
90 nm (0.09 µm) technologies can easily deliver 100,000,000 transistors. 

substantial amount of its surroundings there, too. Also multi-core and 
multi-processor systems are reality and thus increasingly a target of re-
search and development efforts. According to the International Technology 

enough resources to implement complex embedded systems on a single 

modules, and increasingly also larger memory blocks and hardwired 
arithmetic blocks [459]. FPGAs are programmed or configured by feeding 
into the configuration memory (distributed over the FPGA circuit) a bit-
stream containing the values controlling the logic functions and interconnect 
switching points. The major advantage of FPGAs over custom-made cir-
cuits is that the designer is relieved from addressing the increasingly com-
plicated back-end design of integrated circuits. The back-end refers here to 
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structures of the processor which may be poorly utilized by a specific app-
lication, timing overhead stemming from the time-multiplexed nature of 

cation-specific performance; the more the architecture is tailored to an app-
lication, the more difficult it is to reprogram it to perform something 

logy will continue at least for yet another decade. 
Roadmap for Semiconductors (ITRS) [208] the advancement of techno-

cessor on a single chip (as was the case in early 1990s) but to include a 
This 1000-fold improvement enables to fabricate not only a complete pro-

device. FPGAs consist of an array of configurable logic modules (rewrit-
able look-up table memories), configurable interconnects between the 

One consequence of the technological advances is that Field-

and customization of existing processors. By providing application-

Programmable Gate Array (FPGA) [54] circuits have also evolved to carry 



 

the physical placement of logic cells, routing between them, power net-
work generation, clock network generation, and test structure generation; 
in all these operations the practical impairment caused by crosstalk, trans-
mission line effects, voltage drops, leaking, etc. have to be taken into ac-
count [311]. FPGAs together with desktop computer processors are the 
forerunners in the use of advanced technology, e.g., FPGAs fabricated in 
65 nm technologies are already shipping while most of the Application-

partial reconfiguration has become feasible, enabling to use reconfigura-
tion also to increase the system complexity beyond what can be placed on 
a device at a time. The drawback of FPGAs is that they carry unnecessary 
overhead in cost, speed and power consumption compared to custom-made 
circuits. However, mainly due to increasing Non-Recurring Engineering 
(NRE) costs of integrated circuit fabrication, the FPGAs can be applied to 
an increasing number of applications not only as prototypes but as part of 

One of the enablers for the recent trend to push processor design to the 
ASIC designers’ toolbox is certainly the degree of maturity that the soft-
ware tools for processor architecture exploration, instruction set design, 
and both software development tool chain and hardware generation have 
achieved. Design methodologies approaching the processor design from 
different angles have emerged, including an approach based on an existing 
base architecture to be customized, compiler-based exploration of architec-
ture, and processor description language based design. Independently of 
the approach, the design flows can now produce the processor hardware 
instance and the development software tool chain in a structured and pre-
dictable way. 

The rest of the book is organized as follows. Where the authors of the 
chapter are coming from outside my own research group, the inclusion cri-
terion is also briefly pointed out. 

In Chapter 2, the terminology and basic foundations of embedded com-
puting architectures are revisited to pave way to the rest of this book. 
Different parts of a computer are introduced, the addressing modes found 
in various processors overviewed, different architecture styles illustrated, 
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vious technology nodes. Another advantage of FPGAs is their inherent
Specific Integrated Circuit (ASIC) designers still work with the 2–3 pre-

reconfigurability; this is what FPGAs are all about! Recently also dynamic 

the final product. Only very high-volume and highly power-sensitive pro-
ducts remain out-of-reach for FPGAs. The border of having cost advantage
from custom circuits is raising to higher production volumes continually.

and available forms of parallelism in a processor architecture explored. Also 
the memory subsystem characteristics and I/O operations are revisited.



In Chapter 3, put together by electronics industry experts Steve Leibson 
and Grant Martin, a historical perspective to the fallacies, pitfalls, and 
flaws in processor design is provided. It is very enlightening to notice that 
the ideas that appear excellent at some point of time may turn out to be 
dead ends once implemented. 

In Chapter 4, an overview of the design flow of processors is given, to 
that end illuminating the path through different architectural styles, design 
approaches, and various steps of the design process that await in the fol-
lowing chapters. In that chapter the instruction encoding phase is empha-
sized since it will not be addressed in detail elsewhere in this book. 

In Chapter 5, the first design case is described. A general-purpose em-
bedded processor core design carried out at Tampere University of Tech-
nology (TUT), Finland, for open-source distribution is presented. This case 
tries to underline the design choices made when designing COFFEE RISC 
Core and the reasoning behind them. The whole hardware design in VHDL 
description language and the related software tools are also available to the 
readers on our web site. 

In Chapter 6, one of the specific application areas is handled. Digital 
Signal Processors (DSP) have a different design space which is addressed 

ware support for loops, or multiply–accumulate instructions, are described. 
In Chapter 7, exploitation of parallelism in a DSP-oriented application 

area is carried out. A broad class of new kind DSPs has recently emerged, 

exploration and compilation techniques for VLIW DSPs are described by 
Christian Panis, representing Catena Radio Design, The Netherlands. His 
approach is quite special since it employs heavily compilers in the design 
space exploration for a parameterized VLIW architecture. 

In Chapter 8, Steve Leibson from Tensilica describes the customizable 
processor approach. He is a perfect choice to do this since Tensilica is 
the leading provider of customizable cores. Customizable processors are 
based on a base architecture that is augmented and customized to form an 
application-enhanced processor instance. On top of them, also application-
specific processor families are addressed in that chapter. 

In Chapter 9, reconfigurable processors are addressed. While custom-
izable processors can be modified at design time, reconfigurable processor 
architectures can be dynamically reconfigured at run-time. The underlying 
philosophy, architecture, design tools, and application results are presented 
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Instruction Level Parallelism (ILP). The architectural choices, design space 
using the Very Long Instruction Word (VLIW) approach to increase

architectures, Fabio Campi from ST Microelectronics in Bologna, Italy.  
in another chapter by one of the pioneers of reconfigurable processor

by a pioneer in this field, Gene Franz of Texas Instruments. Specific pro-
perties requiring special hardware, such as circular buffer addressing, hard-



 

In Chapter 10, we take a co-processor approach. While the approaches 
introduced so far concentrate on getting the most out of a single processor 
running a single instruction stream, a co-processor approach to accelerat-
ing multimedia applications is using parallel reconfigurable hardware to 
extend the single-processor capabilities. The chapter concentrates espe-
cially on the BUTTER accelerator developed at Tampere University of 
Technology, boasting with floating-point processing capabilities to enable 
fast 3D graphics and video applications. 

In Chapter 11, James Ball from one of the leading FPGA manufacturers, 
Altera, addresses designing processors for FPGAs which is an art of its 
own kind. As said, the FPGA is an increasingly interesting alternative to 
implement complex systems especially in lower production volumes. The 

(UTU) and Åbo Akademi University (ÅA), Finland. The group is one of 
the few using TTA approach to processor design, and possibly the only 
one applying it to protocol processing. 

In Chapter 13, Java co-processor design is another specific application 
area addressed by UTU reseachers. While Java processing is often imple-
mented as a virtual processor emulated in software, the researchers at UTU 
are taking another approach and accelerating the Java processing in a spe-
cific co-processor. 

In Chapter 14, we take a look at streaming applications. Stream multi-
core processors are a solution for data-intensive processing, and one of the 
leading sites researching this topic is Massachusetts Institute of Technol-
ogy (MIT) in the USA, thus the approach is described by Rodric Rabbah 
and Anant Agarwal from MIT.  

There is an ongoing debate on what is the most liable solution: to run 

several Itanium and Xeon processors clock design. 
In Chapter 16, another angle will be presented by a team from Manches-

ter University, introducing us to asynchronous and self-timed processor 
design. This particular team has implemented, e.g., the asynchronous ver-
sion of ARM processor family. 
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(especially Altera) FPGAs. 
chapter describes efficient ways to implement processor structures on

tions to them using Transport Triggered Architecture (TTA) based processor
architecture template are addressed by people of University of Turku

domains, or completely asynchronously. In Chapter 15, issues arising in 
the SoC and its processors tied to a single clock, using multiple clock 

especially the high-end processors, clock generation and distribution stra-
tegies, are addressed by Stefan Rusu from Intel, who has been in charge of 

In Chapter 12, we target protocol processors which are devoted to hand-
ling packet data in communication networks. The design issues and solu-



In Chapter 17, early estimation models of processors are discussed by 
researchers from UTU and TUT. The work described is one of the few 
early estimation approaches in a SoC environment, and is also taking the 
models to the granularity of processor sub-blocks which gives important 
feedback also to processor designers in an early stage. 

In Chapter 18, high-level simulation models enabling designers to 

In Chapter 19, programming tools for custom processors are discussed 
by researchers from ARCES laboratory in Bologna, Italy, and TUT. These 
teams are two of a very few who are providing support for custom archi-
tectures using open-source software. 

In Chapter 20, software-based testing of embedded processors is ad-
dressed by specialists from the universities of Piraeus and Athens, Greece. 
These groups have been very active in this area. Testing and debugging of 
processors that are embedded not only in the application device but also in 
the middle of a System-on-Chip circuit is an increasingly important area 
that the designers have to be aware of. 

In Chapter 21, the book is concluded by an outlook of the future direc-
tions in processor design, including increasingly parallel architectures with 
a mixture of Process Level Parallelism (PLP), Thread Level Parallelism 
(TLP), Instruction Level Parallelism (ILP), and Data Level Parallelism 
(DLP). 

Jari Nurmi 6

researchers from UTU, TUT and ÅA. The work is closely related to the
architectures described in chapters 5 and 12. 

evaluate systems efficiently on a high abstraction level are described by 
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Tampere University of Technology 

system architecture concepts and terminology are clarified. An experi-

and return later, in case some clarification is needed when reading the fol-
lowing chapters. The chapter is not based on any particular reference, but 
the author has learned a major part of the issues presented here from the 
“bible” of computer architecture by Hennessy and Patterson [187]. Other 
good references include textbooks by Stallings [388], Tanenbaum [409], 

We first discuss the components of an embedded computer: datapath, 
control, memory, I/O, and interconnects, and how these are represented in 
the Instruction Set Architecture. Next, we look at different processor archi-
tectures from the organization point of view. Different ways of introducing 

Components of (an embedded) computer 

In general, a computer or an embedded system can be considered as a 

7 

© 2007 Springer. 

combination of a processor that is responsible for executing programs, some

:

issues such as memory hierarchy and virtual memory are discussed, and 
a quick overview of I/O operations and peripherals ends the chapter. 

parallelism in a processor are also addressed. The memory subsystem 

J. Nurmi (ed.), Processor Design  System-on-Chip Computing for ASICs and FPGAs, 7–26. 

memory for storing programs and data, and input/output (I/O) function-  
ality that provides an extension to peripheral devices of the processor.

Heuring and Jordan [192], and Patterson and Hennessy [336]. Regarding

This chapter provides a condensed view of essential computer/embedded 

parallel architectures the books by Flynn [128], Sima, Fountain and Karsuk

enced reader may wish to skip this chapter or browse through it quickly 

[377], Silc, Robic and Ungerer [376], and Corporaal [92] are good reading. 
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Fig. 2.1. Components of a computer or embedded system.  

 

 
Fig. 2.2. Programmer view of a hypothetic processor. 
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The main components are interconnected in some way. Figure 2.1 illus-
trates this generic computing device. The processor is often called the Cen-
tral Processing Unit (CPU). At this point, we do not care whether the 
memory is a single monolithic one or consists of a set of separate address 
spaces. Also, we do not give any thought to the peripherals and how they 
are accessed or addressed at this point. 

The interface to the programmer is called Instruction Set Architecture 
(ISA). The ISA defines the instruction set of the processor, including 
available addressing modes and data types, and the set of registers and 
memory spaces visible to the programmer. A hypothetical programmer 
view of a processor is shown in Figure 2.2. 

In addition to possible hardwired special functionality of some registers, 
there are often conventions of use for the registers; the compiler might, 
e.g., use certain registers as subroutine arguments, return values, stack 
pointer, frame pointer, and pointer to the global variable area (for a pro-
grammer these may be obvious; the others may as well ignore the details 
but catch the key point that there has to be a convention for allocating even 
“general-purpose” register use). 

The processor can be further divided to datapath and control, as shown 

datapath assumes the role of data processing, while the control unit fetches 
instructions, decodes them, controls the operation of the datapath, and 
takes care of the control transfer operations (such as jumps, branches, sub-
routine calls, and returns). In very advanced processor architectures, the 
control part may consume a considerable part of the processor implemen-
tation and perform a variety of very complicated tasks such as instruction 
prefetching, cache control, branch prediction, issuing multiple instructions 
per cycle, and/or reordering results for register write-back. This is some-
what compensated by the increasing word lengths on the datapath side, but 
nevertheless a complex control occupies a significant amount of the silicon 
real estate. The datapath (or sometimes multiple datapaths) take care of the 
arithmetic, logic, string manipulation, etc. operations done on data. The 
heart of the datapath where the actual processing takes place is an Arith-
metic Logic Unit (ALU). In case of multiple datapaths, the individual 
processing units are often called Execution Units (EXU) or Processing 
Units (PU). 

The instruction set of a processor consists of all the different types of 
executable operations. They can be divided into arithmetic and logic 
instructions, load and store instructions, change of flow (control) instruc-
tions, and miscellaneous instructions like system calls, mode setting, etc. 

in Figure 2.3, again for a hypothetical processor. As can be imagined, the 
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Fig. 2.3. Datapath and control. 

In processors supporting vector data processing or specific multimedia 
instructions (see later in this chapter), these can be separated from the 

tinct operations. 
The addressing modes deserve a bit more attention at this point. Typi-

cally, there are different addressing mechanisms for program and data 
memories, while the latter are normally getting more attention. The pro-
gram addressing, first of all, can be direct (or absolute), relative, register-
based, or (as a kind of mixture) pseudo-direct. Direct addressing using a 

arithmetic instructions group. Depending on the architectural style, the ins-
tructions might also be compound instructions consisting of several dis-

field from the instruction is seldom possible unless the address range is very 
limited. The full address range can always be accessed through register-
based or register indirect addressing (assuming of course that the register
length is at least equal to the address length). Register indirect add-
ressing for program memory is used intensively in returns from subrou-
tines and interrupts, though it also can be used for jumps to run-time computed
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the offset can then easily be incorporated to the instruction word. Pseudo-
direct addressing uses a segment register or the upper bits of the program 
counter concatenated with a direct address from the instruction field. 

is no addressing at all; the data to be used in the operation is embedded in 
the instruction word itself. Register addressing denotes the register num-
bers to be used as operands. Register indirect addressing uses a register to 
hold a memory address, e.g., for a load or store operation. A slight but use-
ful extension of it is offset (or base) addressing, which uses a register value 
plus an offset from the current instruction address to determine the branch 
target. This is especially useful when the register contains a pointer to the 
start of a data structure, e.g., an array, in memory and the offset is used to 
address the individual array elements. 

d) offset (base), e) indexed, f) post-increment, and g) pseudo-direct addressing. 

addresses. Relative addressing is frequently used because it allows the
use of small constants as offsets from the current program address, since 

Fig. 2.4. Addressing modes: a) immediate, b) register direct, c) register indirect, 

program-addressing modes, reflecting the need for a variety of ways to
address various data items. The simplest form is immediate addressing which 

A processors’s data-addressing modes are usually far richer than its 
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e.g., a scaling factor to multiply the contents of one register is used, another 
register is added to the result, and an immediate offset can be added on top 
of that. Especially in signal processing some special addressing modes, 
like modulo addressing and bit-reversal addressing are used frequently. In 
some architectures, a pre- or post-calculation can be combined with the 

The data addressing modes are illustrated in Figure 2.4. 
There are also equivalencies between data and program addressing, e.g., 

absolute addressing of programs and immediate data use similar encoding, 
and PC-relative addressing is a special case of offset addressing with the 
PC as an implicit base address register. 

Architecture organization 

inter-related with the processor instruction set and ISA. First of all, there 
are several operand conventions dictating how the (mainly arithmetic) 
operations are done. One of the oldest conventions is the use of an accu-
mulator (or later, multiple accumulators) to hold one of the operands and 
to contain the result after the operation. The accumulator architecture al-
lows to encode only one operand in the instruction (one of the operand reg-
isters as well as the result register are implicit), thus saving code space. 
The explicit operand may be a register or a memory location, depending on 
the architecture. An even more economic approach is to use another old 
convention, the stack architecture, where the operations are always per-
formed on the top two items of a stack, and the result is saved on the top of 
the stack. However, special push and pop operation are needed to browse 

A further modification is to use two registers to compute the address. 
This is called indexed addressing. In some very complex addressing modes 

after the actual memory addressing, e.g., pre-decrement or post-increment. 
register indirect addressing to also update the address register before or 

Data representations or data types create another issue that is also re-
lated to the selection of number format used in the processor in general. A 
binary number can be interpreted as an unsigned integer, signed integer, 
signed fraction, floating-point number, character string, binary-coded deci-
mal number, grey coded number, a plain collection of bits, etc. Also the 
number of bits used for the data representation may vary. The operations 
of the processor may support one or several of these various data types. It 
is often desirable to support also different lengths of the same type of 
operands, e.g., double words, words, half-words, and bytes, or single and 
double precision floating-point numbers. 

The organization of the datapath and control of the processor are heavily 
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The (general-purpose) register architecture is commonly used in mod-
ern architectures. An instruction in a machine with a register architecture 
may contain two or three register numbers; one of the operands might be 
the same as the destination register. This architecture is also called the 
load–store architecture or Reduced Instruction Set Computer (RISC) para-
digm; one of the key RISC features is that the arithmetic operations are 
performed on register values. This requires load operations to be per-
formed prior to the arithmetic calculation, and a subsequent store to save 
the data to memory afterwards; thus the name load–store architecture. This 
architecture could be also called a register–register architecture in contrast 
to register–memory and memory–memory architectures where one or both 
of the operands may reside in memory. This implies that the instruction 
contains quite a lot of information for calculating the memory references in 
addition to the operation itself, making the instruction long and often also 
variable length, avoiding unnecessary sacrifice of precious memory space. 
The architecture styles are depicted in Figure 2.5. 

It is worth coming back for a while to the RISC definition. In contrary 

• Provides basic primitives, not “complete solutions” as instructions; this 
leads to the “reduced” instruction set 

• Single-cycle execution of most instructions 
• Easy to pipeline 
• A lot of general purpose registers 
• Arithmetic and logic operations (and address computation) are done for 

register operands or immediates (the load–store architecture principle) 
The beauty of primitives is that you can build several different complex 

operations by combining the primitive operations in different ways, while 
complex instructions tend to be utterly inflexible. The CISC solution is to 

and somehow prevailing way to apply CISC principles are signal processors 
which tend to pack a lot of small operations in one instruction to complete, 
e.g., a filter tap computation in one instruction. In restricted application 
areas the approach may be more feasible than in general-purpose processors 
where CISC concepts are, if not completely absent, at least merged  with  
the  RISC  principles  in  the  modern  high-end  CPUs. 

 

through the data of the stack if the topmost items are not the ones desired 
to be used for the next operation. 

to Complex Instruction Set Computer (CISC) philosophy, RISC is all about
keeping it simple. The features that are associated with RISC are: 

(in real life compromises have to be made) 
• Orthogonality and regularity in the instructions as much as possible

gramming constructs (often failing in this, too). One of the most successful 
try and provide complete solutions presumably matching high-level pro-
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Fig. 2.5. Architecture styles: a) 0-address (stack), b) 1-address (accumulator), c) 2-
address (register), d) 3-address (register) architectures, e) register-memory, and f) 
memory–memory architectures. In f) we are assuming the ultimate case that both 
operands and the result reside in the memory. The top part of each subfigure illus-
trates the instruction format corresponding to the architecture style. 

Also customizable processors are stretching the architecture style towards 
the CISC philosophy. 

Regularity means, for instance, that the instructions are of the same 
length, and that the operation code and operand fields are found at the 
same location in the instruction independently of the instruction at hand. 
Orthogonality means that the same addressing modes and data types can be 
used in several instructions, and the register set usable for an instruction is 
not restricted (by anything else but the use conventions) but is as similar as 
possible from one instruction to another. This also provides a large number 
of registers to be used by the many simple instructions in a RISC architec-
ture. In CISC, the registers tend to be more specialized for limited purposes, 
one reason for that being reduction of the instruction lengths by allocating 

lity and a large number of general-purpose registers thus go hand in hand. 
a special register to be used exclusively for a specific purpose. Orthogona-
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Ways of parallelism 

The most straightforward way to increase the parallelism of a processor is 
to pipeline it, thus interleaving the execution of successive instructions. 
RISC architectures, in particular, use this type of parallelism, which is well 
in line with splitting the program functionality first into (temporally) short 
instructions and then just further splitting the execution into natural se-
quential stages. This can be further continued to super-pipelining which 
means pipelining beyond the functional block level, i.e., splitting “natural” 
execution stages such as instruction fetch into smaller sub-tasks each in 
their own pipeline stage. 

Instruction Level Parallelism (ILP) is another widely used technique 
and it refers to parallel execution of complete instructions or operations. 

implementation of the instruction issue, as shown in Figure 2.6. 
Superscalar processors fetch several instructions into their instruction 

queue at a time and dynamically issue a pre-defined maximum number of 
them each clock cycle. The number and type of parallel instructions varies 
from architecture to architecture. 

issue implementations of the same ISA. Dynamic instruction issue intro-
duces one problem, the possibility for out-of-order execution. To properly 
execute programs, the processor must incorporate a reorder buffer or an 
extended register file (with a mapping table to map logical registers to 
physical ones) to write back the results to user-visible registers in the pro-
gram order. 

VLIW executes packets of operations packed into a very long com-
pound instruction (as the name states). The instruction issue relies on static 
scheduling, determined by the compiler when packing the operations into a 
single instruction word. The operations are often executed in lockstep, 

stalled. This limitation and the large number of register file ports needed 
are the major drawbacks of VLIW. Clustering is used to fight the large 
number of ports, which makes the architecture less orthogonal. 

There are several approaches to ILP, including superscalar, Very Long Ins-
truction Word (VLIW), Explicitly Parallel Instruction Computer (EPIC), 
Transport Triggered Architecture (TTA) and dataflow. These will be des-
cribed briefly in the following paragraphs. The main difference of the app-
roaches is in how much they rely on hardware (dynamic operation) in the 

binary compatibility between a single-issue processor and different multi-

An example could be that the processor issues two integer and two 
floating-point operations each cycle. One major advantage of superscalar is

others but must wait if some of the operations in the VLIW packet will be 
meaning that the parallel instructions are not allowed to overtake each
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Fig. 2.6. ILP classes based on how much of the functionality are passed to be 
solved at run-time by the hardware. 

Yet another drawback to older VLIW architectures was the wasting of 
instruction memory space. When the whole VLIW instruction could not be 

instructions to pad the VLIW packet. These NOPs occupied a lot of the 
instruction space, which was typically overcome by using different instruc-
tion templates with varying number of operations. To create a long-lasting 
solution that can also support different number of execution units in future 
implementations led to the EPIC approach, which might still be called 
(somewhat misleadingly) VLIW. In the EPIC architecture, the instructions 
are more clearly put together from a set of independent instructions, with 
some indication as to which of them can be executed in parallel. Thus, 
instead of a readily packed VLIW instruction, the actual issuing of the 
instructions may or may not happen in parallel, depending on the processor 
implementation. The actual binding to function units is done dynamically 

In the dataflow architecture, information on the next consumer of the 

filled with some meaningful operations, the compiler added no-operation 

processed data is encapsulated together with the data. These “tokens” (pro- 
cessing order information) and data are then moved around the inherently

at run-time [407]. 
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TTA seems at first glance to be very different from the above mentioned 
ILP solutions. In TTA the key idea is to code the date movement between 
different functional units within the instructions instead of separately as 
functions and their operands. The moves to the local operand registers of 

Another form of processor parallelism is Data Level Parallelism (DLP), 
which means that the operation is applied on several data items instead of 
one. Typically this is implemented with split datapaths, e.g., a 64-bit 
datapath could be used to carry out two 32-bit operations, four 16-bit, or 
eight 8-bit operations instead. Such a configuration is shown in Figure 2.7. 
This principle is also called sub-word parallelism. Such short-data parallel 
operations are especially useful in multimedia processing (like multi-
channel audio or Red–Green–Blue (RGB) video signal). In this context the 
approach is also called short vector processing. In actual vector proces-
sors, the datapath is often time-multiplexed between the vector elements, 

parallel architecture to complete the sequence of operations. The dependen-
cies are thus implicit from the code itself. 

the functions automatically trigger function execution. To make this archi-
tecture work properly, dependencies and independencies must be com-
pletely resolved at compilation time. 

Fig. 2.7. Short vector processing datapath. 

thus only saving instruction memory rather than considerably speeding up 
the operation in case of vectors instead of scalars. In this sense the DLP in 

approach. 
form of short vectors is completely different from the vector processor
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 taneous Multi-Threading. A four-unit processor with four threads (A–D) assumed, 
and time is running from top to bottom in the figure. 

approach larger parallelism granularity. In TLP, the execution units of a 
processor are shared between independent threads of the process (or even  

Thread Level Parallelism (TLP) and Process/Processor Level Parallelism 

threads  from different  processes).  TLP can be  further  divided into coarse- 
grain, fine-grain, and Simultaneous Multi-Threading (SMT). In coarse-grain
multi-threading, the threads are context-switched infrequently, typically
when the processor would otherwise stall to wait for a cache miss.

In fine-grain multi-threading, the thread in execution can be changed 
every clock cycle. SMT gets even further by allowing multiple threads to 
share each execution cycle, i.e., different threads are actually co-executed 
as opposed to time-multiplexed threads. Thus, in SMT there is physical 

Fig. 2.8. Thread Level Parallelism: a) Coarse-Grain, b) Fine-Grain, and c) Simul-
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In Process Level Parallelism (PLP), different processes are executed on 
parallel processors or processor cores. This brings us to real multi-core and 
multi-processor systems. A classification according to Flynn [127] divides 
(parallel) processing approaches to four classes, according to how many 
parallel instruction and data flows are handled in parallel. The Multiple-
Instruction Multiple-Data (MIMD) class is reserved for the independent 
parallel multiple processor case. Single-Instruction Multiple-Data (SIMD) 
refers to data parallel or short vector processors. Single-Instruction Single-
Data (SISD) describes a uni-processor case. Multiple-Instruction Single-
Data (MISD) is often considered an anomaly of the Flynn classification. 
The closest candidates to that principle can be found in systolic arrays 
which process streams of data spatially in a pipeline. 

Memory 

to be too expensive, but they are definitely to be used within the processor. 
In Static Random Access Memory (SRAM) the memory cell is typically 
made out of six transistors, four of which are used as two cross-coupled 
inverters and the rest as transmission gates to read and write the cell. 
While registers can be accessed in a fraction of a clock cycle, a reasonably 
sized SRAM can be accessed in most cases in a single cycle. Read-Only 
Memory (ROM) can be used for constant tables or boot-up code, it is very 
dense with only a single transistor (or none, but the area is the same) per 
storage bit. While ROM is fixed at design-time, there are also some other 
similar type of non-volatile (meaning that the value is not lost in power-
down) memories. Electronically Erasable and Programmable ROM 
(EEPROM) and FLASH memories can be also written and are also avail-
able in some digital integrated circuit technologies for on-chip implemen-
tation. They are slower and larger than the volatile SRAM. 

Dynamic Random Access Memories (DRAM) are smaller since the 
storage element is typically a trench capacitor that is accessed through a 
single pass transistor. On the other hand, large DRAM arrays suffer from 

First of all, there are physically different kinds of memories, each having
their characteristic properties regarding speed, area, power consumption,
and volatility. The fastest option is a register, which is constructed out
of flip-flops or latches. Building memories out of registers will turn out 

concurrency, not just virtual. The differences of the TLP approaches are 
illustrated in Figure 2.8. 
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the access delay; the row decoding and column selection are done sequen-
tially. To cope with this, Synchronous DRAM (SDRAM) utilizes the 
latched data from row access to deliver several subsequent data items in a 
burst. Double Data Rate (DDR) DRAMs use both rising and falling edge 
of the synchronizing clock to deliver data. Rambus technology uses a 
lower voltage swing to deliver data more promptly from the synchronous 
DRAM. Despite of all the various attempts to speed up dynamic memory, 
it requires several clock cycles to access data in them. 

Due to physical characteristics of memory circuitry, large memories 
cannot be very fast. To create an illusion of a large and fast memory, a hi-
erarchy of memories is often used. The illusion is based on the principle of 
locality. There exists both temporal and spatial locality in memory refer-
ences. Temporal locality means that a referenced data item or instruction 

routines, or loading of a variable for update and storing. Spatial locality 
means that if we read an instruction, we are also likely to read also the next 
one, and maybe even the one after that. In data access, various data struc-
tures like arrays, First-In-First-Out (FIFO) queues, and stacks can be easily 
seen to follow a similar pattern. Thus, it makes sense to have the fre-

In computers, the memory hierarchy consists of the processor registers, 
level one data and instruction caches, level two (unified) cache, main 
memory, disk storage, and often even an off-line backup medium as the 
last resort. This is illustrated in Figure 2.9. In embedded systems the hier-
archy may be lower, but also there the use of caches is increasing as the 
applications become more complicated. Again, for mere physical reasons it 
is reasonable to keep the closest memory fast enough to allow for single-
cycle access. The increasing memory requirements (by the application) 
have been hampering this target for a while, thus driving the take-up of 
memory hierarchy in integrated embedded systems. Another reason is to 
allow the system to use more cost-effective memory technologies (such as 
different DRAM variants) for the off-chip (main) memory of the system. 

Coming to cache memories, there are various parameters which deter-
mine the efficiency of the caches in terms of hardware area or operation 
speed. The common targets of cache design are high hit rate (in other 
words, low miss rate), low miss penalty (in number of cycles), and low ac-
cess latency for hits. The misses are due to three main reasons: compulsory 
or cold-start misses when there are no items yet in the cache blocks that we 

in the memory likely will be referenced soon again, as in the case of seve-
ral subsequent executions of a loop body, frequent calls to the same sub-

quently used items close-by in a fast but small memory, and keep the
off-the-beaten-track ones available in a larger but slower storage. This prin-
ciple is embodied in the memory hierarchy. 
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not yet contain the item we are looking for, and conflict misses when two 
or more blocks are competing over the same location in the cache. 

The data is retrieved from the cache using a tag that is stored together 
with a block of data. Usually the block is more than one word long to ex-

also contains some status bits, such as a valid bit. There may be more bits 
to be used, e.g., as guidance for the replacement algorithm, or for a cache 
coherence protocol in multi-processor systems. 

 
Fig. 2.9. Example memory hierarchy. 

The design parameters include cache capacity (size), associativity, block 
replacement policy, write policy, and allocate-on-write-miss policy. The 
capacity is simply the amount of SRAM memory for the data storage in the 
cache. It can be utilized in different ways depending on the associativity of 
the cache. In a direct-mapped cache memory there is a single location to 
which the data can be mapped directly according to the least significant 
part of the address (address mod cache size). In a set-associative cache the 
memory has been divided into two or more ways. The data can be mapped 

are interested in, capacity misses when the cache is already full and does 

typical block could consist of four to eight words. In practice the tag section 
memory space which is an overhead to the actual payload of the cache. A 
ploit also the spatial locality of instructions and data, and to save tag 
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section of the ways at the address formed by the modulus of the address 
and the way size. So, only one Nth of the cache indices are used in an N-
way set-associative cache compared to a direct-mapped one with the same 
capacity. In a fully associative cache the data can be placed anywhere. 
This sounds like a good idea, but it also means that every location has to 
be searched when accessing the cache. Figure 2.10 illustrates the different 
associativity types. The required complexity is illustrated by showing the 
tag memory sections and comparison logic needed. The possible locations 
for the desired block are shown shaded. The fully associative cache ex-
tends from the N-way set associative one by including all cache blocks 
within one set, and all cache tags are thus compared in parallel. Thus, no 
indexing of the cache takes place in the fully associative cache. 

In the more associative types of cache memory (others than direct-
mapped), a block replacement policy is needed when there is no room in 
the cache set to accommodate the block to be brought in from the lower 
level in hierarchy. The possible choices include random, Least Recently 
Used (LRU), Least Frequently Used (LFU) and First-In-First-Out (FIFO). 
All of these except the random replacement need some book-keeping to be 
done in the status bits of each block. A simple method in two-way set-
associative caches is to maintain a LRU-bit for each block in cache. When 
accessing the block, the corresponding LRU bit is set and in the other 
block (within the same set) it is cleared. To simplify this, the bits may be 
cleared every now and then by the operating system or cache controller 
and only the single bit is set in the block accessed (pseudo-LRU). The least 
recently used one of the blocks may be also encoded to a common status 
section such that only log2(N) bits are needed for N ways of the cache. 
LFU requires an access counter for each cache block and is thus a bit more 
expensive solution. FIFO does not take into account the access patterns but 
replaces always the oldest block. Even random placement, despite its sim-
plicity, yields relatively good performance. 

The cache write policy can be write-back or write-through. In a write-
back cache, the modified block is not written to the lower hierarchy level 
until it is replaced because of a cache miss. This will reduce the bus traffic 

dirty bit is used to mark an updated block. There are also some drawbacks 
in the write-back method. It will increase the miss penalty in the case of a 

to the memory. To know whether the block has been changed or not, a  

into one of these ways according to a (re)placement algorithm. The set 
(cache area where a particular memory block can be placed) is a cross-

dirty block being replaced, since the old block has to be written to memory 
before the new block can be brought in. Also, in multi-processor systems 
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c) four-way set associative cache. The instruction word is divided into the fields of 
tag, index, word offset (within a block), and byte offset (within a word). 

Fig. 2.10. Cache associativity: a) direct-mapped, b) two-way set-associative, and 
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cache-coherence protocols and cache-to-cache data submission are needed 
to provide the most current version of the block for the cache updates. In 
write-through cache, in contrary, the next level is kept up-to-date by writ-
ing at the same time to the cache and the next level (cache or main mem-
ory). Since the writes to the main memory are slower they could easily 
stall the processor in case of frequent subsequent writes. Thus, a write 
buffer is needed to accompany the write-through cache. Also a second 
level cache will make the problem smaller (since the second level cache is 
faster than the main memory) but not make it vanish completely. 

block will be used for reading after the write. Thus, the allocation can be 

One of the advanced features introduced to cache memories recently is a 

the same set in the cache, e.g., due to low associativity. The victim buffer 
is a small associative cache that stores the replaced block for some time, 
and can quickly re-load the data to the actual cache as necessary. 

In embedded systems, different local storage solutions have also re-
mained. A scratchpad memory can be used to store temporarily data or in-
termediate results. It is a fast local memory which can be also implemented 
as a part of the data cache in hierarchical memory systems. Compiler Con-
trolled Memory (CCM) [88] has been introduced especially to hold values 
spilled out from the register file due to register re-allocation. CCM is a fast 
local memory in a separate address space, taking the compiler-induced 
memory traffic out of the memory hierarchy. 

Virtual memory is also something that has found its way to embedded 
systems as well during the recent years. Virtual memory makes a distinction 
between the memory space that a (user) program sees, and what is the physi-
cal memory space available. This also allows dynamic mapping between the 
program addresses and the physical addresses. Due to virtual memory, the 
physical memory size does not constrain the available address space any more. 

In virtual memory the address space is divided into pages, which is a lot 
larger than a cache block. Segments can be used instead of (or sometimes 
on top of) pages. Segments can be of any size, while the page size is a 
fixed system parameter. The mapping is conventionally done by using 

possibly   postponed  until   a  read  request  to  the block   occurs,  without com- 

Yet another design decision is whether to allocate a block in the cache 
in case of a write miss or not. Especially in write-back caches the block 
replacement can cause a large penalty, and there is no guarantee that the

promising the performance too much. Again, a write buffer is essential if 
the allocation is not made on a write miss. 

victim buffer which is intended to compensate for a wrong replacement deci-
sion or the situation where several main memory blocks are fighting over 
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page tables in memory. A part of the virtual address is the address within 
the page table, pointing to the physical page number stored in the table. 
The lower end of the virtual address is typically the offset within the page 
directly. The virtual-to-physical conversion is illustrated in Figure 2.11. 

The drawback of virtual memory becomes clear when we notice that the 
page table is stored in the main memory. Each memory access requires two 
accesses, one to the page table and another to the actual program or data 
memory (or cache, in the best case). A common way to speed up the ad-
dress translation is to use a Translation Lookaside Buffer (TLB) which 
contains the virtual–physical address pairs. This is a small associative 
cache memory, where the virtual page number forms the tag. 

 

number, and ppn = physical page number. 
Fig. 2.11. Virtual address conversion to a physical address. vpn = virtual page 

Another issue arising with virtual memory is whether the caches should 
be addressed by virtual or physical addresses. A good solution is to use 
virtually indexed, physically tagged cache. It allows making the TLB 
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lookup in parallel with the (L1) cache, but on the other hand this requires 

caches this means that the cache size cannot be any larger than the page 
size. In set-associative caches each of the ways must stay below this limit, 
allowing for larger capacity. 

I/O operations and peripherals 

memory space(s). Thus, the I/O operations become loads and stores. The 
opposite approach is to use explicit input and output commands which 
carry out the sending or receiving of data through the I/O device. The I/O 
devices may also have an address space separate from the memory space. 

Several approaches can be used for input data acquisition. One is to use 
interrupts to trigger loading in data when the I/O device is ready. The in-
terrupt signal can be driven in several ways that include the clock signal of 
an Analog-to-Digital (A/D) converter, a FIFO buffer full signal, or a dedi-
cated interrupt signal generated by a peripheral device. Another approach 
is to poll the data or tie the input operation to a certain phase of the pro-
gram execution. An intermediate solution is to use a timer to trigger the 
data input operation. 

(PCI), or Small Computer System Interconnect (SCSI). Also interrupt con-
trollers and Direct Memory Access (DMA) controllers are used frequently in 
embedded systems. A DMA controller is an important system component 
that allows the CPU to perform computations instead of carrying out routine 

sensor data, speech, audio, image, video, or Radio Frequency (RF) signals. 

that the index to cache is within the part of the address that is equal bet-
ween the two memory spaces (virtual and physical). In direct mapped 

In communicating with the outside world, there are a couple of different 

peripheral devices are mapped to memory locations in (one of) the data 
to use memory-mapped I/O, where the input and output registers of the
approaches on how the I/O will be seen by the programmer. One way is

rals include different type of serial and parallel interfaces like RS-232, 
Universal Serial Bus (USB), Firewire, Peripheral Component Interconnect 

Timers are one sort of peripheral device. Other commonly used periphe-

Digital-to-Analog (D/A) converters are also frequently used to communi-
cate with the surroundings of the device. The signals to be converted may be 

working memory. In embedded systems, Analog-to-Digital (A/D) and 
data transfers from/to main memory to/from a peripheral device or local 
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During the entire 70 years of computer development, a huge variety of dis-
crete and embedded processor species have emerged, evolved, and some-
times died out. Many strange and wonderful designs resulted from this 
evolution. Sometimes these strange and wonderful concepts lived on, some 
died out almost immediately, and some lived for only a short while – only 
to die off and then reappear as their gene lines re-emerged in later species. 

This chapter surveys thirteen failed processor species (a baker’s dozen) 
and explores the major design errors that caused their demise. Each major 
design mistake is also illuminated with examples. However, given the end-
less recycling of many old ideas as technology makes them shiny, bright, 
and new once again, who knows when the intrepid explorer/designer will 
next meet up with a descendent of one of these species? 

To honor the fact that these species may be thought of as “dinosaurs,” 
we solicited from our colleagues suggestions for good saurian-style names 
for each one. However, the analogy with dinosaurs also holds in another 
sense: many processors based on these concepts were the dominant species 
of their day, or had sufficiently bright coloring and loud roaring to attract a 
huge amount of attention. Just because the evolving world caused a corol-
lary evolution and die-out of our processor species does not mean that a 
processor species was not a reasonable adaptation to the world as it existed 
during their heyday. 

© 2007 Springer. 
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Since the earliest days of computing, there have been repeated efforts to 
drive the programming problem up in abstraction level – from patch-board 
programming, to toggle-switch entry, to machine-language entry, to as-
sembly language, and then to a whole host of “high-level” programming 
languages (HLLs) starting with Fortran and COBOL in the 1950s and 
working through hundreds or thousands of programming languages over 
the next half century. 

As soon as HLLs were developed, people began worrying about the 
semantic gap between HLL descriptions used to capture solutions to pro-
gramming problems and the actual instructions generated by the HLL 
compiler to be executed on a target machine. Early compilers often pro-
duced poor results – sometimes very poor. Even today, despite more than 
five decades of compiler development, the quality of results that can be 
achieved for many algorithms by the most highly skilled human assembly-
language coders can be an order of magnitude better (or more) than code 
produced by the best HLL programmers combined with the best available 
optimizing compilers.  

Inevitably, computer researchers and commercial computer vendors 
began to investigate the feasibility of tuning a particular processor to spe-
cific HLLs or language classes in an attempt to more closely match the 
processor’s instruction set with the language’s requirements and narrow 
the semantic gap. The theory was that programs written in those targeted 
HLLs would execute much more efficiently on these tuned machines. 

Many decades of experience and the attempts to implement this app-
roach during every major processor era – mainframe, mini/midi, discrete 
microprocessor IC, and embedded processor core – have repeatedly estab-
lished that this approach is a major architectural mistake. Indeed, it is one 
of the classical “fallacies and pitfalls” found in Hennessy and Patterson’s 
seminal book on computer architecture ([188], p. 142). 

The basic problems with this approach are many: 

• Although tuned to one language, the processor may (and very likely 
will) be used to run programs written in other languages. The tuned 
processor will run programs written in these other HLLs relatively 
poorly due to its language-specific tuning. 

• In earlier eras, scarce hardware resources were expended on efficient 
execution of rarely used instructions – a poor application of valuable 
architectural capital. 

language or language domain (Myopicsaur) 

Problem 1: Designing a high-level computer
instruction-set architecture (ISA) to support a specific
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• A language-specific instruction may end up being implemented for 
some very specific use of an HLL construct and not be useful for the 
typical and most frequent uses. Thus the hardware for this instruction 
will essentially be wasted. 

• Languages evolve. A computer architecture based on fixed, HLL-
specific hardware tends to remain fixed for a much longer time than the 
language itself because software is much easier to change than 
hardware. 

• The HLL-specific processor’s popularity is tied inexorably to the 
popularity of the target HLL. Minority tastes in languages produce a 
processor with minimal market appeal. 

before the rise of the Reduced Instruction-Set Computer (RISC) architec-
tural approach, Complex Instruction-Set Computer (CISC)-based, HLL-
specific computer architectures sparked tremendous interest. Researchers 
wrote hundreds or thousands of papers, dedicated conferences and sym-
posia on this topic were quite popular, and companies introduced real 
machines into the marketplace based on this design philosophy. 

The Burroughs “E-mode” machines were perhaps the most famous se-
ries of machines designed to support a specific language. This series in-

1

machines were designed for direct execution of ALGOL 60. This computer 
family had many other significant features as well, including stack-based 
architectures, non-flat memory utilization, no assembly language, operat-
ing systems and specialized supervisory subsystems written directly in 
dialects of ALGOL 60, and a 48-bit memory word (plus tag bits). Indeed, 
during the 1960s and 1970s, Burroughs almost made a fetish of the HLL-
specific computer-design approach. 

During this period, the company produced medium-scale and small 
COBOL-specific mainframes (B2000/3000/4000) and an interesting micro-
coded architecture used in the B1700/1800 machines that included a set of 
interpreted instruction sets that could be swapped in and out to match dif-
ferent languages. As Earnest remarks about the B5000, Burroughs had a 
“dedication to the use of higher-level programming notation to the practi-
cal exclusion of machine or assembly languages” [110]. 

                                                      
1 A caveat lector: One of the authors (Grant Martin) worked for Burroughs. Re-

peated use of the E-mode machines as an example in this chapter can be thought 
of as a somewhat nostalgic and affectionate reminiscence of interesting times past. 

approach to become apparent. From the 1960s through to the mid 1980s, 
Nevertheless, it took a long time for the pitfalls in this architectural 

cluded the B5000/6000/7000 and A-series machines from the early 1960s 
through the 1990s (some compatible processors are still available).  These 
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Unfortunately, Burroughs’ E-mode machines2 suffered several of the 
disadvantages of HLL machines. Their performance on the standard scien-
tific and business processing languages – Fortran and COBOL – was posi-
tively anemic. Later attempts to build C compilers for these machines and 
to port Unix onto their underlying architecture proved difficult, due in no 
small part to the architecture’s hierarchical memory structure. Attempts to 
extend the HLL-specific instruction set to lower end machines (including a 
single chip implementation introduced by Burroughs’ successor Unisys in 
1989 called the Single-Chip A-series Mainframe Processor (SCAMP) 
[350]) required huge amounts of microcode. Unfortunately, ALGOL 60 
never really took off as a popular programming language and this no doubt 
curtailed the popularity of the Burroughs machines. 

As mentioned, Burroughs continued its HLL-specific design philosophy 
with the COBOL-oriented B2000/3000/4000 computers, which at least had 
the advantage of targeting a more popular, business-focused HLL. 

The attractiveness of HLL-specific processor design also resulted in 
the development of machines that directly ran programs written in APL 
[182], Lisp [454], Prolog [124], and others that directly targeted BASIC, 
FORTRAN, PASCAL, PL/I, and SNOBOL [103]. Indeed, problems with 
the HLL-specific computer-architecture design approach led to a serious 
retrospective on them held in 1980 [103] just prior to the rise of the CISC 
workstation and the later rise of RISC processors and workstations in the 
mid 1980s. 

Moving from the mainframe era to the midi/minicomputer era saw the 
aforementioned HLL-specific computer-architecture design approach 
repeated with the Burroughs B1700/1800, which provided microcoded 
instruction sets for several languages (COBOL, RPG, and Fortran among 
them) [319], and a number of specialized workstation-class machines. 
Machines designed to directly execute LISP are an especially notable 
example (LISP Machines, Symbolics). 

The discrete microprocessor era also saw a few HLL-specific micro-
processor architectures including the Inmos Transputer designed to run 
Occam, the CRISP processor designed at Bell Labs for directly executing 
C programs [105,106], and perhaps the most famous (or infamous) of all 
such microprocessors: Intel’s 432, which was designed to run programs 
written in Ada [144]. The Transputer and its Occam language illustrate one 
of the “features” of an HLL-specific processor – the sometimes religious 
or quasi-religious devotion by its developers to a particular theory of com-
puting that manifests itself in a slavish dedication to one programming 

                                                      
2 Note: There are several references available on the E-mode machines – Organick  

[318], Carlson [69] and Doran [108] are just a few of them. 
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language and the exertion of substantial effort to develop a machine to 
support it. Although Transputer compilers emerged for more conventional 
HLLs later, the Transputer was introduced with Occam, a language based 
on Tony Hoare’s communicating-sequential-processes concepts. 

The Transputer was purpose-built for Occam. Iann Barron, head of 
INMOS, was Occam’s high priest. The Transputer’s history illustrates one 
of the problems with HLL-specific architectures listed earlier. Its success 
depended highly on finding a market interested enough in Occam to buy 
the processor designed for it – or interested enough in the Transputer to 
adopt its unusual language. This sounds a lot like a religious conversion. 

Intel’s 432 was designed to execute Ada and, in a more general sense, 
object-oriented languages. The Intel 432 perhaps represents the extreme 
for HLL-specific processors. It failed to achieve adequate performance for 
any language including Ada, the one it was designed for. In fact, Intel’s 
432 microprocessor suffered from a whole litany of design mistakes. 
Among those cited [144], we find: 

• The Ada compiler generated spurious instructions. 
• The Ada compiler did not perform common-subexpression elimination. 
• The compiler passed parameters by value/result, even for large arrays 

(rather than by reference). 
• The compiler used the much slower intra-module call all the time, even 

when unnecessary. 
• Instructions were bit-aligned, thus slow to decode. 
• No more than one instruction stream literal was allowed. 
• The machine had extremely inefficient procedure calls – more than 1000 

clock cycles including 282 wait states, compared to fewer than 100 
clock cycles for other processors of the era. 

As a result, Intel’s 432 executed common benchmarks 10x to 26x more 
slowly than a Vax 11/780, and 2x to 23x more slowly than an 8-MHz 
8086. Luckily for Intel, its success with x86 processors and all its succes-
sors used in the evolution of the IBM PC allowed the Intel 432 to simply 
disappear, mostly forgotten by today’s computing practitioners. 

The final foray for HLL-specific processors has been in today’s embed-
ded era, with specific hardware designed by Sun, ARM, and other vendors 
for executing Java (Sun’s picoJava processor, ARM’s Jazelle coprocessor, 
etc.). These Java-specific processors prompted some interest, but not a lot 
of enthusiasm. Interpreting Java on conventional high-performance pro-
cessors and just-in-time (JIT) compilation have proven to be more interest-
ing routes for designers delivering Java applications in the embedded 
world today. In addition, continued improvement in embedded processor 
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performance has often proved quite adequate for many Java applications in 
embedded products, which are mainly control and user-interface oriented. 

If the HLL-specific processor route has shown itself through four com-
puting eras to be a mostly misguided approach, what are the other options 
open to those wishing to use hardware in ways that go beyond general-
purpose processors to accelerate languages and applications written in 
those languages? 

One of the first concepts to discard must be that “it’s all about the lan-
guage.” Indeed, for data-processing intensive applications, it is much more 
“all about” the computational and communications kernels and algorithms 
embedded in the programs. If an application involves taking the dot-
product of large vectors repeatedly, then a processor without an appropri-
ately sized hardware multiplier, or better a multiply–accumulate (MAC) 
unit, will perform this application poorly whether the program is written in 
Fortran, Ada, C, Java, BASIC, or COBOL. If the processor has the right 
functional units and a good HLL compiler (or interpreter) for the lan-
guage(s) being used, the algorithm expressed in just about any of these 
languages should execute roughly as fast no matter the language. 

It is the algorithm’s characteristics – rather than the language’s charac-
teristics – that should be used to design, modify, or choose the right pro-
cessor. One could either search for a good processor with multipliers or 
MAC units (and perhaps zero overhead looping) for this application – a 

instruction-set extensions to tailor a configurable processor core more pre-
cisely to the performance and communication requirements of the applica-
tion. In this sense, the search for an HLL-specific computer architecture 
can be replaced today by a search for an application-specific instruction-
set processor (ASIP). 

Problem 2: Use of intermediate ISAs to allow a simple 
machine to emulate its betters (Rubeus Goldbergicus) 

One of the major methods used over the years to implement HLL-specific 
processors, as discussed earlier, is to tailor an intermediate ISA to an HLL 
and then use or develop a simpler processor that emulates the defined ISA 
through microprogramming. Microcode, in which a defined sequence of 
basic processor instructions implements an intermediate ISA, is compiled 
from some simplified intermediate language or hand written, and is made 
available to the processor either through on-chip local memory or fast-
access memory with a relatively low latency – often on-chip ROM/PROM 

DSP might be a good choice – or perhaps even better, one could use  
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or perhaps ROM/PROM designed into a multichip module in combination 
with the processor. 

There are several advantages to this approach: 

• It provides object-code compatibility with other processors within a 
family or with previous processor generations. 

• It allows a family of processors with various price–performance charac-
teristics to be built. High-end processors in the family implement the 
intermediate ISA more directly or even accelerate it through multiple 
function units, exploiting instruction-level parallelism (ILP). Low-end 
processors in the family map the intermediate ISA onto more restricted 
hardware that would execute programs more slowly but would also be 
much lower in cost. 

• Compilers written to the intermediate ISA could be used on multiple 
processors in the family. The mapping from the intermediate ISA to the 
actual instruction set of the lower-end machines, embodied in micro-
code, would be written as a separate layer and would possibly even 
avoid the use of a compiler, or at least require a very simple one. Further-
more, such a mapping might only need to be done relatively infre-
quently because the intermediate ISA would not be exposed to users and 
would not necessarily evolve the way an HLL might evolve. 

• A microcoded processor, through use of multiple ISAs and multiple 
microcode sets, could be dynamically adapted to different HLLs at 
runtime, and thus offer better performance to programs written in dif-
ferent languages. 

• For languages that rely on interpreters, the formal development of an 
appropriate intermediate ISA and microcode mapping of that inter-
mediate ISA to the target ISA might speed the availability of language 
interpreters by dividing their development into two simpler stages (the 
classic divide-and-conquer approach to engineering design). 

• As discussed earlier, by separating the process of implementing a lan-
guage compiler into two stages, it might be possible to provide language 
support for a new target machine more quickly than by writing a 
specific targeted compiler. 

• Code size may be reduced using one intermediate ISA instruction 
instead of two or more target ISA instructions. In addition, performance 
may improve by reducing the number of instruction fetches from main 
memory. 

• Supporting only part of an ISA rather than the whole thing may simplify 
compiler writing for infrequently used parts of a language. The hard-
ware design for a new processor to support the ISA may also be reduced 
in complexity, design effort, and project risk. Consequently, execution 
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of well-tested microcoded implementations for certain functions might 
be a much better alternative to direct hardware implementations. 

• This technique might better take advantage of more modern process 
technologies and much faster clock rates to offer backwards com-
patibility for older machines and instruction sets on newer processors – 
a kind of “virtualization” of the older ISA. The next step up would be to 
perform this conversion entirely in software, rather than involve any 
microcode at all. 

There are also several disadvantages to this design approach: 

• The performance of intermediate-ISA machines at the low end is often 
very poor compared to machines with simpler ISAs. The layering in 
intermediate-ISA machines often proves to be a less-than-optimal use of 
computing resources. 

• Compilers that generate code in the intermediate ISA cannot optimize to 
the degree that a compiler targeted to the underlying simple ISA of the 
real target machine can. Optimization of the compilation can only be 
done independently in the two separate layers. HLL compilers aimed at 
high-end processors in a family that directly implement the intermediate 
ISA cannot optimize for low-end processors in the family unless spe-
cially modified for them, which negates some of the advantages. 

• A machine that can be targeted to several different ISAs for several 
different languages might incorporate uneasy design compromises offer-
ing poor performance for all target languages. 

• The microcode compiler, translator, or generator (translating the fixed 
intermediate ISA into the underlying target simple ISA) might be overly 
simple or hard to use because it is not intended to be run very often. In 
addition, the microcode might be difficult to change, especially if placed 
in ROM. 
Some of the leading proponents of the intermediate-ISA concept em-

bodied them in Burroughs processors, as mentioned in the previous section, 
but many other attempts can be found in the literature as well, supported 
by the availability of many different microprogrammable computers built 
over the years. Carlson [69] discusses a microprogrammed FORTRAN 
computer that represented a near-direct implementation of the FORTRAN 
language and required only a simple translator. Carlson also discusses an 

machines [182] that all rely on microprogramming. 
In 1980, Flynn [127] surveyed a number of architectural approaches – 

including the microcode concepts – and tried to define ideal language 
machines that would directly execute HLLs. Moulton [298] studied the 

EULER processor (EULER being a variant of ALGOL 60) and APL  
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general design of microprogrammed machines to support HLL compilation 
and execution. Among many other HLLs supported with microprogram-
ming (see the previous section for a greater discussion) were LISP [454] 
and Prolog [124]. The Burroughs machine that perhaps was the greatest 
early embodiment of this concept was the B1700/1800 series, supporting 
intermediate ISAs for COBOL, FORTRAN, and RPG [319]. 

One might have supposed that the advent of VLSI in the 1980s would 
have tended to curtail the microprogramming approach and, indeed, the 
rise of industry-standard microprocessor ISAs, multiple generations of 
implementations of those ISAs, and the sheer transistor count available with 
modern IC-fabrication processes seem to have reduced the use of these 
microcoding methods. However, a few vestigial remnants of this technique 
have surfaced in recent years. For example, in the late 1980s, the Burroughs 
SCAMP processor, discussed earlier, combined a relatively low-end RISC 
processor of a similar kind to that used in the company’s small, low-end 
A3 and A4 mainframes, with hundreds of Kbytes of microcode that imple-
mented the Burroughs “E-model” mainframe instruction set – in use since 
the original B5000 appeared in the late 1950s. SCAMP was used in the 
“Micro-A” computer, where the SCAMP chip was assembled with a number 
of microcode ROM chips into a two-by-two-inch multichip module. 

Another interesting vestige of this approach, and a counter-example for 
this problem, is to be found in current Pentium-class processors starting 
with the AMD K6 [172]. In these processors, the CISC instructions of pre-
vious x86 processor generations are implemented using an RISC instruc-
tion set. The processor’s instruction-decode unit decomposes the CISC 
instructions into RISC operations and then assembles and issues groups of 
these simpler operations to the processor’s parallel execution units. It’s 
not exactly microcode, but something clearly akin to microcode. 

This design approach also eases the creation of new CISC instructions 
for newer processors. It creates a hybrid CISC/RISC architecture. Clearly, 
microarchitected/microcoded machines still have a role and a place, one 
that may rise and fall as semiconductor technology and processor architec-
tures continue to evolve. Perhaps a vestige of this saurian family tree will 
remain among the nimbler mammalian machines of the present day. 

Problem 3: Stack machines (Stackadactyl) 

Another computing dinosaur – the stack machine – evolved multiple sub-
species. In fact, the stack machine actually may not be a dead end in com-
puting evolution. To paraphrase a well-known US presidential quotation 
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describing a somewhat questionable situation, “It all depends on what your 
definition of ‘stack’ (machine) is.” 

A stack is simply defined as “a memory device in which data may be 
stored and from which they may be retrieved in, … , a “last in – first out” 
order” ([108], p. 64). Stacks have “been widely used by system program-
mers, especially for the implementation of compilers and interpreters” 
([108], p. 63). The two general instructions used to access the stack are to 
PUSH a value onto the top of the stack to store it and to POP the value off 
the top of the stack to access it. 

Koopman [236] has done an excellent job of defining and surveying 
stack-machine architectures, which fall into a total of 12 categories based 
on a three-axis taxonomy. The first axis represents the number of stacks: 
single or multiple (S or M). The second axis specifies the size of dedicated 
stack memory: small or large (S or L). The third axis represents the num-
ber of operands in the instruction format (0, 1, or 2). Thus SS0 represents a 
single stack machine with a small stack memory and a 0-operand instruc-
tion format – an example of which is the Burroughs B5000/6000/7000 
family. SS2 machines include the Intel 80x86, which has a stack mode for 
floating-point computations. 

Koopman describes stack machines in all 12 categories but concentrates 
on MS0 and ML0 machines. Representative SS1 machines include the 
HP300/HP3000 and the ICL 2900. SL2 machines include a number of 
early RISC processors such as the AM29000, CRISP, and RISC I. MS1 
and MS2 machines include the PDP-11 and Motorola 680x0 respectively. 
ML0 machines include a number of different Forth machines, designed to 
directly execute the Forth language (which was the motivation for much of 
Koopman’s work). The ML1 category includes the Lilith (Modula work-
station) and LISP machines. 

Interest in stack machines seems to be based on the fact that: 

• “Stacks are the most basic and natural tool that can be used in 
processing well structured code” ([236], pp. 18–19). 

• “Machines with LIFO stacks are also required to compile computer 
languages” (Ibid). 

• “Any computer with hardware support for stack structures will probably 
execute applications requiring stacks more efficiently than other machines” 
(Ibid). 

motivate the use of multiple stacks rather than a single stack. 

return addresses, local variables for re-entrant or recursive code, and sub-
routine parameter stacks. Efficiency and simplification in stack operation 

Koopman distinguishes four uses of stacks: expression evaluation,
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for stack, accumulator, and register type machines (register-memory and 
register-register/load-store). Despite the large number of stack machines 
and variants, “virtually every new architecture designed after 1980 uses a 
load-store register architecture” (Ibid, p. 93) – what they call a general-
purpose register (GPR) computer. They ascribe this development to three 
factors: 

use than other forms of internal storage.” 

the results of operations, for reuse. 

Ditzel and McLellan [104] give a good set of pros and cons for registers 
in their discussion of the C Machine “stack cache.” Register-access time is 
at least an order of magnitude faster than main memory; register address-
ing requires fewer bits than a memory address, which may lead to more 
compact code; the processor can access registers in parallel with main 
memory, so they can be used to fetch multiple operands simultaneously. In 
general, registers reduce memory-bandwidth requirements. 

The cons are: 

• Context switching for procedure calls (the expense of which discourages 
the use of many small nested procedures in structured programming), 
which places the burden of register allocation on compilers. 

• The fact that registers cannot be treated transparently as main memory – 
for example, in addressing modes. 

• Contrary to the opinion above, at least for the C language, pointer 
aliasing for variables discourages the use of registers to hold variables 
(because memory would hold an old value if the register value had not 
been written back to it, and the compiler might not realize this due to 
use of pointers). 

In their study, Ditzel and McLellan looked at using a stack cache for 
procedure calling, aiming to keep the top elements of the stack in high-
speed registers. 

As a particular and venerable example of a stack machine dating back 
to the early 1960s, many variants of the Burroughs E-mode machines 
held the two top elements of the stack in fast registers (the B7700 had a 

Hennessy and Patterson ([188], pp. 92–93) use a simple ISA taxonomy 

1. Register accesses are faster than memory accesses (and with embedded 
processors, the discrepancy between internal-register and local-memory
access, and system memory accessed over a bus has grown from a few
clock cycles to potentially many tens or even hundreds of clock cycles
as process technology has advanced). 

2. With today’s compilers, “registers are more efficient for a compiler to 

3. Registers can be used to hold variables rather than just operands and 
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32-register stack buffer). The rest of the stack spilled into memory. These 
machines used a single small-memory stack to hold operands for expres-
sion evaluation and stack frames for procedure calls (return addresses). 
This design approach was theoretically compelling but delivered relatively 
poor performance when trying to map other languages and large flat mem-
ory spaces to the architecture. 

If we take our analogy of herds of various computer species at the meta-
phorical “dinosaur watering hole” and passively observe them over time, 
we would see a profusion of stack-based species and subspecies gradually 
dying out in the early 1980s to be replaced by the general-purpose-register 
(GPR) machines. It is interesting that this transition may have been driven 
more by a herd mentality in processor designers and a desire to emulate the 
more successful microprocessors and embedded processors than by clear 
technical superiority. Certainly, Koopman suggests the MS0 and ML0 
stack machines represent a new breed or species that provide considerable 
advantages over the previous generations of SS0 and related machines. 
However, this new evolutionary branch of the stack-machine species 
seems to have died out. 

Other technology factors evolved to make GPR machines good enough 
to survive and even flourish. Register windowing, for example, improved 
procedure-call efficiency and avoided much of the memory cost of proce-
dure calls, thereby reducing part of the stack machine’s comparative ad-
vantage. Process-technology evolution and the relentless application of 
Moore’s law allow the number of registers at the processor’s heart to grow 
sufficiently to accommodate normal programming needs. Registers are no 
longer a scarce and expensive resource. 

Compilers improved in their ability to allocate registers in a more opti-
mal fashion. Although GPR machines may lack some of the best features 
of their stack-based competitors, their environmental adaptations were 
“good enough” to allow them to survive, reproduce, and live on. 

However, a large number of stack-machine variants have appeared over 
the years and the possible resurgence of Forth and related stack-oriented 
programming languages could reawaken interest in stack-based architec-
tures. In fact, this very thing has already happened. The Java language and 
the idea of the Java virtual machine (JVM) reawakened some interest in 
stack architectures ([188], p. 149). The idea could take hold yet again with 
the rise in popularity of some future new programming language or the 
appearance of a revolutionary and unanticipated computing model. 
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Problem 4: Extreme CISC and extreme RISC (Microcodius 
Rex (CISC) and Reductius Rex (RISC)) 

In the beginning, there were no CISCs or RISCs – just computers. Com-
puter processors and their instruction sets evolved in an increasingly 
Byzantine way over time as processor designers sought to improve perfor-
mance through hardware extensions. The rapid and unchecked advance of 
Moore’s law doubled the number of transistors with each integrated-circuit 
process generation and processor designers used this added capacity to 
create increasingly complex machines with increasingly more complex 
instruction sets. These new complex instructions had ever more complex 
addressing modes and included many variations of relatively simple basic 
instructions so that programmers could choose exactly the right instruction 
in each case. Extreme CISC ISAs could include many hundreds of instruc-
tions. 

There were four intertwined motivations for creating increasingly more 
complex ISAs: 

1. Early HLL compilers were not very good in generating optimized 
code. In theory, an ISA with more complex instructions would be an 
easier target for compiler writers. In practice, they weren’t. For 
example, DEC’s (Digital Equipment Corp’s) extremely successful 
VAX ISA included hundreds of instructions, many of them quite 
complex. During the development of an 8-chip VLSI version of the 
VAX processor, DEC engineers discovered that 20% of the VAX 
instructions consumed 60% of the machine’s microcode but repre-

2. Memory cost and memory bandwidth were major concerns for com-
puter designers. Code size was also of concern because of memory 
costs and complex instructions, if effectively employed by compilers, 
greatly reduced code size. The big break for microcoded machines 
(really the start of the CISC movement) was the development and 
introduction of the IBM 360 mainframe family in the mid 1960s. This 
series of computers used magnetic-core memory for its main 
instruction and data storage. Thus the IBM 360’s transistorized CPU 
was quite fast relative to its slow magnetic-core main memory. It 
therefore made a lot of sense to store small subroutines (really com-
plex instructions) in a small, fast microcode memory (called Read-
Only Storage or ROS by IBM) to minimize execution hardware in the 
less expensive members of the IBM 360 family. In these days before 
semiconductor memory, the low-end IBM 360 Model 30’s microcode 

sented 0.2% of the executed instructions [335]. 
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memory was implemented with a circuit-board/punched-card capa-
citive sandwich called a CCROS (card capacitor ROS).  

3. Performance could potentially be increased if efficient hardware 
could be produced to execute one complex instruction in one or a few 
clock cycles that replaced many simpler instructions executed over 
several clock cycles. 

4. The quest for narrowing the abstraction gap between HLLs and 
computer architecture caused processor designers to focus on the 
creation of new complex instructions that encapsulated HLL opera-
tions into one machine instruction. 

However, computer architects did not explicitly set out to create CISCs. 
Instead, CISC processors naturally evolved as the many evolutionary 
experiments in computer architecture and high-level language computers 
played out in the 1960s and 1970s. As we have seen, there were increas-
ingly exotic computing species. The most extreme of them could definitely 
be seen as “extreme CISCs.” 

Interestingly, the concept of a CISC itself did not really appear until 

phenomenon. “In any science, taxonomy precedes causal analysis” ([123], 
p. 774). 

The RISC concept started with John Cocke’s group at IBM, which de-
veloped the IBM 801 to run a telephone-switching network back in 1974. 
The design team used a simple equation to determine the required proces-
sor speed. The network needed to handle 300 calls/second and it took ap-
proximately 20,000 instructions to handle a call. Combined with real-time 
response requirements, the team determined that they needed a processor 
that could execute 12 MIPS at a time when the IBM 370 Model 168 main-
frame cranked out about 2 MIPS. Cocke’s team developed the idea of a 
stripped-down ISA implemented in a pipelined machine coupled with 
separate, fast instruction and data caches and an optimizing compiler. It 
was the first implementation of an RISC machine [85]. 

However, IBM kept most of the IBM 801 project details undercover for 
years so the beginnings of the industry-wide movement towards RISC-
based design can be traced to just two papers published in the early 1980s 
by Patterson and Ditzel [103, 334,]. These papers entirely document the 

appears in Hennessy and Patterson [188], pp. 151–154. 
The argument favoring RISC over CISC posits that simple computers 

required the invention of their antonym for people to recognize the CISC 
computer architects developed the RISC concept in the 1980s. CISCs

and the second hello to the future. A good summary of the RISC concept  
emerging movement. The first paper arguably said goodbye to the past

with simple instruction sets are simpler to design and – although they 
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functions – RISC processors achieve much higher overall performance 
because they execute their instructions in many fewer clock cycles. In 
addition, because of their simple instructions, which simplify their hard-
ware design, RISC processors can achieve much higher operating frequen-
cies than can CISC processors in the same implementation technology, 
giving RISCs an extra speed advantage. 

However, early RISC processors had a significant liability: they needed 
more instructions than CISCs – hence more instruction memory – to exe-
cute the same algorithms. Memory density is an advantage for CISCs with 
variable-length instructions, which is one of the reasons that the CISC 
microprocessor design style became so popular. Semiconductor memory 
was relatively expensive in the 1970s, during the first decade of the micro-
processor. This factor, which favors CISC design, lessened throughout the 
1980s as main-memory capacity grew rapidly and costs fell thanks to 
Moore’s Law. At the same time, compiler writers improved the RISC 
compilers. These new compilers produced significantly better-optimized 
code with smaller memory footprints and, coincidentally, even better per-
formance. 

In addition, the HLL-specific computer architecture approach fell out of 

hundreds of clock cycles. However, these specialized instructions would 
rarely be used by programmers writing in assembler or by compiler-
generated code (possibly never). Consequently, expenditure of silicon area 
and power on these rarely used instructions in a high-performance ISA is 
clearly a bad idea because it wastes expensive resources on unused fea-
tures. Ultimately, the notion that complex instructions made the compiler 
writer’s work easier was disproved and abandoned. Complex instructions 
often proved insufficiently general to be truly useful and compiler writers 
elected to build code generators using a subset of the CISC processors’ 
simpler, RISC-like instructions. 

As discussed earlier, CISC remnants mostly exist as a vestigial part of 
the Intel x86 architecture – namely its original instruction set. Although 
modern x86 processors still accept these instructions for legacy-code com-
patibility, the instruction decoders in these processors immediately decom-
pose each CISC instruction into one or more RISC operations, which are 
the modern x86 processor’s true native instruction set. These RISC opera-
tions are then scheduled and issued to the processor’s parallel execution 
hardware. Almost all other significant 32-bit microprocessors and embed-
ded processor cores are now RISCs (IBM/Freescale PowerPC, Sun 
SPARC, MIPS, ARM, Tensilica Xtensa, etc.). 

require more instructions than CISC processors to execute more complex 

favor during the 1980s. By that time, some of the most extreme CISC ins-
tructions (like those of DEC’s VAX, discussed earlier) consumed tens or 
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RISC processor designers are themselves just as guilty of extremism. 
One of the first avenues RISC designers explored to boost performance 
was through the use of parallel function units, which created superscalar 
RISC processors. With parallel resources, an optimizing compiler can look 
for and exploit additional ILP by assigning operations that can be executed 
in parallel to the additional execution units. Even with 4-way parallel exe-
cution engines, superscalar RISC implementations generally achieve no 
better than 1.5 instructions per clock (IPC) and 6-way superscalar proces-
sors achieve no more than 2.3 IPC [269]. That’s a lot of additional execu-
tion hardware for relatively little gain (as wasteful as the infrequently used 

find enough parallelism in the code to keep the extra function units busy. 
Having exhausted all of the avenues for extracting parallelism from 

compiled code, RISC designers have started putting crystal balls in the 
form of speculative circuits into their designs. The earliest such circuits 
were branch predictors. If the processor can predict which way a program 
will branch, it can prefetch the first instruction at the branch target and 
avoid a branch bubble in the pipeline. 

A static branch predictor “guesses” that the branch will always be taken 
and achieves about 65% accuracy, far short of the accuracy needed to 
make branch prediction worthwhile because of the time penalty for mis-
predicted branches. Dynamic branch-prediction circuits can achieve pre-
diction accuracies of up to 95%, which can improve an RISC processor’s 
performance in exchange for not much additional hardware. 

However, designers of extreme RISC processors aren’t content with just 
a little prognostication. After adding parallel execution resources to create 
superscalar RISCs, designers feel an overwhelming need to find something 
for these precious resources to do. One way to keep these function units 
busy is to let them speculatively execute code by letting the processor run 
code traces from both forks of a branch. The results from the fork not 
taken are then simply discarded (and the energy devoted to those calcula-
tions is therefore wasted). 

Not content with just speculating on the code’s execution path, some 
processor designers have developed designs for superspeculative RISCs, 
which speculate on the code’s execution path and on the operand values 
the speculatively executed code will use. Superspeculation sidesteps data-

realm of statistical operation. 
Statistical program execution wastes execution cycles, which in turn wastes 

power. So, instead of wasting silicon resources on unused instructions the 

instructions in CISCs). The extra function units on superscalar RISC pro-
cessors are idle a lot of the time because the optimizing compiler just can’t 

before they are computed, pushing RISC processors even further into the
dependency issues by assuming that operand values can be predicted
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way extreme CISCs do, extreme RISCs waste execution cycles and energy 
all in the name of ultimately speeding program execution. Perhaps such 
speculation is warranted if there’s a single task that requires more speed 
than the processor can supply and speculative execution can add the needed 
speed. Often, the extra speed is desired to give the processor enough head-
room to execute multiple tasks, which is another flawed design philosophy 
held over from an earlier time that is discussed in the next section. 

To badly paraphrase onetime USA presidential candidate Barry Gold-
water: “Extremism in the pursuit of multitasking is a vice; moderation in 
the pursuit of processor efficiency is a virtue.” 

Problem 5: Very long instruction word (VLIW) (Medusius 
Horribilis) 

Designers favoring the “one big processor” design approach noted that 
superscalar approaches – which rely on hardware to schedule parallel 
operations – quickly grow overly complex and cannot recognize opportu-
nities for concurrency that compilers can statically recognize, optimize, 
and schedule prior to runtime. Thus was born VLIW: very long instruction 
word architectures. VLIW processor architectures represent a way to ex-
ploit ILP that fundamentally depends on software; that is, the amount of 
realized ILP depends on the quality of results that a modern compiler can 
produce and not on the number of transistors thrown at the problem. Given 
a plethora of execution resources, compilers can schedule multiple opera-
tions to be executed simultaneously and can place these operations into 
one long instruction word. The length of a VLIW instruction word is usu-
ally at least 64 bits but can be longer depending on the number of parallel 
execution units available in the VLIW processor’s architecture and the par-
ticular layout of operations within an instruction. 

Each VLIW operation usually requires many fewer bits than a standard 
32-bit instruction so multiplying the number of operations in a VLIW word 
by 32 to determine the VLIW instruction length may be overkill, but a 
VLIW instruction may be sizeable nevertheless. For example, Silicon Hive’s 
Avispa+ VLIW processor has a 768-bit instruction word [429], which con-
trols 60 operation slots. This example is an outlier; more typical VLIW 
machines generally have three to five concurrent operation slots. 

As discussed in Hennessy and Patterson [188] and Wikipedia [456], 
VLIW architectures date from the early 1980s, from work by Josh Fisher 
of Yale University. Fisher later co-founded Multiflow, which produced 
VLIW machines in the late 1980s. Multiflow’s computer could issue 28 
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operations concurrently with each instruction, but unfortunately the ma-
chine was a commercial failure. Fisher then joined Hewlett-Packard Labs 
and continued his pioneering VLIW work. 

Despite the initial Multiflow failure, VLIW lives on in various micro-
processors. For example, NXP Semiconductors’ (formerly Philips’) TriMedia 
processor has a 64-bit instruction word containing five operations; Intel’s 
Itanium 2 processor uses 256-bit double bundles containing as many as six 
operations; and TI’s C64xx is a VLIW DSP with eight operation fields per 
64-bit instruction word. 

There are two problems with VLIW architectures of particular note: 

• Depending on the application and compiler quality, the amount of ILP 
that can be extracted from an application may actually be quite low, 
making it nearly impossible to fully utilize the VLIW processor’s multiple 
execution units. VLIW operation slots that can’t be gainfully employed in 
a particular VLIW instruction are filled with no-ops (NOPs), which 
leads to code bloat. For example, if the average extractable ILP for an 
application program is three concurrent operations in a 5-issue VLIW 
machine, 40% of the potential concurrency is wasted. 

• As a knock-on effect, a VLIW program containing many NOPs will be 
significantly larger than the same program compiled for a single-issue 
machine unless the VLIW processor designers have developed some 
very clever instruction coding techniques. 

lot on the application, compiler quality, and the particular VLIW architec-
ture. Data-crunching algorithms with a lot of regular loop nests are often 
amenable to SIMD processing and might map well into some kinds of 
VLIW architectures. Heavily control-dominated applications laced with 
irregular branching code may produce very sequential compiled code, forcing 
NOPs into most of the VLIW operation slots and resulting in bloated code. 

Some approaches to VLIW design use clever instruction encoding or 
multiple fixed-instruction subsets to reduce code bloat, although many of 
the processor’s execution units will still sit idle due to the NOPs. Clever 
instruction encoding coupled with VLIW design spends more gates both 
for the parallel execution units and for the special instruction-decoding 
hardware but does not necessarily consume much extra memory. The 
achieved ILP can still be somewhat disappointing, despite clever instruc-
tion encoding. 

It has been suggested that VLIW architectures should have a maximum 
of three to five concurrent execution units (or some more irregular collec-
tion of execution resources – for example, some number of integer ALUs 
and perhaps a floating-point unit) to increase the probability of effective 

Clearly, problems of low ILP and the resulting VLIW code bloat depend a 
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utilization, given the relatively low levels of ILP that are generally extract-
able from code. This view may be a natural lead-in to the concept of the 
ASIP, which matches the resources of the processor to an intended appli-
cation or at least an application domain. This design approach makes the 
problem of creating a compiler more complex, but a combination of com-
piler smarts and manual invocation of task-specific instructions may be a 
viable solution for many well-understood application problems. 

Another option open to modern SoC architects is to use the extra gates 
that might otherwise be consumed by a VLIW processor to instead create 
two or more simpler processors. A suitably partitioned application can ex-
ploit chip-level multiprocessing (CMP) without incurring some of the 
VLIW complexities mentioned above. A judicious combination of simple 
VLIW concepts in a multiprocessor SoC architecture might be the optimal 
combination of processors and processor complexity for the application. 
Automated creation of ASIPs coupled with the ability to create various 

over-reliance on what may be a disappointing VLIW machine. 

Problem 6: Overly aggressive pipelining (Canalisus 
Extremus) 

The designers of the IBM 7030 (Stretch) computer were the first to use 
processor pipelining, back in 1961. They used this technique to raise the 
processor’s clock rate by restricting the amount of logic operating within 
each pipeline stage during each clock period thus cutting the transit time 
through each stage. Because latches isolate each pipeline stage, each stage 
works on a different instruction during each clock period, which increases 
parallelism and therefore increases an important figure of merit for proces-
sors: IPC. 

Pipelining became popular in microprocessor design with the advent of 
RISC processors, which standardized on 5-stage pipelines early on. A classi-
cal, 5-stage pipelined RISC processor might have the following pipeline 
stages: 

• IF – Instruction fetch (usually from instruction cache or local memory) 
• RD – Read the source operands from the register file 
• ALU – Perform the operation specified by the instruction 
• MEM – Read memory (for a load) or write to memory (for a store) 
• WB – Write back, write operation result to the register file 

today’s architects a wide range of choices and may allow them to avoid 
Multi-Processor System-on-Chip (MPSoC) system architectures gives 
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Each of these stages performs a complete and well-defined task. How-
ever, it’s possible to make pipelining work even faster by dividing each 
task into subtasks and each stage into sub stages, which further reduces the 
amount of logic within each stage and thus boosts maximum clock rates to 
ever more stratospheric heights. However, this approach also increases the 
number of clocks needed to complete the execution of each instruction. 
The net effect is one of diminishing returns with respect to the actual time 
needed to complete the average instruction. 

Nevertheless, longer pipelines become quite attractive when the most 
important figure of merit for processor “goodness” is clock rate, as it was 
for IBM PC processors throughout the 1990s. This state of affairs explains 
the design of Intel’s Pentium 4 and its NetBurst architecture. 

The Pentium 4 processor is based on a microarchitecture that Intel calls 
P7. Looking at three succeeding Pentium microarchitectures – P5, P6, and 
P7 – clearly illustrates the measures Intel was willing to take to win the 
clock-rate war against AMD. The P5 microarchitecture, used in the origi-
nal Pentium processor, had a 5-stage pipeline: instruction prefetch, two 
decode stages, an execute stage, and a write-back stage. This microarchi-
tecture took Intel’s Pentium to about 100 MHz. 

Intel’s PentiumPro (P6) microarchitecture represented a complete rethink 
of the x86 processor architecture. The P6 microarchitecture essentially 

shredder that transformed the original x86 CISC instructions into simpler, 
RISC-like operations. The processor fed these simpler operations into a re-
order buffer and then distributed the RISC operations to a bank of parallel 
execution units, as is typical of superscalar architectures. The resulting P6 
pipeline had 12 stages. The P6 microarchitecture served as the foundation 
for Intel’s Pentium II and Pentium III processors. Over a three-year period 
(1999–2002), the P6 microarchitecture took Pentium clock rates from 133 
MHz to 1.4 GHz – a 10:1 jump. 

By then, Intel clearly had an edge in the clock-rate war against AMD, 
but the P7 microarchitecture – with an 8-stage CISC-to-RISC translation 
engine followed by a 20-stage, out-of-order execution pipeline for a total 
of 28 pipeline stages – was brought online to seal the deal [153]. The Intel 
Pentium 4 based on the P7 microarchitecture appeared in November, 2000. 
The processor’s initial clock rate was 1.4 GHz, a speed not attained by the 
Pentium III until early 2002. Pentium 4 processors running at 3.8 GHz 
were available by November, 2005. The clock-rate climb ended there. Intel 
had planned a 4-GHz Pentium 4 but it disappeared from Intel’s road map 
and was never introduced [243]. 

Two key factors ended Intel’s hyperpipelined ascent. The first was a 
loss of processing efficiency [154]. The P7 microarchitecture’s 20-stage 

transformed the Pentium into an RISC machine with a front-end chopper/ 
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out-of-order execution pipeline contains two stages where no tasks are per-
formed. These stages are called “drive” stages and they exist simply to 

allowing time in these pipeline stages for logic delay, the two drive stages 
accommodate wire delay. That means that the processor performs no com-
putation whatsoever during 10% of each instruction’s execution lifetime 
(two out of 20 stages inside the P7 execution pipeline).  

Conditional branches cause big problems for long pipelines. Although 
all complex processors have branch-prediction logic, branches cannot be 
predicted with 100% certainty; every mispredicted branch causes pipeline 
bubbles. No useful work is performed inside a pipeline bubble; the longer 
the pipeline, the bigger the bubble. Overall, the P7 pipeline was far less 
efficient than the P6 pipeline, which made the Pentium 4 processor less 
efficient as well. Clock rate alone does not equal processor performance in 
the same way that an automobile’s engine RPM alone does not equal vehi-
cle speed. For a car, there’s a transmission, differential, and tire diameter 
that translate RPM into MPH or KPH. In the case of a processor, the pipe-
line and the associated memory subsystems transform MHz (or GHz) into 
instructions/second. 

The second factor that stopped the clock-rate climb was power dissipa-
tion, which rises superlinearly with clock rate due to the associated core 
operating voltage, which also depends on frequency. At 3.8 GHz, the Pen-
tium 4 dissipated 115 W and drew 119 A from its motherboard. The 4-
GHz processor was headed past 150 W before Intel killed it. At the same 
time, the amount of work done by the processor per clock had fallen pre-
cipitously. The Pentium 4’s hyperpipelined design had gone well past the 
point of diminishing returns (in terms of real work done per second), and 
all was done for the sake of the fastest possible clock rate. 

Consequently, the trend towards overstretched pipelines has hopefully 
been curtailed by Intel’s experience with the P7 microarchitecture. It takes 
a lot of circuitry to keep a long pipeline running smoothly and all that logic 
can be put to better uses. One use that looks promising is to create addi-
tional on-chip processors. Intel is now devoting itself to multi-core Pen-
tiums, AMD is concentrating on multiple-core Opterons, and the SoC 
industry is focused on MPSoC design. 

Problem 7: Unbalanced processor design (Librius Tiltus) 

Processor pipelines seemingly receive a disproportionate share of the 
limelight as the glamorous darlings of the processor-design community. 

allow signals to travel from one part of the chip to another. Instead of  
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However, a processor’s performance depends on more than just its execu-
tion pipeline. As with any engineering discipline, good processor perform-
ance depends on balanced design. Many factors contribute to a processor’s 
(or a system’s) overall performance and any of these factors can poison the 
operational efficiency of the “perfect” pipeline running real-world applica-
tions if it’s not in balance with the others. Designers must employ an 
expanded range of design decisions and new technologies to produce bal-
anced, cost-effective systems [60]. 

Advances made in processor designs over the past decade – both circuit 
advances, which have caused clock rates to rise at roughly 30% per year 
from 1985 to 2005 [129] and architectural improvements including wider 
instructions, VLIW architectures, and speculative execution – have in-
creased microprocessor instruction-issue rate much faster than the rate 
of increase in main-memory bandwidth or the rate of decrease in main-
memory access latency. Consequently, microprocessor accesses to bulk or 
main memory have become temporally expensive. This trend forces archi-
tectural and system-level design changes including: 

• Wider connections to main memory (more pins) 
• Larger and more efficient instruction and data caches 
• Memory-centric system architectures 

Each of these new approaches delivers benefits and incurs costs. 
Burger et al. [60] divide a processor’s execution time into three com-

ponents, which help explain how a processor’s design might be better 
balanced. The three components are: 

• Processor time – when the processor is either fully utilized or partially 
utilized and partially stalled due to a lack of ILP 

• Latency time – the time lost to contention-less memory latency (latency 
that cannot be reduced by increasing memory bandwidth between 
memory-hierarchy levels) 

• Bandwidth time – the time lost to memory contention plus the time lost 
because of inadequate memory bandwidth between memory-hierarchy 
levels 

Many “modern” processor-design techniques exacerbate problems for 
all three execution-time components. Speculative software and hardware 
prefetching techniques can improve a processor’s performance by making 
sure that data is in fast cache memory when needed but these techniques 
increase traffic to main memory and waste bandwidth when they prefetch 

other data in the processor’s caches before it can be used (forcing it to be  
unneeded data, prefetch data that’s evicted before it’s used, or evict
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refetched). Multithreading increases processor throughput by switching to 
a ready thread whenever a thread stalls due to a long-latency memory 
access or I/O operation but frequent thread switching thrashes the proces-
sor’s cache and TLB. As a result, the gains achieved from multithreading 
can be partially or completely offset by reductions in cache efficiency. For 
a detailed explanation of caches used for processors, see [176]. 

The blind quest for high clock rate also drives a processor’s design out 
of balance. As processors get faster, they consume instructions and oper-

latency and bandwidth requirements. A recent trend towards homogeneous, 
multi-core processors with coherent caches and common main memory 
also increases main-memory latency and bandwidth requirements. Experi-
ments by Burger et al. [60] indicate that aggressive design techniques that 
place pressure on the processor-to-main-memory interface can result in 
processors that are stalled and waiting on memory as much as 50% of the 
time. Such systems are clearly out of balance. 

Deep-submicron and nanometer circuit effects are also driving conven-
tional processor design out of balance. Interconnect delay, previously in-
significant, now dominates over gate delay because wire delay does not 
scale with feature size unless the aspect ratio of the interconnect wire’s 
cross section changes. As the previous section discussed, designers of 
Intel’s Pentium 4 microprocessor, which achieved a commercial clock rate 
of 3.8 GHz, were forced to devote two stages (10%) of the processor’s 20-
stage execution pipeline to accommodate on-chip wire delay. 

As deep-submicron and nanometer design rules have allowed clock rates 
to rise, microprocessor designers have resorted to lowering core operating 
voltages in an attempt to limit power increases. However, doing so re-
quires the use of transistors with lower threshold voltages to accommodate 
the lower core operating voltages. In turn, the lower threshold voltages 
increase leakage currents to the point that a processor’s power dissipation 
due to leakage is roughly equal to its dynamic power dissipation at 90nm 
lithography levels and below. Such processors dissipate a lot of power 
even when doing nothing. 

All of these choices and consequences force new directions in processor 
architecture. First among these is the need for more efficient caches. The 
fraction of data held in current caches that is “live” (will be referenced 
again before being evicted) is between 0.05% and 33% [60]. That means 
that most of the processor’s caches are normally filled with dead, useless 
data and instructions. Improved cache-management logic can reduce the 
traffic between the cache and main memory by a factor of 2 to 100x and 
is therefore a wise expenditure of silicon [60]. One way to increase 
cache efficiency is to cache objects with a finer granularity than a cache 

ands at a faster rate, which puts additional pressure on main-memory  
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line, which increases cache-tag overhead but reduces bandwidth require-
ments. Software-managed caches can be even more silicon-effective. 

Moving a processor’s main memory on chip with the processor can ef-
fectively make the entire on-chip main memory into a cache, which elimi-
nates the memory hierarchy and substantially reduces memory overhead. 
Pushing design further in this direction produces memory-centric architec-
tures that embed microprocessors into individual memory arrays. This is 
the domain of the MPSoC, which seeks to distribute the total processing 
load to a large number of small, inexpensive processors running at reduced 
clock rates. Consequently, MPSoCs may well be the high-performance 
processor architectures of the future. 

Problem 8: Omitting pipeline interlocks (Recompilus 
Requirus) 

Pipelined processors use hardware load-use interlocks to prevent instruc-
tions from executing until the required operands become available. Oper-
ands can be fetched from a register or register file, they can be fetched 
from memory, or they can be generated as results by earlier instructions. 
(For RISC processors, which have load/store architectures, memory oper-
ands are only associated with load and store instructions.) For operands 
located in the processor’s register file, data forwarding and bypassing within 
the pipeline can avoid the hazards that might invoke a pipeline interlock. 

long latency of memory-read cycles compared to register-read latency. 
Data-hazard problems can be solved either by stalling the pipeline using 

a hardware load-use interlock or in software, using the compiler’s instruc-
tion scheduler to schedule only instructions that do not need the result of 
the load operation to immediately follow that load instruction. If no such 
instruction is available in the existing compiled code, the scheduler inserts 
a NOP, which is guaranteed not to need any data at all. 

Data dependencies inherent in all programs limit the amount of instruc-
tion reordering a code scheduler can perform. For single-instruction-issue 
processors, a scheduler inserts independent instructions after multi-cycle 
instructions (such as loads) to reduce pipeline interlocks. For multiple-
instruction-issue processors, a scheduler must identify independent instruc-
tions that can be concurrently executed in addition to using instruction 
scheduling to reduce or eliminate interlocks. High-issue-rate processors 

However, memory loads typically take too long to provide data to the ins-
truction immediately following a load instruction because of the relatively 
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provide performance improvements only when the scheduler is able to find 
sufficient instructions to concurrently execute multiple operations.  

Jump and branch instructions also cause pipeline hazards. The address 
of the instruction to be executed after a jump or a taken branch must be 
computed and the instruction must then be fetched before execution can 
proceed. The processor cannot fetch the jump or branch instruction, de-
code it, compute the effective target address, and then fetch the instruction 
stored at the computed target address in time for the next instruction slot. 
Thus jump and branch instructions create control hazards, which can be 
solved either by stalling the pipeline with a hardware interlock or by creat-
ing a delay slot. The delay slot is the instruction slot following the branch 
instruction. Processors can make use of delay slots by always executing 
the instruction in the delay slot, regardless of the branch computation. It’s 
the compiler’s job to find something useful for the processor to execute in 
the delay slot.  

Hardware load-use interlocks aren’t strictly necessary. It is possible to 
simply organize executable code so that instructions and operands arrive at 
the right place in the processor’s pipeline at exactly the right time. This is a 
job for the processor’s compiler, which can rearrange instructions and in-
sert NOPs where needed to prevent the data hazards that require interlocks. 

It is possible to organize code to eliminate the need for interlocks, but 
in practice it’s extremely difficult. In fact, optimal compile-time reorgani-
zation of code to eliminate the need for interlocks is an NP-complete 
problem although heuristic algorithms can do the job adequately [186]. 
In addition, even perfectly organized code is subject to interrupts and other 
exceptions, which lay waste to the compiler’s carefully planned instruction 
sequences. 

Nevertheless, two well-known commercial pipelined microprocessor 
architectures lacked interlocks, at least initially. These two processor archi-
tectures were the original 32-bit MIPS architecture and Intel’s i860 pro-

Interlocked Pipeline Stages” [185].) The first MIPS processor, developed 
at Stanford University by Professor John Hennessy and his students, was 
designed in the early 1980s and was architected to deliver high perform-
ance within the constraints of the NMOS VLSI semiconductor processing 
available at the time. 

This first MIPS architectural implementation used a 5-stage pipeline for 
speed and kept three instructions in the pipeline whenever possible. (Either 
the odd or even pipeline stages were active on each clock cycle.) The MIPS 
designers shifted as much of the processor’s capabilities as they could from 
“expensive” hardware to the compiler to save transistors at a point in semi-
conductor development when transistors were relatively costly. Pipeline 

cessor. (The acronym MIPS originally meant “Microprocessor without 
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interlocks were one of the features that the MIPS designers moved to soft-
ware. A piece of software called a “pipeline reorganizer” was responsible 
for examining instruction streams, identifying data hazards, and eliminat-
ing the hazards by reorganizing instruction sequences and adding NOPs 
where needed. 

Normally, the MIPS processor’s single-cycle instructions didn’t create 
data hazards but load instructions had to be followed by a NOP if the next 

instructions would have created headaches using this scheme however and 
many more NOPs would have been needed. As a consequence, the MIPS 
designers culled multi-cycle instructions from the processor’s repertoire. 
The original MIPS processor had no divide or floating-point instructions as 
a result. The original MIPS design used delay slots to avoid control hazards. 

John Hennessy founded MIPS Computer Systems in 1984 to commer-
cialize the MIPS RISC architecture. The first commercial MIPS processors 
(R2000, R3000) lacked most pipeline interlocks like the original MIPS 
design [217]. The R2000 and R3000 processors did have separate multi-
cycle multiplication and division units that worked with special interlocked 
result registers named HI and LO. Subsequent MIPS processor generations 
added pipeline interlocks as semiconductor lithographic advances made 
the relatively paltry saving of interlock transistors superfluous. 

Designers of Intel’s i860 microprocessor, introduced in 1989, had simi-
lar goals: speed and design simplicity. However, the first i860 processor 
was a 1-million-transistor, 40-MHz, VLIW machine [30]. It wasn’t all that 
simple. The i860 architecture, introduced in 1989, encompassed two sepa-
rate pipelines: a 4-stage, 32-bit scalar pipeline (with one execution stage) 
and a 6-stage, 64-bit floating-point/graphics pipeline (with three execution 
stages). The processor’s floating-point instructions did not follow the 
canonical RISC 3-operand instruction format (two source operands and 
one destination operand, all for that instruction). Instead, the i860 proces-
sor’s floating-point instructions specified two source operands for current 
instruction I, but the instruction’s destination operand specified the desti-
nation for the instruction that was executed three cycles previously. Intel 
named this approach “explicit pipelining.” 

The advantage of the i860 processor’s explicit pipelining mode was that 
it allowed the processor to pipeline multi-cycle floating-point operations. It 
could start execution of a new floating-point instruction each cycle and the 
result of each instruction became available three cycles later. At that point, 
the floating-point instruction three instruction slots later would then store 
the result of the earlier instruction in the appropriate place. 

Explicit pipelining placed the burden of scheduling and managing result 
latency squarely on the compiler and incidentally removed the need for 

instruction used the value obtained by the load operation. Multi-cycle  
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hardware pipeline interlocks. If the compiler was already managing the 
process, no hardware assist was needed and the Intel i860 designers were 
happy to forego the interlock transistors. Unfortunately, interrupts and excep-
tions were the i860’s downfall. The explicitly pipelined processor could 
not efficiently handle unpredictable instruction streams and its perform-
ance suffered in real-world applications. Intel subsequently discontinued 
the i860 processor family. 

In the end, a lack of pipeline interlocks seems to cause more trouble 
than it’s worth. Like many of the species of processor design discussed in 
this chapter, a liberal application of Moore’s law has wiped out this par-
ticular branch in the tree of processor design. 

Problem 9: Non-power-of-2 data-word widths

The world of general-purpose microprocessors and embedded processor 
cores has generally settled on power-of-two data-word widths: 8, 16, 32, 
64, or 128 bits or the like. Extremely specialized processors or instruction-
set extensions to configurable processors sometimes use a less regularly 
sized data word for specialized instructions, input and output word sizes, 
and internal registers (even quite irregular and odd sizes such as 13, 17, or 
23 bits). However, these specialized, non-power-of-two word sizes are 
used only where required for very specific algorithms – often for data-
intensive signal, audio, or video processing – where the required precision 
and range demands the use of a highly-optimized data size to meet system-
level cost, power, and performance objectives. 

For instance, 24-bit processing seems to be a standard data-word width 
for high-end audio applications. The 24-bit data word allows for extensive 
audio processing without audible degradation of the recorded sound and 
without the overkill of a 32-bit data word. Although the audio samples 
themselves tend to use only 16 bits (there are 20- and 24-bit audio ADCs 
and DACs, but they’re not yet common), extra bits are needed to provide 
enough head room to maintain superior sound quality through the interme-
diate calculations executed by popular digital compression, decompression, 
and other audio-processing algorithms. However, for general-purpose com-
puting, power-of-two data sizes seem to be the norm. 

This was not always the case. The early and middle parts of the com-
puter processor’s evolutionary tree contain branches encompassing several 
different popular word sizes including 36- and 48-bit words. Early scien-
tific computers often had a word length of 36 bits, which was long enough 

for general-purpose computing (Datus Unusualus) 



54      Grant Martin and Steve Leibson 

to allow positive and negative integers to be represented with an accuracy 
of ten decimal digits. In addition, 36 bits allowed six alphanumeric charac-
ters to be stored, if they used a 6-bit character encoding. 

In the early days of computing, achieving desired accuracy while mini-
mizing hardware costs was desirable because hardware was expensive. Com-
puters using 36-bit word lengths included the IBM 701/704x/709x, UNIVAC 
1100 and 2200 series, GE 600, Honeywell 6000, and DECsystem-10/20. 
Often these machines used 18-bit word addressing rather than byte add-
ressing. A variety of character encodings were possible within a 36-bit word 
including six 6-bit characters, five 7-bit ASCII characters, four 8-bit 
characters (either 7-bit ASCII plus 1 unused bit per character or 8-bit 
EBCDIC (Extended Binary-Coded Decimal Interchange Code, a pre-
ASCII character set derived from IBM punched cards)), or four 9-bit char-
acters. Classical Burroughs mainframes, already discussed, used a 48-bit 
data word, which provided admirable scientific precision and could store 
six EBCDIC characters. 

One of the main issues associated with using a non-power-of-two data 
word relates to character or byte indexing for a machine that accesses data 
memory using word-style, rather than byte-style, addressing. Finding out 
which word a particular character or byte lies in, when it’s part of a struc-
ture, relies on dividing the byte or character index value by the number of 
bytes in a word. When the data word contains a power-of-two number of 
bytes, the index computation can be performed with a simple shift opera-
tion that can almost always be performed in one cycle. When the data 
word contains a non-power-of-two number of characters or bytes, this 
computation involves a far more complex division operation – for example, 
division by 5 or 6. Efficiently performing this more complex division op-
eration requires either specialized hardware in the processor – divide by 5 
or divide by 3 (a division by 6 is a divide by 3 followed by a shift to fur-
ther divide by 2) – or the execution of a whole command sequence that ac-
complishes the same division using multiple arithmetic operations. Such a 
sequence might require several clocks for every character indexed. If pro-
grams use a lot of character or byte indexing, then the absence of special-
ized divide-by-n hardware, where n=3 or 5 or any other non-power-of-two 
number, results in slow and woefully inefficient implementations. 

Low-end Burroughs E-mode-compatible machines definitely had this 
problem when used either for commercial processing (lots of COBOL 
code, with lots of character manipulation) or for general C execution, 

became a popular programming language. Using 9-bit characters allowed 
byte indexing to be performed with a simple divide by 4 (2-bit right shift). 

9-bit character encodings to simplify and speed up byte indexing when C 
which uses a lot of byte addressing. The 36-bit machines tended to use
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Such issues are not important for specialized algorithmic instruction exten-
sions on configurable processors because data samples are manipulated 
directly via hardware compiled specifically for that purpose. 

The general reduction in species diversity that the microprocessor and 
embedded processor core community has overseen since the 1980s has 
produced machines with power-of-two data-word widths. Consequently, 
the need to design specialized divide-by-n hardware to support general 
processing in languages such as C or COBOL has disappeared. This is one 
evolutionary branch that seems unlikely to return. 

Problem 10: Too small an address space (Datus Minimus) 

Microprocessors with abbreviated address spaces are very much like shoes 
that are too small – you can end up with blisters or abrasions when trying 
to shoehorn code and data into their small-memory spaces. If you’re like 
one of Cinderella’s sisters, you might even lose a toe or two. And like 
Cinderella’s sister, the result is also not very pretty! 

Bell and Strecker [46] express the problem of cramped address space 
this way: “There is only one mistake that can be made in computer design 
that is difficult to recover from – not having enough address bits for mem-
ory addressing and memory management.” 

Yet in spite of the difficult recovery, processor designers have made this 
same design mistake time and time again. This species of design error 
refuses to die. Hennessy and Patterson ([188], p. 501) provides a long but 
not exhaustive list of similarly afflicted processor designs: DEC’s PDP-8, 
PDP-10, and PDP-11; Intel’s 8080, 8086, and 80186; Motorola’s 6800; 
MOS Technology’s 6502; Zilog’s Z80; and Cray’s Cray-1 and Cray X-MP. 

The reason that this particular design mistake is so critical is that in 
addition to determining the maximum addressable memory space for 
machines with fixed-length instructions, the bit width of a processor’s ad-
dress determines the minimum width of everything inside (and outside) of 
the processor having anything to do with the address including the size of 
the address word (and hence the instruction-word size), the size of branch 
offsets, the program counter, any other registers that must hold addresses, 
any arithmetic logic that computes effective addresses, the size of the 
MMU, and even the width of the address bus and the size of the IC pack-
age for packaged microprocessors. The repercussions associated with the 
processor’s maximum addressable memory size permeate the processor’s 
design. Once set, it’s very hard to change such a bedrock architectural 
decision. 
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Processor designers limit address fields primarily to reduce instruction 
size, register size, and pin count (in packaged microprocessors). In making 
this decision, designers almost invariably defer to available memory costs 
and capacities of the day rather than considering long-term address-space 
requirements, in spite of the unfailing advance of Moore’s law over more 
than four decades. They also tend to think only of the current kinds of pro-
grams, program sizes, and data-memory requirements rather than trying to 
think ahead to the future. Such short-term thinking always causes problems 
in the long term. We know from the history of Microsoft operating systems 
and applications that what seems adequate in performance and memory 
size for one generation of software proves to be totally inadequate for the 
next release. 

For example, even though it was introduced way back in 1969 and was 
sold at the relatively low price of $5000, Hewlett-Packard’s first desktop 
calculator, the HP 9100A, had a shockingly powerful 64-bit, floating-
point, VLIW processor [260]. A major part of the HP 9100A development 
project was devoted to shoehorning all of the product’s software into the 
machine’s unbelievably small instruction-address space, which was a pal-
try 512 64-bit words (4 Kbytes). For its code storage, the HP 9100A used a 
specially designed inductive ROM, which was embedded in a 16-layer pc-
board. (Note: The circuit board was the memory. Semiconductor memories 
had only just appeared and had nowhere near the required capacity.) The 
pc-board ROM’s 4-Kbyte capacity represented the inductive technology’s 
maximum storage limit, so that was the addressable-instruction capacity 
hard-wired into the machine’s VLIW processor. No consideration was 
given to future expansion ability. Factory-cost considerations overrode all 
others. 

computers. However, when it came time to build the next generations of 
desktop computers, HP was forced to abandon the non-expandable HP 
9100A’s 64-bit, VLIW processor architecture. Instead, the company 
adapted the existing 16-bit HP 2116A minicomputer architecture, which 
had a 32-Kword (64-Kbyte) address space. In less than five years, HP’s 
desktop computer designs hit the HP 2116A processor’s address-space 
limits so HP expanded the architecture’s address space with a series of 

truncated to 24 bits (16 Mbytes) due to pin limitations on the original 
processor’s package; then used a fourth, home-grown 32-bit CISC proces-
sor architecture for its desktop machines; and then a fifth architecture 
called PA-RISC for its workstations and servers. 

The HP 9100A was so successful that HP decided to continue and ex-  
pand its line of desktop calculators, which quickly evolved into desktop 

architecture – the Motorola 68000 with a 32-bit (4-Gbyte) address space, 
block-switching circuits and MMUs. HP then adopted a third processor 
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A similar fate befell the IBM PC. The first IBM PC, named the model 
5150, used an Intel 8088 microprocessor with a 20-bit (1-Mbyte) address 
space. Within that address space, the designers of the IBM PC devoted 640 
Kbytes to application memory. Microsoft’s Bill Gates is often quoted as 
asking, “Who needs more than 640K?” (After all, the IBM PC’s 640-
Kbyte application space was ten times larger than the 64-Kbyte space in 
the many successful personal computers that used 8-bit processors.) As it 
turns out, everyone eventually needed more than 640 Kbytes of memory in 
their personal computer. Subsequent models of the IBM PC used the Intel 
80286 (16-Mbyte address space) and then the 80386 (4-Gbyte address 
space), but the damage had been done during the initial design of the first 
machine. 

The IBM PC’s 640-Kbyte application space determined: 

• The structure and basic operation of the ascendant Microsoft DOS 
operating system 

• The design of the original IBM PC expansion bus (eventually named 
ISA – industry standard architecture – not to be confused with the other 
ISA – instruction-set architecture) 

• The architecture of memory cards designed for the ISA bus 
• It even extended the longevity of the use of DIP memory chips 

Eventually, with the introduction of Microsoft Windows, some hard-
ware re-architecting, and an improved expansion bus, mainstream PCs 
started to use more than 640 Kbytes of application memory but it took a 
more than a decade to break all of the bounds set by the original model 
5150’s design. 

In the embedded-design world, the 8-bit Intel 8051 microcontroller is 
perhaps the greatest example of the Frankenstein-like consequences of 
limited address space. The 8051 is the successor to Intel’s first microcon-
troller, the 8048, which had a 12-bit (4-Kbyte) address space. The original 
4-Kbyte address space was set just beyond the semiconductor-manufacturing 
capacities of the day, because the 8048 was designed to run code exclu-
sively out of on-chip ROM, so there was no point in making its address 
space larger than the maximum on-chip ROM capacity. 

The march of Moore’s law put a quick death to that on-chip capacity 
limit and the 8048’s architecture immediately fell short of system-design 
requirements. Intel revamped the 8048 architecture and produced the 8051, 
which has separate 64-Kbyte instruction- and data-memory spaces. The 
radically superior 8051 microcontroller rapidly became a popular choice 

embedded-design world. 
for dot-matrix printer designs and its use then spread throughout the
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The 8051 architecture stayed popular for so long (currently more than 
three decades and counting) that its 128-Kbyte address space started to 
pinch. At first, embedded-systems designers added external block-switching 
circuits to extend the 8051’s address space. Subsequently, several vendors 
of 8051-compatible microcontroller ICs incorporated block-switching into 
their devices, extending the address-space reach of their products into the 
multi-Mbyte region while making the embedded programmers’ lives quite 
miserable as they tried to manage the many memory blocks without caus-
ing resource conflicts. 

Even though saddling a processor with too small an address space is 
considered a design mistake, it can hardly be considered inevitably fatal. 
Note that each of the above examples of a shortchanged processor actually 
describes a commercially successful product. Consequently, processor 
designers will likely continue to make this mistake far into the future, thus 
needlessly complicating the lives of the people who design with and use 
these processors for many years to come. 

Problem 11: Memory segmentation (Datus Minimus Rex) 

Segmented-memory architectures often arise from patches to initial pro-
cessor architectures that suffer from address spaces that were inadequate 
from the start or from address spaces that have become too small over the 
long useful life of a successful processor. By far, the most famous example 
of this design blunder is Intel’s 8086. Developed in the late 1970s as an 
early 16-bit processor, the Intel 8086 designers sought a way of expanding 
beyond the 8-bit processors’ 64-Kbyte (16-bit) address space without 
incurring the overhead of a large address field, which would fatten the 
processor’s instruction-word width and increase the number of transistors 
needed for internal registers. 

One approach that might have been used to solve this problem is block 
switching. The original 16-bit address space could have been designated 
block 0 and a 4-bit register could have been added to create a 16-block 
address space, giving an overall address space of 20 bits by combining the 

crude but effective. This simple approach has since been used to expand 
the address space of Intel’s 8051 microcontroller, but it’s not the approach 
used by the designers of the 8086 microprocessor. 

Instead, the 8086 designers decided to use segmented memory, which 
splits the 20-bit address into a segment address and an offset address. The 

4-bit block address (representing the most-significant bits of the full 
address) and the existing 16-bit address value for the least significant bits; 
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offset address corresponds to the 16-bit address field universally used by 
8-bit processors. The 8086 used a 16-bit segment address to modify the 
offset address, creating a 20-bit (1-Mbyte) address space by shifting the 
segment address left by four bits and then adding the 16-bit offset to pro-
duce a 20-bit address. 

The 8086 contained four segment registers defining different active 
segments for code, data, stack, and “other” (the “extra” segment). This 
scheme allowed the 8086 processor to have four separate 64-Kbyte address 
spaces (a total of 256 Kbytes) active simultaneously and it allowed soft-
ware to quickly switch from one memory space to another simply by 
changing one of the segment register’s contents. Programmers quickly 
found the task of keeping track of four memory independent spaces to be 
more than four times harder than managing one large, flat memory space. 

While memory segmentation did expand the 8086 processor’s address 
space to 20 bits, it did not adequately solve the underlying problem. Two 
important reasons for giving a processor a larger address space are to allow 
the processor to run larger programs and to allow the processor to handle 
large data types such as image, video, and sound files. The 8086’s segment 
registers allow the processor to handle larger programs and data files as 
long as the processor’s operating system can reliably manage the jiggery-
pokery needed to change the segment pointers as needed. However, this 
overhead saps the processor’s bandwidth and invites programming bugs. 

It’s tempting to attribute the poor design of the 8086 processor’s fixed-
size, 64-Kbyte segments to the cold realities of late-1970s semiconductor 
processing. Zilog’s contemporaneous 16-bit Z8000 processor also had a 
segmented-memory address space. However, Motorola managed to produce 
the 32-bit 68000 microprocessor with a flat 32-bit address space during the 
same period. The Motorola 68000 was simply a more aggressive design. 

Inferior design or not, IBM selected the Intel 8086 (actually the 8088 
variant with an 8-bit data bus) for its IBM PC, instantly making Intel’s 
segmented-memory approach highly successful in spite of its difficult pro-
gramming model. The 32-bit descendents of the 16-bit 8086 microproces-
sor still support segmented-memory addressing, but their offset registers 
now hold 32-bit offset addresses (rather than 16-bit offsets), which solves 
the problem of fitting large programs and data files into one segment, at 
least for most application spaces. However, some programs already need 
more than 32-bit data addressing. For example, some electronic design 
automation programs – design rule checking, as one type – have a hard 
time fitting into a 32-bit data space for very large chip designs fabricated 
in very aggressive IC-manufacturing processes. 

There is a way of advantageously using memory segmentation in con-
nection with a paged MMU, which provides virtual-memory management 
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and memory-space protection as well as address translation. MMUs pro-
vide a much better, more comprehensive approach to memory manage-
ment than simple segmented memory. 

Problem 12: Multithreading (Clotho Replicatius) 

Before discussing why multithreading is a problem in processors (or at 

A thread in computer science is short for a thread of execution. 
Threads are a way for a program to split itself into two or more 
simultaneously (or pseudo-simultaneously) running tasks. The dis-
tinctions between threads and processes differ from one operating 
system to another, but in general, the way that a thread is created 
and shares its resources is different from the way a process does. 

And then under Simultaneous Multithreading:  

Simultaneous multithreading, often abbreviated as SMT, is a 
technique for improving the overall efficiency of superscalar CPUs. 
SMT permits multiple independent threads of execution to better 
utilize the resources provided by modern processor architectures. 

…. Simultaneous multithreading allows multiple threads to 
execute different instructions in the same clock cycle, using the 
execution units that the first thread left spare. 

Processor designers added multithreading to their designs as a remedy 
for diverging processor clock rates and memory-access times, caused by 
process-technology scaling. When a memory access took only one or just a 
few processor cycles, stalling the processor during loads and stores seemed 
a bit wasteful but did not constitute a crisis. Intelligent instruction schedul-
ing and reordering by compilers operating on a single sequential program 
could often soak up the wasted cycles through out-of-order execution of 
instructions that weren’t dependent on the results of the load or store. 
However, when system-memory accesses began to take tens or even hun-
dreds of processor cycles, no amount of intelligent instruction scheduling 
by a compiler or by a hardware-based, out-of-order instruction scheduler in 
a superscalar architecture could fill all of the wasted cycles with useful 
work. The result: potential performance loss and energy waste. 

 

define what it is. From Wikipedia [455]: 
least, not the right solution for many processing problems), we need to
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To resolve this crisis and waste, processor architects developed multi-
threading strategies to maintain high processor utilization even when an 
execution thread stalled somewhere in the processor’s pipeline. Moore’s 
law permitted new generations of processors to run more tasks simultane-
ously by adding hardware state that allowed pipeline stalls to be side-
stepped simply by switching to other program threads during the stall. 
Hardware support for rapid thread context switching allows multiple active 
and stalled threads to run on a single set of processor resources. 

Hardware support for thread scheduling can do more than implement a 
simple round-robin scheme – it can take process or task deadlines and 
task-completion estimates into consideration to better meet real-time or 
near-real-time processing goals. Simultaneous multithreading can take 
instruction scheduling even further in a superscalar processor with multi-
ple execution units and other processing resources that permit execution of 
two or more threads at once. SMT processors need not wait for threads to 
stall before beginning a second or third thread, which can take advantage 
of idle function units and other resources. 

Various multi-core processors that support multiple thread execution re-
cently announced include Sun’s Niagara and its follow-on, IBM’s Power5, 
Intel’s Core 2 Duo Pentiums, AMD’s Multi-Core Opterons, MIPS’ 34K, 
and others. These processor vendors all seem to see multithreading – 
whether SMT or fast thread context switching, potentially every cycle, or 
even “chip multithreading” (where each core is running a different thread, 
but only one at a time) – as a key part of their multi-core evolution strat-
egy. Clearly, if it was easy to partition applications into multiple concur-
rent threads, or easy to switch between threads on stalls without putting 
pressure on other resources, then multithreading would be a viable strategy 
to both exploit Moore’s law and to prevent resource and energy waste. 

However, there is another kind of multithreading that employs chip mul-
tiprocessing (CMP, another form of multi-core technology) without actu-
ally splitting an application into concurrent execution threads. That is, if 
each task has a single execution thread and processor cores can quickly 
switch from one thread to another, and all of the cores or processors share 
a common view of memory (otherwise known as Symmetric Multi-
Processing or SMP), then idle threads can sit in a memory pool and be dis-
patched to any processor that stalls while running a thread. Because all 
processors have a shared and coherent memory view, any waiting thread 
can quickly resume execution on a new processor until that thread itself 
stalls. One thread runs per processor at any given moment, which results in 
a kind of chip multithreading (CMT) as described above. 
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As a concept, CMT running on an SMP multi-core machine may make a 
certain amount of sense for applications with the following characteristics: 

• General-purpose applications that may not be known at the time the 
processor is chosen for the product or design. 

• Applications with large, complex control structures rather than data-
intensive computation. 

• Applications without hard real-time task deadlines or with very soft task 
deadlines or soft quality-of-service requirements. 

• Applications intended to be run on large, general-purpose servers, 
powered by line plug rather than battery. 

Applications such as Web queries and other Web-based services are 
good candidates for this kind of machine. These applications do not have 
particularly hard quality-of-service characteristics as long as a certain res-
ponsiveness level is maintained; the applications may not even exist when 
the servers are designed. In such circumstances, the amount of processing 
per query is relatively low; applications may stall on database lookups and 
other memory intensive queries; when one user thread stalls, there may be 
hundreds of others waiting to be serviced. Large server farms are now built 
with hundreds, thousands, or even tens of thousands of servers, each of 
which may have several dual- or quad-core processors. Such servers may 
be more effectively built with a CMT approach rather than SMT app-
roaches, because it may prove more efficient to have cheaper cores and 
more of them than more expensive SMT cores. 

Although such applications may run reasonably well on SMP multi-core 
machines, such processor designs do not exhaust the application space of 
interest. In particular, deeply embedded applications in consumer products – 
for example, audio/video/multimedia and image processing – have a rather 
different set of characteristics from those discussed above: 

• Data-intensive processing, often incorporating algorithms for known 
standards (for example, audio–video codecs), possibly written ahead of 

• Applications that must run on portable consumer products, usually 

For such applications, multiprocessing rather than multithreading is 
the better architectural approach. And not just general-purpose multi-
processing (as in the SMP model), but application-specific, asymmetric 

time or falling within reasonably well-known application domains. 

battery powered, where energy consumption is a very big concern. 
• Applications that can be partitioned into pipelined dataflow tasks. 

of-service demands. 
• Applications with hard real-time constraints or with tight quality
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multiprocessing (AMP) may well be the best solution and the best utiliza-
tion of Moore’s law. Rather than loading all of the application’s tasks onto 
a single multithreaded core – for which a high clock rate (and very high 
energy consumption) will be required to meet processing deadlines – a set 
of application-specific, configured processors (ASIPs), running at much 
lower clock rates may be a superior solution. 

If the processors are extended with specialized, application-specific 
instructions, they may run at clock frequencies far lower than would be 

Processor subsystems in AMP designs can be tailored for and dedicated 
to specific application tasks. Instruction tailoring reduces power dissipa-
tion by allowing a processor to execute a task in fewer clock cycles. When 
these tasks aren’t running, the associated processor cores can be shut down 
completely, which saves additional power. This strategy is more difficult 
to achieve with a general-purpose, multithreaded core because such cores 
must run all relevant tasks and must therefore operate as “always-on” 
processors, as long as there are tasks to run. ASIPs designed for a specific 
application domain, if well-designed, can efficiently run both current and 
future versions of task-specific application code – such as new audio or 
video codecs. 

The gates required to support multithreading on a general-purpose pro-
cessor may be better used if dedicated to an ASIP. Thus a multiprocessor 
network of ASIPs can be a much better way to exploit Moore’s law and 
semiconductor technology evolution than a general-purpose, multithreaded 
processor for many application domains of interest. 

Problem 13: Symmetric multiprocessing (Multisaur 
Symmetrius) 

Symmetric multiprocessing computer systems have been around for a long 
time. Many high-end supercomputing systems – built from multiple homo-
geneous processors with a high-speed interconnect network – use SMP as 
a fundamental architectural concept. More recently, as discussed earlier, 
on-chip multi-core designs such as Sun’s Niagara, IBM’s Power, AMD’s 
Multi-Core Opteron, ARM’s ARM11 MPCore, and Intel’s dual and quad 
core Pentium designs are based on SMP architectures, often in conjunction 
with some form of CMT or other multithreading approaches. 

required for one or two general-purpose cores, especially when the general- 
purpose processors are loaded with multiple tasks and threads. The reduced  
clock rate leads to lower required processor-core operating voltages and,
consequently, much lower energy consumption. 
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SMP systems employ multiprocessing architectures with a globally 
coherent view of system memory. That is, every processor in the SMP sys-
tem sees the same global-memory range. By using this arrangement, SMP 
systems offer a uniform set of resources to any task or application pro-
gram; any task can execute on any processor and, if a task is suspended or 
interrupted, it can be rescheduled on any processor. When it resumes, the 
task finds its context (stored in global memory), reloads it, and restarts 
execution. This scheme greatly simplifies the creation of multiprocessor 
task schedulers and operating systems and it reinforces the system de-
signer’s desire to use identical processors in the SMP system’s design for 
simplicity’s sake. 

The SMP system’s multiple processors access global memory over some 
kind of system bus. A simple SMP system could be built from processors 
(including multiple processors on a single die) that directly access global 
memory via a system bus without any intervening memory hierarchy. When 
off-chip memory could be accessed in one or a few cycles of processor exe-
cution and the system bus added a relatively small delay, this sort of system 
architecture could be tolerated. However, differential process-technology 

accessing off-chip global memory directly consumes tens to hundreds of 
processor clock cycles. An SMP system in which every processor is likely 
to be stalled waiting on memory would of course defeat the whole purpose 
of SMP. 

Modern processors deal with the problem of slow global-memory access 
through the use of on-chip cache memories that can be accessed extremely 
rapidly, often in one cycle. The use of multiple cache levels in a hierarchy 
is also very common, as is the separation of caches into instruction and 
data banks. These approaches improve performance because the memory-
access patterns may be very different for instruction fetching versus data-
operand fetching and storage. 

Caching strategies work well for individual processors because they 
effectively mask off-chip memory latency for large numbers of applications 
running on such systems. On-chip caches usefully exploit the transistor 
density offered by the application of Moore’s law. However, for SMP sys-
tems, caches introduce a further wrinkle: cache coherency problems. 

Within a cache, the valid value for a particular target memory location 
might be located in one of several places: the register where the value was 
stored after an instruction has fully executed; the level-one, -two, or -three 
cache; or in global memory. If another processor wishes to access the valid 
 

scaling for processors and DRAM has produced an imbalance, where pro- 
cessors fetch and execute instructions from single-cycle caches and local
memories at speeds ranging from hundreds of MHz to a few GHz but 
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value for that memory location, it may be quite inaccessible until it is written 
back into global memory. Unless that value has been marked in some way, 
a processor could easily end up with an incorrect copy of the target value. 
Marking where the valid value for a memory location resides is required 
for even single-processor systems with caches. To build an effective SMP 
system, the concepts of cache coherency, marking, and updating must be 
extended to all of the SMP processors in the system. 

Cache coherency of course incurs a cost and may degrade access latency 
depending on how it is implemented. If coherency is maintained by soft-
ware, via a multiprocessor operating system and its services, access latency 
may increase substantially for many memory accesses, if not all of them. 
Most SMP systems – certainly most on-chip multi-core systems with two, 
four, or eight cores – implement cache coherency using specialized hard-
ware that accelerates global access to memory items whose correct value 
may lie in one processor’s cache hierarchy. This feature is offered in ARM’s 
MPCore, for example. Such hardware cache coherency support comes at 
some considerable hardware cost, depending on the particular SMP system 
architecture and processors. 

SMP can be regarded both as a problem and a solution. SMP together 
with a multithreading strategy may be an appropriate design solution for 
high-end server farms running general-purpose computing applications 
that are heavily control dominated or with considerable amounts of data-
base searching, for which reasonable but not hard real-time response is 
required, and for highly variable computing loads. Web searches are the 
now-classic application in this space. For example, Google compute-server 
farms contain thousands of rackable SMP computer systems. Many other 
large-scale problems have similar characteristics. 

SMP can be regarded as a problem if it is always regarded as the only 
solution to the need for multiprocessing or if it is applied to the wrong 

 

To some extent, SMP systems offer the opportunity to dynamically scale 
processing power to load and to move applications and stalled threads from
processor to processor in an ad hoc manner without worrying about moving
the threads’ memory context with them. The “system” automatically takes
care of all this bookkeeping. Here, flexibility of system architecture, an 

an ability to guarantee various qualities of service to different application

power consumption. Such general-purpose applications are usually not data-
computation intensive. For example, they may not be used in deeply embed-
ded deeply embedded applications such as in consumer products and the like. 

classes may trump other considerations including compute efficiency and

ability to incrementally upgrade the system and to keep it running, and

problem, the wrong product, and at the wrong time. With so many large 



66      Grant Martin and Steve Leibson 

processor companies and real-time operating system (RTOS) vendors 
advertising their multi-core SMP solutions, system designer’s might well 
assume that SMP is the only solution for higher performance SoC designs. 

There is an alternative system-design approach that makes sense for 
many data-intensive, deeply embedded applications, as found in many 
multimedia (audio and video), image-processing, and signal-processing 
applications. The alternative approach is AMP, where heterogeneous pro-
cessors, configured for different parts of an application, are linked together 
in an architecture designed for effective performance and power-efficient 
computation. The classical AMP SoC example is a modern cell phone: one 
or more control processors handle user-interface code and wireless proto-
col stacks and one or more DSPs plus dedicated hardware blocks handle 
voice and image processing – encoding and decoding, as well as other 
kinds of processing. 

By exploiting precisely the right kind of processor for each task, and by 
carefully designing a system architecture that allows these different pro-
cessors to communicate via a variety of mechanisms (not just SMP’s shared 
global memory), AMP solutions may offer the right application perform-
ance level at a small fraction of the energy consumption of SMP systems 
and without the need for cache-coherency hardware. Instructions matched 
to the application allow a configurable processor to consume far less energy 
than general-purpose processors running the same specialized tasks (on the 
order of one to two orders of magnitude less energy) and there may be 
many fewer processors needed as a result of the specialization. 

AMP systems can be built from standard embedded processors of vari-
ous kinds, as well as ASIPs that could be standard Intellectual Property 
(IP) blocks, custom designed, or based on configurable and extensible pro-
cessor IP. In all cases, effective use of heterogeneous processors requires 
that design teams have some knowledge of the application tasks that will 
run on the processors – if not the actual code, then at least an awareness 
of the code’s general characteristics (audio or video, for example) – and 

Of course, it may well be that the right architecture for a product could 
be a combination of SMP and AMP. Products may have both application-
oriented, data-intensive subsystems – such as for audio, video, and network 
processing – and a need to run general-purpose applications such as various 
user-interface functions, data searches, etc. These general-purpose applica-
tions may not all be known in advance. The evolution of the cell phone and 
PDA into a general portable digital appliance may well point in such a 
direction. In this case, an SMP multi-core subsystem combined with seve-

 

the kinds of ISAs most suited to each application domain. 

ral AMP multiprocessor subsystems – the former to run general-purpose, 
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non-real-time, non-data-intensive tasks; the latter to run all the highly data-
intensive and real-time tasks organized into a constellation of processing 
subsystems – may be a good architecture. Clearly, SMP can be both a 
problem and (part of) a solution in such cases. 

 



4 Processor Design Flow 
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In this chapter, an overview of a generic processor design flow will be pre-
sented. The chapter is based on the author’s experiences and also some-
what on existing literature. The design flow is illustrated in Figure 4.1 and 
explained in more details in the following sections. 

 

Capturing requirements 

The design process starts by capturing the requirements for the processor. 
There are both functional and non-functional requirements. The functional 
requirements stem from the foreseen applications, and also from the oper-
ating environment of the processor. 

In the case of an extremely application-specific processor, the functional 
requirements of the applications can be found quite easily. In the best case, 
all the algorithms to be run on the processor are known a priori. At least, 
one can easily identify a representative set of algorithms within the appli-
cation area. 

The next step is to find operations or prototype instructions that support 
efficient execution of the known algorithms. We also have to figure out 

by looking at the algorithm descriptions, in a more complicated case some 
profiling is needed to find out how frequently some operations, operation 
patterns or common subroutines are executed. The profiling can be done 
for full algorithms or for the algorithm kernels or inner loops. Examples of 
the full algorithms in embedded systems could be GSM speech codec, 
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cessing by the instructions. In a simple case the operations can be sketched 
how we can address the operands, and what type of data we will be pro-
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Fig. 4.1.  Generic processor design flow. 

decoder. The kernels from the algorithms could in turn be, e.g., codebook 
search, motion estimation, and path metrics computation. 

There is one thing to be kept in mind if profiling a real source code with 
an existing processor when designing a new one. The results will be 
largely dependent on the instruction set of the old processor architecture, 
and also on the compiler ability to optimize for the target. This means that, 
in the worst case, the profiling results may be leading the designer astray. 
Here is an example from real life. We were profiling ADPCM encoder/ 
decoder with an old Sun workstation whose processor did not support two 
important operations that were needed in the application: extraction of ex-
ponent (or finding the number of shifts to normalize a number) and multi-
bit shifting based on a register value (the normalization once the right 
amount of shift has been found). This led to a huge number of cycles that 
were actually used for scaling the results with very primitive operations. 
Once this was finally noticed, we profiled the algorithm again using Ana-
log Devices 2151 DSP with hardware resources for exponent extraction 
and a barrel shifter. This yielded completely different results and indicated 
better the requirements of the algorithm when implemented efficiently. 

MPEG-4 video compression and decompression, or Viterbi convolution 
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filed the operation frequencies by running the given compliance test vec-
tors in the simulator. The profile is shown in Figure 4.2. There are separate 
profiles for operations requiring multiplication and operations involving 
the ALU, and for the word length of the operations (32 or 16 bits). The 
third set of bars shows the control operations profile. 

The profiles show that there is a significant number of both 32-bit and 
16-bit operations, and many of the multiplication instructions (L_mac, 
mult_r) require both the multiplier and ALU to complete the result. Abso-
lute value and normalization are required quite infrequently, but they are 
simple to implement in hardware. The division operation is not used very 
much and would require a complex hardware component, so it is definitely 
better to implement the division in software. A subroutine consisting of 14 
instructions was constructed to execute the division. The ALU and multi-
plier were made to support both 16-bit and 32-bit data types. The multi-
plier and ALU are put in series, and some implicit shifts (not counted in 
the pseudo-code simulations) are implemented by pre- and post-shifters in 
the ALU. 

There are a large number of assignments required, in practice this means 
loading data to the multiplier and ALU. Since the MAC (Multiply-
ACcumulate) operations dominate, two buses are needed to efficiently 
feed the multiplier with two new values each clock cycle. There was also a 
number of various logic operations and bit-field masking required, which 
determined the need for a logic unit, capable to carry out the basic logic 
operations. The pre-shifter following the logic unit completes the bit-field 
masking operations. Thus, the ALU was split into a logic unit and arithme-
tic unit, separated by the pre-shifter. 

The number of FOR loops may seem low at first glance, but the number 
refers to for loop instantiations rather than loop body executions, so there 
was a need for a hardware loop counter to efficiently take care of the FOR 
loops. There were also runs of maximum or minimum detection in the 
pseudo-code, which was easily added to the hardware (comparison and 
conditional loading of the new maximum/minimum accumulator). Follow-
ing the common principle in DSP processors (as shown in a later chapter) 
the address registers are separate and have their own effective address cal-
culation and register update logic. 

sor for a mobile phone, the algorithm was described as a pseudo-code. We 
constructed a simulator to execute these pseudo-code instructions, and pro-

Another case illustrating the profiling process follows, originally pub-
lished in [310]. In the development of a speech encoding/decoding proces-
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Fig. 4.2.  GSM half-rate speech codec profiling data. © IEEE, 1994 [310]. 

Table 4.1 shows the instruction set of the resulting speech codec proces-
sor. L in the start of a mnemonic denotes a long (32-bit) operation. SLEEP, 
LDAS and STS are implementation specific additional instructions for 
power efficiency and saving and restoring an intermediate register in the 
multiply-accumulate pipeline. ENDL is a marker for the end-of-loop in-
struction, of which location is actually coded into the LOOP instructions. 
In DSP fashion, several operations can be executed concurrently in a sin-
gle clock cycle, such as MUL, LADD, two MOVES and two INC/DEC 
post-operations on the address registers used at the same time in the 
moves. 
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ABS/LABS Absolute value 
ADD/LADD Add 16-bit or 32-bit numbers 
AND Logical AND of 32-bit numbers 
ASH/LASH Arithmetic shift 16-bit or 32-bit numbers 
CALL Call a subroutine 
DEC Decrement address register 
ENDL End loop 
INC Increment address register 
INC3 Increment address register by 3 
JMP Unconditional jump 
JMPIF Conditional jump 
LDAS Load accumulator with S-register 
LOOP Start a hardware-supported loop 
MAX Find maximum of two numbers 
MIN Find minimum of two numbers 
MOVE Load or store 
MUL Multiply 16 x 16 = 32-bit 
NAND Logical NAND of 32-bit numbers 
NEG/LNEG Negate (2’s complement) 16-bit or 32-bit number 
NOP No operation 
NOR Logical NOR of 32-bit numbers 
NORM Find number of shifts to normalize accumulator 
NOT Logical NOT of a 32-bit number 
OR Logical OR of 32-bit numbers 
RET Return from subroutine 
RETI Return from interrupt 
RND Round from 32-bit to 16-bit number 
SLEEP Go to sleep 
STS Store accumulator to S-register 
SUB/LSUB Subtract 16-bit or 32-bit numbers 
XNOR Logical XNOR of 32-bit numbers 
XOR Logical XOR of 32-bit numbers 

 
Some of the functional requirements are set by the operating environ-

ment rather than the applications themselves. For instance, if the processor 
will be running a (real-time) operating system, it will affect the design de-
cisions, including the instruction set. Also, the memory subsystem con-
nected to the processor may affect the requirements, and so will the I/O 
devices. In some cases even the software development tools may impose 
some functional requirements to the processor. 

At the edge of functional and non-functional issues there are require-
ments for the clock cycle time, throughput and latency requirements set by 
the surrounding parts of the system. 

Table 4.1. Instructions of the half-rate speech codec DSP. 

Mnemonic Meaning 
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Non-functional requirements include costs such as silicon area, pin 
count or actual manufacturing cost or retail price, power and energy con-
sumption. Compatibility with the design tools may restrict the architecture, 
and compatibility with software tools or even binary compatibility of the 
instruction set to an existing family of processors may set additional re-
quirements to be fulfilled by the processor designer. There might be also 
Electromagnetic Compatibility (EMC) issues arising, and manufacturabil-
ity, testability, and maintainability are affecting the design decisions. 

Yet another issue is how to prepare for the future. One approach is to 

also for rarely operations (not judging them impossible by design), and 
elementary support for rare addressing modes, too. This follows the well-
known postulate of Hennessy and Patterson: make the common case fast 
and the rare case correct [188]. However, there is some limit to the prepa-
ration for the future. Every addition that we make to the architecture to 
support hypothetic future needs will affect the cost some way. On the other 
hand, no matter how well we prepare, there will be more applications than 
what we can think of today. Processor designers are no wizards. Some-
times it is better to just leave room for future extensions – or use dynamic 
reconfigurability to respond to the future needs when they will arise. These 
alternatives will be further explored later in their own chapters. 

Instruction coding 

By now we have found out the required operations, addressing modes to 
access the operands, and data types that can be used to represent the data. 
Now we need to design the actual instruction set and its encoding to form 
binary instructions. This is an iterative task which is restricted by the cost 
and performance requirements. 

The instruction coding is a compromise between a few different princi-
ples. Maximal utilization of parallelism would require to basically repre-
sent all the processor control signals in the instruction word. This would 
enable any combination of resources to be used in any one instruction, but 
on the other hand is in most cases intolerable because of the resulting long 
instructions. The other extreme is to encode the operation and its operands 
in as few bits as possible. This would, on the other hand, restrict the useful 
combinations of resources. Thus, the encoding is typically something bet-
ween these horizontal and vertical code approaches. 

application-specific processors. This means to provide elementary support 
maintain a certain degree of general-purpose characteristic even in the
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Another issue is that different operations may require different number 
and different size of operands to be presented in the instruction. This leads 
to an attempt to use variable-length instruction coding. On the other hand, 
simplicity favors regularity which suggests having just a single instruction 
length with as fixed format as possible across the whole instruction set. 
Also in this aspect compromises will be made in the form of a few differ-

In addition, there are often requirements such as low cost, which can be 
affected by a small footprint of the programs. Low power consumption is 
one goal, which can be achieved by avoiding excess use of memory but 
also by choosing the binary codes to avoid as much as possible changes in 
the bit values in adjacent program memory accesses. 

One goal is the low hardware complexity in instruction decoder. On the 
other hand, the assembling of programs should be easy, and the instruction 
set should be a good target for compilers. The instructions should perform 
as much work as possible, and have a good command over the processor 
resources. As can be seen quite easily, many of the goals or requirements 
are contradictory. It is all about making good compromises. 

Let’s take an example to illustrate the instruction encoding task. We 
have been told to save memory area, so the operations listed in Table 4.2 
should be encoded in 16-bit instructions. The data word length is 16 bits, 
and the instructions should be all of the same length and enable single-
cycle execution of the specified operations. 

We have already decided that the processor is using a general-purpose 
register file with as many registers as can be practically addressed by the 
instruction word. We have also decided that the source and destination reg-
isters may be different (yielding at most three register operands in a single 
instruction). We can assume that at most 16 data registers can be used, 
since 3 × 5 bits to encode 32 registers would leave only 1 bit for the opera-
tion code. With 16 registers we have 4 bits for each register operand and 
four remains for the operation code. We have also decided that branches 
are PC-relative and have as long an immediate offset as possible in a single 
instruction word, and they have as many conditions as can be easily fit into 
the instruction. The shifts shall be full ±15 bits to enable single-cycle shift-
ing. The immediate constants to be loaded shall be as long as possible. The 
multiplication produces a double-length product, so we have decided to 

ent instruction formats, possibly also in having a couple of different lengths 
of instructions. In the case of variable-length instructions, the lengths are
typically multiples of the basic instruction length. 

work with a pair of registers to store the result (meaning a split register file 
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Table 4.2. Operations specification. 

Instruction Addressing modes, limitations, etc. 
Add 2 source and 1 destination reg 
Add with carry 2 source and 1 destination reg 
Subract 2 source and 1 destination reg 
Multiply Mixture of signed and unsigned operands. 

2 source and 1 double destination reg 
Logical shift 1 source and 1 destination reg. ±15-bit 

shifts from instruction 
Logical shift on register 1 source, 1 destination, 1 shift amount reg 
AND 2 source and 1 destination reg 
OR 2 source and 1 destination reg 
XOR 2 source and 1 destination reg 
NOT 1 source and 1 destination reg 
Unconditional branch PC-relative branch in ±255 range 
Conditional branch As above but with 7 conditions 
Unconditional branch on register Branch address in register 
Conditional branch on register As above but with 7 conditions 

1 branch address and 1 link reg 

Conditional branch and link on register As above but with 7 conditions 
Load Register indirect with possible post-

inc/dec. 1 dest reg 
Store Register indirect with possible post-

inc/dec. 1 src reg 
Load immediate Signed ±127 immediate, 1 dest reg 
Register to register move 1 source and 1 destination reg 
No operation  

 
register file implementation). These additional conditions have been taken 
into account in the table already. 

We start the encoding from the regular operations. Operations ADD, 
ADDC, SUB, LSHR, AND, OR, XOR need three registers each. Three 
register fields are needed (4 bits to encode 16 registers), so there are 4 bits 
left for the regular operation codes. There are seven operations of this 
kind, so they need at most 3 bits of the opcode field to differentiate them 
from each other. 

Then we encode two-register operations NOT, LD, ST, MOVE. Two 
register fields are used, plus space for additional information (LD/ST di-
rection, post-modification, register move, not) in the third register space. 
We can use the 8th 3-bit operation code (0111) for these operations. 

on register 
Unconditional branch and link 
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The first 2 bits of the specifier can be used to encode the type of opera-
tion: LD, ST, MOVE, NOT (01, 10, 11, 00). So, the first 2 bits actually ex-
tend the operation code. The last 2 bits of the specifier field can denote the 
post-operation used in load/store instructions: increment, decrement, no 
change (10, 01, 00).  

Multiplication needs to have the signed/unsigned information + double 
registers as the destination. There are two source registers, so two fields 
needs to be used for them. Signed/unsigned indication of both operands 
takes 2 bits. For double registers we need to restrict the addressing to reg-
ister pairs 1:0, 3:2, etc. so we need 3 bits to encode the eight pairs. 

To incorporate the two signed/unsigned bits we had to “borrow” from 
the opcode field (we are kind of using two operation codes for the multiply 
instruction). We can note that in fact combinations US and SU are redun-
dant (because the operands could be re-ordered), but there is no harm of 
the redundancy either. 

For the shift instruction we need a 5-bit signed immediate for the shift 
value. Two fields are used for source and destination registers. Again, we 
need to borrow from the opcode to include the full-length shift value. The 
shift can be directly a 2’s complement number denoting the power of two 
that is used to “multiply” the input value (which is also directly the shift 
amount, where negative values shift right and positive values shift left). 

The branches are still remaining. If we allocate a 9-bit immediate offset 
and use seven conditions plus an unconditional branch (fitting in the re-
maining 3 bits), we end up with the following encoding. 

Another branch is on register also using conditions, and there is the sub-
routine call variation (branch on register and link), similarly with condi-
tions. We use one register field for the branch target register and another 
one to denote the link register that will store the return address. We can use 
the one spare bit from the condition field to denote whether to link or not. 
In the case of a normal branch, the link register field in the instruction is 
unused. Notice that this encoding fits perfectly with the previous branch 
offset field length selection, even a 1 bit longer offset field (and thus four 
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less different conditions!) would waste 1 bit in the register-based jump-
and-link instruction. 

The next instruction is load immediate, with an 8-bit immediate value. 
We need one register field for the target, and allocate yet another opcode. 

Finally, NOP. There are several options to implement the NOP as a 
macro instruction, e.g.: 
• MOVE register to itself  
• OR R0, R0, R0 
• AND R0, R0, R0 
• JUMP to the next instruction  

The drawback of such assembler macros is the power consumed in execut-
ing NOP operations. We could also use an actual binary code distinguished by 
the instruction decoder. Even there we have several additional options: 

• LSH with shift –16 (0b10000) decoded from the 8 MSB bits  
• any two-register instruction with both inc and dec bit set (decoded from 

6 bits)  
• the remaining opcode 0b1111 (decoded from the 4 MSB bits)  

We can choose the latter to keep the decoding simple. The instruction 
coding is now completed. 

The final instruction coding is shown in Table 4.3. 
We can notice that there are very few unused bits (x) in the coding. Only 

in the NOP instruction there is a significant amount of them, in register- 
based branch (BR) there is one unused register field, and in MOVE in-

This instruction coding is using the 16-bit instruction words very effi-
ciently, especially if we think of how infrequently the instructions with 
some redundancy would be used in actual code. Practically BR is used in 
subroutine returns mostly; NOP is tried to be avoided and MOVE between 
registers is quite rare compared to loads and stores that dominate in 
load/store architectures. Loads and stores can easily comprise 30–50% of 

struction the two modifier bits are not in use. 

all instructions. This instruction set  is very simplified  and  does  not take 
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Table 4.3. Final instruction coding. 

[15:12] [11:8] [7:4] [3:0] Interpretation 
0000 rrrr rrrr rrrr ADD 
0001 rrrr rrrr rrrr ADDC 
0010 rrrr rrrr rrrr LSHR 
0011 rrrr rrrr rrrr SUB 
0100 rrrr rrrr rrrr AND 
0101 rrrr rrrr rrrr OR 
0110 rrrr rrrr rrrr XOR 

00xx rrrr rrrr MOVE 
01+ – rrrr rrrr LD 
10+ – rrrr rrrr ST 

0111 

11xx rrrr rrrr NOT 
0RRR rrrr rrrr MULUU 1000 
1RRR rrrr rrrr MULUS 
0RRR rrrr rrrr MULSU 1001 
1RRR rrrr rrrr MULSS 

101s ssss rrrr rrrr LSH 
ccci iiii iiii Bccc 1100 
111i iiii iiii B 
ccc0 xxxx rrrr BRccc 
1110 xxxx rrrr BR 
ccc1 rrrr rrrr BRALccc 

1101 

1111 rrrr rrrr BRAL 
1110 iiii iiii rrrr LDC 
1111 xxxx xxxx xxxx NOP 

into account the operations that are needed in interrupt processing, e.g., 
disabling and enabling interrupts, or in running even the simplest operating 
systems, e.g., system calls. 

This step has a major effect on the organizational architecture, too. In 

Exploration of architecture organizations 

Based on the basic incredients, we must start exploring the organizational 
architecture alternatives. That can be accomplished by pen-and-paper 

fact, we need to have quite a good understanding of the organization to com- 
plete this phase of the design. The operations and operand access will have
certain implications on the arithmetic and address calculation resources
needed, type and number of data registers, how data transfers are carried
out, and what kind of control structures and control registers might be needed.
The final organization will require some further exploration and analysis.
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methods, with spread-sheet calculations of cycle counts, etc. within each 
alternative while executing the kernel operations, or by using processor 
specification languages with automatic performance estimator or simula-
tor generation. If such tools are available, they can be strongly recom-

Independently of the method used, the estimation of the foreseen im-
plementation(s) based on the architectures explored is of key importance. 
We are targeting at a certain performance level, at the same time trying to 
fit within the constraints of the non-functional specification (e.g., cost, 

At this point we can sketch the final architecture for the previous in-
struction coding example, as shown in Figure 4.3. This is in fact a refine-
ment of the architecture of Figure 2.3 of Chapter 2. The architectural 
choices were pretty much done already interleaved with the instruction 
coding phase. The register file has now another write port D for extended 
write-back of double-length multiplication products. The multiplier and 
shifter are shown as separate blocks from the basic ALU which only con-
tains add, subtract and logic functions. The shown setup implements a 
three-stage pipelined processor (fetch–decode–execute) which could be 
pipelined further as necessary by adding pipeline registers to the datapath 
and corresponding pipeline control, possibly with forwarding logic control. 
In the figure, the control is not shown in detail, and for instance operand 
latching could be added to the functional units to improve their power effi-
ciency. 

Hardware and software development  

When the architecture has been finally chosen, it is time to start the im-
plementation. The hardware development follows typically the normal 
ASIC or FPGA design flow, including high-level modeling, refinement of 
functional blocks in a hardware description language such as VHDL or 
Verilog, logic synthesis, floorplanning, back-end optimizations and verifi-
cations using simulators and static analysis tools. 

necks restricting the performance? There is another chapter on early estima-

power). Critical questions at this phase include: Are we achieving the target
cycle time? What will be the critical paths? Are there any severe bottle-

tion methodology and models to further clarify this stage. 

mended especially in the case of more complex processor designs.  
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Fig. 4.3.  An architecture to implement the example instruction set. 
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cally some large FPGA device instead of an ASIC technology. In addition 
to the actual hardware, accompanying HW models (e.g., in high-level 
VHDL or SystemC) need to be developed to support the development of 
application systems. The high-level simulation models are handled in a 

Similarly, the software tool development follows the normal software 
development flow.  

Software tools and libraries  

Beyond the application code, there is a lot of software needed already in 
the development phase. The software tools are essential for the adoption of 
the processor, since nobody will use a processor without any tools, inde-
pendently if it is a commercial processor or a proprietary special-purpose 
processor. 

This is actually one big egg–chicken problem: Which should be devel-
oped first, hardware or software (tools). In the worst case the design team 
will end up in the utmost ungrateful codevelopment and codebugging of 
the application program, software tools and hardware platform. Which one 
is malfunctioning, if there is an error detected in running the application?! 

The SW tools and utilities that are necessary typically include 
• Assembler  
• Linker  
• Disassembler  
• Instruction Set Simulator (ISS) which typically integrates also a 

debugger  
• High-level language compiler (e.g., C/C++)  
• Real-time operating system (RTOS) in more complex systems  
• Application examples and libraries  

Actually a processor development project can mainly consist of 
software development, although the processor is primarily associated with 
hardware in the engineering mind-set. Do not forget the importance of 
software! There is another chapter on software development tools for 
reconfigurable processors in particular to underline the importance of the 
tools. 

a standard cell library. In low-volume and prototyping the target is typi-

beyond the scope of this book. 
separate chapter later. Further details of the implementation flow are

In high-volume products the datapath may be constructed using full-
custom design methodology or datapath generators instead of synthesis to 
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Tampere University of Technology 

As a starting point for the exploration of embedded processor architec-
tures, we describe a general-purpose embedded processor core called 
COFFEE RISC. The reasoning behind its development and the design de-
cisions made are discussed throughout the chapter. Application and appli-
cation domain-specific issues will be treated in the following chapters. 

Introduction 

The complexity of processor architectures varies from multi-million gate 
designs to designs with a few tens of thousands of gates. Power consump-
tion varies from milliwatt range to hundreds of watts. In order to set the 
scope for comparison, we need to classify processors and define what we 
mean by a processor core in this context. Processors targeted to personal 
computers and mainframe computers form a class with similar require-
ments. Computing performance and hardware support for operating sys-
tems are key requirements in that class whereas power consumption has 
not been an issue in the past but because of increasing power densities has 
become a major performance limiting concern. 

Processors targeted to embedded systems belong to another class. 
Embedded systems are products other than general-purpose computing 
machines. Processors in such systems are used to implement certain func-
tionality of a product, the capabilities of the processor are not important to 
the user as long as the product fulfils certain requirements. Some level of 
performance is needed and usually a processor which has just enough 
performance, but no more, is selected. Especially in battery operated mobile 
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devices, it is essential to select a processor which is ‘not too good’ in order 
to avoid excessive power consumption. We were targeting such an embed-
ded processor for FPGA and ASIC implementations. 

Independent of the target application domain, every processor has an 
execution core. Here we define the core of a processor as follows. The core 
is the unit responsible for interpretation and execution of the instruction set 
of the processor in question. If we rip off all peripheral components, buses 
and cache memories, only the core is left. In many contexts, processor 
cores contain also cache memories but we prefer to leave them out. This is 
because memory architecture affects drastically to performance as well as 
power consumption and chip area. Also, there is not one optimal solution 
for memory hierarchy, but the design of the memory architecture is guided 
by the application. 

We can roughly divide instruction sets to reduced instruction set com-
puter (RISC), complex instruction set computer (CISC) and digital signal 
processing (DSP)-like instruction sets. DSP processing cores belong to the 
application-specific group. RISC and CISC cores are suitable for general- 
purpose processing. RISC and CISC instruction sets differ mainly because 
of different design approach. We can argue that a CISC-like instruction set 
is designed for human and an RISC like instruction set is designed for a 
compiler. 

In the early stages of minicomputers, programming was carried out us-
ing symbolic machine code, assembly code. It was advantageous to have 
instructions understandable by humans and instructions which performed 
‘more’. Nowadays the compilers produce RISC-like instructions even for 
CISC processors. Instructions not used by a compiler are mostly just a 
waste of resources reducing performance and increasing chip area as well 
as power consumption. This is one of the reasons why current trend is to-
wards RISC type processors. In our COFFEE RISC Core1  we have adop-
ted the RISC philosophy to derive a good processing engine, amenable to 
compiler-based software development for embedded computing [248]. 

Implications of RISC design philosophy 

As described in the chapter about embedded computer architectures, we 
can point out a few rules which are followed by RISC designers. The 

                                                      
1
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abbreviation RISC focuses on reducing the number and complexity of ins-
tructions but modern RISCs may have quite complex instructions included

 COFFEE RISC Core is a trademark of Tampere University of Technology, Tampere, 
Finland. 



One instruction per cycle. This requirement does not make sense 
unless we refer to a pipelined design. If multiple parallel execution pipe-
lines are used, more than one instruction can complete each cycle. The 
execution time of a program depends on the throughput of the pipeline, not 
the latency of individual instructions. Increasing the number of pipeline 
stages reduces the clock cycle time but at the same time the number of stall 
and flush cycles (wasted cycles) is increased. The number of wasted cycles 
can be reduced by careful scheduling of instructions but cannot be fully 
eliminated. This is a consequence of the fact that software execution is se-
quential and operations tend to have strong dependency on results of pre-
viously executed operations. 

Also the penalty of branching becomes significant with very deep pipe-
lining. During the evaluation of branch condition and branch target ad-
dress, several instructions may enter the pipeline. If the branch is taken, 
those instructions have to be flushed. There are several ways to alleviate 
this problem. Delayed branching is quite efficient because a good compiler 
almost always finds instructions to be placed in delay slot(s) after the 
branch instruction. Delayed branching together with efficient hardware for 
address calculation and condition evaluation are enough in designs with 
less than ten pipeline stages. With deep pipelines, pre-fetching and specu-
lative execution are most often used. 

coding an instruction. In addition the requirement of issuing one instruc-
tion per cycle cannot be usually achieved if multiple memory accesses are 

usually contains all the information needed for its execution. The width of 
the instruction is most often 32 or 64 bits. 

Only load and store instructions access memory. This requirement 
aims at utilizing the pipeline in an optimal way as well as minimizing 
memory traffic. Modern RISC processors usually exploit a pre-fetch 
mechanism: The address of the needed data is passed to cache memory 
well before that data is actually needed. A compiler can schedule pre-fetch 
commands in order to minimize cache misses which cause stalls. RISC 
processors usually have many general-purpose registers (from 16 to 128 
typically), which make it possible to handle most of the processing inside 
the core and use load and store instructions only to move ready results to 
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in their instruction set. The following ones were the principles that we 
followed in specifying our COFFEE RISC Core architecture and instruc-
tion set. 

Fixed instruction length. This requirement aims at simplicity of de-

needed to fetch a complete instruction word. An RISC instruction word 

memory and new data in. However, this is a simplified view since the 



compiler). 
Simplified addressing modes. Compilers hardly ever use complex ad-

dress arithmetic supported by CISC hardware. Complex address calcula-
tions in hardware only extend the clock cycle, so why should they be used. 
If very complex address arithmetic is needed, it can be synthesized using a 
few simple RISC instructions. 

Fewer, simpler instructions. Simpler operations imply shorter clock 
cycles. Simple instructions also fit better to RISC-like pipelines.  Many 
simple RISC designs perform most of their operations in one execution 
stage, that is, once the data has been fetched from the register file, it takes 
one clock cycle to evaluate the result. Demanding instructions, such as 
multiplication, use several cycles in the execution stage and in effect stall 
the rest of the pipeline. This approach is adopted by for example Advanced 
Risc Machines (ARM) [133]. In the COFFEE RISC Core, multiplication is 
also pipelined in order to increase the throughput. 

The COFFEE RISC Core instruction set architecture 

One cannot prove that a certain set of instructions is better than another. 
We can easily measure or compute the number of instructions executed per 
time unit but we can only compare cores which execute the same instruc-
tion set. Sometimes it is not even possible to do this because deeply pipe-
lined architectures usually expect the compiler to schedule instructions in 
an optimal way. Measurements depend on the compiler and application. 
Several benchmarks have been developed in order to facilitate perform-
ance measurements. These benchmarks are usually a set of programs 
which are executed on the target processor and the execution time is meas-

system composed of compiler, processor core and the memory architec-
ture. 

The scenario for the use of the COFFEE RISC Core was that the core 
will be used to set up embedded systems for mainly telecommunications 
and multimedia applications, and the most computationally intensive tasks 
of the application will be accelerated by coprocessors if needed. The work-
load characterization of embedded RISC processors has been conducted by 
several processor vendors with similar conclusions. Thus, the instruction 
set of the COFFEE RISC Core was designed based on instruction sets of 
RISC processors currently on market. Instructions which were available in 
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Actual amount of memory traffic depends heavily on the application (and 

ured. Even though it might be justified to compare benchmark results bet-
ween different processors, it is clear that they are a measure of a complete 



most of processors were included and the rare ones were excluded after 
careful consideration. Instructions which enable coprocessor support 
(dedicated instructions to move data and coprocessor instructions over a 
coprocessor bus) were also added as a way to extend the instruction set if 
needed. This approach provided a good starting point for the development 
regardless of not being a highly analytical. The most important inclusion 
was the hardware support for multiplication to speed up algorithms with 
DSP flavor. 

The penalty of implementing a particular instruction is not known be-
fore modeling the execution of that instruction with hardware timing. This 

example division. Division is not a deterministic process, that is, its execu-
tion time cannot be predicted. This implies iterative execution which 
means in practice stalling the pipeline until the result is ready. If needed, 
division shall be done in software, in a coprocessor, and is best to be 
avoided in time critical algorithms. 

The regular COFFEE RISC Core implementation has 66 instructions. A 
special instruction was included for future extensions: switch mode (swm). 
It is used to switch to a different instruction decoding hardware. It can be 
used to implement application-specific instruction sets and develop ‘better’ 
instruction sets in the future without giving away compatibility with old 
software. The execution pipeline of the COFFEE RISC Core (explained 

pipeline without deteriorating performance. Currently swm instruction is 

The data processing instructions operate on two register operands, or al-
ternatively, one register operand and one immediate operand. Instructions 
which produce data can write their result to any general-purpose register. 
Three register indexes can thus be specified in one instruction word. 

tions, eight conditional branches, four other jumps (linking jumps, absolute 
jumps etc.) and six shift instructions.  

Conditional branching is implemented using two instructions: compare 
and branch. Compare instructions of the COFFEE RISC Core produce 
condition flags which can be saved to one of eight possible condition flag 
registers for later use. Branch instructions evaluate branch condition based 
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instructions (bytes, halfwords, and arbitrary bit fields), six Boolean opera-
There are fourteen arithmetic instructions, ten-bit field manipulation 

integrate for example multiply and accumulate (MAC) instruction in the 
later in this chapter) together with swm instruction makes it possible to 

instructions present in some RISC architectures were easy to exclude, for 
included or not prior to the implementation phase of the design. Some
makes it extremely difficult to decide whether an instruction should be

32-bit instruction word is interpreted as an individual 16-bit instruction. 
used to switch to compressed instruction mode where each half of the 



on those flags. A delay slot of one instruction is present after any jump or 

Most of the instructions can be executed conditionally making it more 
efficient to implement short conditional statements. With conditional exe-
cution there is no need to jump over code in order to avoid its execution. 

It was decided that COFFEE RISC Core shall support real-time operat-
ing systems (RTOS). To this end, separate user and supervisor modes were 
introduced. System call and trap (programmed interrupt) instructions are 
provided to transfer the control to the supervisor which in most cases 
means an operating system. The COFFEE RISC Core instructions are 
listed and shortly explained in Table 5.1. 

Software view of the COFFEE RISC Core 

The COFFEE RISC Core is a so-called load-store machine: Memory oper-
ands have to be loaded into registers before performing any operation on 
them. Similarly, a result of an operation is stored into a register from 
where it can be written to memory using data transfer instructions. As in 
most of RISC architectures, a large general-purpose register bank is pro-
vided to avoid excessive memory traffic. 

Figure 5.1 depicts the programmer’s view of the core’s registers. The 
general-purpose register bank is divided into two sets. This division en-
ables fast mode and context switching as well as facilitates the implemen-

supervisor mode, but only one set is accessible in the user mode. 
Software configurability of such features as protected memory areas and 

peripheral address space was foreseen to facilitate system development. To 
enable the desired software configurability, an internal memory mapped 
configuration register bank called core configuration block (CCB) was pro-
vided. The CCB itself can be freely relocated within a 32-bit address space. 

The peripheral devices around COFFEE RISC Core can be configured 
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instead causing a pipeline bubble (a stall cycle) for every branch. 
branch. This delay slot can be used to execute a meaningful instruction

tation of separate user and supervisor modes for RTOS support. Each 
register set contains 32 registers. Both sets are available in the privileged 

and communicated with through an external module called peripheral

figurability through a register set interface. Control and data registers of 
peripherals can be placed into one register bank having a single decoding 
logic or they can reside inside each peripheral device just sharing the bus. 

control block (PCB). Just like the CCB, the PCB provides software con-



Table 5.1.  COFFEE RISC Core instruction set. 
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Fig. 5.1. COFFEE RISC Core programmer’s view of the register set. The shaded 
registers are available also in the 16-bit mode. 

Hardware view of the COFFEE RISC Core 

The COFFEE RISC Core is a 32-bit architecture, that is, data is manipu-
lated in 32-bit words. The memory interface is of Harvard type, having 
separate interfaces for data and instruction memory. This supports simul-
taneous access from the instruction fetch and memory access stages of the 
processor. 

Figure 5.2. shows an example of interfacing the COFFEE RISC Core. 
Memories are interfaced with generic signals to allow integration with 

software configurable (in cycles) separately for both interfaces via the 
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various types of memory parts. Multi-cycle accesses are supported en-
abling direct connection to large and slow memories. The access times are 



CCB. The COFFEE RISC Core also incorporates support for sharing the 
data bus. 

As shown in Figure 5.2, the PCB is attached to the COFFEE RISC 
Core’s data bus interface. All accesses to the memory space reserved for 
peripherals will assert peripheral control block write (pcb_wr) and periph-
eral control block read (pcb_rd) signals directing the access to the PCB in-
stead of data memory. Data memory accesses assert the general write (wr) 
and read (rd) signals. 

The coprocessor interface is much like a memory interface. Addressing 
is limited to 7 bits, including two bits for coprocessor identification and 5 
bits for coprocessor register indexing. The COFFEE RISC Core thus sup-
ports up to four coprocessors with the maximum register bank size of 32. 
In addition, a coprocessor can interrupt the core by asserting an exception 
signal included in the interface.   An important  feature  of the  coprocessor 

 

Fig. 5.2.  Interfacing the COFFEE RISC Core. © IEEE, 2003 [248]. 
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interface is its ability to connect to different clock domains. This is 
achieved by synchronizing also exception signals on core side and allow-
ing data transfer times of up to 16 clock cycles. As with memories, the 
data transfer time is software configurable through the CCB. Synchroniz-
ing circuitry is required on the coprocessor side unless the coprocessor’s 
operating frequency is an even multiple of the core clock frequency. 

The COFFEE RISC Core provides an internal interrupt controller which 
is adequate for many designs but also a possibility to extend is provided. 
Eight external interrupt sources are supported by the internal interrupt 
handler. If coprocessors are not connected, the four inputs reserved for co-

chronization circuitry allowing asynchronous signals to be connected. If an 
external controller is used, synchronization is bypassed in order to reduce 
signaling latency. Priorities between interrupt sources can be set by soft-
ware via CCB registers. Interrupt sources can be masked individually as 
well as disabled or enabled all at once using disable interrupts (di) and en-
able interrupts (ei) instructions. All interrupts are vectored, that is, they are 
given a reconfigurable memory address from which the interrupt handler 
software is executed. Interrupt vectors reside at the CCB. The entry ad-
dress of an interrupt service routine can be the corresponding vector di-
rectly or a combination of the vector and an externally supplied offset if an 
external controller is used. 

The boot address select (boot_sel) and execution stall (stall) signals de-
picted in Figure 5.2 can be used for external software execution control. If 
boot_sel is high when reset is released, the core will read the data bus for 
the instruction memory address from which to begin execution. In battery 
powered systems the execution stall signal can be used to save power 
when there is nothing to be processed. When stalled, data in all registers is 
frozen while the core clock is enabled. Software execution thus resumes 
instantly after releasing the stall signal. 

The COFFEE RISC Core pipeline structure 

5.3 illustrates these six pipeline stages. Each block in the figure presents an 
operation done during a clock cycle. At the end of each stage, intermediate 
or final results are clocked to the input registers of the following stage. 
Execution proceeds from left to right and instructions complete in order. In 
ideal conditions a new instruction enters the fetch stage and one instruction 
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possibility to connect 12 sources. The internal interrupt controller has syn-
processor exceptions can be used as interrupt request lines, giving the 

The regular COFFEE RISC Core has a single six stage pipeline. Figure 



completes at the write back stage every clock cycle. The maximum 

In the first pipeline stage, marked as Fectch in the figure, three opera-
tions are performed. A new 32-bit instruction is fetched from the location 
pointed by the program counter, PC. In the 16-bit mode, a 32-bit double 
instruction is fetched if the address is even. The address in PC is checked 
and an exception risen in case of a violation. Finally the program counter 
is incremented by two or four depending on the mode. 

The second pipeline stage, marked as Decode in the figure, is the most 
important from the control point of view. This is where an instruction is 
identified and most of the decisions about its behavior in the next stages 
are made. If the core is in the 16-bit decoding mode, a 16-bit halfword is 
extended to an equivalent 32-bit instruction before passing it to the decode 
logic. Special fields inside the instruction word defining the condition for 
execution are evaluated against pre-evaluated condition flags. If the result 
of this evaluation is false, the instruction will simply be flushed on next 
rising edge of the clock. In parallel with the conditional execution check, 
signals needed during the current and following stages are decoded from 
the instruction word.   Based on  the signals  evaluated  in the decode stage 

Fig. 5.3. The COFFEE RISC Core pipeline. © IEEE, 2003 [248]. 
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throughput is thus one instruction per cycle. Each pipeline stage is des-
cribed briefly in the following. 



and signals decoded from previous instructions currently on the pipeline, 
the control checks for data dependencies. 

The COFFEE RISC Core resolves all data dependencies by forwarding 
the required data as soon as it becomes available. Fetch and decode stages 
are stalled only if source operand data is not available at the register file 
and it cannot be forwarded. Hardware support for resolving dependencies 
makes programming as well as compiler construction easier. As can be 
seen from Figure 5.3, there are several locations from which data is for-
warded. In this simple six-stage pipeline, the forwarding logic has a delay 

avoiding unnecessary stalls. However, the wide multiplexers required to 
select input operands from several possible sources may form a perform-
ance bottleneck in some, especially FPGA-based, instantiations. 

Other operations in the decode stage include extending an immediate 
operand, calculating the PC relative jump address and evaluating new 
status flags if needed. All jump instructions and conditional branches (PC 
relative and absolute) are executed in the decode stage, that is, at the end 
of the stage the target address is clocked into the PC register. Conditional 
branching is based on the same pre-evaluated condition flags as for condi-
tional execution. To prepare for the next stage, register operands, whether 
forwarded or fetched from the register file, are clocked to the input regis-
ters of the first execution stage. 

Data manipulations begin in the first execution stage. Integer addition, 
shifting, Boolean and bit-field manipulating instructions are also finished 
here. All multiplication operations produce intermediate results for the 
second execution stage. The effective address for data memory access is 
calculated using the adder of ALU. At the end of the cycle, condition flags 
(Z = zero, N = negative, C = carry) are evaluated by compare instructions 
and some of the arithmetic instructions. 

Execution of instructions requiring more than one cycle continues in the 
second execution stage. 16-bit multiplication producing a 32-bit result is 
finished here. Condition flags evaluated in the previous stage are written to 
the selected condition register. Note that the condition flags are available 
for the decode stage before they are written to the condition register bank. 
This is achieved by forwarding data inside the condition register bank from 
input to output if the target register is the same as source register. In the 
second execution stage the data memory address calculated in the first 
execution stage is checked. Address is compared against the memory 
boundaries set for the user. It is also checked if the address points to the 
CCB in which case data bus access is not initiated. Address calculation 
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itself does not reduce clock frequency, but only improves performance by
of approximately one third of the clock cycle. Thus the forwarding logic

overflow is detected and all coprocessor accesses are performed in the 



Data memory is accessed thereby finishing load (ld) and store (st) instruc-
tions. If the CCB configuration for data bus access time indicates multi-
cycle latency, the rest of the pipeline is stalled during the required wait 
states to ensure that instructions are completed in order. This underlines 
the importance of fast data memory or data cache and pre-fetch capability.  

In the last stage (Write back), data is written to the selected destination 
register thereby completing the execution of all data producing instruc-
tions. The register file has internal forwarding which makes data in this 
stage visible to the decode stage. 

The COFFEE RISC Core implementation 

The COFFEE RISC Core is a register transfer level (RTL) VHDL descrip-
tion, that is, a soft core. It is hence portable between technologies. The 
VHDL description is written in a way minimizing variation between dif-
ferent technology libraries. Arithmetic operations are coded at Boolean 
level which produces predictable results since a synthesis tool does not try 
to map operations to fixed hard implementations. The pipeline is balanced 
based on relative measures of the depth of the logic in each stage. This 
should ensure equal results between different synthesis tools. Also map-
ping directly to technology without optimization should produce accept-
able results. 

The type of architectural realization can be forced by hardware descrip-
tion style. The COFFEE multiplier is a good example of that. For ASIC re-
alization, the description needs to be detailed enough to force the desired 
usage of a fast Wallace tree architecture. The synthesis tool may instantiate 
a less efficient architecture such as a Booth encoded multiplier, if the 
hardware description lacks detail. On FPGA, however, the same descrip-
tion cannot be mapped on the DSP block resources which include fast mul-
tiplication hardware. This expands the core area unnecessarily. For this 
reason a more abstract multiplication hardware description is used with 
FPGAs. 

The testing strategy of COFFEE is based on comparisons against a cycle- 
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second execution stage. If the CCB configuration for coprocessor bus access 

Thirty two-bit multiplications are finished in the third execution stage. 

required wait states. This implies that if a slow coprocessor is used, per-
time indicates multiple cycles the pipeline will be stalled during the

formance will be deteriorated unless an efficient interface wrapper is used. 

accurate ‘golden design’. Input stimuli can be synchronized to clock or ins-
truction stream. Outputs from the design under test and the golden design 



are sampled and the samples from the same clock edges are compared 
against each other. Different test cases are defined as a set of input and 
output files in order to avoid any modifications to the test setup itself. Ini-
tialization of register resources is possible without additional test struc-
tures. Register and memory dumps are allowed at any instant of time. A 
VHDL disassembler is used to visually track down the cause of a bug. 

The core was designed to be a general-purpose processing element suit-

in more conventional embedded systems. One might think that a general- 
purpose machine is too much of a compromise, that is, no good for any-
thing. While this might be true in some cases, the COFFEE RISC Core 
makes an exception. It was designed to provide a platform which can be 
tailored to suit the application. In practice this means that the COFFEE 
RISC Core is not a fixed design and moreover, it is many designs. The 
regular version provides adequate resources and processing power for 
many applications but it can be enhanced in various ways. Designer of a 
system can choose the combination of modules to get the best trade-offs. 
Usually this means getting just enough performance while minimizing 
power consumption and silicon area. If none of the ready-made modules 
results in a satisfactory design, custom modifications can be made. In addi-
tion to tailoring the core, external modules can be connected to construct a 
suitable platform for an application. The core provides simple interfaces 
for expansion and communication.  

Customizing the core is straightforward thanks to its design for modifi-
ability. One example of such a modification is the recent integration of 
floating-point operations into the core itself from an existing coprocessor 
implementation. The integration work was carried out in a couple of weeks 

with COFFEE). The COFFEE RISC Core version with integrated MILK 
floating-point capabilities (CAPPUCCINO) was developed to solve the 
processor–coprocessor bottleneck in floating-point intensive applications. 
Despite of that, the separate MILK serves well in situations where the co-
processor is just moderately used. Other coprocessor developments around 
the COFFEE RISC Core include the digital communications coprocessor 
set ESPRESSO [178], the reconfigurable floating-point capable accelerator 
array BUTTER [57,58], and the Reconfigurable Algorithm Accelerator 
RAA [351,352]. 

The COFFEE RISC Core was designed according to the guidelines for 
producing reusable IP (Intellectual Property) components [223]. A good IP 
is more than a good design; there are several things to consider. The im-
portance of documentation cannot be stressed enough. An IP block without 
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cribed in another chapter of this book, is called MILK (which goes well 
including verification. The original floating-point coprocessor design, des-

able for most applications in either System-on-Chip (SoC) environment or 



proper documentation is useless no matter how flexible or configurable it 
might be. Reusability and configurability were the main postulates for the 
COFFEE RISC Core design. Any design which does not constraint imple-
mentation technology has comprehensive documentation and is moderately 
easy to modify is reusable. If we add scalability and extendibility to the 
list, we have an IP block. In fact, our core is more than IP. Since it is pub-
lished as an open source component, it can be referred to as Intellectual 
Commons (IC) which enables innovation to be incrementally built on top 
of what we provide. It is the Linux of computation hardware. 

Modularity gives user the freedom to select the optimum modules or 
blocks for the design from a set of ready-made blocks. In addition, modu-
lar structure with well documented component interfaces allows custom 
blocks to be used. Module-wise synthesis allows each module to be opti-
mized either for speed or area resulting in overall optimal design. 

Thanks to its relatively simple interface, the COFFEE RISC Core is 
easy to instantiate. It was designed to work as a stand-alone unit without 
any additional circuitry. It can however easily be equipped with cache 
memories and unlimited amount of peripheral devices. Peripherals can be 
connected via direct register interface or a bus, such as AMBA. Memory 
interfaces make no assumptions about the type of memories. The user can 
map the address space freely since there are no fixed addresses for periph-

The regular COFFEE RISC Core provides a starting point for develop-
ing suitable platforms for applications, such as the one described in [4–6]. 
It provides the common resources needed by every embedded system: 

The COFFEE RISC Core characteristics 

Results from automated implementations of the COFFEE RISC Core are 
discussed here. Figures are given for a 90 nm low-power ASIC technology 
as well as Altera and Xilinx FPGAs. The register file was implemented as 
a register bank for all these realizations. Area could be significantly re-
duced through SRAM-mapping of the register file. 
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built-in interrupt controller which supports up to 12 sources, simple memory
potection mechanism and two timers. System designer selects memories
and I/O peripherals as required for the application. Up to four coprocessors
can be connected to boost for example floating-point operations [55] or
DSP processing. 

externally. A series of VCI [446] interface wrappers are provided which
allow easy connectivity to other VCI components. 

erals or configuration registers. Even the boot address can be defined



Synthesis results for a low-power ASIC technology are shown in Table 
5.2. The synthesis runs are trying to capture the worst possible case behav-
ior by assuming a low supply voltage (0.95 V), high temperature (125°C), 
and worst case process variation to ensure very high manufacturing yield. 
The highest secure operating frequency is the inverse of total propagation 

the speed-optimized version. For example at 25°C temperature, 1.4 V sup-
ply voltage, and typical process variation for average yield, the operating 
speed would be more than three times faster (about 500 MHz). In practice 
clock rates of 300–400 MHz can be used in applications where the few 
slow chips can be binned out. The other synthesis targets at the minimum 
resource utilization, while the absolute worst case speed remains at around 
35 MHz. Again, the practical frequency achievable in real applications is 
in the range of 100 MHz which matches the most optimized FPGA imple-
mentations. 

 

Table 5.2.  COFFEE RISC Core synthesis results for a 90 nm low-power ASIC 
technology. 

 

Table 5.3.  Post-fit (place-and-route) results on Altera Stratix-II. 
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delay plus the setup and delay times of registers, that is, about 150 MHz for 



Table 5.4.  Post-place-and-route results on Xilinx Virtex-4. 

 
 

FPGA synthesis and place-and-route were carried out for both Altera 
EP2S130F1020C4 and Xilinx XC4VLX160FF1148-11 devices. The syn-
thesis runs were constrained by different timing constraints. The tools used 
were Quartus II 5.0 SP1 and ISE 7.1i SP3, respectively, for Altera and Xil-
inx. Table 5.3 shows the results for Altera and Table 5.4 for Xilinx. The 
results reflect the different policies of the FPGA vendors. While Altera 
clearly targets at higher density and higher operating frequencies [12], Xil-
inx is more conservative and cares more for the power consumption of its 
devices [232]. It would be interesting to see the power consumption fig-
ures for the designs running at the same frequency. As a consequence of 
the policy, the speed of the COFFEE RISC Core implementation on the 
Xilinx device saturates at about 70 MHz while on Altera it achieves up to 
106 MHz. Both devices are fabricated in a 90 nm process, which provides 
an interesting comparison to ASIC technology. 

Software development tools for the COFFEE RISC Core have also been 
developed at Tampere University of Technology. GNU compiler collection 
[157] has been ported to the COFFEE RISC Core. The tool set includes 

linker and instruction set simulator have also been developed early in the 
project. Software tools for custom processors in general are addressed in 
another chapter of this book. 

To support COFFEE RISC Core-centric system design, several simula-
tion models of different degree of precision are provided. The highest level 
is a Transaction Level Model (TLM) written in SystemC [400]. This is a 
functional model of the COFFEE RISC Core ISA. The ISS, on the other 
hand, models the core in cycle-accurate level, except some pipeline effects. 
There also exists a C++ simulation model with cycle-accurate behavior. 
The lowest level is the RTL model used also in implementation. 
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also the GNU ‘bin-utils’, that is, assembler and linker. In-house assembler, 



Conclusions 

It is quite straightforward to design and implement a general-purpose 
processing core by following RISC design guidelines. Here, we have pre-
sented the open source COFFEE RISC Core which can be used in SoC 
design or in conventional embedded systems. The core forms a good start-
ing point to develop application-specific platforms.  

If the performance is not at premium the circuit implementation work 
could be even automated to certain extent. Much of the work can be left to 
the synthesis tool if the implementation is done using hardware description 
languages. The RTL VHDL description of the COFFEE RISC Core en-
ables to do this. Already as such, the COFFEE RISC Core is relatively 
powerful with its 100+ MHz FPGA and 300–500 MHz low-power ASIC 
operating frequency. 

Development and research work for more automated processor genera-
tors is currently going on. The problem is that if we want to achieve a short 
time to market, we also have to be able to generate software tools for a 
new architecture version quickly. There, processor design tools such as the 
Processor Designer by CoWare would provide excellent support. We are 
also working on Linux support, including the integration of a Memory 
Management Unit (MMU) to the core. 

The tools and models provided are currently sufficient to carry out ap-
plication software development for the COFFEE RISC Core. The reader is 
referred to the later chapters of this book to probe further the tools and 
models. 

The COFFEE RISC Core is, in fact, several designs with different char-
acteristics, ranging from a stripped-off version without the hardware mul-
tiplier to the full version with integrated floating-point capabilities. In the 

Readers interested to explore COFFEE RISC Core and its tool set in 
practice are referred to the COFFEE web site,  coffee.tut.fi. 
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future the development continues towards multi-issue, multi-threaded, multi- 
core, multi-processor direction to deliver more performance. Another way
to add application-specific processing power to a COFFEE RISC Core-
centric system is to include a loosely coupled streaming-oriented corpro-
cessor, such as the BUTTER accelerator array described in another chapter
of this book. 



6 The DSP and Its Impact on Technology 

Gene Frantz 

Texas Instruments, Inc. 

In this chapter, an overview of digital signal processing (DSP) is pre-
sented, starting from its history, stating the important problems in the field, 
and showing what kind of architectures can be used for processing signals. 

Introduction 

The early beginning of DSP 

DSP is a relatively new science. It has its roots in a group of universities 
following the discovery (or rediscovery) of the Fast Fourier Transform 
(FFT) in the mid-1960s by Cooley and Tukey, see Figure 6.1. At the time, 
the only computing resources available were mainframe computers, Figure 

was impossible to do any of the research in real time. Even though I’ll 
define “real time” later in this chapter, let me attempt to give it some signi-
ficance to the term at this point. The notion of real time is that there is no 
perceptive time delay from the signal’s input to a processing system to the 
output of the processed signal. 

© 2007 Springer. 
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cessing requires a significant number of multiplications and additions, it 
6.2 shows as an example the computer used at MIT. Because signal pro-

J. Nurmi (ed.), Processor Design  System-on-Chip Computing for ASICs and FPGAs, 101–119. 



102      Gene Frantz 

 
Fig. 6.1. The abstract from the paper by Cooley and Tukey on the FFT [87]. 

 

 
Fig. 6.2. An example of the early computer system used to do research in digital 
signal processing. 
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Advancements in computer architectures and the invention of the micro-
processor began to allow some very simple signals to be processed in real 
time. But during this early phase of DSP, the array processor and mini-
computer were the state of the art solution for processing signals and  
became the tool of choice in the DSP research community. To indicate the 
state of the art at that time, Dr. Tom Barnwell, now a professor at Georgia 
Tech, was credited with the following quote about DSP: 

“That discipline which has allowed us to replace a circuit previously 
composed of a capacitor and a resistor with two anti-aliasing filters, an 
A-to-D and a D-to-A converter, and a general purpose computer (or array 
processor) so long as the signal we are interested in does not vary too 
quickly.” 

But, while the research community was busily discovering new algo-
rithms and concepts in digital signal processing, there was another com-
munity of technologists who were on the path to the creation of the DSP. 
Simply described, the breakthrough that made the DSP possible was the 
combination of a microprocessor and a hardware multiplier. The high 
points of this path towards the DSP were: 

• The invention of the transistor in 1948 at Bell Labs [330] 
• The invention of the Integrated Circuit in 1958 at Texas Instruments 

[331] 
• The invention of the microprocessor/microcomputer in 1970 [332] 
• The invention of the Speak N Spell learning aid in 1978 at Texas 

Instruments [333] 

As detailed above, when the research and circuits communities shared 

The DSP revolution 

If we look back at the approximately 40 years of the DSP revolution, we 
can summarize them in decades of progress. Simply, DSPs were primarily 
a university curiosity in the 1960s – a toy for university professors to play 
with. In the 1970s, DSP became a military advantage, as the available tech-
nology was prohibitively expensive to create and required costly hardware 
implementations. Only a few nations had the ability to take advantage of 
this new, expensive technology. The 1980s experienced the introduction of 
the cost-effective DSP device, resulting in its characterization as the decade 

their individual successes/research/IP, etc. in the late 1970s and early 1980s, 
the DSP revolution truly began. Within approximately 30 years, the industry
progressed from the invention of the transistor to the creation of the first
commercially available DSP, thereby dramatically changing the future of
the world. 
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of commercial success. Products such as voice band modems, Hard Disk 
Drives and 3D Graphics became successful by applying this new DSP 
technology to what had previously been a predominantly analog. That was 
followed by the 1990s, which can best be described as the decade of con-
sumer expansion. The best example of this consumer expansion was the 
creation of the Digital Cellular Phone. Finally, that leads us to the 21st 
century. This ongoing period can best be described as the time when “DSP 
is everywhere.” 

If we examine the advent of the DSP according to its impact on society, 
we can characterize it as waves of the revolution. There seems to have 
been two distinct waves to date, with a third impending wave that has yet 
to fully materialize. 

The first wave of the revolution was, and continues to be, communica-
tions. With the DSP, the analog wire-lined world of communications became 
digital. With voice communications digital, a secondary result was the rapid 
increase of the data rate of voice band modems. Within a short span of 
time the industry moved from 2400 bps modems to 56K bps modems. 
But, it didn’t stop with wire-lined communications. It extended on to wire-
less communications. We now have digital cell phones everywhere. One of 
my favorite examples demonstrating this is when I was in India on a busi-
ness trip. We were driving through the streets of Bangalore, and I noticed 
an ox drawn cart with a young man in it, leaning up against a bail of hay 
while chatting on his cell phone. 

We have seen 802.11, DSL, cable modems, and Bluetooth become part 
of our everyday lives. DSP has truly revolutionized our lives regarding 
communications. And there is much more to come. 

The second wave of the revolution is entertainment. We have seen our 
music, photos, TV, radios, and games go digital. There is a second phase 
to this story. Industry leaders have figured out that if we combine digital 
communications with digital entertainment, we can have streaming media. 
So, consumers now live in a world in which we can have our entertainment 
when and where we want it. And, it can all fit into our pockets. 

This begs the question of whether there will be additional waves of this 
revolution. The simple answer is yes, of course. There are four obvious 
candidates for this next revolution: 

Transportation. Our cars will become autonomous. This has already 
begun with the introduction of sensors on our cars to warn us of things 
happening behind us or to the side of us in our blind spot. It will only be a 
matter of time before our cars will drive from point A to point B without 
the need of a human. 

Medicine. We will have longer lives with higher quality of life. We have 
already seen Cochlear implants created for profoundly deaf people to hear. 
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We are presently seeing similar things being done for the blind. Only our 
imaginations can predict the next capability that will impact our lives. 

Security. We and our loved ones will be safe while maintaining their 
privacy. Products are already impacting our lives at the airport, on our 
streets and in our homes. We see the results on the TV news every night in 
the fight against crime. 

With this as a background, let’s turn to the fundamental concepts of a 
DSP and how it differs from other processors. 

Why a DSP is different 

As we have evolved from the first DSP to the current embodiment of a 
DSP, the architecture of this processor has changed significantly. Later in 
this chapter I will spend some time describing this evolution. For now, it is 
important to note that even though the architecture has changed, the basic 
characteristics of a DSP are the same. These basic characteristics are as 
follows: 

• Sampled data system 
• Intensive mathematics 
• Real time 
• Deterministic 
• Interrupt handling 
• Accuracy 
• Special hardware 

As you read about each of the basic characteristics in the following 
discussion, you will be able to find more details, and perhaps better 
explanations, in references [246, 278, 378]. 

Sampled data system. A fundamental concept of DSP is that it is a Sam-
pled Data System. The important fact to understand is that for a sampled 
data system to work, one must sample the signal at a rate that is at least 
twice the highest frequency of interest. This is known as the Nyquist rate. 
Further information about the Nyquist rate will be under the heading of 
“Sampling,” “Sampled Data,” or “Nyquist” in references [246, 278, 378]. 

Education. Learning will become a way of life. This is actually the sleeper
among the four candidates. The first use of technology in the classroom
seems to be students using cell phones to cheat. Although a creative use
of technology, not an appropriate application. There will certainly be better
uses of technology in the classroom in the future. 
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Much of the remainder of this paper will depend on the reader knowing 
this much about a sampled data system. 

Mathematically intense. The work horses of digital signal processing are 
the filter and transform. Filters take on two basic forms: Finite Impulse 
Response (FIR) and Infinite Impulse Response (IIR). Generally, the FFT is 
considered the basic transform in DSP, but there are many others. Simply 
put, the filter’s purpose is to eliminate unwanted information (or to focus 
on specific information) and the transform’s purpose is to look at the sig-
nal from a different perspective. 

The basic concept of digital signal processing is the filter, specifically 
the FIR filter. When considering the basic concepts of DSP, note that you 
were likely introduced to it in the third grade. Then, it was called 
“averaging.” When coupled with a dependency it is known as the “moving 
average” in other fields of mathematics. An example of an FIR filter used 
in following stock prices is shown in Figure 6.3. I will talk more about the 
FIR filter later in this chapter. The IIR filter is similar, but includes 
feedback from the output of the filter back to the input. In other fields of 
math this is known as “Auto-Regressive.” In combination these filters are 
also ARMA filters. 

The idea of a transform is simply to show the data from a different 
viewpoint. For example, the FFT converts the viewpoint of the data set 
from a time domain perspective to a frequency domain perspective.  

All of the above, filters and transforms, demand a lot of multiplies and 
additions. In DSP terms these are called Multiply/Accumulates (MACs). 
For example, the simple form of an FIR filter is: 

 
     N – 1 

y(n)  = ∑ a(i) * x(n – i) 
     i=0 

 

weighting factor, and x(n – i) is the (n – i)th input sample. 
Filter lengths (N) can be as long as 50 to 100 taps. This means that during 

each sample period, there are 50 to 100 multiplies and additions performed. 
The sample period, of course, depends on the signal being manipulated. 

Table 6.1 summarizes the sample periods generally assumed for various 
signals. 

 
 
 
 

where y(n) is the output sample at time n, a(i) is the ith coefficient or 
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Table 6.1. Typical signal bandwidths and sample periods. 

Signal Frequency band Sample rate Sample period 
Telecom 4 kHz 8 ks/s 125 us 
Audio 20 kHz 48 ks/s 20 us 
SD Video (480p)  12 Mp/s  
HD Video (1080p)  120 Mp/s  

 
Using pixel rate, rather than bandwidth, seems to be a better way to 

measure the requirement as video has two different concepts involved in 
its creation. The first is the rate of the sequence of images (i.e., frame rate). 
Generally the frame rate is between 25 and 60 Hz in a video application. 
The second is the number of pixels per frame, or the detail in each image 
(e.g., there are about 400 thousand pixels in a 480p frame and about two 
million pixels in a 1080p frame). If we then multiply the number pixels per 
frame by the frame rate we can see the result in pixels per second. 

Therefore, a 50 tap FIR filter for an audio signal would require 2.5 
million multiplies and adds each second. 

It is worthwhile to give the FIR filter some physical significance. An 
FIR filter is a common technique used to eliminate the erratic nature of 
stock market prices. For example, when the day-to-day closing prices are 
plotted it can be difficult to ascertain the trend of the stock due to the large 
variations in pricing. A simple way of smoothing the data is to generate the 
average closing values of previous days to represent the current day’s 
value of five, for example. For the new average value each day, the oldest 
value is dropped and the latest value is added. Each daily average value 
(Average (n)) would be the sum of the weighted value of the last five days 
closing price, where the weighting factors (a(i)s) are each 1/5. In equation 
form, the average is determined accordingly: 
Average (n) = (1/5)*d(n) + (1/5)*d(n –1) + (1/5)*d(n–2) + (1/5)*d(n–3) 

+ (1/5)*d(n–4) 
where d(n–i) is the daily stock closing price for the (n–i)th day. 

 

s/s means samples per second. 
p/s means pixels per second. 

In the stock market is called the “Moving Average,” which are some- 
times 50-day or 100-day Moving Averages. In either case, they act as a
smoothing filter (low pass) on the data. Figure 6.3 shows a 90 day Moving 
Average for a particular stock. 
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Fig. 6.3. A 90 day moving average plot of TI stock. 

Deterministic. Deterministic also relates to two different aspects of 
digital signal processing. The most important aspect is the concept that 
each instruction should take the same time to execute independent of the 
data or state of the execution unit. Maintaining determinism guarantees 
that the process will always be in real time. 

The second aspect addresses the idea of predictability. This aspect tends 
to be important early in the design cycle when estimates are generated 
relating to the capability of the DSP to meet the demands of the system. 

Real time. Real time addresses two different aspects. The first is the 
concept that for each sample period there needs to be a new input accepted 
and a new output created. This is generally considered the primary aspect 
of “Real Time.” The second concept, latency, is more difficult to under-
stand. Latency is the measure of the delay from the input of the signal to 
the output of the signal. The easiest example of latency can be described 
by thinking of a live audio system, such as a recording studio. In this type 
of application, the musicians have an earpiece to listen to themselves and 
to the others in the recording session. The delay between the creation of 
the sound and their listening to it in their earpiece must be less than 5mS or 
so for it to be considered real time. An example of an application that does 
not have a latency requirement would be the playback of a movie in a 
home theater. In this case, there is no issue with the length of time it takes 
to get the signal from the source (e.g., DVD) to the screen and speakers, as 
long as the delay is identical for both the video and audio, so the two are 
synchronized. 
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Interrupt handling. The way DSPs handle interrupts has evolved since 
their initial development. Initial considerations were that DSPs should not 
have interrupts at all due to the reasoning that real-time systems cannot be 
interrupted and at the same time guarantee real time. However, this hard 
position on interrupts was quickly compromised and interrupt handling 
was added. The compromise, in some cases, included the concept that the 
CPU could not be interrupted until it was in a place it could safely accept 
interrupts without compromising real time. The compromises since then 
have taken many directions, but the common theme remains that real-time 
systems can not be interrupted. 

Accurate. Accuracy is signal dependent. Each type of signal has differ-
ent accuracy requirements and each signal type has three different con-
cepts of accuracy. The three concepts are: 

• Data accuracy. Data accuracy equates to the signal to noise ratio or to 
the dynamic range of the data set. The greater the number of bits, the 

• Coefficient accuracy (filter coefficients). Coefficient accuracy becomes 
important in the use of digital filters, particularly recursive filters (IIR 
filters) when the coefficients are near the unit circle. 

• Internal accuracy. Internal accuracy needs to be larger than the data 
accuracy to guard against introducing errors into the data. Later in the 
chapter I will show the block diagrams for several DSPs. You should 
note that each has a greater internal accuracy than its data accuracy. 

Table 6.2 is a chart summarizing the various aspects of accuracy for 

successfully used in audio applications. Three of the four are floating point 
architectures. The one that is not is the 56K originally from Motorola. I 
have shown both the accuracy for single and double precision for the last 
of the devices. I do so as it was specifically designed to easily do double 
precision math. But, to be fair, all of the devices can do double precision 
math. 

for the various architectures. 

higher the signal to noise ratio (or dynamic range). The simple relation- 
ship between dynamic range and the number of bits is 6dB per bit.

each of the DSPs. I have added a few other architectures for your infor- 
mation. Notice that the last four examples are those which have been 

Now you can compare Table 6.3 which shows several signal types with 
their various accuracy requirements with Table 6.2 on the same aspects 

istics of a DSP, there is hardware specific to the DSP to help manage
Special hardware. In addition to the aforementioned general character-

the real-time nature of the mathematically intense algorithms. Some of
those special pieces of hardware include: 
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Table 6.2. Accuracy in signal processing architectures. 

DSP architecture Data Coefficient Internal 
TMS32010 16 12/16 32 
TMS320C62x 16 16 32 
TMS320C30 24 24 32 
Motorola 56K 24 24 32 
ADI 21060 32 32 40 
TMS320C672x 24 24/53 32/64 

Table 6.3. Accuracy requirements of applications. 

Loop hardware. Many DSP algorithms are repetitive. For example, a 20 
tap FIR filter will take the latest 20 data points, multiply each data point by 
a unique coefficient and add all of the results to generate an output. Each 

input data (n) is added. This new data set is then multiplied by the same set 
of coefficients and a new out put is generated. This continually repeats and 
is known as an iterative algorithm that works best with special looping 
hardware, which allows the algorithm to run with little or no overhead. 

Data memory management. One of the other important aspects of DSP 
theory is that of the delay operator. In a sampled data system not only is the 
present input data important, but also the previous N data points. As dis-
cussed in the previous paragraph, an FIR filter uses the previous N (in this 
case 20) data point to determine the present output. To make this happen 
smoothly, the data has to be managed in such a way that the DSP auto-
matically has the right data point at the right time in its calculation. To 
ensure that this occurs, special memory management schemes are combined 
with the loop hardware to make the data management relatively transparent. 

Saturation logic. Saturation logic simply tests the results of each opera-
tion to determine if those results are out of bounds. To best understand this 
concept, let us consider an analog system. In an analog system, when the 
signal gets too big, it does not exceed the largest possible value that the 
analog system allows. Rather, it saturates at this largest value, either posi-
tive or negative. Not so in a digital system. When two values are multi-
plied together and the result is larger than the largest possible value, it 
wraps to the most negative value. Therefore, the concept of saturation logic 

sample period the oldest data input (i.e., n–20) is dropped and the newest 

Signal Data accuracy Coefficient 
accuracy 

Internal  
accuracy 

Telecom 8 bits (13 bits) 16 bits 32 bits 
Audio 24 bits 32 bits 53 bits 
Video 8 bits 16 bits 32 bits 
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was developed. But, before describing the details of saturation logic, it is 
important to note that there are other concepts used to minimize this possi-
bility of wrapping. 

For example, one concept is to scale all of the data and coefficients to be 
constrained to be between –1 and +1. This guarantees that when two 

numbers are added together it is very possible that the sum could fall 
outside of the range of –1 and +1. This is a very complex issue and is 
generally resolved by the use of guard bits in the accumulator or register. 
Using a floating point processor is also a good way to overcome the 
wrapping issue. But, enough about these topics. Let us revisit the concept 
of saturation logic. It simply tests the results of each operation to 
determine if those results are out of bounds. If they are, then the maximum 
positive or negative number is assigned to the result. This can be both a 
positive and negative occurrence depending on your system and therefore 
the saturation logic can be turned on or turned off. 

Multi-MAC. Prior to the introduction of the DSP, the use of multiplies 
in an algorithm was minimized. But, with the hardware multiplier the goal 
changed from the minimization of multiplies to the optimization of the 
multiply and add function (MAC). It then became obvious that, in a mathe-
matic intense environment, more MACs directly impacted the performance 
of the DSP. Therefore, the performance of the DSP has grown rapidly over 
the last couple of decades and most of the growth is the result of the in-
creasing the number of MAC units that can execute in parallel. Figure 6.4 
shows a chart on how DSP performance has increased over the last two 
decades. 

Bit reversal (8). This concept was adopted to increase the performance 
of the FFT. In an FFT, there are two ways to present the data to the trans-
form. The first is to present the data in the correct order. The output of the 
transformed data will then be in bit reversed order. The second way is to 
present to the transform the data in bit reversed order and then the trans-
formed data will be in the correct order. Figure 6.5 shows a simple example 
using an eight-point FFT. 

By now, hopefully, you have begun to appreciate the differences bet-
ween a DSP architecture and other popular microprocessor architectures. 
And, you have begun to appreciate why these differences are necessary. 
Simply put, all of the architectural uniqueness exists to guarantee real time 
is never violated. Remember, real time is extremely unforgiving. The next 
section will talk about how DSPs will likely continue to evolve so as to 
understand how they will influence our futures. 

–1 and +1. Thus, no wrapping. While that addresses the multiply function, 
it does not handle addition, or the accumulator function. If a series of

numbers are multiplied together their results will always be between 
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Fig. 6.4. There are two drivers for DSP performance: clock speed and the number 
of MAC units with the number of MAC units as the dominate driver. 
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Fig. 6.5. An example of bit reversal in an eight-point FFT. 
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The evolving architecture of a DSP 

As previously discusses, the primary breakthrough that allowed the deve-
lopment widespread adoption of the DSP was the addition of a hardware 
multiplier to the microprocessor. With this innovation, the objective in 
digital signal processing was no longer to reduce the number of multiplies 
an algorithm needed, but to optimize the number of multiplies and adds 
needed. 

Now, a brief review of microcomputer architecture will help in the un-
derstanding of the evolving DSP architecture. When DSPs were first archi-
tected there were two generally accepted microprocessor/microcomputer 
architectural styles. One was the Harvard architecture and the other was 
the von Neumann architecture. The Harvard architecture was a two buss 
architecture (one for program and one for data) and the von Neumann was 
a single buss architecture (both program and data were stored in the same 
memory space). Neither architecture exactly fit the engineering commu-
nity’s needs for a mathematical intense processor. The simple reason is 
that a multiply has two inputs (multiplier and multiplicand) and one out-
put. To get the two inputs into the multiplier in one instruction cycle 
required two busses. Of the two, the Harvard architectural style had two bus-
ses, so it was what the engineering community gravitated to for real-time 
DSP. However, it was modified so as to take advantage of both busses 
when performing multiplications. The modifications allowed both busses 
and both memory locations to handle data. 

Special instructions were also created to perform all of the necessary 
operations to do a multiply (MPY) in one instruction cycle. The necessary 
operations were: 

• two memory accesses to load the multiplier and multiplicand into the 

• one memory access to store the result into memory. 

Later, the accumulate operation (addition) was included into the above 
MPY instruction to allow the full MAC (multiply/accumulate function) to 
occur in one instruction cycle. The MAC instruction allowed for a single 
instruction cycle FIR filter tap. So, in addition to the operations necessary 
for the multiply instruction, there were additional data manipulations in 

multiplication unit; 
• the execution of the multiplication; 
• a data shift to manage the binary point; 

memory to update the data inputs. Figure 6.6 shows the block diagram for 
an early DSP architecture, the TMS32010. 
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Fig. 6.6. Block diagram of the TMS32010, TI’s first DSP offering. 

best concepts of both the Harvard and von Neumann architectures thus 
creating a multiple bus von Neumann style DSP. Figure 6.7 shows an 
example of such an architectural approach, the TMS320C30. 

After the success of the initial DSP’s using concepts from the Harvard 
architecture, a new concept was introduced. That is, the combining of the 

As the Integrated Circuit technology grew in performance, an old archi-
tectural concept, was introduced to the DSP. That old concept is known as 
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Fig. 6.7. Block diagram of the TMS320C30, TI’s first floating point DSP. 

Very Long Instruction Word (VLIW) architecture. Figure 6.8 is an exam-
ple of a VLIW DSP architecture. VLIW allowed significant parallel pro-
cessing to occur while maintaining the real-time constraints. The VLIW 
architecture will be discussed in more detail in the next chapter. 

As an aside, if you look back at Figure 6.4, you can see how DSP 
performance has increased through both the raw performance increase 
from IC technology (i.e., higher clock speed resulting from more advanced 
technology nodes) and the use of parallel processing units (i.e., more 
multiply-accumulate units accommodated by the architecture). 

What is next in the evolution of the DSP 

DSP has made a couple of significant transitions in it brief 40 year history. 
The first was in the late 1970s when it moved from digital signal process-
ing to the digital signal processor. The second transition is occurring now
in the early part of the first decade of the 21st century. This transition is a 
bit more subtle. It is the transition from DSP as a theory and device to DSP
as an enabler. If this sounds a bit confusing, let me give an example of an-
other area of technology that experienced the same transition.
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Fig. 6.8. Block diagram of the TMS320C6201, TI’s first VLIW DSP architecture. 

That area of technology was CMOS technology (or as it was called at 
Texas Instruments, MOS technology). When I was hired into TI, we had a 
MOS department within the semiconductor business unit. But, if I look 
around the company today (and also the industry), I don’t find business 
units named “MOS” or “CMOS.” In fact, every business unit in the com-
pany uses CMOS to create their products. In other words, “MOS” or 
“CMOS” have become the enablers for new products rather than the pro-
ducts themselves. In the same way, the industry is in a transition where 
a DSP is no longer a product in a company’s portfolio; but, rather, it is 
becoming an enabler for many products at the TI. This trend is not unique 
to TI, but is an industry wide phenomenon. 

As integrated circuit technology has advanced over the years it has 
progressed from technology measured in microns (i.e., micrometers), to sub- 
microns, to nanometers. With these advances, we have shifted from thou-
sands, to millions to hundreds of millions of transistors on a single device. 
What this means to the industry is that we can now put sophisticated sys-
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tems, or sub-systems, on one piece of silicon, known as a System-on-a-Chip 
(SoC). On these SoCs we can integrate host processors, DSPs, accelerators 
(e.g., signal specific DSPs) and peripherals. What this allows is the ability 
to now put what we used to include on a board-level product, on a single 
integrated circuit. We can now integrate not only millions of gates of digi-
tal circuits, but also analog circuits and RF circuits. This is all good news. 
But, along with it comes some bad news. That is, the cost to create new 
devices is becoming more prohibitive at each new technology node. For 
example, presently a typical IC design costs in the order of thirty million 
dollars (or more) which makes an application specific IC unrealistic of most 
opportunities. 

As evidenced above, we are moving to a programmable world. There 
are four reasons for this movement to a programmable world: 

• Integrated circuit technology trends make it possible. The consistent 
dividend we have received and will continue to receive from advancing 
IC technology is more transistors. Specifically, at each new technology 
node the density of transistors doubles. So, every two to three years we 
get twice the number of transistors for the same, or similar, cost. 

• Integrated circuit development cost trends make it necessary. The cost 
of developing new ICs is becoming prohibitive for all but the largest 
opportunities. Even the cost of creating the mask set for a new device is 
millions of dollars. Without programmability, this will continue to reduce 
the number of companies who can innovate using IC development. 

• Integrated circuit design complexity trends make programmability the 
best solution. The task of designing a new IC can be compared to design-
ing a large city, like New York City, from scratch, and expecting every 
traffic light to work correctly the first time. Some would argue that it 
would be easier to design the city than a state of the art high perform-
ance processor or SoC.  

• Market trends demand it. Time to market is a vital requirement in 
today’s environment. Simply put, the first to market with a new product 
idea makes an unfair amount of profit. Second to market will probably 
break even. Third and beyond will certainly lose money even if their 
product is superior to the other products.  

The good news of programmability is that it expands the innovation 
happening in the world of digital signal processing, which is illustrated by 
the graph shown in Figure 6.9. 
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Fig. 6.9. The growth in the number of instructions per sample period for voice, 
audio, standard and high definition video. 

This graph shows how the number of instruction cycles per sample 
period have increased for four different applications: Telecommunications, 
Audio, Standard Definition Video and High Definition Video. As we see 
in Figure 6.9, when the industry introduced their first DSPs, we had about 
625 instructions per sample period in a telecommunications system. To 
guarantee real-time, all of the processing for one sample period had to 
have fewer than this magic number of 625 instructions. But, notice what 
has happened over the 20 or so years since those first devices were intro-
duced: Performance has gone up significantly. We are at the point where 

• Reduction of vocoder data rates from 64K bps to 1 to 2K bps 
• Significantly improved the voice quality of the vocoder in spite of the 

data rate reduction 
• Eliminated echos over the phone line 

we virtually have an infinite number of instructions per sample period avail-
able to us. So, what have we done with all of those additional instructions?
We’ve innovated. Here are some of those innovations: 

• Taken modem data rates from 2400 bps to 56K bps 
• Reduced unwanted out of band and in band noise 
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That is all quite impressive. 
But look again at Figure 6.9. There is a second line that represents the 

improvement in instructions per sample in audio. For audio, that first 
generation of DSPs allowed 100 instruction cycles per sample period. This 
seemed to be enough to make it interesting. But, once again, we have 
increased the number of instruction cycles per sample period to the point 

Summary 

DSP has taken on many roles in our lives. It has gone through some signi-
ficant changes over its 40+ year history. In this chapter I have discussed 
several aspects and influences of DSP. First I talked about the early days 
of discovery (or rediscovery) of DSP theory. As the theoretical basis of 
DSP was being established, IC technology was also advancing. Once the 
theory of DSP was combined with the advancing IC technology, the DSP 
emerged. I next discussed the revolution that the DSP began, is growing 
and is continuing to grow. Then I discussed the architectural uniqueness of 
DSPs with some explanation of the significance of the uniqueness. That 
discussion was followed by a look into the future and the direction DSP 
architectures will take. Finally I discussed the drivers for those future 
DSPs. 

that we are doing a lot of innovation in this area. We went from monaural 
audio, to stereo sound, to 5.1 to 7.2. We also included room corrections and
room enhancement. Once again, quite impressive. And unlike telecom, we
also are increasing the sample rate from 48KHz to 96KHz to192KHz to
284KHz. But, that is another story in itself. 

There are two other lines on the figure. Both are for video systems. The 
first for Standard Definition (SD) video and the second for High Definition 
(HD) video. If we chose 100 instructions per pixel as the threshold of 
when a programmable DSP becomes useful in a system then we can deter-
mine that this threshold was met for SD in the year 2000, approximately, 
and HD was met in 2006. The significance of this trend can be demon-
strated by looking at the impact DSPs have already made in voice and 
audio based products. If you think back to the earlier discussion on the 
four candidates for the next wave of the revolution you will note that all 

We have an exciting future ahead of us as new discoveries and new app-
lications of those discoveries are made useful to us as individuals and to us 
as a society. 

 

innovation occurred in voice and audio products began when the number 
of instructions per sample rate grew passed 100 instructions per sample. 

have ties to video, imaging or vision concepts. Just as the explosion of 



7 VLIW DSP Processor for High-End Mobile 
Communication Applications 

Christian Panis 

Catena Radio Design, B.V. 

Today’s mobile communication business is impacted by high data rates, 
mobility demands and flexibility requirements. High data rates are impli-
cating high processing power, whereas mobility demands have to be covered 
by ultra-low power dissipation, and fast evolving standards demand for 
flexibility. The solution to this problem looks like dedicated hardware 
implementations, but those are lacking in flexibility. Adapting a system to 
a successor standard or supporting different systems on the same hardware 
platform is merely impossible. 

If only high data rates and flexibility aspects were taken into account, 
the problem could be tackled traditionally by deeply pipelined high per-
formance processor architectures, providing several GHz of processing 
power. Executing software on the processor architecture gives the flexibi-
lity to develop platforms which support different standards where even some 
of them can evolve without demanding for a new platform. The benefits of 
deeply pipelined processors are soon outweighed by control and data 
dependencies in the application code itself and the high clock rates are 
conflicting with ultra-low power requirements anyway. 

The traditional solution approaches do not seem to fit. The exit strategy 
out of the dilemma of providing high data rate support at low power dissi-
pation with enough flexibility is efficient use of resources. Identifying 
those parts of the application where flexibility provides an advantage over 
dedicated hardware implementations requires to handle complex trade-offs 
between hardware and software partitioning. 

This chapter introduces an application-specific adaptable core architec-
ture for SoC platform solutions. The architecture provides sufficient pro-
cessing power as well as the needed flexibility without violating ultra-low 
power dissipation constraints. A brief introduction in the varying needs of 

© 2007 Springer. 
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mobile communications is followed by a summary of requirements of DSP 
processing. Different architectural concepts as introduced in Chapter 2 are 
briefly evaluated on their suitability. In the second part of this chapter the 
3a architecture is introduced, an RISC based signal processing architecture 
providing increased efficiency via application specific modifications. The 
trade-off between kernel benchmarking and application benchmarking is 
discussed, followed by an introduction of Design space exploration, an app-
lication benchmarking method making use of the target application. The 
chapter ends with discussing challenges of configurability and a brief 
summary. 

Trends in mobile communication 

Edholms law introduced in 2004 by Phil Edholm [78], describes the trend 
of data rate increase in communication, claiming that the increase in data 
rate is predictable, similar to Moore’s law1 for transistor integration [293]. 

As illustrated in Figure 7.1, the communication standards are split into 
three groups: wireline, nomadic, and wireless communication standards. 
Wireline standards are traditionally dominating the field of high speed com-
munication. The group of nomadic standards is being affected by increased 
mobility providing lower data rates. The focus of the wireless communica-
tion is mobility at the price of lower data rates compared to wireline 
communication, but this gap is getting closer as illustrated in Figure 7.1. 

High data rates implicate increased signal processing requirements and 
increased memory demands caused by the higher data throughput. The tradi-
tional approaches to tackle this problem are deeply pipelined processor 
architectures with high clock rates up to several GHz, but this approach 
violates one of the key demands in wireless communication: ultra-low 
power dissipation. 

The target of providing re-programmable/re-configurable platforms to 
support different standards on the same hardware platform is still suffering 

                                                      
1 “The complexity for minimum component costs has increased at a rate of 

roughly a factor of two per year ... Certainly over the short term this rate can be 
expected to continue, if not to increase. Over the longer term, the rate of increase 
is a bit more uncertain, although there is no reason to believe it will not remain 
nearly constant for at least 10 years. That means by 1975, the number of compo-
nents per integrated circuit for minimum cost will be 65,000. I believe that such a 
large circuit can be built on a single wafer.” Electronics Magazine, 19th April 
1965. 
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Fig. 7.1. Trends in mobile communication. © IEEE, 2004 [78]. 

from contradictory requirements of high data rates, flexibility, and ultra-
low power dissipation. The focus of the ultra-low power aspect is mainly 
set in mobile terminal application, whereas the power dissipation require-
ments for base-stations are still not that severe. For years industry has been 
working on how to overcome this problem with different approaches. The 
SDR forum (Software Defined Radio forum) provides a platform for in-
dustrial and scientific partners working on solutions in this area [370]. 

Sandbridge Technologies, Inc. as one example is tackling the problem 
with high performance multiprocessor SoC architectures [156]. The SDR 
solution is based on several Sandblaster DSPs [155], where each of them 
utilizes a complex internal multi-VLIW architecture. Token-triggered mul-
tithreading supports the execution of several tasks in parallel. The signifi-
cant micro-architectural complexity of the chosen architecture makes an 
efficient programming of the available resources at least questionable if 
not impossible. 

The SDR forum suggests waiting for technologies with smaller feature 
size as one possible solution to tackle the power dissipation issue. The 
supply voltage, contributing quadratic to active power dissipation, is not 
significantly decreasing anymore and the leakage current is getting prob-
lematic. Therefore the decrease of power dissipation from one silicon gen-
eration to the next one is not that significant. 
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A paradigm change is required to solve the challenge of handling high 
data rates and to fulfill flexibility requirements without violating ultra-low 
power dissipation requirements. The approach of finding the ultimate solu-
tion by designing a complex hardware platform and trying to map similar 
complex software architectures onto it has to fail. A top-down approach by 
splitting the problem into easier solvable sub-problems is preferable. 

How can we understand the requirements of the application code onto a 
SoC architecture which is able to provide enough performance and flexi-
bility without violating low-power constraints? Low power dissipation is 
achieved through a well-balanced hardware/software partitioning, where 

The evaluation process shall lead to SoC architectures where data flow 
is considered. Point-to-point connections have to be used for high data rate 
communication, whereas low data rate communication is done via busses. 
Memory is kept locally and the number of memory accesses is optimized. 
Dedicated processor architectures handle dedicated problems, and the 
firmware executed on these application specific processors is partitioned to 
be handled efficiently. 

The SoC platform shall then be power and silicon efficient, still provid-
ing enough flexibility to obtain the requirements of evolving standards and 
multi-standard solutions. Design Space Exploration is a methodology for 
giving system architects the possibility of quantifying architectural drafts 
already in an early project phase. The 3a’s Design Space Exploration 
methodology is introduced later in this chapter. 

DSP-specific requirements 

DSP algorithms are the backbone of communication standards as illus-
trated in Figure 7.1. The mapping of these algorithms onto a target platform 
requires considering specific aspects. This section covers some of these 
aspects for giving a basis to check various architectural concepts on their 
suitability. 

• Real-time requirements 
Real-time requirements arise when algorithms have to be executed and 

completed within a pre-defined time frame. Unpredictable delay elements 
such as data dependent execution time of instructions are violating real-
time requirements [128]. Data and program cache misses can increase the 

 

advantage for the overall solution. 
those parts are kept flexible whose implementation in software gains
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Fig. 7.2. Software pipelining. 

execution time of the algorithm and therefore violate the real-time con-
straints. To guarantee real-time execution, the worst-case execution time 
(WCET) [187] has to be analyzed and considered during task scheduling. 
• Hardware loop support 

DSP algorithms are often loop-centric. Therefore efficient loop handling 
significantly increases the execution efficiency of the target platform [336]. 
The term zero overhead loop is used to describe micro-architectures sup-
porting loop execution without loop handling overhead. The loop counter 
is implicitly inc/decremented and at the end of the loop body, the jump 
back to loop start is done without interaction of the application program. 
Otherwise for small loop bodies the overhead for loop handling can get 
significant. Loop-centric algorithms can make use of the possibility of exe-
cuting more then one instruction per cycle (ILP, Instruction Level Parallelism 
greater than one). Loop unrolling in combination with software pipelining 
allows executing multiple loop iterations in parallel, therefore decreasing 
the total number of cycles required for the loop execution [252]. The code 
density is getting slightly worse through the additional instructions of 
prolog and epilog as illustrated in Figure 7.2. 
• Support of CISC instructions 

The execution of DSP algorithms is getting more efficient, by introducing 
some CISC-like instructions. The most famous one is the multiply-
accumulate (MAC) instruction, used as kernel for FIR filter implementa-
tions and illustrated on the left side of Figure 7.3. Specialized addressing 
modes like bit-reversal addressing, as illustrated on the right side of Figure 
7.3, are increasing the execution efficiency of arithmetic kernels like FFT 
[118]. 
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Fig. 7.3. Examples for CISC like instructions. 

• Control code support 
In current application code for DSP architectures, control code is not 

that separated anymore as it was 15 years ago and thus automatic code 
generation through high-level languages and compilers like C/C++ is 
needed [3,19]. Structural programming techniques result in code sections 
with increased amount of control dependencies with poor ILP. The deve-
lopment of an optimizing compiler which generates efficient code for a 
VLIW architecture has to be done in parallel to the design of ISA and micro-
architecture. Later in this chapter some of the aspects to be considered are 
mentioned. 

Microarchitectural concepts 

In Chapter 2 of this book, several micro-architectural concepts are intro-
duced. Some of them will be now briefly checked regarding their suitability 
to provide increased ILP, to enable the development of a high-level language 
compiler and to guarantee the worst-case execution time of algorithms. 

• Scalar processor architectures  
On scalar processor architectures one instruction per cycle can be exe-

cuted, which limits the theoretical achievable ILP to one. Dynamic instruc-
tion scheduling during runtime enables the minimization of the average 
execution time, but complicates the calculation of the worst case execution 
time [377]. To obtain real-time requirements, the minimization of the 
worst-case execution time is important. Hardware support for resolving 
dependencies and resource allocation reduces the complexity of compiler 
development. 
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• Superscalar processor architectures 
Superscalar processor architectures are using dynamic scheduling, similar 

as scalar architectures. Therefore the issue of minimizing the worst-case 
execution time is not resolved. Different to scalar architectures, the execu-
tion of more than one instruction per cycle is supported, increasing the 
theoretical achievable ILP [374]. The combination of increased ILP and 
dynamic scheduling support requires additional hardware circuits like 
scoreboards and for example the introduction of Tomasulo’s scheme [376], 
which is based on register renaming in combination with scoreboard 

• VLIW 
VLIW stands for Very Long Instruction Word, meaning that one VLIW 

instruction consists of several atomic instructions executed at the same 
time. Different to scalar or superscalar architectures, data and control 
dependencies are resolved at compile time and instruction scheduling is 
done statically [126]. The scheduling information, indicating when an 
atomic instruction has to be executed relative to other instructions, is 
stored through its location. Static scheduling allows optimizing the worst 
case execution time. The drawback of static scheduling is the missing sup-
port for unpredictable delay elements e.g. caused by cache misses. 

VLIW enables to execute several instructions in parallel and therefore 

piler complexity is increased by missing hardware support for dependency 
resolution and instruction scheduling. That is probably one of the reasons 
why VLIW is only successful in the area of embedded DSP architectures, 
where quite often assembly programming still dominates. 
• Dynamic VLIW 

Dynamic VLIW as introduced in [357] removes responsibility from the 
compiler. There is dedicated hardware support for instruction instantiation. 
Instruction scheduling is done statically like in VLIW processors whereas 
issuing of instructions is done dynamically, similar to concepts of super 
scalar architectures. This decoupling of instruction scheduling and issuing 
was motivated by having binary compatible versions of the same architec-
ture. For embedded solutions this aspect is not that severe. As analyzed in 
[357] the increased hardware complexity does not gain advantage in per-
formance. 

 
 

offers an ILP greater than one similar to superscalar architectures. Com-

resolving dependencies and scheduling of instructions makes compiler 
development easier. 

elements. Similar as for scalar architectures, the hardware support for 
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• EPIC 
The EPIC architecture, introduced in 1990s by HP and Intel tries to 

overcome the drawbacks of static scheduling by introducing a stronger hard-
ware support compared to traditional VLIW architectures [383]. Improving 
the approach of dynamic VLIW the assignment to functional units is done 
in hardware, whereas the instruction scheduling is still done statically as 
for VLIW architectures. 

Summarizing the discussed micro-architectural concepts, VLIW allows 
a minimization of the worst-case execution time and therefore to satisfy 
real-time requirements. Further improvement steps like EPIC require addi-
tional hardware circuits and increase implementation complexity. The 
advantages of these improvements are a simplified compiler design and a 
solution for binary compatibility. Apart from the aspect of code density 
and more complex compiler design, VLIW seems to be a good candidate 
to execute DSP algorithms efficiently. Later in this chapter a VLIW archi-
tecture is introduced. This architecture provides solutions for the code 
density drawback and the lacking compiler support. 

VLIW and SW programmability 

One of the major drawbacks of VLIW architectures is still the poor compi-
ler support. For loop-centric DSP applications, that weights not so severe. 
The achieved ILP and the good predictability at least made it a success for 
DSP core architectures. Due to increased application complexity, high-

• Load–store architecture 
Load–store architectures are decoupling the data memory access from 

arithmetic operations. Dedicated load–store instructions are transferring 
data between register file and memory, whereas the operands for arithme-
tic instructions reside exclusively in the register file. Slower memory can 
be used consuming more clock cycles than used during execution of arith-
metic instructions. Therefore a more efficient use of the hardware resources 
is possible. If the provided ILP is greater than 1, methods like software 
pipelining or loop unrolling can make use of the increased parallelism. 
The decoupling of the arithmetic instructions from the memory accesses 
increases register pressure. Register pressure is a measure for the balance 

the 1990’s. To improve compiler support for VLIW architectures micro-
level language programmability was getting more and more an issue in

architectural features have to be checked on their suitability for an optimiz-
ing compiler. Some of these features are discussed in this section. Most of
the aspects mentioned here can be found more deeply analyzed in [10,126]. 
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the number of available registers. The increase is due to the fact that inter-
mediate results have to be kept in registers as well [365]. Therefore a 
sophisticated liveness analysis and register allocation is required to prevent 
excessive spill code. The liveness analysis analyzes a Control Flow Graph 
(CFG) to determine at which places variables are alive or not. Spill code des-
cribes code sections, used to free space in the register file by storing inter-
mediate results to memory and restore them, when the values are needed again. 
• Large uniform register sets 

Registers are used for keeping as much intermediate results as possible 
in order to reduce the number of memory instructions. For load–store 
architectures they play an even more important role because they have to 
keep the values fetched from data memory to be used as operands for 
arithmetic instructions. For implementation reasons register files are often 

of functions which allow reducing the number of read and writing ports 
at the sub-register file. Examples are banked register files, used e.g. at the 
Motorola 56000 processor for the address registers. Each of the two AGU 
(Address Generation Units) has its own small register set. The general pur-
pose register file of TMC62xx from Texas Instruments is an example 
where banked register sets are assigned to a group of data paths. Separate 
read/write ports are introduced to exchange data between the register file 
parts, requiring cycles and decreasing code density. 

The advantage of splitting register sets into subsets and making use of 
banked register files can be outweighed through side-impacts from register 
allocation and increased spill code effort. 
• Mode independent instruction set 

Mode dependent instructions are introduced to improve code density. 
The same instruction coding can be used for different instructions and the 
differentiation is indicated by the set mode for that code section. 

The use of mode dependent instructions limits the instruction scheduling 
procedure. Instructions of the same code section require the same mode 
setting, as illustrated in Figure 7.4. Instructions requiring a different mode 
setting cannot be moved into this section, even when data dependencies or 
hardware resources would allow rescheduling. Additional instructions are 
required for setting and resetting of modes, which decreases code density 
and makes the use of mode dependent instructions questionable. 
• Orthogonal instruction sets 

Orthogonality refers to the extent to which a processor’s instruction set 
is consistent [252]. In general, the more orthogonal an instruction set is, 
the easier the processor is to be programmed. For compiler development 

split into sub-register sets. Some sub-register sets are assigned to a group 

between intermediate results to be stored in the register file at time t, with 
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Fig. 7.4. Mode dependent code sections. 

3a, an application specific adaptable core architecture 

In the first part of this chapter the challenges in communication technology 
have been introduced and the consequences for SoC solutions with focus 

this is even more relevant. A higher number of inconsistencies and implicit 
dependencies increase the complexity of code generation algorithms and 
reduce the possibility to find a global optimum. 
• Simple issue rules, no implicit dependencies 

the size of the operands [21,22], or when registers of a register subset are 
directly addressed without explicit coding [389]. Further examples are 
conditional execution instructions depending on only one condition flag, or 
register sets, whose meaning changes depending on the chosen mode and 
instruction [389].  

All these implicit instructions are causing significant complexity for 
compiler development, leading to less efficient code and are failing the 
target to improve code density and cycle efficiency. 

To improve code density and cycle efficiency implicit dependencies are 
introduced, for instance instructions whose execution duration depends on 
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on embedded processors have been summarized. Micro-architectural re-
quirements of algorithms in the field of signal processing have been briefly 
touched and some known micro-architectural concepts have been checked 
on their suitability. VLIW based architectures thereby give a significant 
advantage by providing the needed real time requirements and an ILP 
much greater than one. The major drawbacks are poor compiler support 
and low code density. The compiler issue has been discussed before by 
summarizing micro-architectural concepts which facilitate the develop-
ment of an optimizing compiler. 

The second part of this chapter introduces 3a [323], an application speci-
fic adaptable core architecture which enables a power- and area-optimized 

sources. The main architectural features are introduced, followed by a sub-
chapter discussing benchmarking approaches and the differences between 
kernel and application benchmarking. Design space exploration is then 
introduced as an example of application benchmarking. 

 

Fig. 7.5. 3a top-level architectural overview. 

solution of the core subsystem by efficiently make use of available re-
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Concept 

3a is based on an RISC like modified dual-Harvard load–store architecture 
which additionally supports typical DSP CISC instructions like MAC or 
specific addressing modes like bit-reversed or modulo addressing. Arith-
metic instructions exclusively access register operands, whereas separate 
instructions are used to transfer data between register file and data memory 
[238]. 

The orthogonal register file as illustrated in Figure 7.5 is split into three 
functional subsets. Registers of the same subset are not restricted to any 
instruction or groups of instructions. The data register file is used to store 
operands and intermediate results of the arithmetic instructions. The add-
ress register file is mainly used for address calculations. The flag register 
set mirrors the current status of the registers (data and address) and contains 
dynamic flag information. Dynamic flags are set based upon the destina-
tion register of an operation. 

Each of the VLIW slots has its own instruction sub-decoder unit. Three 
classes of operations are known: arithmetic instructions, load–store instruc-
tions, and branch instructions. Each of the sub-decoders is used to decode 
instructions of one instruction class. Supporting additional VLIW slots 
requires additional sub-decoders. This provides the flexibility to remove a 
sub-decoder if the related VLIW slot is not supported. 

As illustrated in Figure 7.5, the interface between program memory and 
instruction decoder contains an instruction buffer. The instruction buffer is 
used to decouple fetch bundle from execution bundle. The fetch bundle 
consists of instructions fetched at the same clock cycle. The size of the 
fetch bundle is equal to the size of the physical program memory port. The 
execution bundle is built from instructions executed at the same clock 
cycle. The maximum size of the execution bundle is determined by the 
maximum number of instructions, which can be executed in parallel. This 
decoupling tackles the code density drawback of VLIW and is further 
explained in [325]. 

dles are recomposed during the alignment phase of the pipeline (illustrated 
in Figure 7.12). The concept is based on assumptions about the average 
ILP. Distinct from concepts of Texas Instruments [422] or Starcore LCC 
[389], the size of the execution bundle can exceed the size of the fetch 
bundle. Therefore the minimum memory port size is not determined by the 
maximum size of the execution bundle. During loop execution, the missing 
bandwidth of the memory port is compensated by instructions stored in the 
instruction buffer. 

instructions and therefore no memory space is wasted. The execution bun-
As illustrated in Figure 7.6, the fetch bundles do not contain NOP 
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Active power consumption can be reduced by executing instructions 
already stored in the instruction buffer. The once fetched instructions of 
the loop body are executed from the buffer without further program memory 
access. A significant amount of program memory cycles is saved, as long 
the buffer size fits to the algorithm requirements [325]. 

If-then-else constructs are essential parts of control code and their imple-
mentation in assembly language usually yields branch instructions with 
small branching distances. Branch instructions at pipelined processor archi-
tectures are causing branch delays. Some of the branch delays can be filled 
with useful instructions, whereas unused branch delays are causing over-
head in cycle count and code effort. One possibility to overcome this per-
formance loss is hardware circuits for branch prediction [448]. 

 

Fig. 7.6. Instruction buffer. 

Another possibility is to prevent the occurrence of branches at all by using 
predicated or conditional execution. In predicated execution, instructions 
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Fig. 7.7. Predicated execution. 

are only executed if a condition evaluates to true at runtime [339]. A full 
predication implementation as in [422] causes significant code overhead. 
The use of only one or a few condition registers (flags) limits instruction 
scheduling. 

As illustrated in Figure 7.7, 3a’s predicated execution implementation 
uses separate instructions being part of the bundle for specifying the condi-
tions. A separate flag register set provides static and dynamic flag infor-
mation to evaluate conditions. The flag information is destination register 
based and therefore does not limit instruction scheduling [324]. These two 
distinctive features of 3a’s predicated execution give a considerable advan-
tage over other implementations. 

Configuration parameters 

Several features of the 3a core architecture are scalable and/or configur-
able in order to tailor the core architecture to application specific require-
ments. The major scaling parameters are introduced and their effects are 
discussed. 
• Register file 

intermediate results of arithmetic instructions. This reduces the number of 
data memory access and decouples the physical timing of the memory access 
with the timing of the core architecture. Slower memories can be used if 
additional pipeline stages for the load–store instructions are introduced. 

The register file in load–store architectures is used to store operands and 
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Fig. 7.8. 3a data register file. 

The size of the register file has influence on the number of data memory 
accesses. More entries permit to store more intermediate results. Less 
registers in a register file will lead to increased spill code. From this per-
spective, large register files are favored, but the number of register entries 
influences code density, because more register entries require an increased 
space in the instruction encoding. Therefore DSP core architectures intro-
duced banked register files [297,422] and registers dedicated to one instruc-
tion or a group of instructions [389]. Both limit the optimization potential 
during compilation. 

The 3a architecture contains an orthogonal register file split into three 
functional sub-register sets. The data register file supports different data 
types, data and long and accumulator register, as illustrated in Figure 7.8. 
The number of supported registers and the size of the register entries can 
be scaled and the sharing of registers inside the register file configured. 
• Memory interface 

The memory interface of the 3a architecture contains a number of inde-
pendent AGU units. The generated addresses can be mapped to each of the 
memory ports. Each AGU has access to all address-registers. The size of 
the memory port and the number of ports and AGUs can be scaled. 
Benchmarking of several application examples indicates that two AGUs 
are reasonable trade-off in terms of implementation feasibility and applica-
tion requirements. Scaling the size of the memory port has to be carefully 
adjusted to the size and structure of the registers. 

Adding additional memory ports increases the potential memory band-
width. On the contrary, additional memory ports also increase the wiring 
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effort between core and data memory, and require additional read and 
write ports at the register file. 
• Data path structure and number of available units 

number of required read/write ports at the register file. Adding data paths 
without separate read/write ports at the register file adds additional com-
plexity for instruction scheduling due to increased number of dependen-
cies. 

The 3a architecture provides the flexibility for adding additional data 
path functionality, either by scaling the existing data path structures, or by 
adding and removing new data path units. The support of SIMD instruc-
tions can be used to increase ILP without the need of additional read/write 
ports and to improve code density. 

In Figure 7.9 the ALU data paths are reused for the ADD operation of 
MAC instructions. The advantage of this reuse is a reduced requirement on 
write ports to the register file. Its drawback is the increased latency for all 
other ALU operations, which then also take place in the second execution 
cycle. Similar to MAC instructions they need two clock cycles causing an 
increased define-in-use dependency. Define-in-use dependency describes 
the number of cycles required between an intermediate result has been cal-
culated until it can be used by consecutive operations. Increasing the number 
of pipeline stages of the execution phase leads to increased define-in-use 
dependency, which can be partly compensated by loop unrolling/software 
pipelining mechanism. 

Fig. 7.9. Combined ALU/MAC data path. 

The chosen data path structure has influence on the provided ILP.
Increasing the number of concurrently available data paths increases the
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tions are added. Additional write ports are required, but the latency of 
ALU operations is decreased. 

Adding new data path structures has to be done considering latency and 
the chosen pipeline structure. If the latency of the operation significantly 
differs from the remaining data paths, an implementation as Co-processor is 
probably better suited. Data transfer can take place via memory mapped I/O. 
• ISA and binary coding 

The Instruction Set Architecture (ISA) describes the supported function-
ality of the micro-architecture and the relation between components. All 
supported instructions must have their hardware equivalent, whereas not 
all provided hardware needs to be addressed by the ISA. 

Fig. 7.10. Separated ALU/MAC data path. 

Fig. 7.11. Mapping of ISA to different sized native instruction words. 

shows an example of the influence of the chosen native word size. The 

In Figure 7.10, separate ALU data paths independent of MAC instruc-

assignment process can be optimized to improve code density. Figure 7.11 
The finally chosen ISA is then assigned to a binary encoding. This
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same ISA is mapped onto different instruction partitioning. On the left side 
of Figure 7.11, a native instruction word size of 20 bits is assumed, which 
allows mapping the ISA into a single native instruction word. The second 
instruction word, mentioned as long instructions, is used for long immedi-
ate values only. In the mapping illustrated on the right side of Figure 7.11, 
a reduced native instruction word size is chosen. This requires more often 
a second or sometimes even third instruction word for encoding the com-
plete ISA. Depending on the application code the chosen native instruction 
word size has influence on the code density. The example in Figure 7.11 is 
done for a synthetic control code benchmark. The reduced native instruc-
tion word size of 16 bits requires more long instruction words compared to 
the 20 bits version, but the overall code size is improved by about 16%. 
For a different application code it might look different. 

Active power consumption can be reduced when the mapping of the ISA 
to the binary encoding considers the state change frequency at the program 
memory port. More details can be found in [194,195]. 
• Pipeline structure 

The 3a architecture makes use of a 3-phase RISC-like pipeline structure 
with the phases fetch, decode, and execute. Each of the three phases con-
sumes at least one clock cycle, most probably some of them several clock 
cycles. The fetch phase contains the alignment process making use of the 
instruction buffer and the execute phase includes the write back of the 
results into register file. 

Figure 7.12 illustrates an example for a five stage pipeline structure. The 
bundle alignment consumes a separate pipeline stage, the execution phase 
is split over two pipeline stages. Adding pipeline stages allows increasing 
the maximum clock frequency. Increasing the number of pipeline stages is 
quite common method to obtain higher clock frequencies. To overcome the 
increased dependency drawback, bypass circuits are introduced for bypass-
ing of intermediate results to later executed instructions at earlier pipeline 
stages. The drawback of deep pipeline structures is the increased load-in-use 
dependency and the increased define-in-use dependency. Load-in-use depen-
dency describes the number of cycles required between loading an operand 
from memory into register file and the possibility to use the operand for 
arithmetic operation. Additional pipeline stages also increases the number 
of branch delays causing decreased efficiency during branch handling. 

 

 

Fig. 7.12. Example of a 5-stage 3a pipeline. 
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Fig. 7.13. Pipeline structure examples. 

Bypass circuits are introduced in order to overcome the drawback of in-
creased dependencies, but bypass circuits themselves introduce another 
drawback through the increased circuit complexity. In combination with 
inherent code dependencies, this can even lead to performance degradation 
[377]. 

Nevertheless, the 3a architecture allows introducing additional pipeline 
stages. Even instructions of the same instruction class can use a different 
number of pipeline stages as illustrated for load–store operations in Figure 
7.13. Instruction class describes a group of instructions making use of the 
same instruction decoder. 

The load–store operations for data and long registers can be executed 
within the pipeline structure as illustrated in the upper part of Figure 7.13. 
The word length of accumulator registers exceeds the size of the program 
memory port, therefore an additional load–store and a shift operation is re-
quired. In the example given in the lower part of Figure 7.13 the additional 
instructions are not needed. The load–store operation of an accumulator 
register consists of two interleaved load–store operations without addi-
tional code effort, but in the consecutive cycle of such an instruction, no 
further load-store operations can be executed. This restriction has to be 
resolved and obeyed during instruction scheduling. 

Benchmarking: kernel versus application benchmarking 

This section deals with finding a proper way of identifying key parameters 
for system partitioning and of choosing suited core architectures. 
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For embedded solutions the complexity increases. This is due to a wide 
range of possible system architectures, different hardware/software parti-
tioning, and hardly comparable core architectures. All core providers ex-
plain on colorful slides that their solution is best-in-class and consumes 
nearly no power. To strengthen this argument, already naming indicates 
smart solutions like ultra-low power DSP core. What is low power and 
how should you guarantee, that the chosen core is able to satisfy the often 
changing requirements of the application [42,43]? 

Beside the aspect of efficiency in terms of area and power consumption 
the aspect of programmability has to be considered. The quality of tools is 
an often underestimated aspect, but causes a significant amount of effort 
and costs during product development. Aspects like legacy code are influ-
encing architectural decisions significantly more than technical aspects. 

Comparing embedded core architectures is a non-trivial task. In the next 
subsection some of the commonly used benchmarking suites are intro-
duced. The benchmarking is not only considering the core architecture it-
self, but the combination of core, memory concept and tooling [145]. 

Traditional processor benchmarking 

For comparing the processor subsystem architecture without influence of 
the tooling, the benchmark examples must be coded manually in assembly 
language. The drawback of this method is the limited size of the possible 
benchmark examples. The most famous one in the DSP world are the 

University of California in Berkeley. Besides a suite of 12 benchmark 
kernels, a detailed description and implementation limitations are provided. 

For the whole suite, the core has to use a standard mode and the mentioned 
restrictions during implementation provide the best achievable objectivity 
with kernel benchmarks. The 12 kernel benchmarks are: Real Block FIR, 
Single-Sample FIR, Complex-Block FIR, LMS Adaptive FIR, Two-
Biquad IIR, Vector Dot Product, Vector Add, Vector Maximum, Viterbi 
Decoder, Control, 256-Point FFT, and Bit Unpack. 

Companies like Tensilica are making use of these benchmarks to illus-
trate the advantage of application specific re-configurability, whereas the 
DSP community still questions if this comparison is valid [173]. The per-

BDTI Benchmarks [44]. 

• BDTI benchmarking  
BDTI, Berkeley Design Technologies Incorporated, is a spin-off of 

language and gets verified by BDTI before any results are being published. 
The implementation of the benchmark suite has to be done in assembly 

fect BDTI-benchmark core provides exactly one instruction per bench-
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mark. In the 1990s, core architectures seem to have been influenced more 

• DSPstone benchmarking 
The target of the DSPstone benchmarks is to validate a core architecture 

in conjunction with compiler technology. More than 30 different bench-
marks are used to validate the difference between manually coded assembly 
language and C-Compiler based results. The chosen kernels are divided 
into three groups, namely application code, DSP kernels, and C-kernels. 

telecom. The kernels are C-code based and a balance of synthetic and real-
world benchmarks. 
• Summary 

The three mentioned benchmark suites provide the possibility to com-
pare core architectures in terms of efficiency. Their methods are slightly dif-
ferent, and the first two examples are dedicated for DSP core architectures. 

Synthetic benchmark kernels are suited to give a first indication and to 
compare different architectural concepts. However, the comparison is based 
on algorithms whose significance for the real application is questionable. 

Application benchmarking 

Application benchmarks are based on real-world application code, mostly 
in C. The advantage of this benchmark method is that the comparison gives 
an answer on how well certain core architectures and their tool-chains are 
suited to fulfill the requirements of a certain application code.  

Complete DSP applications like v.90 modem or GSM coder are typi-
cally used to compare the suitability of micro-architecture, ISA and tool-
chain. Application benchmarking provides metrics like memory and MIPS 
consumption for the application code. The results can differ to what has 
been showed by kernel benchmarks. This can get significant when kernel 
functions are implemented in dedicated hardware to achieve competitive 
final products. 

3a allows application specific adaptations of the main architectural fea-
tures, as already illustrated in beforehand. The analysis process is based on 
application benchmarking, giving metrics like memory consumption and 
cycle count as well as indications on how to improve the core architecture.  

to achieve a high BDTImark than by requirements of the application code. 

• EEMBC benchmarking 

marks for the different fields of applications like automotive, consumer or 

BDTImark was developed in 1997 by BDTI as signal processing speed 

The EEMBC benchmarking suite [117] provides application bench-

metric, improved in 1999 and released as BDTImark 2000. 
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Design space exploration 

Design space exploration is application benchmarking with the target 
application. 3a’s design space exploration is based on an optimizing C-
compiler and a configurable ISS (Instruction Set Simulator ) [125]. The 
analyzing methodology is not limited to 3a. 

Design space exploration as illustrated in Figure 7.14 is split into three 
phases. Not all phases are required to be done in sequence. The depth of 
analysis effort can be seen as a trade-off between spent effort and result 
accuracy. 
• Application code analysis 

estimations for MIPS and memory requirements. A multi-way VLIW archi-
tecture with a large register file serves as a base architecture. This prevents 
limitations due to the chosen core variation. The target of the analysis is to 
identify hot spots which are suited to be implemented in separate dedicated 
entities and their embedding into the overall system. These entities can be 
separate processor-like structures as well as dedicated hardware implemen-
tations, either connected as co-processor to the main processor or connected 

Fig. 7.14. 3-phase design space exploration. 

During phase one the application code is analyzed to get first quantitative 



7 VLIW DSP Processor for High-End Mobile Communication Applications      143 

• Architectural mapping 

via the system bus. Data exchange rate with the remaining system parts is 
significantly influencing the separation decision and the way of connection. 
As illustrated in Figure 7.14, the result of phase one is the application 
code without those parts which are going to be implemented in dedicated 
hardware solutions or on separate programmable entities. 

In phase two, the remaining application code is used to identify the key 
parameters of the core architecture. ILP limitations in the application code 
are identified and a reasonable trade-off between performance require-
ments, implementation issues and code density is identified. The results of 
phase two are the key parameter of a core architecture which is able to 
execute the remaining application code under performance and resource 
constraints. 

• Core subsystem Optimization 
During phase three the memory footprint and the power consumption of 

the core architecture is optimized by adaptations of data path width, ISA 
and binary coding. The result of phase three is an application specific core 
architecture. The degree of optimization can be varied from case to case. 

The analyzing methodology of the application code as described in the 
three phase approach is making use of a design flow as illustrated in Figure 
7.15. 

Fig. 7.15. Design space exploration Flow. 
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The evaluation phase is based upon a configurable tool-chain, which it-
self consists of an optimizing C-compiler, a linker and an ISS. 

The compiler and the linker generate static analysis results, whereas the 
simulator provides dynamic analysis results. The combination of both re-
sult types is basis for the three-stage optimization process. Some examples 
for static results are  
• Code density 

Code density is mainly influenced by the chosen ISA and how well the 
application code can utilize the core architecture. Code density is simply a 
measure of the instruction traffic; it is the reciprocal of the number of 
instruction bits required to execute a program normalized by the dynamic 
HLL operation count [128]. The result is normalized to bytes which allow 
a comparison independent from the chosen native instruction word size. 
• Parallelism 

Providing the execution of several instructions in parallel increases the 
theoretical performance of a DSP core, but control and data dependencies 
in the application code are limiting the actual usage of parallel units. 
Therefore the analysis result parallelism is used to analyze how efficient 
the application code can make use of provided hardware resources. 
• Instruction histogram 

Mapping of an instruction set architecture to a binary encoding has  
influence on power dissipation (switching activity at the program memory 
port) and code density. The analysis result instruction histogram lists the 
used instructions and the frequency of their occurrence.  

Some examples for the dynamic application code analysis are 
• Execution count per bundle 

The analysis result execution count per bundle counts how often a bun-
dle is executed during runtime. Weighting the static result parallelism with 
execution count per bundle identifies hot spots for optimization. 
• Execution count per instruction 

The analysis result execution count per instruction counts how often an 
instruction is executed during runtime. Weighting the static result instruc-
tion histogram with execution count per instruction identifies instructions 
which are main targets for binary code optimization. 
• Count of program memory fetch  

The analysis result program memory fetch helps at optimization of the 
program memory fetch process by e.g. identifying unused fetch bundles. 
Control code with low branch distances leads to a significant number of 
superfluous fetch cycles when fetching instructions which are never exe-
cuted. 
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Evaluation phase 

System evaluation is first done for several core configurations (illustrated 
in Figure 7.15) with the scalable configuration parameters being specified 
beforehand. The procedure does not care about binary encoding of the 
ISA, therefore it is called Evaluation phase. 

Production phase 

The production phase is based upon the results of the evaluation phase 

of the ISA has to be defined as illustrated in the example of Figure 7.11. 
This is done by using the bincode-generator, a tool that assists in generat-
ing and optimizing the binary encoding for the chosen core architecture. 
Dynamic and static analysis results describing the metrics of the applica-
tion code are used as additional input and guidance for optimization. 

The complexity of configurability 

The challenges of modern communication applications have been men-
tioned in the beginning of this chapter, pointing out that traditional app-
roaches to tackle the issues seem to fail. The exit strategy proposed in the 
introduction sounds evident: efficient use of resources. 

Therefore the second part of this chapter was used to introduce the 3a 
architecture, which allows adapting the main architectural features of the 
core architecture to application specific requirements. To identify the 
requirements of the application code and to optimize the core subsystem to 
an area and power dissipation optimum, the design space exploration 
methodology has been briefly mentioned and its advantages compared to 
traditional kernel benchmarks have been illustrated. 

One aspect not tackled yet is the challenges of configurability and scal-
ability. Some of the issues that arise in this context are for instance: 

• Consistency of the tools building the tool-chain 
• Consistency of tool-chain and hardware description of the core 

subsystem 
• Consistency of chosen configuration and documentation 
• Providing tools able to cope with different configurations and modified 

ISA 

(e.g. the number of supported registers or data paths). Those key para-
meters of the core are chosen and fixed. As the next step, the binary mapping 
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• Description of the core architecture, which can be used by the different 
disciplines like core hardware, tool-chain, documentation 

To cope with these challenges, the 3a concept is based on an XML 
based configuration file. 

Configuration file 

As already mentioned in Figure 7.15, a single configuration file is used to 
describe the current core configuration. The configuration file contains the 
main architectural features like structure of the register file, number of reg-
isters, number and kind of supported data paths and the pipeline structure. 
The ISA is described and which instruction makes use of what core fea-
tures at which time. 

The advantage of a central configuration file is having the core 
configuration stored at one place. All tools of the tool-chain are configured 
by the same file, yielding high consistency even for such a configurable 
and scalable concept. 

Besides the tool-chain for code development, some more tools are using 
the configuration file. In Figure 7.16 the relation of configuration file, tool-
chain and additional tools is illustrated. The upper part builds the evaluation 

Fig. 7.16. 3a’s Design flow (evaluation/production phase). 
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phase, whereas the lower part describes the production phase of the 
optimization process. The interface of the two phases is the bincode-
generator and the chosen core configuration. 

Static and dynamic analysis results as described before in detail are used 
to modify the rules for the compilation process and also as input for the 
bincode-generator.  
• Hardware-generators 

One example of the HW generators, as illustrated in figure 7.16, is the 
Decoder Generator. Based on the generated binary coding for a dedicated 
ISA configuration a VHDL/Verilog description of the decoder structure is 
provided. The concept assumes to be correct by construction, which allows 
skipping full exhaustive test suites each time the configuration is changed.  
• Functional testing  

A configurable concept inherently struggles by additional verification 
efforts. Any change in configuration must not have unexpected influence 
on the functionality. The XML based configuration file contains certain 
corner test cases for each instruction. The test case generator as illustrated 
in Figure 7.16 makes use of the corner case tests and automatically gene-
rates verification reports.  
• Documentation generation 

Based on the XML configuration file and a style sheet, an XSL processor 
is used for generating a DOCBook File also based on XML. A browsable 
HTML description can be generated directly from that, whereas generating 
a PDF file needs an intermediate step via Latex using the dblatex tool. The 
documentation generation in the evaluation phase is missing the binary 
coding, which is later added by the bincode-generator. 

Summary 

Different architectural concepts are introduced and their suitability as 
target platform for DSP algorithms is analyzed. VLIW architectures allow 

Rapidly changing performance demands in modern communication tech-
nologies challenge system engineers to cope with the contradictory require-
ments of high data rates, mobility demands and flexibility requirements. 
Traditional approaches like deeply pipelined high performance processors 
or highly sophisticated SDR solutions are not solving the ultra-low power 
requirements related to mobility demands. A paradigm shift is required: 
efficiently make use of available resources while still having flexibility of 
a programmable solution. 
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minimizing the worst case execution time and therefore to guarantee real-
time requirements. Micro-architectural features hampering development of 
optimizing C-compiler for VLIW architectures are discussed.  

3a, an application specific adaptable core architecture is introduced. The 
main architectural features of 3a can be configured and/or scaled to appli-
cation specific requirements. During definition of the ISA, the development 
of an optimizing C-compiler has been taken into account. An overview of 
present kernel and application benchmarks is given, followed by an 
introduction of 3a’s design space exploration. This methodology enables 
system architects to quantify different architectural choices and to support 
a balanced hardware/software partitioning. 
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8 Customizable Processors and Processor 
Customization 

Steven Leibson 

Tensilica, Inc. 

Introduction 

The first commercial microprocessor chip, Intel’s 4004, appeared in Novem-
ber, 1971. Since then, most designers have used fixed-ISA (instruction-set 
architecture) processors in their system designs – first as processor chips in 
board-level designs and later as processor cores in SOCs. In fact, many 
system designers cannot envision designing a custom processor for their 
projects because the use of fixed-ISA machines has become so thoroughly 
engrained in the conventional design methodology. A small cadre of de-
signers created custom processors based on bit-slice technology in the 1980s 
for applications with very high performance requirements, but electronic 
system design has largely evolved into an exercise in adapting standard-
ized processor and DSP architectures to target tasks, often with additional 
hardware acceleration to bridge the inevitable gap between a task’s required 
computations and the fixed-ISA processor’s abilities. 

Designers working for conventional processor vendors have always had 
the ability to extend their own processor ISAs as needed. For example, two 
features that distinguish DSPs from general-purpose processors are hardware 
MACs (multiplier/accumulators) and dual load/store units for XY-memory 
addressing. No intrinsic hardware limitation prevents processor designers 
from incorporating such features in their general-purpose processor ISAs. 
However, adding such resources increases the processor’s silicon area (and 
therefore its cost) which may not be used by many of the applications of that 
processor. Successful DSPs must have these features. Successful general-
purpose processors don’t. Similarly, many other task-specific features are not 
good candidates for universal inclusion in general-purpose processor designs. 

© 2007 Springer. 
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However, vendors of customizable processor IP (intellectual property) 
now offer SOC designers the tools needed to easily customize a proces-
sor’s ISA for specific applications (and to automatically generate the asso-
ciated software-development tools needed to program these processors), 
which produces processor cores that can execute specific, targeted tasks in 
many fewer clock cycles. This execution efficiency can be used to either 
increase a processor’s execution “reach” without boosting its clock fre-
quency or it can be used to reduce the maximum required clock rate for a 
given set of tasks, thus lowering the power and energy dissipation required 
to execute the target tasks. 

The flexible silicon resources in high-gate-count SOCs now permit the 
use of customized processors in a wide variety of products, ranging from 
low-cost consumer products including MP3 players, video games, and 
printers to high-end products such as metropolitan-area network routers. 
Customized processors incorporate task-specific registers and task-specific 
hardware acceleration in the processor’s execution pipeline instead of em-
ploying accelerators external to the processor. This move brings the accel-
eration hardware into intimate contact with the processor’s registers, register 
files, memory-management hardware, and memory interfaces, which greatly 
improves the efficiency and throughput of data movement into and out of 
the accelerators and the added task-specific hardware greatly improves the 
processor’s efficiency (measured in clock count) on the task’s computations. 

For example, MP3 players and other products that play and record audio 
may benefit from the use of a processor with audio-specific extensions 
such as one or two audio MACs. Video products such as camcorders and 
DVD players can benefit from processors that can directly manipulate 
RGB data as a native data type and networking products including network 
interfaces, switches, and routers benefit from processors with packet-
processing hardware extensions. These abilities are all made possible by 
the flexibility available in the use of the SOC design methodology and the 
plastic nature of ASIC silicon. 

This chapter is divided into two parts. The first part is a general discus-
sion of the abilities and benefits of using customizable processors. The 
second part discusses the specifics of one commercial customizable pro-
cessor: Tensilica’s Xtensa family. 

A benefits analysis of processor customization 

In a generic 90 nm standard-cell foundry process, silicon density routinely 
exceeds 200K usable gates per mm2. Consequently, a low-cost chip 
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(measuring 50 mm2) can carry 10M gates of logic. Simply because it’s 
possible, some designer working on an SOC development team somewhere 
will find ways to exploit this potential in any given market. Designers face a 
set of daunting challenges however, because the traditional HDL-based 
approach to designing SOC hardware is failing: 

• Design effort: In the past, silicon capacity and design-automation tools 
limited the practical size of a block of RTL to smaller than 100K gates. 
Blocks of 500K gates are now within the capacity of today’s tools, but 
existing design methods are not keeping pace with silicon fabrication 
capacity, which now routinely puts many millions of gates on an SOC. 

• Verification difficulty: The internal complexity of a typical logic block 
– hence the number of potential design bugs – grows far more rapidly 
than does its gate count. Consequently, verification complexity has 
grown disproportionately. Many teams that have developed real-world 

lopment effort on verification. 
• Cost of fixing bugs: The cost of fixing an SOC design bug is rising. 

Higher staff costs caused by growing design teams, bigger NRE fees, 
and lost profitability and market share make show-stopper design bugs 
intolerable. Design methods that reduce the occurrence of, or permit pain-
less workarounds for such show-stoppers pay for themselves rapidly. 

• Late hardware/software integration: All embedded systems now con-
tain significant amounts of software or firmware. Software integration is 
typically the last step in the system-development process and routinely 
gets blamed for overall program delays. 

• Complexity and change in standards: Standard communication pro-
tocols are growing rapidly in complexity. The need to conserve scarce 
communications spectrum plus the inventiveness of modern protocol de-
signers has resulted in the creation of complex new standards such as 
the IPv6 Internet Protocol packet forwarding, G.729 voice coding, 
JPEG2000 image compression, MPEG4 video, and Rjindael AES encryp-
tion. These new protocol standards have much greater computational 
demands than their predecessors. 

Although general-purpose, firmware-programmable embedded proces-
sor cores with fixed ISAs can handle many tasks, they often lack the 
bandwidth needed to perform complex data-processing tasks such as net-
work packet processing, video processing, and encryption. To meet aggres-
sive performance goals, chip designers have long turned to hardwired 
logic to implement these key functions. As the complexity and bandwidth 

SOC designs report that they now spend as much as 90% of their deve-
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requirements of electronic systems increase, the total amount of logic rises 
steadily. 

Even as SOC designers wrestle with the growing resource demands of 
advanced chip design, they face two additional worries: 

• How do SOC design teams ensure that the chip specification really 
satisfies customer needs? 

• How do SOC design teams ensure that the chip really meets those 
specifications? 

Further, a good SOC design team will also anticipate future needs of 
current customers and potential future customers – it has a built-in road 
map for the SOC design.  

If the design team fails to create an appropriate SOC specification, the 
chip may work perfectly but it will not sell well enough to justify the 
design and manufacturing costs. Changes in the chip’s requirements may 
be driven by demands of specific key customers, or may reflect rapid 
changes that frequently occur in the market such as the emergence of new 
data format standards or new feature expectations across an entire product 
category. While most SOC designs include some form of embedded con-
trol processor (usually with a fixed ISA), the limited performance of these 
general-purpose processors often precludes them from being used to meet 
the performance requirements of essential on-chip data-processing tasks so 
task-specific hardware is designed, which means that firmware often can-
not be used to add or change fundamental new features. If such an SOC’s 
functional abilities need to change, the chip must be redesigned. That is a 
costly path. 

If the SOC design team fails to meet the specifications of the chip’s 
design, additional time and resources must go towards changing or fixing 
the design errors. This resource diversion delays market entry and causes 
companies to miss key customer commitments. This sort of failure usually 
surfaces as a program delay. This delay may come in the form of missed 
integration or verification milestones, or it may come in the form of hard-
ware bugs – explicit logic errors that are not caught by the relatively limited 
verification coverage of gate-level simulation. The underlying cause of 
the error might be a subtle bug in one design element or it might be a 
miscommunication of requirements – caused by subtle differences in as-
sumptions between hardware and firmware teams, between design and 
verification teams, or between the SOC designer and SOC library or foun-
dry supplier. In any case, the design team is often forced into an urgent 
cycle of chip re-design, re-verification and re-fabrication. SOC design 
“spins” rarely take less than less than six months, causing significant 
disruption to product and business plans. 
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Using microprocessor cores in SOC design 

There are two closely related problems for system developers. One is to 
develop system designs with significantly fewer resources by making it 
much, much easier to design the chips in those systems. The second prob-
lem is making SOCs sufficiently flexible so every new system design 
doesn’t require a new SOC design. 

The way to solve these two problems is to make the SOC sufficiently 
flexible so that one chip design will efficiently serve 10, or 100, or 1000 dif-
ferent system designs while giving up none or, at most, a few of the bene-
fits of integration. Solving these problems produces off-the-shelf SOCs 
that satisfy the requirements of next-generation system designs. This de-
sign approach amortizes the costs of chip development over a large num-
ber of system designs. 

The specialized nature of individual embedded applications creates 
two issues for general-purpose embedded processor cores executing data-
intensive tasks. First, there is a poor match between the critical functions 
of many embedded applications (e.g. image, audio, and protocol process-
ing) and a processor’s basic integer ISA (instruction set and register file). 
As a result of this mismatch, critical embedded applications require more 
computation cycles when implemented in firmware running on general-
purpose embedded processor cores. Second, specialized embedded devices 
cannot take full advantage of a general-purpose processor’s broad capabili-
ties. Consequently, expensive silicon resources built into the processor 
core are wasted because they’re not needed by the specific embedded task 
that’s assigned to the processor. 

Most embedded systems interact closely with the real world or com-
municate complex data at high rates. The associated data-intensive tasks 
in these applications could be performed by some hypothetical general-
purpose microprocessor running at tremendous speed. This is indeed the 
approach employed in the personal computer market, with the result that 
the processors used in PCs cost hundreds of dollars and dissipate tens of 
watts. For embedded applications, expensive and power-hungry processors 
are not an appropriate alternative. 

Instead, designers traditionally turn to hard-wired circuits to perform 
these data-intensive functions. In the past 10 years, wide availability of 
logic synthesis and ASIC design tools has made RTL design the standard 
for hardware developers. RTL-based design is reasonably efficient (com-
pared to custom, transistor-level circuit design) and can effectively exploit 
the intrinsic parallelism of many data-intensive problems. RTL design 
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methods can often achieve tens or hundreds of times the performance 
achieved by a general-purpose processor. 

Like RTL-based design using logic synthesis, extensible-processor 
technology enables the design of high-speed logic blocks tailored to the as-
signed task. The key difference is that RTL state machines are realized in 
hardware while logic blocks based on configured processor cores realize 
their state machines with firmware, which makes these blocks far more 
flexible than hard-wired RTL designs. 

Benefiting from microprocessor extensibility 

A fully featured configurable and extensible processor consists of a pro-
cessor design and a design-tool environment that allows a designer to adapt 
the base processor design by altering or adding major processor functions, 
thus tuning the processor core to specific application requirements. Typical 
forms of configurability include additions, deletions, and modifications to 
memories, to external bus widths and handshake protocols, and to com-
monly used processor peripherals. An important superset of configurable 
processors is the extensible processor – a processor whose functions, 
especially its instruction set, can be extended by the SOC design team to 
include features never considered or imagined by processor’s original 
designers. 

Changing the processor’s instruction set, memories and interfaces can 
significantly improve the core’s efficiency and performance, particularly 
for the data-intensive applications that represent the “heavy lifting” for 
many embedded systems. These task-specific features might be too spe-
cific to justify inclusion in a general-purpose processor’s ISA. General-
purpose processors are the result of many design compromises where 
features that provide modest benefits to all customers supercede features 
that provide dramatic benefits to a few. All design compromise is neces-
sary because the historic costs and difficulty of processor design mandate 
that only a few different such cores can be built. However, automatic gen-
eration of a configurable processor and its associated software tool suite 
reduces the cost and development time so that inclusion of application-
specific features and deletion of unused features suddenly becomes attrac-

A configurable processor is a processor whose features can be pruned 

implemented in many different hardware forms, ranging from ASICs with 
or augmented by parametric selection. Configurable processors can be

tive for SOC design [162]. 
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hardware implementation times of many weeks, to FPGAs with implemen-
tation times of just minutes. Extensible processors – processors whose 
functions, especially the instruction set, can be extended by the application 
developer to include features never considered by the original processor 
designer – are an important superset of configurable processors.  

For both configurable and extensible processors, the usefulness of the 
configurability and extensibility is strongly tied to the automatic availabi-
lity of both hardware implementation and the software environment. 
Automated generation of software tools that support the core’s extended 
features is especially important. Configuration or extension of the proces-
sor’s hardware without synchronized enhancement of the compiler, assem-
bler, simulator, debugger, real-time operating systems, and other software 
support tools would leave the promises of performance and flexibility 
through configurability unfulfilled, because the new enhanced processor 
could not be programmed very easily.  

Table 8.1. Processor configuration and extension types. 

ISA Memory System Interface Processor 
Peripherals 

–Extensions to ALU 
functions using general 
registers (e.g. population 
count instruction) 
–Coprocessors supporting 
application-specific data 
types (e.g. network  
packets, pixel blocks),  
including new registers 
and register files with 
varying word widths 
–High-performance 
arithmetic and DSP  
(e.g. compound DSP  
instructions, vector/SIMD 
instructions, floating-
point instructions), often 
with wide execution units 
and registers 
–Multiple independent 
operations per instruction 
–Selection among  
function unit implementa-
tions (e.g. small iterative 
multiplier vs. pipelined 
array multiplier) 

–Memory-bus width 
–Instruction-cache size, 
associativity, and line 
size 
–Data-cache size,  
associativity, line size, 
and write policy 
–Memory protection 
and translation (by 
segment, by page) 
–Instruction and data 
RAM/ROM size and 
address range 

–External bus interface 
width, protocol, and  
address decoding 
–Direct connection of 
system control registers 
to internal registers and 
data ports 
–Mapping of special-
purpose memories 
(queues, multi-ported 
memories) into the  
address space of the 
processor 
–State-visibility trace 
ports and JTAG-based 
debug ports 

–Timers 
–Interrupt controller: 
number, priority, type, 
fast switching registers 
–Exception vectors  
addresses 
–Remote debug and 
breakpoint controls 
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Fig. 8.1. Block diagram of configurable Xtensa processor. 

Extensibility’s goal is to allow ISA features to be added or adapted in 
any form that optimizes the cost, power, and application-performance of 
the processor core. In practice, the configurable and extensible features can 
be broken into four categories, with examples, as shown in Table 8.1.  

A block diagram for Tensilica’s configurable, extensible Xtensa processor 
appears in Figure 8.1. The figure identifies baseline ISA features, scaleable 
register files, memories and interfaces, optional and configurable processor 
peripherals, selectable DSP coprocessors, and facilities to integrate user-
defined instruction-set extensions. 

Processor extensibility serves as a particularly potent form of configura-
bility because it handles a wide range of applications and is easily used by 
designers with a wide range of skills. Processor extensibility allows a sys-
tem designer or application expert to directly exploit proprietary insight 
about the application’s functional and performance needs directly in the 
processor core’s instruction-set and register extensions. 
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How microprocessor use differs between SOC  
and board-level design 

Hardwired RTL design has many attractive characteristics – small area, 
low power, and high-throughput. However, the liabilities of RTL (difficult 
design, slow verification, and poor scalability to complex problems) are 

design time and risk has a natural appeal. Application-specific processors 
as a replacement for complex RTL fit this need. 

An application-specific processor can implement data-path operations 
that closely match those of RTL functions. Equivalents of the RTL data-
paths are implemented using the integer pipeline of the base processor, plus 
additional execution units, new registers and register files, and other func-
tions added by the chip architect for a specific application. For Tensilica’s 
Xtensa processor cores, those extensions are defined in a Verilog-like lan-
guage called TIE, which is optimized for the high-level specification of 

initialization sequences. The new processor instructions and registers des-
cribed in TIE are available to the firmware programmer via the same com-
piler and assembler that target the processor’s base ISA. All sequencing of 
operations within the processor’s datapaths is controlled by firmware, 
through the processor’s existing instruction fetch, decode and execution 
mechanisms. The firmware is written in a high-level language such as C or 
C++. 

Extended processors used as RTL-block replacements routinely use the 
same structures as traditional data-path-based RTL blocks: deep pipelines, 
parallel execution units, problem-specific state registers, and wide data 
paths to local and global memories. These extended processors can sustain 
the same high computation throughput and support the same low-level data 
interfaces as typical RTL designs. 

Control of the extended-processor datapaths is very different however. 
Cycle-by-cycle control of the processor’s datapaths is not fixed in hard-

 
 
 
 

data-path functions in the form of instruction semantics and encoding. 
A TIE description is much more concise than RTL because it omits all
sequential logic, including state machine descriptions, pipeline registers, and 

wired state transitions. Instead, the sequence of operations is explicit in the 

starting to outweigh the benefits in large SOC designs. A design method-
ology that retains most of the efficiency benefits of RTL while reducing 
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Fig. 8.2. Programmable function: data-path + processor + software. 

firmware executed by the processor (shown in Figure 8.2). Control-flow 
decisions are made explicitly in branches; memory references are explicit 
in load and store operations; sequences of computations are explicit se-
quences of general-purpose and application-specific computational opera-
tions. 

This design migration from hardwired state machine to firmware pro-
gram control has important implications: 

• Flexibility: Chip developers, system builders, and end-users (when 
appropriate) can change the block’s function just by changing the firm-
ware. The need for silicon respins is greatly reduced. 

• Firmware-based development: Developers can use sophisticated, low-
cost software-development methods for implementing most chip features. 

• Faster, more complete system modeling: RTL simulation is slow. For 
a 10-million-gate design, even the fastest software-based logic simula-
tor may not exceed a few cycles per second. By contrast, firmware 
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simulations for extended processors run at hundreds of thousands or 
millions of cycles per second on instruction-set simulators. 

• Unification of control and data: No modern system consists solely of 
hardwired logic. There is always a processor and some software. Moving 
functions previously handled by RTL into a processor removes the 
artificial distinction between control and data processing.  

• Time-to-market: Moving critical functions from RTL to application-
specific processors simplifies the SOC design, accelerates system model-
ing, and pulls in finalization of hardware. Firmware-based state machines 
easily accommodate changes to standards, because implementation details 
are not “cast in stone.” 

• Designer productivity: Most importantly, migration from RTL-based 
design to the use of application-specific processor cores boosts the 
engineering team’s productivity by reducing the engineering resources 
needed to manually code and verify RTL hardware. A processor-based 
SOC design approach sharply cuts risks of fatal logic bugs and permits 
graceful recovery when (usually not if) a design bug appears or a 
specification change occurs. 

Three examples, ranging from simple to complex, serve to illustrate how 
data-path extensions allow extensible processors to replace RTL hardware 
in a wide variety of situations.  

The first example, from the cellular telephone world, is the GSM audio 
codec used in cell phones. Profiling the codec code using an unaugmented 
RISC processor revealed that out of more than 200 million processor 
cycles, 80% of the cycles were devoted to executing multiplications. The 
simple addition of a hardware multiplier therefore produces a substantial 
acceleration of this codec implementation. Tensilica’s Xtensa processor 
offers a multiplier as a configuration option. That means that a designer 
can add a hardware multiplier to the processor’s data path and multiplica-
tion instructions to the processor’s instruction set simply by checking a 
box in a configuration page of the Xtensa processor generator. 

The addition of a hardware multiplier cuts the number of cycles needed 
to execute the GSM audio codec code from 204 million to 28 million 
cycles, a 7x improvement in execution time. Adding a few more gates to 
the processor pipeline by selecting a MAC instead of a multiplier further 
reduces the number of cycles needed to execute the audio codec code to 
17.9 million. These configuration options coupled with code profiling 
allow an SOC designer to rapidly explore a design space and to make in-
formed cost/benefit decisions for various design approaches. 

A more complex example, Viterbi decoding, also comes from GSM cellu-
lar telephony. GSM employs Viterbi decoding to pull information symbols 
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Fig. 8.3. Viterbi butterfly pipeline hardware. 

out of a noisy transmission channel. This decoding scheme employs “butter-
fly” operations consisting of eight logical operations (four additions, two 
comparisons, and two selections) and uses eight butterfly operations to de-
code each symbol in the received digital information stream. Typically, 
RISC processors need 50 to 80 instruction cycles to execute one Viterbi 
butterfly. A high-end VLIW DSP (TI’s 320C64xx) requires only 1.75 cycles 
per Viterbi butterfly. The TIE language allows a designer to add a Viterbi 
butterfly instruction to the Xtensa processor’s ISA, which uses the proces-
sor’s configurable 128-bit I/O bus to load data for eight symbols at a time, 
adds the pipeline hardware shown in Figure 8.3, and results in an average 
butterfly execution time of 0.16 cycles per butterfly. An unaugmented 
Xtensa processor executes Viterbi butterflies in 42 cycles, so the butterfly 
hardware adds only 11,000 gates and yet it achieves a 250x speed im-
provement over the out-of-the-box Xtensa processor. 

The third example, MPEG4, is from the video world. One of the most 
difficult parts of encoding MPEG4 video data is motion estimation, which 
requires the ability to search adjacent video frames for similar pixel 
blocks. The search algorithm used for motion estimation employs a SAD 
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Fig. 8.4. A SIMD SAD computational extension reduces the computational load 
on the processor core by 46x. 

(sum of absolute differences) operation consisting of a subtraction, an 
absolute value, and the addition of the resulting value with the previously 
computed value. For a QCIF (quarter common image format) video frame 
and a 15 frames/second image rate, the SAD operation requires slightly 
more than 641 million operations/second. As shown in Figure 8.4, it is 

capable of executing 16 pixel-wide SAD instructions per cycle using TIE. 
(Note: Using the Xtensa processor’s 128-bit maximum bus width, it is also 
possible to load all 16 pixels worth of data in one instruction.) The combi-
nation of executing all three SAD component operations in one cycle and 
the SIMD operation that computes the values for 16 pixels in one clock 
cycle reduces number of cycles required to execute the algorithm from 641 
million to 14 million operations/second – a substantial reduction. 

possible to add SIMD (single-instruction, multiple-data) SAD hardware 
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Tensilica’s extensible Xtensa processor core 

ISA extension should be used to make a good ISA better, not to fix an ISA 

follows the RISC heritage traced back to IBM’s 801 project in the 1970s 
and the RISC microprocessor work of John Hennessy at Stanford Univer-
sity and David Patterson at the University of California at Berkeley in the 

• Load/store architecture 
– no memory references except for load and store instructions 

• 3-operand instruction orientation 
– two operand sources, one result destination 

• Large general-purpose register file 
– supports the load/store architecture 

• Single-cycle instructions 
– for simplicity and speed 

• Pipelined operation 
– produces single-cycle instruction throughput 

ory footprint would be critically important for on-chip processors using 
on-chip SOC memory (on-chip SOC memory is much more expensive 
than memory contained in standard memory chips), so the Xtensa architec-
ture deviates from traditional RISC fixed-size instructions to reduce the 
firmware’s memory footprint: the basic Xtensa ISA contains a mix of 16- 
and 24-bit instructions. These 16- and 24-bit instructions all perform 32-bit 
operations, so they are just as powerful as the 32-bit instructions of the 
older RISC architectures – they’re merely smaller, which reduces program 
size and therefore reduces on-chip memory costs. 

The original RISC processors employed fixed-size instructions of 32 
bits to simplify the processor’s fetch/decode/execute circuitry but the 
mechanism that converts incoming instruction words into 16- and 24-bit 
instructions in the Xtensa processor does not require complex logic. The 
amount of memory saved through the use of 16- and 24-bit instructions 
more than compensates for the gates used to implement the processor’s 
mixed-size instruction-fetch and instruction-decode unit. 

that’s poorly suited to SOC design in the first place. Tensilica’s Xtensa 
architecture was designed from the start to serve as an on-chip micropro-
cessor core. Consequently, it is a small, fast processor core. The Xtensa ISA 

architectures with several characteristic features: 
1980s. The result of this early research produced small, fast processor 

The Xtensa ISA shares all of these characteristics with other RISC pro-
cessor architectures but the architects of the Xtensa ISA realized that mem-
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Because an Xtensa processor’s instruction-fetch cycle retrieves more 
than one instruction per cycle (including fractions of an instruction word) 
and because a single Xtensa instruction can cross aligned fetch (word) 
boundaries, the Xtensa processor stores fetched words from the instruction 
stream in a FIFO holding/alignment buffer. For the base Xtensa ISA, the 

and wider for certain Xtensa configurations. In addition to supporting the 
16- and 24-bit instructions in the Xtensa processor’s base ISA, this mixed-
size instruction-fetch and instruction-decode unit also supports extended 
32- and 64-bit, multi-operation instructions that can be added to the con-

Xtensa configurable registers and register files 

The Xtensa processor’s base ISA incorporates the following register files 
and registers: 

• A 32-bit, general-purpose register file that employs register windows 
• A 32-bit program counter 
• Various special registers 

Figure 8.5 shows the processor’s general-purpose 32-bit register file. 
This file, called the AR register file, has either 32 or 64 entries (a configur-
able attribute). Xtensa instructions access this physical register file through 
a sliding 16-register window. Register windowing allows the processor to 
have a relatively large number of physical registers while restricting the 
number of bits needed to encode a source or destination operand address to 
4 bits. Thus a 3-operand Xtensa processor instruction needs only 12 bits to 
specify the registers holding the instruction’s three operands. 

Register windowing is a key ISA feature that allowed the Xtensa archi-
tects to achieve the small instruction sizes needed to minimize the applica-
tion firmware’s footprint while allowing for a large general-purpose register 
file, which boosts compiler efficiency and improves the performance of com-
piled code. Xtensa function calls and call returns slide the register window 
up and down the physical register file. Because window movement is res-
tricted to a maximum of 12 register entries per call, some register entries in 
the physical general-purpose register file are shared between the current 
register window and the previous window. This overlap provides a set of 
register entries that can be used to automatically pass argument values and 
return function values between a calling function and the called function. 
XCC – the Xtensa C/C++ compiler – automatically uses the features of 
this register-windowing scheme to minimize the number of instructions 
used in function calls. 

figurable Xtensa processor. 

instruction buffer is 32-bits wide and two entries deep. It can be deeper 



164      Steven Leibson 

Fig. 8.5. The Xtensa ISA incorporates a 32- or 64-entry register file with register 
windows. Each entry in the file is a 32-bit, general-purpose register. 
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The Xtensa program counter 

The Xtensa ISA employs a 32-bit program counter, which encompasses a 
4-Gbyte address space. During a function call, only the lower 30 bits of the 
return address are saved, which restricts nested subroutines using function 
calls to a 1-Gbyte address space. (The other two address bits are used to 
store the amount of register-window translation: 0, 4, 8, or 12 entries.) A 
function-call return restores the saved 30-bit return address and leaves the 
upper 2 bits of the program counter untouched. Thus related sets of func-
tion calls can operate in any of the four 1-Gbyte address spaces that com-
prise the overall 4-Gbyte space. Jump instructions, which use 32-bit target 
addresses stored in register-file entries, shift program execution across the 
1-Gbyte boundaries. This scheme reduces the number of memory-accesses 
required to implement function calls, which improves the overall perform-
ance of the Xtensa ISA. 

The resulting 1-Gbyte address restriction that the Xtensa ISA imposes 
on linked subroutines puts no real practical limits the design of current-
generation SOCs, which almost universally employ per-processor code 
footprints much smaller than 1 Gbyte. Per-processor SOC code footprints 
are unlikely to approach 1 Gbyte for many, many years. That’s simply too 
much code to run on any one embedded processor core in an SOC. 

Memory address space 

Unlike practical code-size limits, data-space requirements for SOCs seem 
to grow without limit, especially for media-oriented chips. Consequently, 
the Xtensa ISA provides full, unrestricted 32-bit data-space addressing for 
its load and store instructions. The Xtensa ISA employs a Harvard archi-
tecture that physically separates instruction and data spaces, although they 
share the same 4-Gbyte address space. 

An Xtensa processor’s local memories are divided into instruction and 
data memories and the processor employs separate instruction and data 
caches. The existence of local memories and caches, the address spaces allo-
cated to the local memories, and the width of the bus interfaces to these 
local memories are all configuration options for Xtensa processors. Load, 
store, and fetch operations to addresses that are not allocated to local 
memories (as defined in the processor’s configuration) are directed to the 
Xtensa processor’s main bus interface, called the PIF (processor interface). 
The existence and width of a processor’s PIF bus is another Xtensa con-
figuration option. 
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Fig. 8.6. Little-endian byte ordering for a 32-bit word. 

Fig. 8.7. Big-endian byte ordering for a 32-bit word. 

Configurable byte ordering 

As a configuration option, Xtensa processors support either big- or little-
endian byte ordering, shown in Figures 8.6 and 8.7. Little-endian byte or-
dering stores a number’s low-order byte in the right-most byte of the 32-bit 
word and the high-order byte in the left-most byte. (The least-significant or 
“little” end comes first.) For example, a 4-byte integer is stored using the 
little-endian format in a 32-bit memory word as shown in Figure 8.6. 

Big-endian byte ordering stores a 4-byte integer’s high-order byte in a 
memory location’s right-most byte and the low-order byte in the left-most 
byte. (The most-significant or “big” end comes first.) The long integer 
would then appear as shown in Figure 8.7.  

Fast endian conversion with one instruction extension 

There are a seemingly endless number of arguments regarding the relative 
merits of big- and little-endian byte ordering. Many of these arguments 

(pre-Intel) Apple Macintosh computers because the underlying Intel and 
Motorola processors in those computers used opposite byte orderings.  

manner for all number formats. Because of the one-to-one relationship 
between address offset and byte number (offset 0 is byte 0), multiple preci-

can easily be tested as positive or negative by looking at the byte value 
stored at offset zero, no matter the number of bytes contained in the 
number format. Software doesn’t need to know how long the number is 

stem from religious discussions about the merits of the IBM PC vs. the 

cessors. Numbers stored in big-endian form, with the high-order byte first, 
sion math routines are correspondingly easy to write for little-endian pro-

nor does it need to skip over any bytes to find the byte containing the sign  

assembly language instructions pick up a multi-byte number in the same 
In reality, both byte-ordering formats have advantages. Little-endian 
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Fig. 8.8. Conversion from one endian format to the other for a 32-bit word. 

information. Numbers stored in big-endian format are also stored in the 
order in which they are printed out, so binary-to-decimal conversion rou-
tines are particularly efficient. 

The existence of “endian” issues means that whenever multi-byte values 
are written to a file, the software must know whether the underlying pro-
cessor is a big- or little-endian machine and whether the target file format 
is big- or little-endian. For example, if a big-endian machine operates on a 
standard-format, little-endian file, the software must first reverse the byte 
order of all the multi-byte values in the file or the file format will not 
adhere to the file-format standard. SOC designers developing chips that 
must deal with standard file formats must be concerned with byte ordering 
because many of these formats have an established byte ordering. Any 
software that deals with these file formats must correctly deal with the 

32-bit word to convert from one endian format to the other. 
Audio and video media streams come in both endian formats as well so 

nearly any SOC dealing with multimedia files will need to work with both 
byte-ordering formats. Consequently, the choice of a processor’s endian 
orientation is usually not critical because the processor will need to make 
byte-ordering conversions in any case. The following line of C code con-
verts from one endian format to the other: 

 
unsigned ss = (s<<24)|((s<<8)&0xff0000)|((s>>8)&0xff00)|s>>24); 
 
The Xtensa C/C++ compiler (XCC) translates the line of C above into 

nine base Xtensa assembly-language instructions as follows (the input 

format’s byte ordering. Figure 8.8 illustrates how bytes are swapped in a 
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word is passed in register a14 and the endian-converted result ends up in 
register a10): 

 
slli a9, a14, 24   Form intermediate result bits 24-31 in a9 
slli a8, a14, 8   Shift 32-bit word left by 8 bits, save in a8 
srli a10, a14, 8 
and a10, a10, a11   Form intermediate result bits 9-15 in a10 
and a8, a8, a13   Form intermediate result bits 16-23 in a8 
or a8, a8, a9   Form intermediate result bits 16-31 in a8 
extui a9, a14, 24, 8  Extract result bits 0-7, save in register a9 
or a10, a10, a9   Form result bits 0-15, save in register a10 
or a10, a10, a8   Form final result in register a10 
 
The C-level conversion code could execute nine times faster if the base 

Xtensa ISA had one instruction that performed 32-bit endian conversion. 
However, a fundamental tenet of ISA development is to minimize a pro-
cessor’s gate count by keeping the base ISA as lean as possible and not 
larding it with instructions that might only be useful in some applications. 
Not all processors need to perform endian conversions. While such spe-
cialized instructions may improve the processor’s performance for a few 
application programs, they increase the processor’s size for every SOC de-
sign using that processor. ISA design for configurable processor cores 
avoids the addition of specialized instructions to the processor’s base ISA 
by allowing each SOC design team to add task-specific instructions needed 
to meet project-specific design and performance goals. 

Specialized instructions easily can be added to an Xtensa configurable 
processor by the SOC designer using TIE. For example, defining a 
BYTESWAP instruction that takes a 32-bit word from one of the proces-

 
operation BYTESWAP {out AR outR, in AR inpR} { } 
{ 
    wire [31:0] reg_swapped = 

{inpR[7:0],inpR[15:8],inpR[23:16],inpR[31:24]}; 
    assign outR = reg_swapped; 
} 
 
The interface to the BYTESWAP instruction is defined by the informa-

tion contained in the first set of curly braces of the operation section. 
Within the first set of braces, the argument outR specifies the destination 
entry in the AR register file for the result of the instruction. Argument 

Shift 32-bit word right by 8 bits, save in a10 

sor’s general-purpose register-file entries, converts the word from one endian
format to the other, and stores the result in another register-file entry is a
simple task. The TIE description to create this new instruction is remarkably
short: 

inpR specifies the AR register-file entry that provides the source operand 
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for the instruction. The second set of braces in the operation statement can 
be used to specify additional internal states for this operation extension, 
but this TIE feature is not used in this example. 

The behavior of the BYTESWAP instruction is defined within the next 
set of curly braces. The first line in this group defines how the new ma-
chine instruction should compute the byte-swapped 32-bit value and assigns 
the result of the operation to a temporary variable named reg_swapped. 
Note that the values of the intermediate wires, states, and registers will be 
visible in the tailored Xtensa debugger for a processor incorporating this 
BYTESWAP instruction. This feature greatly facilitates the debugging of 
TIE instructions in a software environment. The second line above assigns 
the byte-swapped value to the output argument outR. 

From this single instruction description, the TIE Compiler within the 
Xtensa processor generator builds the necessary execution-unit hardware, 
adds it to the processor’s RTL description, and adds constructs in the 
software-development tool suite so that the new BYTESWAP instruction 
can be used as an intrinsic in a C or C++ program. 

The BYTESWAP instruction is an example of a fused instruction. Nine 
dependent instructions (each instruction in the sequence depends on results 
from previous instructions) have been fused into one. In this example, the 
circuitry required to implement the function is extremely simple. The exe-
cution unit for this instruction needs little more hardware than a few addi-
tional wires to scramble byte lanes, yet this new instruction speeds endian 
conversion by a factor of 9x. This example demonstrates that a small addi-
tion to a processor’s hardware can yield large performance gains. In addi-
tion, the new BYTESWAP instruction doesn’t use the intermediate-result 
registers that are used in the 9-instruction byte-swap routine. Some gates 
are added in the processor’s instruction decoder to decode the new instruc-
tion, but these few gates do not make the processor core noticeably larger 
than the base processor. 

The TIE language 

In general, most new instructions described in TIE implement more com-
plex operations than BYTESWAP. In addition to the wire statement used 
in the above example, the TIE language includes several operators and 
built-in functions to describe new instructions. These operators and func-
tion modules appear in Tables 8.2 and 8.3, respectively. 
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Table 8.2. TIE operators. 

Operator Type Operator Symbol Operation 
Arithmetic + Add 
 – Subtract 
 * Multiply 
Logical ! Logical negation 
 && Logical and 
 || Logical or 
Relational > Greater than 
 < Less than 
 >= Greater than or equal 
 <= Less than or equal 
 == Equal 
 != Not equal 
Bitwise ~ Bitwise negation 
 & Bitwise and 
 | Bitwise or 
 ^ Bitwise ex-or 
 ^~ or ~^ Bitwise ex-nor 
Reduction & Reduction and 
 ~& Reduction nand 
 | Reduction or 
 ~| Reduction nor 
 ^ Reduction ex-or 
 ^~ or ~^ Reduction ex-nor 
Shift << Left shift 
 >> Right shift 
Concatenation { } Concatenation 
Replication { { } }  Replication 
Conditional ?: Conditional 
Built-in modules <module-name>(...) See Table 4.2 

Improving application performance using TIE 

As demonstrated above, TIE extensions improve the execution speed of an 
application running on an Xtensa processor by enabling the creation of 
single instructions that perform the work of multiple general-purpose 
instructions. Several techniques can be used to combine multiple general-
purpose operations into one instruction. Three common techniques avail-
able through TIE are: 

• Fusion 
• SIMD/vector transformation 
• FLIX 
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Table 8.3. Built-in TIE function modules. 

Format  Description Result Definition 
TIEadd(a, b, cin) Add with carry-in a + b + cin 
TIEaddn(a0, a1, ... an-1) N-number addition a0 + a1 + ... + an-1 
TIEcmp(a, b, sign) Signed and unsigned 

comparison 
{a < b, a <= b, a == b, a >= 
b, a > b} 

TIEcsa(a, b, c) Carry-save adder {a & b | a & c | b & c, a ^ b 
^ c} 

Multiply–accumulate
  

Negate ? c - a * b : c + a * b  
where sign specifies how a 
and b are extended in the 
same way as for TIEmul 

TIEmul(a, b, sign) Signed and unsigned 
multiplication 

{{m{a[n-1] & sign}}, a} * 
{{n{b[m-1] & sign}}, b} 
where n is size of a and m is 
size of b 

Partial-product multiply negate ? - a*b : a*b 

TIEmux(s, d0, d1, ..., dn-1) n-way multiplexer s==0 ? d0 : s==1? d1 : ... : s 
==n-2 ? dn-2 : dn-1 

TIEpsel(s0, d0, s1, d1, ..., 
sn-1, dn-1) 

n-way priority selector s0 ? d0 : s1 ? d1 : ... : sn-1 ? 
dn-1 : 0 

TIEsel(s0, d0, s1, d1, ..., 
sn-1, dn-1) 

n-way 1-hot selector (size{S0} & D0) | (size{S1} 
& D1) |... (size{Sn-1} & 
Dn-1) 
where size is the maximum 
width of D0 ... Dn-1 

 
To illustrate these three techniques, consider a simple example where an 

application spends most of its execution time computing the average of 
two arrays in a loop: 

 
unsigned short *a, *b, *c; 
... 
for (i=0; i<n; i++)  
 c[i] = (a[i] + b[i]) >> 1; 
 
The above C code adds two short data items and shifts the sum right by 

1 bit in each loop iteration. Two base Xtensa instructions are required for 
each computation, not counting the instructions required for loading and 

 
operation AVERAGE{out AR res, in AR input0, in AR input1} {} { 
 wire [16:0] tmp = input0[15:0] + input1[15:0]; 
 assign res = tmp[16:1]; 
} 

storing the data. These two operations can be fused into a single TIE 
instruction: 

negate) 
TIEmac(a, b, c, sign,

negate) 
TIEmulpp(a, b, sign, 
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This fused TIE instruction, named AVERAGE, takes two input values 
(input0 and input1) from entries in the AR register file, computes the out-
put value (res), and then saves the result in another AR register-file entry. 
The semantics of the instruction, an add followed by a shift, are described 
above. A C or C++ program uses the new AVERAGE instruction as follows: 

 
#include <xtensa/tie/average.h> 
unsigned short *a, *b, *c; 
... 
for (i=0; i<n; i++)  
 c[i] = AVERAGE(a[i], b[i]); 
 

Assembly code can also directly use the AVERAGE instruction. The 
entire software tool chain recognizes AVERAGE as a valid instruction for 
processors built using this TIE extension. 

Instruction fusion is not the only way to form new instructions for Xtensa 
processors. Two other techniques are SIMD (single-instruction, multiple-
data) and FLIX (flexible-length instruction extensions), the Xtensa version 
of VLIW (very-long instruction word). SIMD instructions gang multiple, 
parallel execution units that perform the same operation on multiple oper-
ands simultaneously. This sort of instruction is particularly useful for 
stream-processing applications such as digital audio and video.  

In the fused-instruction example shown above, one TIE instruction com-
bines an add and a shift operation, cutting the number of instruction cycles 
for the overall operation in half. Other types of instruction combinations 
can also improve performance. 

Adding SIMD instructions using TIE 

The C program in the above example performs the same computation on a 
new data instance during each loop iteration. SIMD (single-instruction, 
multiple-data) instructions (also called vector instructions) perform multi-
ple loop iterations simultaneously by performing parallel computations on 
different data sets during the execution of one instruction. TIE instructions 
can combine fusion and SIMD techniques. Consider, for example, a case 

 
regfile VEC 64 8 v 
 
operation VAVERAGE{out VEC res, in VEC input0, in VEC input1} {} { 
 wire [67:0] tmp = {input0[63:48] + input1[63:48], 
    input0[47:32] + input1[47:32], 
    input0[31:16] + input1[31:16], 
    input0[15:0] + input1{15:0]}; 
 assign res = {tmp[67:52], tmp[50:35], tmp[33:18], tmp[16:1]}; 
} 

instruction: 
where a TIE instruction computes four AVERAGE operations in one
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Computing four 16-bit averages simultaneously requires that each data 
vector be 64 bits wide (containing four 16-bit scalar quantities). However, 
the general-purpose AR register file in the Xtensa processor is only 32 bits 
wide. Therefore, the first line in the SIMD TIE example above creates a 
new register file, called VEC, with eight 64-bit register-file entries that 
hold 64-bit data vectors for the new SIMD instruction. This new instruc-
tion, VAVERAGE, takes two 64-bit operands (each containing four 16-bit 
scalar quantities) from the VEC register file, computes four simultaneous 
averages, and saves the 64-bit vector result in a VEC register-file entry. To 
use the instruction in C/C++, simply modify the original example as follows: 

 
#include <xtensa/tie/average.h> 
VEC *a, *b, *c; 
... 
for (i=0; i<n; i+=4) { 
 c[i] = VAVERAGE(a[i], b[i]); 
 

VEC, which corresponds to the 64-bit entries in the new register file. In 
addition to the VAVERAGE instruction, the Xtensa processor generator 
automatically creates new load and store instructions to move 64-bit vec-
tors between the VEC register file and memory. The XCC compiler uses 
these instructions to load and store the 64-bit vectors of type VEC. Com-
pared to the fused instruction AVERAGE, the SIMD vector-fused instruc-
tion VAVERAGE requires significantly more hardware (in the form of four 
16-bit adders) because it performs four 16-bit additions in parallel. The 
four 1-bit shifts do not require any additional gates. 

The performance improvement gained by combining vectorization and 

nicely dovetails with Tensilica’s XCC C/C++ compiler, which has the abi-
lity to unroll and vectorize the inner loops of application programs. The 
loop acceleration achieved through vectorization is usually on the order of 
the number of SIMD units within the enhanced instruction. Thus a 2-
operation SIMD instruction approximately doubles loop performance and 
an 8-operation SIMD instruction speeds up loop execution by about 8x. 

Adding FLIX instructions using TIE 

Although multiple operations occur simultaneously in a SIMD instruction, 
they are dependent operations. VLIW instructions bundle multiple inde-
pendent operations into one machine instruction. Xtensa FLIX instructions 
are multi-operation instructions that allow a processor to perform multiple, 

The C/C++ compiler generated for a processor built with this TIE des-
cription automatically recognizes a new 64-bit C/C++ data type called 

fusion alone. The addition of SIMD instructions to an Xtensa processor 
fusion is significantly larger than the performance improvement from 
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simultaneous, independent operations by encoding the multiple operations 
into a wide instruction word. Each operation within a FLIX instruction is 
independent of the others. The XCC compiler for Xtensa processors bundles 
these independent operations into a FLIX-format instruction as needed to 
accelerate code. While TIE-defined fused and SIMD instructions are 24 
bits wide, FLIX instructions are either 32 or 64 bits wide, to provide 
enough instruction-word bits to fully describe the multiple independent 
operations. Xtensa instructions of different sizes (base instructions, single-
operation TIE instructions, and multi-operation FLIX instructions) can be 
freely intermixed. 

Consider again the AVERAGE example from above. Using base Xtensa 
instructions, the inner loop contains the ADD and SRAI instructions to 
perform the actual computation. Two L16I load instructions and one S16I 

one slot for the computation instructions, and one slot for address-update 
instructions can greatly accelerate this code as follows: 

 
format flix3 64 {slot0, slot1, slot2} 
 
slot_opcodes slot0 {L16I, S16I} 
slot_opcodes slot1 {ADDI} 
slot_opcodes slot2 {ADD, SRAI} 
 
The first declaration creates a 64-bit instruction and defines an instruc-

tion format with three operation slots. The last three lines of code list base 
ISA instructions that are to be available in each slot defined for this FLIX 
configuration. Note that all the instructions specified are existing core in-
structions in the processor’s base ISA, so their definition need not be pro-
vided in the TIE code because the Xtensa processor generator already 
knows about base Xtensa instructions. 

For this example, the C/C++ program need not be changed at all. The 
processor generation creates a C/C++ compiler that will compile the original 
source code while automatically exploiting the FLIX extensions. The gen-
erated assembly code for this processor implementation would look like this: 

 
loop: 
{addi a9,a9,4; add a12,a10,a8; l16i a8,a9,0  } 
{addi a11,a11,4; srai a12,a12,1; l16i a10,a11,0  } 
{addi a13,a13,4; nop;   s16i a12,a13,0 } 
 
A computation that requires eight cycles per iteration on a base Xtensa 

processor now requires just three cycles per iteration, which is nearly a 3x 
performance increase. It took only five lines of relatively simple TIE code 

instruction format with one operation slot for the load and store instructions, 
update the address pointers used by the loads and stores. A 64-bit FLIX
store instruction move the data as needed and three ADDI instructions
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to specify a FLIX configuration format with three instruction slots. Instruc-
tion fusion, SIMD, and FLIX techniques can be combined to further re-
duce cycle count. 

Conclusion 

Configurable processors are not the right choice for every hardware block 
on an SOC. Three cases where application-specific processors are not the 
right choice for a block’s design stand out: 

• Small, fixed state machines: Some logic tasks are too trivial to warrant 
a processor. For example, bit-serial engines such as simple UARTs fall 
into this category. 

• Simple data buffering: Similarly, some logic tasks amount to no more 
than storage control. A FIFO controller built with a RAM and some 
wrapper logic can be emulated via memory operations within a pro-
cessor but a simple hardware FIFO is faster and simpler. 

The migration of functions from software to hard-wired logic over time 
is a well-known phenomenon. During early design exploration of pre-
release protocol standards, processor-based implementations are common 
even for simple standards that clearly allow efficient logic implementa-
tions. Some common protocol standards that have followed this path in-
clude popular video codecs such as MPEG2, 3G wireless protocols such as 
W-CDMA, and encryption and security algorithms such as SSL and triple-
DES. The speed of this migration, however, has been limited by the large 
gap in performance and design ease between software-based and RTL-
based development. 

The emergence of configurable and extensible application-specific 
processors creates a new design path that is quick and easy enough for the 
development and refinement of new protocols and standards yet efficient 
enough in silicon area and power to permit very high volume deployment. 

• Very deep pipelines: Some computation problems have so much regu- 
larity and require very little state-machine control. For these tasks, a single
very deep pipeline is the ideal implementation. The common examples –
3D graphics and magnetic-disk read-channel chips – sometimes have
pipelines hundreds of clock stages deep. Application-specific processor
cores could be used to control such deep pipelines, but the benefits of
instruction-by-instruction control would be of less help in these applica-
tions, if the algorithms are well known and not subject to change.
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The emergence of Systems-on-Chip (SoC) has generated a tremendous 
development in application demands. Continuous algorithmic innovation 
imposes the need for flexibility, intended as the capability of a given 
processing engine to adapt to new computation patterns after fabrication. 
In spite of the boost offered by sheer technology development, program-
mable architectures can hardly meet requirements. The conventional solu-

affected by design and verification costs, and the concurrent shortening of 
time-to-market. Design-time programmable processors provide a solution 
only valid for those products that can afford the cost of providing a new set 
of masks for each upgrade of the target application field. 

The term run-time Reconfigurable Processor (RP) indicates a processor 
architecture that takes advantage of some form of run-time (dynamically) 
configurable hardware to provide adaptive instruction set modification, in 
order to meet application requirements. Such processors hold the promise 
to couple software flexibility with performance comparable to application- 
specific hardware. Many open issues remain especially related to the pro-
gramming environment and the ideal dimensioning of the configurable 
hardware segments. This section provides an overview of the state of the 
art in the field. Starting from the formalization of the instruction set meta-
morphosis concept, it describes its evolution in the research environment 
up to these days and the first commercial offers that are appearing on the 
market, underlining classical advantages and main architectural options 
related to RP design and utilization. 
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tion of gaining performance through application-specific circuits is severely 
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Embedded microprocessor trends 

It is only fair to state that one of the most interesting and unexpected results 
of the “system-on-a-chip” has been a renaissance in the field of processor 
architecture. Rather than being a pure “board-on-a-chip”, the tight inte-
gration of computation and communication, combined with the redefined 
metrics of embedded applications, has led to a wide range of new (or 
revised) architectural approaches that attempt to exploit the specific pro-
perties of a limited application domain. Examples of these are the config-
urable instruction-set processor, the embedded very-long instruction set 
processor (VLIW), the very-short instruction set processor (or vector pro-
cessor), and the reconfigurable processor. 

 
It is well-accepted that the emergence of SoC has created a significant 

boost in the field of processor architecture design. Although the definition 
of SoC in itself does not necessarily imply the utilization of a programmable 
architecture, it has soon appeared evident that the inclusion of one (or 
more) processors in the design is unavoidable. Due to their complexity, the 
time-to-market, and product lifetime that characterize the business seg-
ments that they aim at, SoCs must feature a high degree of flexibility. 
Flexibility, intended as the capability to tune the computation, before or 
after fabrication, to different flavours of the chosen application field is 
strictly necessary to target market segments and product lifetime wide 
enough to justify integration costs. 

The complexity and the challenges related to the very concept of SoC, 
such as technology and integration costs, design time, verification issues, 
have imposed to hardware designers, mostly in spite of their own will, the 
need for the methodology of IP-re-use. Microprocessors, or better said 
software programmable architectures in general, are the perfect case of IP-
re-usable items: they are highly optimized and qualitatively very complex 
designs, quite technology independent in principle, but also very general 
purpose, in that they offer huge benefits on a very diverse range of applica-
tions. Moreover, they require significant expertise and complex toolsets to 
be programmed, but the same programming model, once acquired, can 
then be utilized for all application domains. As the concept of SoC is now 
more than 10 years old this tendency appears manifest, to the point that 
several voices have claimed that microprocessors (and, one could add, 
 

Jan Rabaey, “Silicon Platforms for Next Generation Wireless Systems – 
What Role Does Reconfigurable Hardware Play?”, 2000 [342] 
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processor utilities and peripherals) are the only kind of hardware IP that 
effectively allows re-use, both for they diffusion and their specificity. 
Consequently, the idea of SoC has always been associated to that of a micro-
processor-based system somehow controlling application-specific logic 
dedicated to the elaboration of the task for which the SoC was conceived. 
In particular, this design pattern has proved very successful for the deploy-
ment of computation-intensive tasks: telecommunication protocols, multi-
media and image processing applications, data encryption algorithms have 
found great benefit in the above described solutions, opening the way for a 
new generation of applications. A good example of the tendency described 
above is the huge popularity of products like MIPS, ARM, and recently 
Tensilica and ARC that have achieved impressive commercial success 
marketing processor cores for integration in SoC. 

From the algorithmic point of view, the introduction of the SoC has 
brought an outstanding increase in computational complexity. The applica-
tions where algorithm development has been more active in recent years  
are exactly those that are more closely related to the SoC market: tele-
communication protocols (especially in the Wireless field), and multime-
dia applications. The constraints imposed by the real-time nature of such 
applications have imposed a heavy price in terms of sheer computational 
loads. The increase of algorithm complexity over time has been formalized 
in literature with the so-defined Shannon’s law. The qualitative graphs in 
Figure 9.1 [342], depict the increase of algorithmic demand compared with 
the increase of computational capability offered by technology improve-
ment. It can be observed that algorithm complexity, driven by Shannon’s 
law, can not be tackled by technology alone, bound to Moore’s law. For this 
reason, standard programmable architectures appear increasingly insuffi-
cient to handle computational demands.  

In conclusion, on one side technology issues are strongly underlying the 
importance of product flexibility. But on the other hand, unless the design 
community is ready to renounce to the software programmable processor 
model for handling high-end algorithmic computations, some kind of archi-
tectural breakthrough is needed, to establish new computational patterns 
that can fill the gap, reverting the relationship between Shannon’s and 
Moore’s laws. Another application-related issue that is heavily influencing 
design is the transition in market shares from supply-wired computing 
devices to battery-operated portable applications that took place in the 

 
 

late nineties. This market shift has introduced power consumption as a very 
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Fig. 9.1. Computational requirements versus Moore’s law and battery storage. 

stringent constraint in digital architectures design. A third line in Figure 9.1 
describes the computational capability allowed by a typical portable appli-
cation battery. As it can be seen, such increase is almost negligible when 
compared to both Moore’s and Shannon’s law. Again, this stalemate can 
only be broken with the development of a new architectural pattern in 
computation, that may provide a different relationship between energy 
consumption and application complexity.  

Instruction set metamorphosis 

If an application requires more computational power than a general-
purpose platform can achieve, users are often driven to an application-
specific computer architecture in which fundamental machine capabilities 
are designed for a particular class of algorithms. Tasks suited to a given 
application-specific machine perform well, but tasks outside the targeted 
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class usually perform poorly. Computationally intensive applications typi-
cally spend most of their execution time within a small portion of the exe-
cutable code. A general-purpose machine can substantially improve its 
performance in many of these applications by adapting the processor’s 
configuration and fundamental operations to these frequently accessed 
portions of code. Segments of the processing platform can be reconfigured 
to add new capabilities that customize the architecture to individual tasks. 
Such an architecture retains its general-purpose nature, while reaping the 

 
The main feature of processors in embedded systems is that they are app-

lication-specific devices. Embedded processors are not general-purpose 
machines designed to perform reasonably for a very large range of applica-
tions; in fact, the service that they are supposed to perform is known a-priori, 
at least in terms of application context. This fundamental feature makes 
embedded processors especially suitable for hardware–software co-design, 

Figure 9.2 describes qualitatively the possible architectural options for the 

Fig. 9.2. Technology options: deployment of computationally intensive task. 

performance benefits of application-specific architectures. 

the cooperative and concurrent design of both hardware and software com-
ponents of the processor. The task to be performed is known, even roughly,
in advance by the designer. Thus it is possible to partition the computa-
tional load between hardware and software, trying to exploit the intrinsic
advantages of both. 

deployment of computational embedded tasks in SoC design. A conventional 

P. Athanas, H. Silvermann, “Processor Reconfiguration through Instruc-
tion Set Metamorphosis”, 1993 [29] 
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solution, very popular all through the nineties, is to exploit co-design tech-
niques to couple standard processor architectures to application specific 
circuits (ASIC) utilized as hardware accelerators. This solution, still very 
common, is becoming increasingly unpractical for two opposite reasons. 
On one side, the increase of design and verification costs for ASIC cir-
cuitry makes the redesign of the acceleration logic too expensive to be re-
challenged at every new release of a given product family. On the other 
hand, the continuous refinement in application standards is forcing the de-
sign community to challenge innovative protocol platforms well ahead of 
their standardization, imposing to SoC designers significant re-engineering 
of their application portfolio late in the design phase or even after fabrica-
tion. 

A significant alternative to the concept of hardware acceleration through 
ASIC circuitry is that of instruction set metamorphosis, intended as the 
extension of the instruction set architecture (ISA) of a given processor 
architecture in order to match the needs and requirement of a specific 
application environment. The idea of incorporating some means of adapta-
tion into processor architectures is much older than the concept of embed-
ded processor itself: in 1960 Estrin [122] proposed a machine based on a 
fixed, general-purpose core augmented by application-specific high speed 
computational elements defined substructures. The real difficulty in mak-
ing adaptive architectures practical resided at the time in the difficulty to 
define an universal language for the description of the ISA extensions, filling 
the gap between the application developer and the architecture designer: 
once identified candidate patterns for extension, the programmer could not 
to have the expertise to define hardware structures at transistor level for 
these functions. Specifying the new structures required leaving the pro-
gramming environment and using a different description, either a hardware 
description language or a schematic entry system.  

In the 90s, the advent of hardware description languages such as VHDL 
and Verilog has provided the designer community with a powerful tool, 
proficient for both micro-architecture design and implementation of algo-
rithmic kernel on hardware. This occurrence, coupled to the diffused 
need for high performance programmable architectures driven by SoC dif-
fusion, has triggered a new wave of proposals in the field of adaptive com-
puters. In 1993, Athanas and Silverman formalized in [29] the concept 
of “Instruction Set Metamorphosis”, or “Adaptive instruction set” for embed-
ded processors, proposing a micro-architecture concept named PRISM 
(Processor Reconfiguration through Instruction Set Metamorphosis). PRISM 
is based on a fixed RISC processor augmented by customizable segments, 
identified by application profiling and defined through hardware co-design, 
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in order to tailor the machine computation capabilities to the application 
environment. 

After a profiling step, the program is “co-compiled” in a software im-
age, that is traditional program code, and a hardware image that is used to 
manufacture the ISA extension. The concept was proved on a system com-

The “Adaptive computation” approach is the starting point for a set of 
successful trends that have taken root in SoC design. The critical para-
meters in the definition of adaptive micro-architectures are essentially two:  

• the formalization of the compilation/synthesis environment for the 
extension segments 

• the choice of the technology support on which to map them 

Companies like ARC technologies and Tensilica have offered very suc-
cessful commercial implementations of the ISA-metamorphosis concept, 
exploiting the technology independent design flows offered by the emer-
gence of hardware description languages to provide design-time configur-
able (sometimes mentioned as mask-level configurable) definition of the 
extension segments. These kind of devices are defined Application-
Specific Instruction Set Processors (ASIPs) [211]. In particular Xtensa (see 
Chapter 8) is a very aggressive RISC architecture specifically tailored for 
SOC design [356]. Its commercial offer is completed by an advanced 
design exploration tool that exactly implements the adaptive machine 
paradigm suggested by Athanas/Silverman. The user is put in condition 
to analyze and carefully profile its application, and consequently deter-
mine candidate kernels for instruction set extension. Such kernels are then 
described by a proprietary verilog-like language (TIE, Tensilica Instruction 
Extension) and synthesized into function unit that are then seamlessly 
plugged in the processor pipeline [261]. Referring to the landscape des-

vity at mask level, to provide an original paradigm for SoC design. ASIP 
design and verification costs are minimized by the re-use of a fixed core 
and development environment, while application-specific computation 
capabilities are added at design time to the micro-architecture in order to 
guarantee performance without altering the computation model. 

On the other side of the spectrum top FPGA vendors such as Altera and 
Xilinx provide in their products microprocessor cores (either soft cores 

second featuring a Xilinx FPGA for implementation of the ISA extension. 
Although similar in concept, this approach differs from dynamically pro- 

posed of two boards, one hosting a Motorola M68010 processor and a 

grammable microcode because, rather than composing differently elementary

added to the processor datapath. 
datapath functionality, in this case entirely new primitive operations are

cribed in Figure 9.2, products like Xtensa implement instruction set adapti-
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mapped on the field-programmable logic or hard cores hardwired on 
silicon) that can be coupled to surrounding programmable logic to provide 
design-time extension of the processor capabilities. In particular, the Altera 
NIOS II [14] soft processor and toolset are designed in order to allow the 
user to enhance the standard instruction set with user defined instructions, 

Reconfigurable computing 

Configurable computing systems combine programmable hardware with 
programmable processors to capitalize on the strengths of hardware and 
software. Often these systems must also address the difficulties of both 
hardware and software, because they mix the technology. […] 

The configurable computing community is divided into two camps, 
according to the level of abstraction provided by the programmable hard-
ware. The majority of current research efforts use commercial FPGAs and 
manipulate digital circuits through logic gates and flip-flops. In the second 
camp are the newer architectures, which are based on “chunky” function 
units such as complete ALUs and multipliers. These architectures limit the 
programmable hardware to the interconnect among the function units, but 
implement those units in much less IC area. 

 
Even though the mask-level programmable approach is very competitive 

for large sections of the SOC landscape, there exists a market segment that 
shows the need for post-fabrication configurability. Mask-level program-
mable processors provide a solution only valid for that digital processing 
whose volumes can afford the cost of providing a new set of masks for 
each upgrade of the target application field. Since hardware for the new in-
structions is synthesized with an ASIC-like flow and the processor cannot 
be reconfigured after fabrication, high non-recurrent engineering costs may 
arise when specifications for the application need to change or evolve dur-
ing the product lifetime. Furthermore, run-time reconfiguration, as opposed 

the same silicon area, allowing to dynamically reprogram the same logic 

similarly to the Xtensa model. The adaptive core is then mapped on the
Altera FPGA fabric; on one side, this allows dynamic, post-fabrication
reconfigurability of the ISA. On the other hand, the core of the processor is 
also mapped on FPGA fabric and this leads to limitation of the overall
performance. 

W. Mangione-Smith et al., “Seeking Solutions in Reconfigurable Com-
puting”, 1997 [274] 

to design-time reconfiguration, may offer a higher degree of flexibility over 
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for different applications rather than having to add new silicon for every 
defined extension segment. 

The term Reconfigurable Computing (RC) is broadly intended as the capa-
bility to couple software based programmability with dynamic hardware 
programmability. The term is a large umbrella including a lot of different 
technology implementations: discrete and embedded FPGAs, coarse/fine/ 
mixed grain fabrics, VLIW processing, systolic arrays, processor networks 

feasible alternative to tackle the requirements described in section 0. The 
utilization of space-based computation patterns allows RC a density in 
computational power per silicon area largely unmatched by software pro-
grammable architectures, while maintaining the flexibility offered by run-
time programmability. In [97], this is defined as the “Density Advantage” 
of run-time configurable hardware over software programmable proces-
sors. This synergy between dynamic programmability and computational 
power makes, at least on a theoretical standpoint, reconfigurable hardware 
the ideal technology option to deploy run-time instruction set metamor-
phosis. 

classified depending on their grain, that is a qualitative metric of the bit-
width of their interconnect structure and the complexity of their recon-
figurable processing elements (PEs). Field Programmable Gate Arrays 
(FPGAs) are typically island-style architectures where PEs based on 
lookup tables (LUTs) are merged in a bit-oriented interconnect infrastruc-
ture. Featuring small LUT cells and 1-bit interconnect FPGAs are typically 
described as fine-grained. Their very symmetrical and distributed nature 
makes FPGAs very flexible and general purpose, and they can be used to 
tackle both computation-intensive and control-oriented tasks, to the point 
that large commercial FPGAs are often used to build complete Systems-
on-Programmable-Chip (SoPCs) [49]. For highly specialized, low volume 
market segments this represents a viable alternative to SoCs. On the other 
hand, their fine grain leads to redundancy in the computation fabric, and in 
particular in the routing architecture. Arithmetic-oriented datapaths feature 
regular structures, so when targeting computation-intensive applications it 
is possible to achieve higher efficiency designing PEs composed of hard-
wired operators such as ALUs, multipliers or multiplexers. Reconfigurable 
units relying on such multiple-bit width, custom operators are defined 
coarse-grained. These devices trade part of the flexibility of FPGAs in 
order to provide higher performance for specific computations. There exist 
also a set of devices that fall in between the above two classifications, fea-
turing bit widths of 2 or 4 bits, and small computational blocks that are 

and so on. RC has long been considered [38,50,97,98,179,274,342,461] a 

As described in [38,179,180,274,380], reconfigurable architectures are 
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either large LUTS or small arithmetic blocks as 4-bits ALUs. These can be 
classified as medium-grained. 

There are a lot of different possibilities to merge programmable archi-
tectures and reconfigurable hardware into efficient computing machines. 
No model is probably the “absolute” answer to embedded systems require-
ments, but depending on the application some approach proves particularly 
appealing. All this broad category of digital architectures fall under the 
cumulative name of “Reconfigurable Architectures” (RAs), underlining their 
capability to reconfigure at execution time part of their hardware structure 
to support more efficiently the running application. Those parts are defined 
here “Reconfigurable Function Units” (RFUs), and are normally composed 
by a regular mesh of “Processing Elements” (PEs). In this broad domain, we 
use the definition “Reconfigurable Instruction Set Processor (RISP)” for 
those reconfigurable architectures that are tightly integrated in order to 
compute as a single adaptive processing unit according to the Athanas/ 
Silverman paradigm regardless of their hybrid nature. The more general 
term “Reconfigurable Processor” includes all architectures that perform 
processor-oriented computation taking advantage of hardware reconfigura-
tion, elaborating sets of data according to instructions provided in some 
form of programming code. The next two sections will describe the evolu-
tion of the RP concept in the last 10 years, through the description of the 
most significant contributions in the field by both industry and academia. 

Run-time reconfigurable instruction set processors 

In the last decade, we have been witnessing several changes in the embed-
ded processors design fuelled by two conflicting trends. First, the industry 
is dealing with cut-throat competition resulting in the need for increas-
ingly faster time-to-market times in order to cut development costs. At the 
same time, embedded processors are becoming more complex due to the 
migration of increasingly more functionality to a single embedded proces-
sor in order to cut production costs. This has led to the quest for a flexible 
and reusable embedded processor which must still achieve high perform-
ance levels. As a result,embedded processors have evolved from simple 
microcontrollers to digital signal processors to programmable processors. 
We believe that this quest is leading to an embedded processor that com-
prises a programmable processor augmented with reconfigurable hard-
ware. 

S. Wong, S. Vassiliadis, S. Cotofana, “Future Directions of Embedded 
Processors”, 2002 [461] 
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The first significant attempt at deploying instruction set metamorphosis to 
embedded systems taking advantage of run-time configurable hardware is 
P-RISC (PRogrammable Instruction Set Computer), proposed by Razdan/ 
Smith in 1994 [348]. The architecture is depicted in Figure 9.3. The P-
RISC micro-architecture is described as a fixed RISC (a MIPS core) that is 
adaptively extended by instructions mapped on a standard FPGA embed-
ded in the core and defined as a PFU (Programmable Function Unit). In 
fact, the authors never address explicitly the embedded domain and retain 
their work on the micro-architecture point of view. But, with respect to the 
work of Athanas/Silverman they define a straightforward and efficient inter-
face between the core and the PFU, and focus on fitting the PFU into the 
core pipeline. For this reason, their effort can be considered the first refer-
ence for the definition of a run-time adaptive embedded architecture. 

They also propose a compilation model for the ISA extension, starting 
from C specification. A significant drawback of this approach is that the 
proposed extensions are confined to combinatorial 2-inputs 1-output func-
tions. This is done in order to ease the physical interface between core and 
extension and, most of all, to define a clear programming pattern for the 
compiler-based extraction of “interesting” extensions, parts of the source 
code that would benefit from FPGA mapping. Also, a maximum 15/20 
levels of logic are suggested in order to fit in the cycle time of the proces-
sor pipeline. The most interesting concept in P-RISC is that the PFU is 
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Fig. 9.3. P-RISC architecture. 

considered as a function unit of the datapath, just like an additional ALU 



188     Fabio Campi and Claudio Mucci  

PFU operands are read and written through the core register file thus pro-
viding a low-overhead and tightly coupled model. This is very friendly 
from the compiler and programmer point of view. 

Later attempts try to overcome the shortcomings of P-RISC, while 
maintaining its significant strong-points. In Chimaera [201] the FPGA is 
divided in eight rows (defined Reconfigurable Function Units or RFUs) 
that can be programmed and computed independently, in order to minimize 
the latency for reconfiguration. One Chip [458] is a reconfigurable RISC 
processor that is also based on the function unit model, but differently 
from P-RISC and Chimera the reconfigurable units allow the implementa-
tion of finite state machines (FSM). 

A significant novel step is represented by the “GARP” processor, which 
is shown in Figure 9.4. GARP [65] couples a MIPS with a custom de-
signed reconfigurable unit, addressed as a coprocessor with explicit Move 
instructions. As in P-RISC, configuration and computation on the recon-
figurable unit are triggered by specific assembly instructions. Unlike pre-
viously described machines, the granularity of tasks mapped on the unit is 
quite coarse, to fully exploit the potentiality of the space-based computa-
tion approach. Another interesting aspect is that the coprocessor features 
direct access to memory. This approach allows a larger data bandwidth to 
the extension unit than that allowed by the core register file, although it 
raises relevant issues regarding memory access coherency. A significant 
drawback of GARP is the explicit data movement required to handle the 
extension unit, that cause a communication overhead that can only be 
made negligible mapping very coarse tasks on the unit. 

Differently from the case of P-RISC the internal structure of the recon-
figurable unit is custom designed. It is composed of an array of 24 rows of 
32 LUT-based logic elements. Unlike commercial FPGAs, whose granu-
larity is typically 1 bit, each element processes 2 bits and bit pairs are 
routed together through the interconnect structure, making the array more 
suited for the elaboration of the 32-bit operands typically handled by the 
RISC core. This is an important point that will influence most following 
architectures: adaptive extension units embedded in RPs are often used to 
perform datapath-oriented, arithmetic computations; control oriented task 
are usually less time critical and can be served by the attached RISC. Con-
sequently, it appears convenient for RPs to feature “coarser” bit granulari-
ties in the design of computation blocks and interconnections. This choice 
allows for smaller sizes and higher performance; as a drawback, bit-wise 
tasks and generally control oriented applications are more difficult and 
inefficient to map, as they do not fit well in the 2-bit pattern.  
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Fig. 9.4. Schematic view of the GARP processor. 

The GARP reconfigurable unit is organized in rows. Fast carry chains 
are implemented row-wide to provide efficient 32-bit arithmetical/logical 
operations on a single row. Each row can be approximated to a 32-bit 
ALU. An embedded hardware sequencer is added to the unit, in order to 
activate operators (each row can map a single operator) with appropriate 
timing to build a customized pipeline.  

This structure provides a significant enhancement in the programming 
pattern of the instruction set extension. Candidate kernels are not any more 
translated in HDL and synthesized over FPGA logic: they are described at 
C-level and decomposed in Data-Flow-Graphs (DFG), determining ele-
mentary operators and their data dependencies, and then mapped over the 
existing LUT resources. GARP renounces to logic synthesis and to a hard-
ware oriented approach of instruction set metamorphosis. The sequencer 
embedded in the configurable hardware allows for an imperative computing 
pattern that matches very well with C language and the GARP C compiler, 
thus easing a lot the gap between software and hardware programming 
indicated by Athanas/Silverman as the key issue in the deployment of 
instruction set adaptivity. GARP is supported by a compiling tool-chain 
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based on the SUIF infrastructure [457], producing both assembly code for 
the MIPS (software image) and configuration bit-stream for the embedded 
array (hardware image). 

RISP. In contrast to GARP, MOLEN was not designed at circuit level. It 
has been implemented on a Xilinx Virtex-II chip coupling the on-chip 
PowerPC microprocessor with the Xilinx reconfigurable fabric, but in fact 
the approach is quite independent from the device used to prove its feasi-
bility. The significant contribution of MOLEN does not reside in its physical 
implementation, but in the theoretical approach to HW/SW co-processing 
and micro-architecture definition. The MOLEN contribution can be des-
cribed as 

• A novel processor organization and programming paradigm 
• A compiler methodology for code optimization 

A significant difference with all previously described architectures is 
that MOLEN does not attempt to propose a mean for “hardware/software 
co-compilation”. Tasks to be mapped on the programmable hardware unit 

determined by co-compilation of the source code, but are defined sepa-
rately as libraries with an orthogonal HDL-based flow. This could be con-
sidered a drawback in the compilation approach, as it requires the user of 
the RP to be fully responsible of the extension segment design (hardware 

in HDL design, synthesis and place and route of the extension functiona-
lity over third-party tools without any assistance from the RP compilation 
environment. This could raise issues for algorithmic developers not profi-
cient with hardware design. On the other hand, this choice allows a large 
degree of freedom in the implementation; in fact, the MOLEN paradigm 
can be extended to any technology support both from the processor and the 
reconfigurable unit point of view, taking advantage of the development in 
both fields while retaining the architectural framework. Also, as described 
in [436], the microcoded approach allows MOLEN-based RISPs to 
achieve speedups that are almost 100% of the theoretically achievable 
speedup according to Amdahl’s law, much higher than speedups achieved 
by hybrid compilation. 

• A microcode-based approach to the RP microarchitecture

Microcoded in the processor architecture. Instruction set extensions are not 
are considered in the source code as atomic tasks, primitive operations

c

P-RISC and GARP, a fundamental milestone in the formalization of the 
The MOLEN polymorphic processor [436] can be considered, with

image). Designing microcode for the adaptive extensions (ρµ- ode) consists 
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Fig. 9.5. Schematic description of the Molen Architecture. 

 
The MOLEN micro-architecture, shown in Figure 9.5, is structured as 

follows: instructions are decoded by an arbiter determining which unit is 
targeted. “Normal” instructions are computed by the Core Processor (CP) 

the RP. This, in turn, is composed of a computational unit called Custom 
Configured Unit (CCU) and a reconfigurable microcode control unit ( µ-

array, and includes a caching mechanism for the configuration bits. Ex-
change of data between GPP and RP is performed via specific exchange 

consistency programming paradigm is defined. The paradigm allows con-
current hardware execution: several extension segments can be run concur-
rently on the CCU depending on its size and internal structure. Table 9.1 
describes the list of required instructions, denoted as polymorphic Instruc-
tion Set Architecture ( -ISA): six instructions are required for controlling 
the reconfigurable hardware, while two are used for handling GPP/RP data 
transfers. 

π

ρ
code unit). The control unit allows partial reconfiguration of regions in the 

ρ

while instructions targeting the reconfigurable hardware are computed on 

registers (XREGs). In order to target the µ-coded processor, a sequential 
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Table 9.1. MOLEN programming paradigm. 
The п–ISA (polymorphic instruction set). 

 It should be observed that both in the case of GARP and MOLEN ex-
tension segments are handled as coprocessors rather than function units, 
and data are explicitly transferred from the core to the extensions. In order 
to guarantee enough data bandwidth direct access from the extension seg-
ments to data memory is allowed, although there is no specific handling 
for multiple access consistency with respect to the core processor. It is in-
teresting to note that, as technology advance in RC leads to the design of 
denser and denser extension segments, those segments also become more 
data hungry. One issue that emerges from these later efforts is that the P-
RISC function unit paradigm, albeit more elegant and compiler friendly, 

Extension Instruction Description 
partial set  
(p-set < address > )  

performs those configurations that cover 
common parts of multiple functions and/or 
frequently used functions 

complete set  
(c-set < address >)  

performs the configurations of the  
remaining blocks of the CCU (not  
covered by the p-set) to complete the CCU 
functionality. In case no partial  
reconfigurable hardware is present, the c-set 
instruction alone can be utilized to perform 
all the necessary configurations. 

Execute < address > controls the execution of the operations on 
the CCU. Several Execute can be run  
concurrently depending on the CCU  
architecture and size.  

Set prefetch  
< address > 

prefetches the microcode for CCU  
reconfigurations into local on-chip  
storage (the ρµ-code unit) in order to limit 
microcode load penalty. 

Execute prefetch  
< address > 

same as the set prefetch instruction,  
but related to microcode for CCU  
executions. 

Break used as a synchronization mechanism to 
complete the parallel execution. 

movtx XREGa Rb move the content of general-purpose  
register Rb to XREGa. 

movfx Ra, XREGb move the content of exchange register 
XREGb to general-purpose register Ra. 
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hardly provide enough computation parallelism to justify the reconfigur-
able hardware inclusion. 

P-RISC, GARP, and MOLEN represent from a theoretical standpoint 
the milestones that have brought to the formalization of the RISP concept, 
in terms of micro-architecture, programming paradigm, and compilation 
approach. From the physical implementation side, an interesting attempt is 
described in [51], where a RISP is fabricated in CMOS 0.18 µm techno-
logy coupling an Xtensa core with an embedded FPGA device to imple-
ment essentially the P-RISC concept in one silicon die. The considerable 
difficulties reported in the eFPGA/core interface in terms of pipeline syn-
chronization and frequency domain adjustment suggest that the GARP 
approach of designing a specific hardware accelerator rather than relying 
on existing FPGA technology may prove a good investment in order to 
design a portable and reliable RP that can be safely included as IP in the 
embedded domain. 

XiRisc [66,270] can be considered the first silicon implementation of 
a custom designed embedded RISP. The design was performed at circuit 
level both for what concerns the core and the reconfigurable unit. XiRisc, 
which is shown in Figure 9.6, is composed of a Very Long Instruction Word 
(VLIW) core based on a five-stage pipeline. It includes two hardwired 
computation channels and an additional pipelined run-time configurable 
datapath (defined PiCoGA) acting as adaptive repository of application-
specific functional units. The VLIW core determines two symmetrical 
separate execution flows. The reconfigurable unit dynamically implements 
a third concurrent flow, extending the processor instruction set with multi-
cycle pipelined functionalities of variable latency, according to the instruc-
tion set metamorphosis pattern. Unlike GARP or MOLEN, extension 
segments are tightly integrated in the processor core receiving inputs and 
writing back results from/to the register file. As in P-RISC, the extension 
segments are fit in the processor pipeline and there is no direct access to 
memory. Differently from P-RISC, complex multi-cycle tasks can be map-
ped on the extension. In order to provide sufficient data bandwidth to the 
extension segments, PiCoGA features four source and two destination 
registers for each issued computation. Moreover, it can hold an internal 
state across several computations, thus reducing the pressure on connec-
tion to the register file. Synchronization and consistency between program 
flow and PiCoGA elaboration is ensured by a register locking mechanism, 
which handles read-after-write hazards. 

According to the MOLEN paradigm, computation and dynamic recon-
figuration are handled by a small set of specific assembly instructions Con-
figuration is loaded inside the array reading from an on-chip configuration 
cache that is fed from the on-chip main memory or from an off-chip Flash 
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Fig. 9.6. XiRisc internal architecture. 

or DRAM repository. PiCoGA is a multi-context device: in order to avoid 
stalls due to reconfiguration when different configurations are required in a 
short time span, several extension segments may be stored inside the array 
(up to 16) and are immediately available. 

Similarly to GARP, PiCoGA is organized in rows. A hardwired pipeline 
management unit is embedded in the array, and it is used to activate row 
elaboration according to the chosen computation pattern. This enables the 
user to program the extension segments as application-specific datapath 
implementing customized pipelines determined by configuration. Each row 
represents a stage in the pipeline. This solution imposes some limitation 
in the definition of extension segments with respect to an HDL-based 
approach; on the other hand, from the programmer point of view, a direct 
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implementation of a Data Flow Graphs (DFG) becomes quite straightfor-
ward significantly shortening development costs. Furthermore, computa-
tional resources on the array are utilized according to a heavily pipelined 
pattern that can maintain high area and energy efficiency while achieving a 
significant data throughput. DFG handling is quite more sophisticated than 
in the case of GARP: multiple fan-out nodes are acceptable, and it is pos-
sible to fill the pipeline with successive issues only depending on the DFG 
issue delay (i.e. the pipeline need not to be empty before the insertion of a 
new issue). Furthermore, DFGs can be cyclic, so a second issue of a given 
computation may read a state from the first (e.g. to implement accumula-
tors). More than a single node/operator can fit in a given row provided 
they belong to the same pipeline stage. Finally, up to four pipelined exten-
sions can be computed concurrently on the gate-array, and dynamic hard-
ware resolution logic is used to handle each pipeline flow independently to 
avoid conflicts on the register file write-back channels. 

One of the most interesting aspects of XiRisc is its application develop-
ment flow [299]. Candidate kernels for implementation on reconfigurable 
hardware are identified manually by application profiling, as suggested by 
Athanas/Silverman. Kernels are typically smaller than those utilized for 
acceleration in GARP or MOLEN, as XiRisc much like P-RISC exploits 
instruction-level parallelism at assembly level, rather than task-level paral-
lelism. Extracted kernels are written in single-assignment C syntax, and 
compiled by a proprietary tool that extracts parallelism between the Data 
Flow Graph (DFG) nodes (C operators) and consequently builds a pipe-
lined implementation of the DFG and map it over the available hardware 
resources. The proprietary tool, defined GriffyC compiler generates the 
hardware image (bitstream) as well as back-annotation information for the 
compiler scheduling [253] (latency, issue delay, load penalty for each ex-
tension). 

The pipelined nature of the hardware extension unit allow every exten-
sion segment to work at the fixed frequency of the main processor (com-
plexity of the kernel is traded in terms of additional latency cycles at fixed 
speed), thus avoiding all synchronization and clock domain crossing issue. 
Furthermore, the place and route step can not build paths that require dif-
ferent speed. Thus, all application development can be performed at DFG 
level, and extensions performance does not depend on the physical map-
ping step. It is thus possible to iterate design space exploration simply 
working on software profiling and DFG optimization, only resorting to 
place and route tools for bit-stream generation. 

In conclusion, XiRisc is strictly based on the Athanas/Silverman concept 
of instruction set adaptivity already implemented in P-RISC. The element 
of novelty in this respect is that it provides multi-context configuration, 
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a heavy pipelining and a dynamic control of concurrent computation on the 
extension segments. The hardwired control unit, similar in concept to that 
of GARP, allows for better and denser utilization of the configurable 
hardware resources, and enables the user to perform algorithm mapping 
and design space exploration in a C environment and at DFG-level, avoid-
ing the need for hardware knowledge and hardware related design flows. 
Several aspects of the XiRisc micro-architecture, compilation approach 

MOLEN, based on HDL-oriented microcoding of the extension segments 
that benefit by massive task-level parallelism. 

Coarse-grained reconfigurable processors 

Reconfigurable Computing mostly stresses the use of coarse grain recon-
figurable arrays (RAs) with paths greater than one bit, because fine-
grained architectures are much less efficient because of huge routing area 
overhead and poor routability. Since computational datapaths have regu-
lar structure, full custom design of reconfigurable datapath units can be 
drastically more area-efficient than by assembling FPGA way from single 
bit CLBs. Coarse grained architectures provide operator level CFB (com-
plex functional blocks), word level datapaths, and powerful and very area-
efficient datapath routing switches. 

R. Hartenstein, “A decade of Reconfigurable Computing: a visionary 
retrospective” [180] 
 

FPGAs have historically been used as programmable computing plat-
forms, in order to provide performance effective solutions to challenge 
NRE costs and time-to-market issues in the implementation of computa-
tionally intensive tasks. For this reason, FPGA fabrics were the immediate 
choice for implementation of extension segments in the first attempts at 
designing RPs such as PRISM, P-RISC, OneChip and others. Soon, it ap-
peared evident that RPs required computational features different from 

and ISA-extension comply to the MOLEN paradigm. The difference bet-

remain largely smaller than those available by micro-architectures like 

ween the two approaches resides in the extension segments size and nature,
and in the type of parallelism they tend to exploit. The high computation
density offered by XiRisc allow for a relatively small area and impres-
sive energy consumption reduction figures (70% to 90%), thus making

XiRisc remains oriented at instruction-level parallelism. Sheer speedups
XiRisc a good candidate for IP re-use in SOC design. On the other hand, 

standard FPGAs: being essentially part of the processor datapath, exten-
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sion segments are typically computation – rather than control – oriented 
and data widths are typically larger than one. Another critical issue is data 
flow synchronization: in FPGAs control is synthesized on LUTs together 
with computation. In case of datapath-oriented elaboration control is very 
regular, so that it is possible to explore alternative, hardwired synchroniza-
tion means allowing for much more compact implementations: the recon-
figurable units in GARP and XiRisc, while still FPGA-oriented, represent 
a first attempt in enlarging the grain of the processing elements and imple-
menting synchronization with an hardwired sequencer. Furthermore, basic 
arithmetic operations such as multiplications simply do not fit well when 

able delays and area occupation. In such cases, application-specific logic 
such as hardwired multipliers is the only way to achieve the necessary per-
formance.  

If extension segments are very arithmetic-oriented and bit-level compu-
tation is not necessary, then the above described approach can be taken to 
extremes renouncing to LUTs and exploiting coarse-grained hardware. We 
will define RPs based on coarse-grained hardwired operators rather than 
on fine-grained LUTs as coarse-grained reconfigurable processors. A sig-
nificant benefit of this approach is the massive reduction of configuration 
memory and configuration time, as well as the reduction of complexity in 
the place and route step. The obvious drawback is that algorithm mapping 
and interconnect resolution, if certainly simpler than in the case of FPGAs, 
is necessarily non-standard, and very architecture-specific. Shifting towards 
coarser grained RFUs, the definition of the PE internal structure becomes 
the focal trade-off in the design of the RP. As the number of options and 
the complexity in the design of the PE increase, its choice is necessarily 
influenced by the targeted application domain. As a consequence, per-
formance in that application field will be very impressive, but RPs will not 
scale well to different application environments. Coarse-grained RPs will 

The literature in the field of coarse-grain reconfigurable hardware is 
very rich, and a detailed analysis is out of the scope of the present work. 
Notwithstanding, this chapter will contain a brief overview of those archi-
tectures that were more successfully utilized to build RP, or that are related 
to the perception of RPs in embedded systems. 

PipeRench [159] is one of the first and more original run-time re-
configurable datapaths appearing in literature. It is composed by a set of 
configurable “stripes”. Each stripe maps a pipeline stage of the required 
computation, and is composed by an interconnect network and a set of 
PEs. In turn, each PE contains one arithmetic logic unit and a pass register 

synthesized over fine-grain LUT-based technology, leading to unafford-

architectures described earlier, but rather domain oriented. 
then be no more general purpose, as it was the case for the fine-grained
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file that is used to implement the pipeline. ALUs are composed of lookup 
tables (LUTs) plus specific circuitry for carry chains. Multiplication spe-
cific logic is not present in the stripes, so multipliers are built out of multiple 
adder instances. The configuration overhead is minimized as the configu-
ration flows through the pipeline: configuration is not static, but is split 
into pieces that correspond to each pipeline stage, and each stage is loaded, 
one per cycle, into hardware. Each stripe can then perform a different 
functionality per each cycle, thus providing an efficient time-multiplexing 
in the usage of each resource. The granularity of the computation fabric is 
parametric, but best performance results are obtained with 16 instances of 
4- or 8-bit PEs per stripe, so that we can define the datapath as average-
grained. The PipeRench fabric is quite general purpose, offering good 
speedups for a large spectrum of applications.  

PipeRench features an efficient compilation toolchain; as it is the case 
with most average and coarse-grained fabrics, a simplified format of C, in 
this case defined Dataflow Intermediate Language (DIL), is used as entry 
language. The size and specificity of the target operators make possible to 
avoid logic synthesis, and perform simple mapping of C-level operators 
directly to hardware resources. As in the case of XiRisc, operators to be 
mapped on the fabric are described at Data Flow Graph (DFG) level by a 
single-assignment C-based format, where variable size can be specified by 
the programmer, and then translated on one or more PEs on the stripe after 
an automated Instruction-Level Parallelism (ILP) extraction. 

The PACT XPP digital signal processor [445] is composed by a set of 
Processing Array Clusters (PACs), each composed by an array of hetero-
geneous Processing Array Elements (PAEs) and a low level Configuration 
Manager (CM). Configuration Managers are organized in a hierarchical 
tree that handles the bit-stream loading mechanism. Communication bet-
ween PAEs is handled by a packet-oriented interconnect network. Each 
PAE has 16-bit granularity and is composed by synchronization register 
and arithmetical/logical operations, including multiplication. Data exchange 
is performed by transmission of packets through the communication net-
work, while I/O is handled by specific ports located at the four corners of 
the array. The PACT XPP architecture is depicted in Figure 9.7. 

In normal operation mode, PAE objects are self-synchronizing: an opera-
tion is performed as soon as all necessary data input packets are available, 
and results are forwarded as soon as they are available. As the full exploi-
tation of parallelism at all levels is very critical to fully exploit the rele-
vant computational potential of the architecture, PACT XPP is programmed 
through the Native Machine Language (NML), a structural event-based net-
list description language. As described in [92] XPP can be applied also to 
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Fig. 9.7. Schematic description of the Pact XPP processor. 

control-intensive tasks but the best performance figures are delivered when 
dealing with data intensive, highly parallel kernels. 

We can consider PACT and PipeRench as peculiar RPs, in that they 
break the classic Athanas/Silverman concept of extending a standard RISC 
instruction set with new instructions.  

Of course, it is possible to use them in cooperation with standard micro-
processors to build complete computation systems, but they do not require 
a main core to handle control, instruction sequencing, and pipeline synchro-

figuration sequencing (that is, spatial distribution, dynamically pipelined or 
not, of configuration bits) and they process data streams instead of single 
random accessed memory words. This concept of communication-centric 
distributed computation is similar in principle to Transport Triggered 
Architectures (TTAs) [92], and it is indeed quite promising when applied 
to reconfigurable hardware because this micro-architectural paradigm, com-
pared to the Von Neumann paradigm, appears more suitable to support a 
scalable number of function units, each with scalable latency and through-
put. On the other hand, this promising approach has three main open issues. 
One is the communication infrastructure that needs to be large yet flexible 
enough to allow the necessary throughput between the different function 
units (PEs). A second open issue is related to tools and programming lan-
guages; this concern is certainly true also for adaptive instruction set pro-
cessors, but the RISC framework in which the latter operate allows the 
user to be in a more familiar, C-oriented environment for most of the app-
lication mapping, focusing on reconfigurable hardware exploitation only 
for kernels. Non-RISP reconfigurable datapaths can certainly describe 

instruction sequencing (that is, cycle per cycle instruction fetching) by con-
nization. More or less explicitly, they propose to replace the concept of
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computation with C-like syntax, but mapping larger and more control-
oriented tasks than RISPs, they need also to describe synchronization bet-
ween operators, and this requires structures and tools often unfamiliar to 
application developers. One last issue is related to the memory addressing 
scheme: not all computation kernels in the embedded domain can be chal-
lenged with a streaming paradigm, and for many cases it appears impos-
sible to renounce to the addressing flexibility offered by standard cores. In 
fact, this last issue is common to all RPs, so it will be discussed more thor-
oughly in the following. 

Other coarse-grained devices are based on the concept of instruction set 
Metamorphosis introduced above, only utilizing a different architectural sup-
port for mapping extension segments: morphosys, also shown in Figure 9.8, 
[380] is a very successful RP that also been the base for a few successful 
commercial implementations. It is composed by a small 32-bit RISC core 
(TinyRisc), coupled to a so-called Reconfigurable Cell Array. The array is 
composed by an 8×8 array of identical Reconfigurable Cells (RCs). Cells 
are very coarse: each computes 16-bit words and contains multiplier, ALU, 
shifter, a small local register file and an input multiplexing logic. The 
architecture comprises a multi-context configuration memory, that is capa-
ble to overlap computation and configuration in order to minimize recon-
figuration penalty, and a multi-bank frame buffer that is used to overlap 
computation on one set of data and concurrent transfers on a parallel set to 
enhance overall data throughput. 

Over the RCs, computation is performed in a purely Single Instruction 
Multiple Data (SIMD) fashion: all cells belonging to the same row receive 
the same control word, and thus compute the same calculation over extended 
128-bit words. It appears thus evident that the Morphosys reconfigurable 
cell array is very performant and has a much higher area efficiency with 
respect to FPGA-based solutions described earlier, but it is also rather do-
main oriented: the machine is conceived for applications with relevant data 
parallelism, high regularity, and high throughput requirements such as 
video compression, graphics and image processing, data encryption, and 
DSP transforms. Its large size and SIMD-oriented structure would make 
it redundant for application fields that exploit task-level parallelism or 
instruction-level parallelism. 

Several other coarse-grained RPs have appeared in literature, such as 
REMARC [291] or Butter [57,58], but from the micro-architecture point of 
view they can all be referred more or less to the concepts described above. 
In terms of commercially available offers, the coarse-grained RISP concept 
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Fig. 9.8. The Morphosys reconfigurable architecture. 

is exploited at the moment by two interesting implementations. The S5 
[25] core from the US company Stretch consists of a Tensilica Xtensa core 
whose extensions are dynamically mapped over an Instruction Set Exten-
sion Fabric (ISEF). The fabric is provided with 128-bit wide register access 
and 128-bit wide memory access to feed the extension segments that are 
described and compiled starting from C/C++ code. ISEF is composed by a 
plane of 4-bit arithmetic/logic elements and a plane of multipliers inter-
linked in a programmable routing fabric. ALUs are cascaded through 
carry-chains to provide 64-bit arithmetic. ALU elements are provided with 
embedded registers to implement state variables or pipeline resources. 
Connection between Xtensa and ISEF is based on the function unit para-
digm applied by P-RISC and XiRisc, even though it supports direct access 
to memory. The DAPDNA-2 core [364] from Japanese IPFLEX is com-
posed by a Digital Application Processor (DAP), a standard Risc core, 
coupled to a Distributed Network Architecture (DNA). The DNA is a net-
work of coarse-grained processing elements of different nature, processing 
large bit-sizes such as 32-bit ALUs/Multipliers or performing control tasks 
such as I/O, address generation, data storage and so on. 

In conclusion, RISPs have evolved from the mapping of combinatorial, 
single cycle functional extension of P-RISC up to the very intensive hyper-

 
parallel SIMD computational pattern of Morphosys-like architectures, but 
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changed. The only aspect that has really changed is the computational grain 
of the ISA extension segments. As a consequence of this shift, one archi-
tectural issue that is becoming more and more critical is the connection 
between reconfigurable units and the system memory in order to provide 
enough data to exploit the extension segment potential. Most coarse-
grained datapaths such as PACT XPP or PipeRench do not actively inter-
vene on the data layout: they simply consume data streams, provided by 
standard external sources or appropriately formatted by the RISC core or 
by specific DMA logic. Morphosys is only slightly more sophisticated, 
featuring a dedicated frame buffer in order to overlap data computation 
and transfers over orthogonal chunks of variable width. RPs based on 
FPGA fabrics, such as MOLEN, could map memory addressing as part of 
the microcoded extension segments, but this option could be costly in 
terms of resources and will make any kind of co-compilation impossible 
creating two different and separate compilation domains. 

An interesting solution is that of ADRES (Architecture for Dynamically 
Reconfigurable Embedded systems) [283]. ADRES exploits a RFU simi-
lar to that of Morphosys, based on very coarse-grained (32-bit) PEs imple-
menting arithmetical/logical operations or multiplications. Differently from 
Morphosys, the ADRES RFU is used as function unit in the frame of a 
VLIW processor. Data exchange with external memory is through the de-
fault path of the VLIW processor, and data exchanges take place on the 
main register file, as it was the case for the XiRisc processor described in 
section 4. The programming model is simplified because both processor 
and RFU share the same memory access. ADRES is completed by a com-
pilation environment, DRESC [282], that schedules ISA extensions in order 
to exploit maximum concurrency with the VLIW core and handles data 
addressing towards the VLIW register file for both reconfigurable array 
and hardwired core. A relevant added value of the compiler, that is made 
possible by the register-file oriented micro-architecture, is that extension 
instructions are generated by the same compilation flow that produces 
code for the hardwired core. Even though the RFU has a grain comparable 
to PACT XPP or MorphoSys, data feed is random accessed and very flexi-
ble, and it is not limited to data streaming. 

Still, the VLIW register file remains a severe bottleneck for RFU data 
access. A different solution is provided by Montium [354,382] a coarse-
grained RP composed of a scalable set of Tile Processors (TP). A TP is 
essentially composed by a set of five 16-bit ALUs, controlled by a specific 
hardwired sequencer. Each TP is provided with 10 1Kbytes RAM buffers, 
 

indeed the micro-architectural concept has remained more or less un-
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feeding each ALU input; buffers are driven by a configurable Address 
Generation Unit (ATU). Montium can be seen rather as a flexible VLIW 
than a RP in the context described in this work, but it is affected by the 
same bottleneck shared by most RP overviewed above: in order to exploit 
its computational density, it needs to fetch from a repository several operands 
per clock, and possibly each of them featuring an independent, if regular, 
addressing pattern. In this respect, automated addressing generation based 
on regular patterns could be an interesting option: most applications that 
benefit from hardware mapping are based on loops, and addressing is more 
often than not generated and incremented with regularity as part of the 
loop. Automated addressing FSMs could add a new level of configurability 
to RPs, providing an adaptive addressing mechanism for adaptive units, 
enhancing potential exploitation of inherent parallelism. As it is the case 
with adaptive computation, automated addressing can be considered an op-

user from manual programming. In fact, it appears theoretically possible to 
automatically extract from a high level (typically C/C++) specification of 
the algorithm regular addressing patterns to be applied to automated add-
ressing FSM: the same issue has long been discussed for high-end Digital 
Signal Processors [81] and it is an open research field also for massively 
parallel systems based on discrete FPGAs [101]. These aspects are only 
very recently being evaluated in RP architectures. 

DREAM [67] is an example of RP that feeds its RFU through automated 
address generation (Table 9.2). DREAM is an adaptive DSP based on a 

dard 32-bit embedded core. Kernel computation is implemented on the 
×16 4-bit PEs. 

The RFU accepts up to 12 32-bit inputs and provides 4 32-bit outputs per 
clock, thus making it impractical to access data on the core register file. 
For this reason, DREAM is provided with 16 memory banks similar to 
those of Montium. On the RFU side, an address generator (AG) is connected 
to each bank. Address Generation parameters are set by specific control 
instructions, and addresses are incremented automatically at each issue of 
an RFU instruction for all the duration of the kernel. AGs provide standard 
STEP and STRIDE [81] capabilities to achieve non-continuous vectorized 
addressing, and a specific MASK functionality allows power-of-2 modulo 

RFU, composed of a hardware sequencer and an array of 24

tion only if supported by solid compilation tools that could spare the end 

addressing in order to realize variable size circular buffers with programmable

medium-grained reconfigurable unit. Program control is performed by a stan-

start point. The reconfigurable architectures are summarized in Table 9.2. 
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Table 9.2. Schematic description of some RP described in the previous sections. 

 Computation 
model 

Computation 
Grain 

Memory 
Data  
Access 

Entry  
Language  
for RFU 

Implementation 

P-RISC  
(94) [348] 

Function  
unit 

1-bit LUT Register 
File 

C (Combi 
natorial  
functions) 

MIPS+Xilinx 
FPGA  
(board-level) 

GARP  
(00) [65] 

Coprocessor 32-bit row, 
2-bit LUT 

Passive  
direct  
access 

C MIPS + Custom 
Gate Array 

MOLEN 
(02) [436] 

Coprocessor 1-bit LUT Direct  
access 
coded on 
RFU 

HDL Xilinx Virtex II 
(PowerPC+ 
Xilinx FPGA) 

(03) [51] Coprocessor 1-bit LUT Direct Ac-

on RFU 

HDL Xtensa + M2000 
eFPGA 

XiRisc 
(03) [66] 

Pipelined 
Function  
unit 

32-bit row, 
2-bit LUT  

Register 
File 

Single  
assignment 
C 

Custom VLIW+ 
Custom Gate  
array  

PipeRench 
(99) [159] 

Pipelined 
Programm- 

128-bit Streaming DIL 
(Single  
assignment 
C) 

Custom 

Pact XPP 
(03) [445] 

Programm-
able  
datapath 

16-bit ALU 
+ rfile 

Streaming nML (event-
triggered  
description) 

Custom 

MorphoSys  
(00) [380] 

Coprocessor 128-bit row,  
16-bit ALU 

Passive Di-
rect access 
via Buffer 

Assembly at 
cell level 
(Mor-
phoAsm) 

TinyRISC +  
Custom Cell  
Array 

ADRES  
(04) [283] 

Function  
unit 

32-bit ALU Register 
File 

C Custom 

DREAM 
(07) [67] 

Coprocessor 64-bit row, 
4-bit LUT + 

Address 
Generation 
FSMs 

Single  
Assigment C 

STxp70 +  
Custom Gate  
Array 

cess coded 

4-bit ALU 

able datapath 16-bit LUT 
stripe, 8/ 



9 Run-Time Reconfigurable Processors      205 

Conclusions 

The vision behind this approach is creating and upgrading accelerators by 
downloading configuration code generated by compilers accepting high 
level programming language sources onto a general purpose reconfigur-
able accelerator […] But the microprocessor will not become obsolete. Its 
role will be to support future reconfigurable computing platforms by run-
ning glue logic, software being not performance critical, and bloatware 
(software that needs masses of primary memory and hard disk storage 
space). But with very powerful future reconfigurable accelerator platforms 
the microprocessor will be the tail wagging the dog. 

1997 [179] 
 
A point common to all literature dealing with RC is that the interaction 

Drp [307], IPFlex ADP DNA [209], Stretch S5 [391], MorphICs WSP 
[295], MorphoTech MS2 [296], Pact XPP [320], Elixent D-Fabrics [119]) 
that can all be classified under the broad denomination of RPs. Still, des-
pite claims that “The time has come for a reconfigurable revolution” that 
were regularly iterated over the last 12 years, only few attempts are start-
ing to appear in commercial SoC, very slowly and for very specific appli-
cation fields. It is probably the huge success of the SoC itself that has 
slowed down the introduction of reconfigurable hardware in the embedded 
world, creating such a well accepted legacy that most designers are reluc-
tant to abandon it to explore new design alternatives. The methodology of 
accelerating computation via ASIC has indeed built the SoC success, and it 
is so deeply established in our minds that the only metric for evaluating the 
inclusion of a computational engine in a SoC is currently area occupation. 
Obviously, the Kgate/mm2 figures provided by any reconfigurable hard-
ware will never be any way near that of a small microcontroller surrounded 
by ASIC circuitry, in spite of all the flexibility and configurability it can 
 

R. Hartenstein, “The Microprocessor Is No More General Purpose”, 

arrays of processing elements, reconfigurable accelerators for standard pro- 
cessors or RISPs (PicoChip [32], Silicon Hive Moustique [220], NEC 

between microprocessor cores and reconfigurable hardware holds the pro-
mise of breaking the gap between computational requirements and program-
mable architectures capabilities. Many authors have described RC as the
main architectural breakthrough in digital processing after the introduction
of the microprocessor itself. It is indeed true that the high-end processor/
DSP IP market is facing a very consistent offer of processor networks, 
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offer. If this long awaited revolution will finally make its way through 
in the SoC world, it will be literally imposed by the rate of algorithmic inno-
vation. Applications evolve much faster than standardization, and time to 
market and cost of SoCs targeting the same algorithms are steadily increas-
ing, so post-fabrication configurability appears a necessity. Still, most of 
the SoC structure will need to remain unchanged, to preserve the huge leg-
acy that most companies have developed in the field, and because a few 
general-purpose critical computations will have to be handled by ASIC 
anyway. For this reason, the revolution will probably consist in a slow and 

platforms, where different flavours of reconfigurable hardware, each more 
suited to a given application environment, will be merged with ASIC and 
general-purpose processors to provide ideal trade-off between performance 
and post-fabrication programmability. 

In this landscape, the fundamental parameters in the evaluation of a can-
didate RP for inclusion as IP in SoC design can be classified as follows: 

a) 

b) The application mapping flow and its entry language 
c) 

feed, synchronization) 

Regarding (a), one point that appears from the analysis performed in the 
first two sections of this chapter is that fine-grain FPGAs appear mostly 
redundant for RPs requirements, as the flexibility they provide is rarely 
exploited by applications and require heavy costs in terms of performance. 

rather than having variable frequency depending on the application map-
ping. This said, the ideal grain of the processing elements is entirely depen-
dent on algorithmic specifications. Imaging and multimedia applications in 
general greatly benefit from coarse standard processing elements and large 
data-widths, and feature relevant data- and task-level parallelism. Tele-
communication protocols, especially in the wireless field, feature degrees 

rather than streaming; also, data widths are normally smaller. Encryption 
and data security applications normally involve bit-wise computation and 
parallelism at data and instruction level, but not at task level. 

tures appears manifest, C-oriented entry languages are preferred and they 
are often exploited to map directly operators and their dependencies to 

graceful shift of SoCs from application-specific circuits to domain oriented 

Interconnect Infrastructure) 

of instruction-level parallelism, and often require random access to data 

The design/choice of the reconfigurable fabric (Computation Grain, 

The interaction between the fabric and the processor core (operand 

appears advisable to map computation on fixed speed, pipelined fabrics 
Moreover, in order to avoid clock domain synchronization issues, it

to-market. As the orientation towards medium- to coarse-grained architec-
Issue (b) is related to a trade-off between performance and time-
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hardware through DFG-oriented computation. HDL-based flows are used 
for targeting FPGA-based RP but this tendency is not suited to SoC design, 
both for the area penalty of fine-grained RFUs and for the inherent diffi-
culties by application developers in utilizing hardware-oriented program-
ming patterns.  

Medium-grain architectures as Piperench or XiRisc exploit DFG-oriented 
design tools obtaining good mapping results from user-friendly single 
assignment C descriptions, but their performance is limited by the grain of 
their PEs. On the other side of the spectrum, the coarser the grain of the re-
configurable fabric, the more difficult it is to provide efficient implementa-
tion and good routability starting from automated tools, so that in most 
practical cases performance is only obtained with manual mapping or 
event oriented description languages. An exception to this trend is repre-
sented by the DRESC compilation environment. 

As for point (c), RISPs adaptively extend a standard processor ISA with 
application-specific instructions, typically with some sort of tightly coupled 
function unit or loosely coupled coprocessor interface. The coprocessor 
interface eases synchronization issues and has proved so far very popular 
especially for market-oriented RP implementation, but the function unit 
interface as described in ADRES holds the promise for a better and more 
coherent compilation framework. Other RPs explore innovative patterns, 
based on data streaming, distributed processing and data driven computa-
tion. In all cases, data I/O to reconfigurable hardware appears at the moment 
a severe bottleneck, and how to program and implement data movements 
remains an open issue, especially from the compilation point of view. 
Finally, the choice of the controlling RISC core appears often irrelevant to 
the definition of the architecture. With the relevant exceptions of ADRES 
and XiRisc, reconfigurable units have grown to the point where co-
computation between the core and the reconfigurable device is not worth 
exploiting, and only basic control tasks are normally trusted to the RISC. 
The presence of a RISC core is almost always necessary, but there exist no 
real constraint on its nature and its computational capabilities.  

In conclusion, dynamic instruction set metamorphosis is, after all, find-
ing its way into SoC design. The elegant Athanas/Silverman approach app-
lied in machines like PRISM and P-RISC is still valid. On the practical 
side though, the level of parallelism that it targeted appears in most cases 
not massive enough to justify the costs and uncertainties of including re-
configurable hardware in embedded systems, so today’s reconfigurable 
extensions tend to be larger, coarser and more complex than the first 
embedded FPGA fabrics. Guidelines for the design of the reconfigurable 
unit can hardly be formalized, as the choice of granularity and internal 
structure still must be application oriented in order to find the ideal cost/ 
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performance trade-off. RPs are certainly not application specific, but to 
date they are not general purpose either, as to deliver necessary perform-
ance they still need to be domain oriented. The choice of the ideal pro-
gramming pattern and language is strongly oriented towards C/C++ and its 
hardware dialects, but this aspect is also related to the targeted reconfigur-
able hardware, and thus, ultimately, to the application domain. Research is 
very active in various aspects, but the best approach to RP appears at the 
moment to couple a small standard core dedicated to program flow, data 
movement and synchronization tasks to one (or more than one) large, 
medium to coarse-grained, domain oriented configurable devices performing 
intensive computation. So that, as Reiner Hartenstein colourfully predicted 
in 1997, embedded systems remain processor-oriented, although micro-
processors are becoming the small, smart tail wagging a big dull dog made 
of run-time programmable hardware. 



Multimedia Applications 

Claudio Brunelli and Jari Nurmi 

Tampere University of Technology 

In this chapter, we describe a coprocessor approach to accelerating appli-
cations. We are concentrating on multimedia applications as an illustrative 
example of where this approach can be applied. In everyday life we all 
deal with a number of integrated digital systems which are present into 
almost all the products for consumer electronics. The heart of those 
systems is usually a microprocessor core, which is mainly used to control 
all the other components. 

Need for accelerators 

Many of the items that feature a microprocessor inside them are handheld 
devices, thus posing severe constraints both on the area available and on 
the energy budget and power dissipation. Despite of this, the will for 
conveniently including more and more complex and smart functionalities 
even on simplest devices has been pushing system designers to consider 

In particular, users ask for their portable devices (PDAs) to support 
heavy multimedia and 3D graphics applications, besides other ones which 

Besides others which need general-purpose computations, multimedia 
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10 Coprocessor Approach to Accelerating 

new ways of empowering their architectures with special solutions to guaran-
tee the ability of executing the required functionalities while respecting the
posed constraints. 

applications need to squeeze all the possible performance out of the com- 
putation system, and standard RISC architectures can hardly provide 

are commonly referred to as “general-purpose” computations [213]. 
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The topic of microprocessor acceleration is so wide, ranging from the 
diverse metrics which have been proposed to measure performance in a 
fair and coherent way, going through the different types of algorithmic 
exploitations, to the analysis of different architectures of accelerators, that 
even an entire book could hardly cover it in a proper way. This chapter 
thus will not give an exhaustive dissertation about all the existing 
typologies of accelerators, but will rather try to give a brief overview of 
the main issues related to the topic of microprocessor acceleration, to take 
then a deeper insight into one typology of accelerators in particular which 
has been used for many years and still is used in several designs thanks to 
its modularity and ease of use: the coprocessors. 

Accelerators and different types of parallelism 

Several different architectural approaches were introduced so far to 
achieve high performance; in principle, each solution tries to guarantee 
computational efficiency by taking advantage of known properties of 
application programs running on them. One of the key properties that can 
be exploited is the parallelism, which can be exploited at several levels: 

• Instruction level parallelism (ILP), which measures the possibility to 
execute several instructions at the same time 

• Loop level parallelism, which happens when consecutive loop iterations 
can be executed in parallel 

• Task level parallelism, which means that entire procedures inside the 
program can be executed in parallel 

• Program level parallelism, which is present if multiple independent 
processes can be executed in parallel 

• Data parallelism 

the necessary computational capabilities. For this reason, computer archi- 
tectures shifted from the usage of conventional microprocessors to entire 
“Systems on a Chip” (SoC). Inside SoCs there is usually a main core (might
be an RISC microprocessor or even a powerful DSP) together with a set
of other components ranging from I/O peripherals and DMA controllers to

and dedicated processors tailored to accelerate a precise set of algorithms).
At the beginning such dedicated accelerators were usually custom ASIC
blocks; more recently the fast pace at which applications and standards are
changing pushed SoC designers to go for components which are programm-
able and flexible, while providing at the same time a significant speed-up.

memory blocks and other dedicated computation engines (coprocessors
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Task level and program level parallelism can be usually exploited by the 
operating system (OS) in very complex systems, like multiprocessor SoCs. 
The first two typologies of parallelism, instead, are suitable for exploi-
tation in a wide range of machines. In particular, ILP can be exploited by 
VLIW, pipelined, or superscalar architectures; to exploit data parallelism 
there are instead SIMD, systolic, neural and vector architectures [376,377]. 

Processor architectures and different approaches 

Besides general-purpose microprocessors, a special family of microproces-
sor is the one of DSP processors: they try to guarantee high performance in 
executing a very special category of algorithms, while keeping some 
degree of flexibility thank to the fact that they can be programmed using 
high-level languages. 

In the 1990s also RISC microprocessors became very popular, to the 
point that they replaced some CISC architectures (initially very widely 
adopted thanks to the fact that they needed smaller program memory to run 

Several different approaches have been proposed to implement the 
acceleration of a microprocessor, but in general the main idea consists in 
starting from a general-purpose RISC core and adding extra components 
like dedicated hardware accelerators (for example, this approach is 
followed by Tensilica with their Xtensa architecture [259]). This is due to 
the fact that it is good to keep a certain degree of software program-
mability to keep up with the fact that applications and protocols change 
fast, so having a programmable core in the system is recommendable to 
guarantee general validity and flexibility to the platform. 

One possible way of accelerating a programmable core consists in 
general into exploiting instruction and/or data parallelism of applications 
by providing the processor with VLIW or SIMD extensions; another way 
consists in adding special functional units (for example, MAC circuits, 
barrel shifter, or other special components designed to speed up the 
execution of DSP algorithms) in the datapath of the programmable core 
(usually an RISC core or a DSP) [259]: this way the instruction set of the 
core is extended with specialized instructions aiming at speeding-up 
operations which are both heavy and frequent. 

to acceleration 

applications). The success of ASIC and SoCs eased the advent of post-RISC
processors, which are usually generic RISC architectures, augmented with
additional components. 
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This approach is anyway not always possible or convenient, especially 
if the component to plug into the pipeline is very large. Moreover, large 
ASIC blocks are now not so convenient in the sense that they usually cost 

For this reason many microprocessors come with a special interface 
meant to ease the attachment of external accelerators; there are basically 
two possibilities: 
• using large, general-purpose accelerators to be used for as many 

applications as possible; 
• using very large, powerful, run-time reconfigurable accelerators. 

The design and verification issues related to coprocessors can be faced 
independently from the ones related to the main processor: this way it is 
possible to parallelize the design activities, saving then time, or (in case 
which the core already exists before the coprocessors are designed) the 
coprocessors can be just plugged into the system as black boxes, with no 
need to modify the architecture of the processor. 

The rest of the chapter is organized as follows: the next section explains 
what are the requirements and constraints posed by applications to the 
design and the architecture of hardware coprocessors. The following two 
sections will then provide a general overview about floating-point units 
(FPUs) and reconfigurable machines, respectively, stating in which appli-
cation domains they are needed and why they are getting more and more 
popular; some examples are given to illustrate different practical appro-
aches to the implementation of those architectures. The last section will 
describe examples of each of those two typologies of accelerators. 

Requirements of applications for hardware coprocessors 

Thanks to the advances in modern microelectronics technology, today a 
single chip can host an entire system which is cheap and at the same time 
powerful enough to run several applications, including demanding ones 
like image, video, graphics, and audio, which are becoming extremely 
popular at consumer level even in portable devices.  

These applications are then to be carefully analyzed to determine an 
optimal way to map them to the hardware available: since normally 
applications are made up of a control part and a computation part, the first 

a lot and lack flexibility, so that they become useless whenever the appli- 
cation or the standard they implement changes. 

stage usually consists in locating the computational kernels of the algo- 
rithms. These kernels are usually mapped on dedicated parts of the system
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Different application domains call for different kinds of accelerators: for 
example, applications like robotics, automation, Dolby digital audio, and 

thus the insertion of FPU very useful and sometimes even necessary. 

Accelerators come in different forms and can differ a lot from each 
others: differences can relate to the purpose for which they are designed 
(accelerators can be specifically designed to implement a single algorithm, 
or can instead support a broad series of different applications), their 
implementation technology (ASIC custom design, ASIC standard-cells, 
FPGAs), they way which they interface to the rest of the system, and their 
architecture. 

(namely dedicated processing engines), optimized to exploit the regularity

parts of the code (the control part) is implemented by software running on
a regular microprocessor. Sometimes special versions of known algorithms
are set up in order to meet the demand for an optimal implementation on
hardware circuits. 

3D graphics require floating-point computation [131,214,259], making 

To cover the broad range of modern and computationally demanding 
applications like imaging, video compression, multimedia, we also need 
some other kind of accelerator: those applications usually benefit from 
regular, vector architectures able to exploit the regularity of data while 
satisfying the high bandwidth requirements. A possibility consists in pro-
ducing so called multimedia SoC, which usually are a particular version of 
multiprocessor systems (MPSoCs) containing different types of processors, 
which meets far better the demands than homogeneous MPSoCs. Such 
machines are usually quite large, so a very effective way of solving this 
problem which is widely accepted nowadays is to make those architectures 
run-time reconfigurable. This means that the hardware is done so that the 
datapath of the architecture can be changed by modifying the value of 
special bits, named configuration bits or configware. One first example of 
reconfigurable that became very popular is given by FPGA processors, 
which can be used to implement virtually any circuit by sending the right 
configuration bits to the device. 

The idea of reconfigurability was then developed further, leading to 
custom devices used to implement powerful computation engines; this way 
it is possible implementing several different functionalities on the same 
component, saving area and at the same time tailoring the hardware at 

figurability is an excellent mean of combining the performance of hardware 
circuits with the flexibility of programmable architectures. 

run-time to implement an optimal circuit for a given application. Recon-

of the operations operated on large amounts of data, while the remaining
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Numeric coprocessors: floating-point units 

As stated in the previous section, several of the applications which are 
nowadays very common require (or anyway benefit a lot) from the usage 
of floating-point arithmetic. Historically, the drawback related to floating-
point arithmetic is its significantly higher complexity when compared to 
integer arithmetic. Such complexity translates into very long execution 
time when implemented using software routines; for this reason were 
introduced hardware circuits able to perform floating-point operations in 
much less time, commonly known as FPUs. Again, the complexity of 
floating-point arithmetic lead to the fact that the area of the FPUs is 
usually quite large; this point usually discouraged designers to include 
them into their systems, at least until some years ago. Nowadays, thanks to 
the advances in VLSI technology, that problem is becoming less acute, so 
FPUs are appearing also in embedded and area-limited devices.  

There are different existing typologies of FPU, ranging from proprietary 
to open-source ones, supporting the IEEE-754 standard or not, able of 
single-precision or double precision computation, for usage with CISC or 
RISC machines; they can come either as external coprocessors or internal 
functional unit.  

Considering the world of RISC cores, one of the most important 
examples is given by FPUs for ARM, called VFP-9, VFP-10 and VFP-11, 
just to cite some of them [24]. They are very powerful, vector FPUs, 
supporting also double precision to enhance accuracy in calculation which 
can be needed in some kind of applications like scientific calculus or 
precise positioning control systems. They are pipelined and present some 
functions which can be configured by the user through software configu-
ration. 

MEIKO is an FPU developed at SUN, and has been used together with 
the Leon processor [227], which is an open source RISC core developed at 
Gaisler Research. 

Also an FPU is made available from Gaisler Research, called GRFPU 
[135], which was as well interfaced with LEON processor. Anyway, the 
GRFPU is not really open-source: only some post-synthesis netlists are 
available for personal usage. It also supports double precision arithmetic, 
is pipelined, and complies with SPARC V8 floating-point instructions. 

Generic FPUs are instead available from Opencores, provided by Jidan 
Al-Eryani and from Usselmann. The FPU from Jidan Al-Eryani is a 
complete coprocessor, which features a hardware logic to handle denormal 
operands, even though it does not support parallel execution of the 
instructions. The device from Usselmann is instead a set of functional units 



10 Coprocessor Approach to Accelerating Multimedia Applications      215 

 

operate in parallel. 

single precision arithmetic and all the common arithmetic operations; it has 
also load/store operations.  

Various types of reconfigurable accelerators 

Reconfigurable accelerators appeared quite recently on the scene of 
embedded systems, but opened quickly a wide set of research paths. They 
give the advantages of offering high performance using at the same time a 
small amount of configuration data (configware) and guaranteeing limited 
energy consumption. 

The term “reconfigurable hardware” is used for a wide spectrum of 
devices. Designers interpreted the term in many different ways, producing 
items that are somewhat configurable at run time (for which the term 
“configurable” would be maybe more precise), devices whose instruction 
set can be dynamically adapted like Tensilica proposed [356], and finally 
(and more properly) devices whose hardware circuits can be dynamically 
be modified and adapted at run time to implement a set of given 
applications. 

Again, machines belonging to the last category can be categorized 
according to some criteria like the way which they are connected to the 
rest of the system (coprocessors, functional units, I/O processors), to the 
bit-width of the operands they can process (leading to fine grain or coarse 

Tensilica interpreted (re)configurability at several abstraction levels, 
providing automatic tools able to place and connect together many, 
embedded IP blocks to optimally partition a complex algorithm and get it 
executed simultaneously by the processing units. This approach can be 
very efficient in situations where a clear partition of the applications can 
be carried out, even though sometimes it might lead to the implementation 
of large and complex systems. 

grain architectures) [180,423]. 

In the case of XiRISC processor, developed at the University of Bologna, 
the reconfigurable hardware is a functional unit named PicoGA inserted 
inside the datapath of a VLIW microprocessor [272]. An advantage of this 

(like GRFPU), and does not feature an independent register file, nor a 

Finally, a particular case is the one of FPUs which are especially optimized 

control and interface logic. The functional units are pipelined and can 

for FPGA implementation: Xilinx and Altera have available dedicated 

Hitachi created an FPU for CalmRISC32 microprocessor [214]; it features 

FPUs to their soft-cores (Microblaze and Nios) [13,15,340,467,468]. 
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Many different devices follow instead the coprocessor approach. The 
reconfigurable devices are then external components which are somehow 
attached to the core or to the system bus. It is almost impossible to report 
all the different reconfigurable architectures which have been proposed, 
but we will now try to report at least some of them. 

Also Morphosys [379] and Adres [283] are coarse grain reconfigurable 
coprocessors, organized in an 8×8 matrix of processing elements. They are 
targeted to image processing and applications characterized by a large 
number of data-parallel operations, but also to applications like Viterbi 
decoder. ADRES is a scalable template of a coarse grain reconfigurable 
matrix of computing elements, each featuring a simple 16-bit ALU. 

Matrix [290], PipeRench [159], Remarc [291], Kress Array [181], are 
all coarse grain reconfigurable coprocessors. They are mainly targeted to 
image processing and applications characterized by a large number of 
data-parallel operations, but also to applications like Viterbi decoder. 
Usually this kind of machines proved to be able to exploit better the fine 
grain parallelism available inside applications than multimedia-extended 
ISA processors. 

XPP architecture from PACT [45] is at the moment the only example of 
coarse grain reconfigurable machine available which is entirely designed 
using HDL languages, according to our knowledge. 

RAA (Reconfigurable Algorithm Accelerator) [251,252] is a generic 
reconfigurable coprocessor for algorithm acceleration. It implements a 
MIMD stream processing array, made of 16-bit DSP processor cores and 
FIFO buffers. Both an RSA encryption algorithm and a GPS correlation 
algorithm have been implemented on RAA. 

Molen [436] is a project in which a dedicated software toolchain is used 
to map a C code on a platform made up of a PowerPC core coupled with a 
reconfigurable processor mapped on a Virtex II Pro FPGA. 

Table 10.1 summarizes the reconfigurable architectures mentioned. It is 
clearly visible how most of them are used as a coprocessor for multimedia 
applications in general. 

approach consists in the low latency and overhead that it takes to feed the 
FU with new data; on the other hand a limit must be put on the maximum 
length of the pipeline in order to prevent inefficient execution due to a high 
stall rate. PicoGA is a fine grain reconfigurable machine, thus it is namely 
suitable for cryptography and telecommunication applications. 

Montium from University of Twente [193] is a coarse grain reconfigur- 
able machine, mainly targeted to video applications. 
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Table 10.1. Overview of different reconfigurable architectures. 

 Grain size Interfacing style Application domains 
XiRISC Fine Functional unit Cryptography, telecom 
Montium Coarse Coprocessor video processing 
Morphosys Coarse Coprocessor Image processing, Viterbi 

decoding 
Adres Coarse Coprocessor Image processing, Viterbi 

decoding 
Matrix Coarse Coprocessor Image processing, Viterbi 

decoding 
Piperench Coarse Coprocessor Image processing, Viterbi 

decoding 
Remarc Coarse Coprocessor Image processing, Viterbi 

decoding 
Kress array Coarse Coprocessor Image processing, Viterbi 

decoding 
XPP Coarse Coprocessor Multimedia 
RAA Coarse Coprocessor Cryptography, GPS  
Molen Coarse Coprocessor Multimedia 

 
Almost all of the architectures mentioned are attached to the system bus, 

and are coarse grain machines, thus suitable for imaging or streaming 
applications, characterized by a large number of data-parallel operations. 
Indeed, for applications like DSP algorithms, multimedia processing and 

A number of intermediate solutions between opposite approaches are 
possible: ranging from fine-grain to coarse grain cells, and from external 
devices to functional units present on internal datapath of microprocessors, 
a set of compromises can be found. 

3D graphics it has been shown how coarse grain reconfigurable archi- 
tectures allow a significant advantage in terms of ease of mapping of  basic
functionalities, in terms of latency and energy consumption [102,138,284].

Milk coprocessor and Butter accelerator 

In this section we present two designs which exemplify the interpretation 
that we gave to the design of FPUs and reconfigurable accelerators. 



218      Claudio Brunelli and Jari Nurmi 

Milk coprocessor 

The FPU we developed is named Milk and was designed to be as much 
reusable, flexible, and customizable as possible; one first target was to 
make it fully compliant with the IEEE Std754-1985 standard for floating-
point arithmetic, to guarantee general validity. 

To enhance the flexibility and portability of our design, we wrote a 
parametric and technology-independent VHDL model which makes use of 
so called generics, that is a set of constants which allow to specify the 
values for a set of key parameters of the architecture like the bus width, the 
polarity of control signals, the value of opcodes, the functional units which 
should be inserted or removed, and so forth. 

Key features of our FPU:  
• Hardware circuits that elaborate the denormal operands. This avoids the 

• High parallelism, because functional units can operate independently 

• Scalability and adaptability: the functional units can be inserted or 
removed from the architecture in an immediate way, just setting the 
value of dedicated VHDL generics. Also many key parameters of the 
architecture can be tuned to taste of the user (width of the bus, latency 
of the functional units, opcodes, etc.) 

• Modularity of the functional units: each functional unit is dedicated to 
implement an elementary arithmetic operation in particular. It can be 

• Hardware logic for “register locking” and to stall the core, to guarantee 
the consistency of program execution with no need to rely on the 
compiler. 

degradation of performance due to software emulation which is neces- 
sary when such circuits are not included. On the other hand, if denormal
operands are expected to be not so frequently encountered in the appli-
cation domain, we provided the possibility to exclude from the imple-
mentation the normalization logic to save some area and to reduce the

from each other. When different functional units commit their elobora- 
tion simultaneously, a multi-port register file allows the concurrent write-
back of their results. 

removed from the architecture and also be used as a stand-alone com- 
putational element inside other designs.  

latency of each functional unit by one clock cycle. 

• Hardware implementation of division and square root. 
• Support by the GCC compiler. 
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Milk is totally open source and not bounded to any technology in 
particular; our VHDL model can be mapped either to ASIC standard-cells 
or FPGA technologies, even though (to preserve generality) we did not 
make explicit usage of any FPGA-specific optimization. This choice leads 
to results for FPGA implementations which are less optimized than they 
could be, but keeps the VHDL model of general validity and portability. 

Milk interface 

Milk communicates with the main core using a simple interface made up 
of a 32-bit bidirectional data bus, an address bus (that specifies the register 
of our FPU the current operation refers to) and some control signals (used 
for instance to enable the coprocessor and also to specify whether the 
current data on the bus should be read from or written to Milk). 

This straightforward interface allows plugging our FPU easily into 
different systems; as a proof of this we successfully and easily attached our 
coprocessor to two different microprocessors: Qrisc from University of 
Bologna, and Coffee RISC from Tampere University of technology [56]. 

On the other hand, the simplicity of the interface also introduces a slight 
penalty to the performance by introducing some data transfer overhead: 
indeed the core first needs to move the operand(s) of a given instruction to 
the register file of Milk, then the core must write the instruction word to 
the control register of Milk, and finally (at least in some cases) the core has 
to read back the result from the register file of Milk, where it has been 
written after that the computation is over. 

It could maybe be possible to improve the situation providing our 
coprocessor with the capability of accessing directly the main memory in a 
way invisible to the core. On the other side, this would imply a non-trivial 
modification of the architecture, which should be provided both with 
memory access hardware and an arbitration mechanism to guarantee 
consistent and conflict-free operations. 

Architectural choices 

We made some architectural choices to provide high computational power 
while keeping the design also immediately understandable and easily 
adaptable to diverse implementations. To achieve this goal we had to study 

Despite of this, benchmarking results showed that the penalty intro-
duced was not so large. Then, to ease portability to other platforms, we
decided not to modify the interface. 
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the trade-offs between different design choices and the features that our 
design should support. 

For example, we could achieve computational power and efficiency by 
adopting a parallel nature of the data path, and also using compact tri-state 
buffer arrays to allow fast switching of internal buses. 

We used pipelined functional units to be able of issuing a new 
instruction every clock cycle when needed. We designed the pipeline 
stages so that the latencies are as low as possible, while at the same time 
the maximum clock frequency achievable is high enough to compete with 
other similar devices. 

In addition we tried to maximize the exploitation of parallelism allowing 
the simultaneous elaboration of more functional units in parallel, allowing 
this way optimizing compilers to schedule the instruction in an efficient 
way (for example, issuing several simple operations after that a heavy one 
has been issued and has still to be completed). This process may involve 
some kind of reordering of instructions, which then must deal with issues 
related to instruction dependencies. 

Some compilers can take care of solving all these problems; to 
guarantee the highest possible portability of our design we decided anyway 
to introduce an hardware mechanism for register locking and processor 
stalling, which detects the hazards and stalls the processor whenever it 
tries to access data from a register which is not ready, or tries to execute 
floating-point instructions dependent on previous ones which are still in 
execution. This way the consistency of the execution is guaranteed, with 
no need to rely on special functionalities of the compiler; still it is true that 
an optimizing compiler which is aware of the hardware can schedule 
instructions so that the amount of conflicts (and thus the number of time 
the core is stalled) is minimized. 

Allowing parallel execution of any combination of functional unit 
implied some area redundancy, since a few hardware components had to 
be replicated inside all the functional units; on the other hand, the global 
computation efficiency is increased, as well as the modularity of the 
design: each functional unit can thus be freely removed or inserted in the 
datapath, without affecting the rest of the system. 

The functional units get their operands from a multi-port register file, 
where they also store the corresponding results when their elaboration is 
finished. The register file is multi-ported because this way we could allow 
an arbitrary number of functional units to write their results simultaneously,  
provided that they don’t have also to write to the same destination register.
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Fig. 10.1. Block scheme of the internal architecture of Milk FPU. 

The user can select whether or not to mask interrupt signals like “illegal 
instruction” or the exceptions mentioned by the IEEE Std754-1985 stan-
dard (underflow, overflow, division by zero, inexact result, and invalid 
operation). 

The internal architecture of Milk is described by Figure 10.1, where it is 
depicted at logic block level. 

Milk requires 105 Kgates and runs at 400 MHz on a 90 nm standard 
cells technology, and requires 20K Logic Elements running at 67 MHz on 
an Altera Stratix FPGA. It is capable of completing instructions in a very 
small number of clock cycles: 3 for multiplications, 5 for additions, 8 for 
square root, 11 for divisions, 2 for conversions and 1 for all the other ones 
(like absolute value, negations, comparisons, etc.). 

The operands of arithmetic operations are sampled inside each func- 
tional unit whenever its execution is triggered, limiting unnecessary switch-
ing activity that would lead to useless energy consumption. 
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Butter accelerator 

Butter is a coarse grain reconfigurable coprocessor for an RISC micropro-
cessor. It is organized as a matrix of 32-bit elements, and aims at maximi-
zing the performance in the elaboration of multimedia, signal processing, 
and 3D applications. 

Butter is entirely described by a parametric VHDL model, which 
ensures portability to any platform (either ASIC or FPGA). The mapping 
of VHDL on standard-cells technologies implies using more area on chip 
and getting lower clock frequencies when compared to custom layout 
design, but it also allows obtaining higher portability, not only because the 
same VHDL code can be implemented on FPGAs, but also because it is 
not necessary to repeat all the design procedure whenever is necessary to 
migrate to a more advanced microelectronics technology. 

To speed up the execution of applications one possibility consists in 
detecting the parts which are more computationally heavy (called kernels), 
and map them on specialized hardware (which allows a highly parallel 
implementation). We considered some applications to be implemented on 
Butter, and we manually located the kernels and mapped them on our 
coprocessor, since at the moment we cannot rely on any automatic tool for 
that purpose. The inclusion of Butter into a generic system is shown in 
Figure 10.2. 

As can be seen in the picture, Butter is a coprocessor attached to the 
system bus; this might put some constraints to the kind of applications 
which can benefit from mapping on our architecture, since the bandwidth 
between the core and the coprocessor is limited. For this reason we 
decided to provide the possibility of using our machine also as a kind of 
I/O processor: once that the array has been configured it is ready to process 
incoming data, which can fed for example from a high-speed input 
peripheral like a camera. The results are produced as output through 
another high-speed port which (for instance) could drive directly a display, 
since Butter is mainly targeted to applications like image and video 
processing. 

Some dedicated configuration bits are used to specify the elaboration 
that the cells of Butter must perform and from where their operands come 

 

(thus defining the topology of interconnections between cells). Configura- 

by the core or via DMA transfers. 
tion bits are stored in a dedicated memory inside Butter, and can be written
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Fig. 10.2.  Including Butter accelerator inside a system. 

Butter is organized as a matrix of processing elements called cells; the 
number of rows and columns of the matrix is determined by constants 
included in the VHDL model of Butter (generics). 

Internal architecture of Butter: cells and interconnections 

Each cell inside Butter has two inputs ports to read 32-bit wide operands; a 
6-bit wide input port brings inside the cell the configuration bits, used to 
specify the kind of operation that the cell should perform on the operands. 
Also reset and an enable input are used to control the internal registers of 
the cell.  

There are two 32-bit output ports for each cell: they can be used either 
to bring out the 64-bit result of a 32-bit multiplication, or a generic 32-bit 
result coming from another functional unit, together with one of the 
operands which has been fed through the cell (used to simplify the 
routing). 

Input registers inside the cells are used to sample the operands, creating 
this way a sort of pipeline; these registers can be also disabled to avoid 
useless dynamic power consumption.  
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One special input register is used to keep constant values inside the cell, 
so that they can be used during the elaboration with no need to re-route 
them. 

Inside each cell there are three functional units (a multiplier, an adder, a 
barrel shifter) and a small memory (4 cells 32-bit wide) used as a lookup-
table (LUT) to implement simple logical functions: this way we tried to 
bridge between the coarse grain nature of Butter and some functionalities 
which could be implemented by using fine grain reconfigurable hardware. 

A special functional unit was inserted in the cells to permit the 
implementation of floating-point multiplications. This choice is justified 
by the fact that 3D graphics, which is nowadays very popular and makes 
extensive use of floating-point arithmetic; so we adapted the structure of 
the cell and of the interconnections to provide a first form of support for 
floating-point multiplication, because together with addition it is by far one 
of the most frequently used instructions. 

3D graphics benefit from fast, low precision floating-point operations; 
for this reason we implemented a version of the multiplication which does 
not handle the denormal numbers, which would require additional circuits 
and complicate the mapping procedure. We also decided to get the whole 
instruction done internally by each cell, so that one multiplication will 
require just one clock cycle. 

Considering the architecture of a simple floating-point multiplier it is 
apparent how the integer multiplier and the integer adder (which are 
necessary to build a floating-point multiplier) come at no cost, since they 
are present anyway inside the cells. 

The packing logic that prepares the results produced by the adder and 
the multiplier, rounding them to be stored in the floating-point format, is 
too complex to be fit inside the LUT alone, and cannot be mapped on the 
remaining functional units, so we had to introduce a dedicated block inside 
the cells: it consists of a portion which calculates the amount of leading 
zeros for each of the operands, the sign of the result, and packs the internal 
number into the final format. 

The structure of each Butter cell is described in Figure 10.3. The first 
row of cells read their operands from global vertical interconnections; the 
results of the elaboration are put as output accessible from the underlying 
rows. The final result can be read externally of Butter either from its last 
row at the bottom of the device, or from the rightmost column: this way 
results can be accessed as soon as they are produced, with no need to wait 
that they go through all the rows. 
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Fig. 10.3.  Internal architecture of a cell of Butter accelerator. ©IEEE, 2006 [57]. 

Both the input ports of cells inside the array can be connected to the 
outputs of the cell straight above them, or instead to the cell which lays 
two rows above (interleaved connection). The interleaved interconnection 
is useful (for example) to propagate the 64-bit result of multiplications 
splitting their processing over two adjacent rows, for instance like happens 
in the FIR algorithm: the input operands have to be multiplied by different 
coefficients, and after that the results must be added together. Thanks to 
the interleaved connections it is possible to implement the FIR algorithm 

Another possibility provided by the interconnection network consists in 
enabling the input ports of a cell to receive the results of the cell on its left-
side, as well as the ones lying in diagonal direction (upper left and upper 
right). They are useful in easing and enhancing the mapping of some 
algorithms, and in reducing the amount of cells used: for example, to 
elaborate some additions in parallel, using diagonal interconnections we 
use seven cells instead of eleven (which would be necessary using only 
vertical and horizontal connections). 

using only three rows of the array: the first row executes the multiplica- 
tions, the second row the additions of the least significant bits of the pro-
ducts, and the third row the addition of the most significant bits. 
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The interconnections allow bringing the outputs of each cell also to the 
configuration memory of the cells in the row below, configuring them 
dynamically depending on the results of the previous instructions. 

Nearest-neighbor interconnections are anyway sufficient to implement 
the simplest DSP algorithms, while the global ones are more useful for 
matrix-multiplications and 3D graphics algorithms.  

The global interconnections can also be configured to be “regional” 
interconnections, by specifying the amount of rows and columns which 
define a “region”. This kind of interconnection is useful to implement the 
multiplications of a set of adaptive coefficients (like happens in filters) that 
must be all multiplied by a common value. 

A summary of the local interconnections between two Butter cells is 
shown in Figure 10.4. 

Butter was synthesized on FPGA and a 90 nm Standard-cells techno-
logy, achieving, respectively, an operating frequency of 57 and 280 MHz. 
Thanks to its wide datapath, high parallelism and pipelined nature Butter 
can run algorithms using a very limited amount of clock cycles; for 
example, an FIR filter takes 16 cycles, a matrix–vector multiplication takes 
4 cycles, and a 2D IDCT 54 cycles. 

Conclusions 

cell to every input of the cells laying on the row below. Global inter- 
connections are handy for mapping algorithms like matrix–matrix multi-
plications and matrix–vector multiplications (largely used in 3D graphics,
especially in the vertex transformation stage of the graphics pipeline).

Considering the diverse requirements dictated by modern applications and 
the set of constraints mentioned at the beginning of this chapter we came 
up with the description of a series of possible solutions which are commonly  
adopted to tackle the problems and to deliver efficient solutions, ranging 
from programmable processors (RISC, DSPS, etc.) to multiprocessor 
systems, going through VLIW and SIMD architectures, and heterogeneous 
systems hosting a set of different types of computation engines, which 
usually are microprocessors, coprocessors and dedicated accelerators. 

Also two different global interconnections are provided, crossing the 
array in vertical and horizontal directions, connecting the output of each 
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Fig. 10.4. Different kinds of interconnection inside Butter. © IEEE, 2006 [57]. 
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designed and implemented two different accelerators which together can  
be used as coprocessors for a programmable RISC core. The coprocessors 

Among all these possibilities, we then provided a more detailed descrip-
tion about the way we followed at Tampere University of Technology: we

are very different from each other, empowering different application do- 
mains; together they can then provide a relatively wide coverage of appli-
cations, while keeping a modular approach to the implementation of a 
system due to the coprocessor approach. Their performance is high enough 
to speed up significantly the processing power of the main core; their 
flexibility and modularity allow also adapting the actual implementation to 
different requirements. 



11 Designing Soft-Core Processors for FPGAs 

James Ball 

Altera, Inc. 

In the mid to late 1990s, soft-core FPGA processors were of interest only 
to the academic community due to their high cost and low performance. A 
soft-core FPGA processor might have been able to fit in an 1990’s FPGA 
but it occupied the majority of the device. An off-the-shelf processor chip 
was cheaper, faster, and readily available. 

With today’s modern FPGAs, soft-core FPGA processors are now main-
stream products. A soft-core processor occupies less than 1% of a high-
capacity FPGA device and exceeds 200 DMIPS of performance. A soft-core 
FPGA processor is so small that in some cases it fits in the unused resources 
of an FPGA so is essentially free. 

All RAM-based FPGA vendors provide soft-core FPGA processors op-
timized for their FPGAs. Altera [11] has the Nios II [14], Xilinx [465] has 
the MicroBlaze [466], and Lattice [255] has the Mico32 [256]. All of the 
soft-core FPGA processors follow the RISC principles developed by 
Hennessy and Patterson [187]. 

None of the major FPGA vendors provide soft-core implementations of 
established processor architectures (e.g. PowerPC, ARM) although some 
provide hard-core implementations. Soft-core implementations of estab-
lished processor architectures are avoided partly due to licensing costs but 
mainly due to their low efficiency in an FPGA.  

This chapter discusses the unique aspects of designing soft-core FPGA 
processors in contrast to designing soft-core ASIC processors. A brief 
overview of FPGA architecture is followed by a discussion of instruction 

© 2007 Springer. 
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set and design issues, a comparison of FPGA processor instruction sets, and
a case study of the Nios II FPGA processor. The remainder of this chapter 
assumes that all references to processors are soft-core implementations.
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Note that efficiency is considered to be the ratio of performance to cost. 
The cost of a circuit in an FPGA is the number of logic elements (LEs). 

The area of a logic element and a 2-input NAND gate can be converted to 
silicon area when comparing the efficiency of a circuit in an FPGA and an 
ASIC. 

Configurable processors 

FPGA processors and ASIC processors support generation-time configura-
tion options to allow designers to trade off performance and cost. Examples 
of generation-time configuration options include pipeline implementation, 

The re-configurability of FPGAs gives FPGA designers an advantage 
over ASIC designers. FPGA designers tune their FPGA processor configu-
ration on an FPGA whereas ASIC designers tune their ASIC processor 
configuration on a simulation. Using a simulation to tune the processor 
configuration takes longer and is less accurate than using an FPGA. 

Because FPGA designers can easily tune their designs, FPGA designers 
can easily switch between FPGA processor pipelines to meet design re-
quirements. This encourages FPGA vendors to provide multiple pipeline 
implementations of a given instruction set. The Altera Nios II processor 
provides an example of an FPGA processor that supports multiple pipe-
lines. A detailed overview of the Nios II family of processors is available 
by Balll [35]. 

Nios II/s (standard), and Nios II/e (economy). The pipelines range in area 
by a factor of 3 and in performance by a factor of 9. The Nios II/f pipeline 
is a six-stage pipeline with an optional instruction cache, optional data 
cache, and dynamic branch prediction. The Nios II/s pipeline is a five-
stage pipeline with an optional instruction cache, no data cache, and static 
branch prediction. The Nios II/e pipeline is six-stage serial pipeline that 
only executes one instruction at a time. 

either consists of a lookup table and a 1-bit flip-flop. Some FPGAs have
4-input lookup tables but some newer FPGAs have 6-input lookup tables.

A logic element is the basic building block of an FPGA. A logic element
The cost of a circuit in an ASIC is the number of 2-input NAND gates.

cache size, multiplier implementation, divider implementation, barrel shifter 
implementation, and tightly coupled memories. 

The Nios II processor is available in three pipelines: Nios II/f (fast), 
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Fig. 11.1. FPGA processor performance vs. area. 

Figure 11.1 shows the wide range of performance and area characteris-
tics possible for FPGA processors. The figure includes three Nios II pipe-

of an academic FPGA processor. The academic processor shown in Figure 
11.1 is based on a subset of the MIPS-I instruction set and is designed by 
University of Toronto researchers Yiannacouras, Steffan and Rose [469]. 
The figure comes from their research by into FPGA processors. 

Challenges of FPGA processor design 

their development. However, these prototypes are not intended to be com-
mercially viable products. FPGA processor design requires re-thinking 
processing requirements to develop solutions appropriate for FPGAs and 
not blindly adopting solutions created for ASIC processors. 

One challenge of FPGA processor design is to accommodate the different 
relative performance of FPGA resources (logic elements, RAMs, multipliers, 
and routing) to the relative performance of ASIC resources (gates, RAMs, 

designs. The generated designs are different configurations of five pipelines 
lines each in their default configuration as well as several generated

design. Indeed, ASIC processors are regularly prototyped in FPGAs during 
FPGA processor design is similar in many respects to ASIC processor 
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and wires). For example, the performance of FPGA RAMs relative to 
ASIC RAMs is much better than the performance of FPGA logic elements 
relative to ASIC gates. Because of these relative performance differences, 
some techniques used by ASIC processors to increase performance may 
actually decrease FPGA processor performance. For example, superscalar 
and VLIW techniques are not practical in FPGAs due to limitations in the 
implementation of multi-port register files and the out-of-order execution 
technique is not practical in FPGAs due to the relatively low performance 
of control logic implemented with logic elements. 

Another challenge of FPGA processor design is to accommodate the 
lower efficiency of FPGA resources relative to ASIC resources. Because 
of the lower efficiency of FPGA resources, an efficient FPGA processor is 
restricted to using a simple instruction set running on a simple pipeline. 
Higher levels of overall application performance are readily available by 
using multiple FPGA processors, adding custom instructions, and/or add-
ing custom accelerators. 

Opportunities of FPGA processor design 

Even though FPGAs have performance and cost disadvantages relative to 
ASICs, the flexibility of FPGAs provides unique opportunities in FPGA 
processor design. An FPGA designer can change their FPGA processor 
configuration whenever design requirements change. An ASIC designer 
cannot change their ASIC processor configuration without creating a new 
ASIC. An ASIC processor compensates for this lack of inherent flexibility 
in ASICs by increasing the flexibility of the ASIC processor albeit at addi-
tional cost. 

ASIC processors are typically configured to provide more performance 
than required. This performance margin accounts for potential inaccuracies 
in estimating performance requirements and potential increases in future 

ASIC resources are provided to support all possible behaviors and a con-

performance requirements. Providing performance margin tends to increase-
the cost of the ASIC processor (e.g. larger caches, more complex pipeline).
Because an FPGA is inherently flexible, an FPGA processor can avoid this
additional cost by being configured with minimal or no performance
margin. 

ASIC processors tend to have many run-time parameters. Run-time para-
meters are configured by system software writing to control registers. 

parameter is endianness. Because some ASICs might be used in big- or little-
trol register selects the desired behavior. An example of a run-time
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endian systems, an ASIC processor typically provides a control register bit 
to select the desired endianness. An FPGA processor avoids the additional 
cost of supporting run-time parameters by converting them into genera-
tion-time parameters. Generation-time parameters eliminate the extra 
FPGA resources required to support multiple behaviors and the associated 
control register. In the endianness example, an FPGA processor recognizes 
that endianness is typically a static system setting so it is appropriate to 
implement it as a generation-time parameter. Caches and debug facilities 
are two areas with many opportunities to take advantage of converting run-
time parameters into generation-time parameters. 

Caches 

ASIC processors have cache run-time parameters such as enabled, write 
policy, and line locking. An FPGA processor can convert these run-time 
parameters into generation-time parameters to avoid the overhead of run-
time parameters. 

ASIC processors with caches typically have run-time parameters to con-
trol whether the caches are enabled or disabled. FPGA processors can con-
vert this run-time cache enabled/disabled parameter into a generation-time 
cache present/not-present parameter. This implies that if a cache is present, 
it is always enabled. Having caches always be enabled is acceptable to 
software as long as the caches are properly initialized when coming out of 
reset. 

Data caches have a write policy of write-back or write-through. ASIC 
processors typically support a run-time parameter to select between these 
two modes. It is rare for an application to switch between these modes dy-
namically in an embedded application. An FPGA processor can make the 
write policy a generation-time option. 

Having the ability to lock cache lines is common in ASIC processors 
with multi-way caches. This is an inefficient technique to guarantee low-
latency access to memory. Instead, the flexibility of an FPGA allows an 
FPGA designer to add tightly coupled memories to the FPGA processor as 
needed. 

Debug facilities 

Processors provide debug facilities to allow software developers to control 
the processor and observe its state. Typical debug facilities include single 
stepping, breakpointing, watchpointing, tracing, and examining/modifying 
memory and registers. The extent of the debug facilities for an ASIC pro-
cessor is fixed once the ASIC is produced. If a facility desired by a software 
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software is fully debugged. An FPGA designer might even prototype their 

FPGA architecture overview 

An FPGA processor designer must have a good understanding of FPGA 
devices in order to make good design decisions. A brief overview of FPGA 
architecture is provided to set the context for the remainder of this chapter. 

FPGAs are composed of logic elements, RAM blocks, multiplier blocks, 
and routing. Lewis et al. [263] provide details of the Altera Stratix FPGA 
architecture which is representative of modern FPGA devices. 

SRAMs. Upon power-up a configuration file (typically stored in external 
non-volatile memory such as flash) is written into the FPGA configuration 
SRAMs to implement the desired circuit. 

FPGA vendors provide devices in a wide variety of sizes. Logic ele-
ments range from a few thousand to hundreds of thousands. RAM blocks 
range from a total chip capacity of several kilobits to several megabits. 
Multiplier blocks range from zero to dozens. Routing is a property of the 
FPGA architecture and not typically quoted by FPGA vendors although it 
can occupy 80% or more of the die area. 

Altera and Xilinx both have low-end and high-end FPGA families. 
Table 11.1 shows examples of FPGA resources for low-end and high-end 
FPGA families. A small device and large device is shown for each family. 
The large device family in this example has 6-input logic elements so the 
table shows the number of equivalent 4-input logic elements. Note that the 
low-end family has fewer RAM bits per logic element than the high-end 
family which makes RAM resources relatively scarce in these devices. 

Logic elements 

Figure 11.2 shows a typical logic element. It consists of a 4-input lookup 
table, carry-chain logic, and a flip-flop. Some newer FPGA devices have 
6-input lookup tables. The lookup table computes any 1-bit function of its 
inputs. A small configuration SRAM is used to hold the contents of the 
lookup table. The inputs are connected to the address of the SRAM. 

developer must find some other technique to debug the software. 
developer is not available to assist in debug (e.g. trace), the software

debug facilities as required. The debug facilities may be removed after the 
The flexibility of an FPGA allows an FPGA designer to add/remove

debug facilities. 
design in an FPGA larger than required to provide extra resources for 

FPGA resources are configurable through on-chip configuration 



11 Designing Soft-Core Processors for FPGAs       235 

The carry-chain logic provides dedicated circuitry to support faster ad-
ders and subtractors than possible just using the lookup table. The flip-flop 
stores the output of the lookup table or carry-chain logic. 

RAM blocks 

Designs that require RAMs are common so FPGAs provide dedicated 
RAM blocks. It is possible but inefficient to use logic element flip-flops to 
implement RAMs. Some FPGAs do allow the SRAM-based lookup tables 
in logic elements to be combined to implement efficient but small RAMs. 

Table 11.1. Altera 90 nm FPGA examples. 

 Low-end 90 nm FPGA High-end 90 nm FPGA 

 Small       
Device 

Large       
Device 

Small      
Device 

Large        
Device 

Altera device 
Name 

Cyclone II 
2C8 

Cyclone II 
2C70 

Stratix II 
2S30 

Stratix II 
2S180 

4-input logic 
elements 

8,256 68,416 33,880 179,400 

Small RAM 
blocks (512 bits + 
parity) 

0 0 202 930 

Medium RAM 
blocks (4096 bits 
+ parity) 

36 250 144 768 

Large RAM 
block (64 Kbytes 
+ parity) 

0 0 1 9 

Total RAM bits 
(including parity) 

165,888 1,152,000 1,369,728 9,383,040 

RAM bits per 
logic element 

20 17 40 52 

18-bit multiplier 
blocks 

18 150 64 384 

Multiplier blocks 
per logic element 

2.2×10–3 2.2×10–3 1.9×10–3 2.1×10–3 
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Fig. 11.2. Typical 4-input FPGA logic element (LE). 

FPGA RAMs typically support simple dual-port (one read port, one 
write port) and may also support true dual-port (two read/write ports). The 
width of the RAM is configurable from just a few bits wide (in some cases 
as small as 1 bit) up to as many as 128 bits wide. RAMs are typically only 
available as synchronous SRAMs with registered inputs and optionally 
registered outputs. 

Multiplier blocks 

Designs that require multipliers are common (although less common than 
those that require RAMs) so most FPGAs provide dedicated multiplier 
blocks. It is possible but inefficient to use logic elements to implement 
multipliers but not as inefficient as using logic elements to implement 
RAMs. 

Multiplier blocks are composed of several small multipliers (typically 9 
bits or 18 bits each) that are combined to create larger multipliers. Some 
FPGAs have multiplier blocks that provide dedicated circuitry to combine 

cated circuitry to combine small multipliers offer higher frequency because 
the delay of the dedicated circuitry is much smaller than the delay of logic 
elements and programmable routing. The performance of large multipliers 
is important for FPGA processor design because FPGA processors typi-
cally require 32-bit multipliers. 

Some multiplier blocks provide features such as saturated arithmetic, 

multipliers is configurable including whether the inputs and/or outputs are 
accumulators, or special support for barrel shifters. The behavior of the 

registered. 

able routing resources to combine small multipliers. FPGAs with dedi-
small multipliers. The alternative is to use logic elements and programm-
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Fig. 11.3. FPGA routing. 

Routing 

Figure 11.3 shows a simplified representation of FPGA routing. The figure 
shows that there are short and long wires that connect resources organized 
in a two-dimensional array. An FPGA typically has more types of wires of 
different lengths and speeds organized into a hierarchy. Resources have 
connections to the routing which are not shown for clarity. Configurable 
switches composed of muxes connect the wires that make up the routing. 

Resources are connected with different kinds of routing with different 
speeds. The routing is organized as a multilevel hierarchy so that resources 
close to each other have smaller delays than resources further apart. Re-
sources that are further apart are connected through multiple wires and 
switches so experience longer delays. 
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Moving up and down the hierarchy incurs significant delay due to the 
switch delay encountered in switching between wires. However, once a 
signal reaches a wire optimized for long distances, the delay is minimal. 

FPGAs typically have specialized routing for carry-chains (see Figure 
11.2). The carry-out of one logic element is directly connected to the 
carry-in of the next logic element. The carry-chain is the fastest connection 
between logic elements in an FPGA. The dedicated carry-chain connection 
contributes to the high performance of adders in FPGAs. The performance 
of FPGA adders relative to ASIC adders is much better than the perform-
ance of FPGA random logic relative to ASIC random logic. 

FPGA design issues 

The key to efficient FPGA processor design is to recognize the relevant 
differences between FPGA resources and ASIC resources. This section 
provides suggested techniques to deal with these resource differences. The 
focus is on issues encountered in FPGA processor design however many of 
the suggestions also apply to FPGA design in general.  

Routing 

Routing delays between ASIC resources were largely ignored in older 
ASIC technologies because wire delays were insignificant relative to gate 
delays. Routing delays are no longer ignored in modern ASIC technologies 
because wire delays are substantial. ASIC place and route tools minimize 

placement so FPGA place and route tools have less opportunity to mini-
mize routing delays. This fixed nature of FPGA routing in combination 
with the extra delays of the switches that connect wires in the routing 
cause large routing delays in FPGA circuits. 

Routing delays to and from RAM blocks and multiplier blocks are par-
ticularly large due to the relative scarcity of these resources relative to 
logic elements. The fixed location of these resources tends to increasing 
routing distance. The routing delays are the largest for the large RAM 
blocks and the multiplier blocks because they are the scarcest resources. 

Suggested techniques 
• Minimize the number of logic elements between registers. Try to use all 

the inputs of the lookup table in each logic element as much as possible. 

routing delays by choosing the optimum wire performance and place-
ment customized to the ASIC. FPGA routing is fixed in performance and
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• FPGA registers are abundant so take advantage of them wherever 
possible. ASIC registers cost about 10 gates each so they are used 
sparingly in ASIC designs. 

• Provide as much slack as possible to and from the multiplier block and 
large RAM blocks. Configure the multiplier block to have registered 
inputs and outputs. 

• Ensure that the pipeline stall signals are driven early in the cycle (ideally 
directly from a register). Stall signals tend to have high fan-out so can 
experience long routing delays. 

Control logic 

Control logic consists of combinatorial logic and flip-flops. FPGA control 
logic has an area penalty and performance penalty relative to ASICs. 
These penalties encourage FPGA processor designers to employ simple 
control structures eliminate critical timing paths. performance. Simple con-
trol structures do increase average CPI (Cycles Per Instruction) but often 
overall performance is higher due to a higher frequency of operation. 

Adders 

An FPGA processor can use adders liberally because they are fast and in-
expensive. The performance of FPGA adders relative to ASIC adders is 
much better than the performance of FPGA random logic relative to ASIC 
random logic. FPGA adders are also relatively inexpensive because each 
logic element supports a 1-bit adder. A 32-bit FPGA adder only requires 
32 logic elements whereas a 32-bit ASIC adder requires hundreds of gates. 

It might make sense for an ASIC processor to share an adder. In an 
FPGA the additional cost of sharing an adder is comparable to the cost of 
the adder itself so sharing FPGA adders should be avoided. 

Multiplier blocks 

FPGA multiplier blocks are configurable just like other FPGA resources. 
An FPGA processor typically registers the input and output of the multi-
plier block to avoid critical paths to and from the multiplier. Registering 

optional internal pipeline registers to increase frequency at the expense of 
increased latency. 

 
 

the multiplier input and output creates a multiplier with two cycles of
latency and a throughput of one cycle. Some FPGA multipliers also provide 
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Suggested techniques 
• In high-performance FPGA processors, multiply instructions achieve a 

throughput of one result per cycle by delaying the availability of the 
result by two cycles. This technique requires a pipeline long enough to 
absorb the latency of the multiply operation. 

• In medium-performance FPGA processors with fewer pipeline stages, 
multiply instructions achieve a throughput of one result every three 
cycles by stalling multiply instructions for two cycles. 

• Some FPGAs only provide multipliers smaller than 32 bits (e.g. 8 bits or 
16 bits). A full 32-bit by 32-bit multiplier (with a 64-bit result) is 
composed of four 16-bit multipliers. Combining these small multipliers 
using logic elements can create a critical path. If a pipelined multiplier 
is required, an FPGA processor can insert logic element registers 
between the small multipliers but this increases latency. If a non-
pipelined multiplier can be used, an FPGA processor can create a 32-bit 
by 16-bit multiplier and use it multiple cycles to compute a 32-bit result. 

Equality comparison 

An ASIC implements a 32-bit equality comparison between two 32-bit 
values as 32, 2-input XOR gates followed by a 32-input NOR function. An 
FPGA with logic elements containing 4-input lookup tables implements 
this equality comparison with 21 logic elements organized in a tree log464 
= 3 levels deep. Each logic element in the tree reduces four inputs to one 
output in the following manner: 

64 -> 16 -> 4 -> 1 
An ASIC implements a 32-bit equality comparison between a 32-bit 

value and a 32-bit constant as a 32-input AND function. An FPGA with 
logic elements containing 4-input lookup tables implements this equality 
comparison with 11 logic elements organized in a tree log432 = 3 (after 
rounding up) levels deep. Each logic element in the tree reduces four in-
puts to one output in the following manner: 

32 -> 8 -> 2 -> 1 
Equality comparisons are commonly used to evaluate conditional ex-

pressions (e.g. conditional branches and compare instructions) and in tag 
comparisons for caches and TLBs. 

Suggested techniques 
• Change the RTL to implement an equality comparison as an XOR 

followed by a subtraction instead of using the == operator. For an n-bit 
equality comparison, an n-bit subtraction is faster than an n-bit NOR for 
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implement both an XOR and a subtraction. Using an n-bit subtraction 
instead of an n-bit NOR would never be used in an ASIC processor 
because an n-bit NOR is faster and uses far fewer gates in an ASIC. An 
equality comparison of in1 to in2 using the XOR/subtraction 
technique is obtained by examining the sign bit of the following Verilog 
expression: 

          {1'b0, in1 ^ in2} - 1 

• Instead of using a fully associative TLB (e.g. 64 entries) which requires 
64 equality comparators, use a microTLB with just a few fully 
associative entries (typically 4–8) that cache a larger RAM-based TLB. 

Instruction decoding 

Processors decode instructions to create pipeline control signals. RISC 
processors typically use combinatorial logic to decode instructions. Pipe-
line control signals used in the same stage that the instruction is decoded 
can create critical paths. These critical paths are especially severe in FPGA 
processors due to the low performance of combinatorial logic implemented 
with logic elements. 

• FPGA RAMs are typically multiples of 9 bits wide. For a 32-bit 
instruction, this means there are four unused bits for each instruction in 
the instruction cache. These four unused bits can be used to provide pre-
decoded control signals to reduce critical paths. The pre-decoded control 
signals are computed when an instruction is fetched from memory and 
written into the instruction cache. 

• Consider using a ROM to assist in the instruction decoding. Using a 

• Decode instructions earlier in the pipeline than required and then 
pipeline them to the required stage. Decoding instructions early gives 
the routing tools more flexibility in laying out the processor so it tends 
to improve frequency. The extra pipelining does consume flip-flops but 
those are abundant in FPGAs. 

in parallel but then require extra logic to combine those comparisons.

• Use direct-mapped caches because the tag comparison is usually a cri- 
tical path. Set-associative caches do perform multiple tag comparisons 

some values of n (device specific). A single FPGA logic element can 

ROM tends to be slower than using logic elements to decode instruc- 
tions but uses fewer logic elements. Using a ROM can be a generation-

memory usage and logic element usage. 

Suggested techniques 

time parameter to allow FPGA designers to trade off FPGA processor
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• Create as many pipeline control signals as possible in the same pipeline 
stage to allow the synthesis tool more opportunities to create optimal 
decoding logic. 

Multiplexers 

ASIC muxes are composed of gates which are fast and inexpensive. Cir-
cuits that contain a high concentration of muxes benefit from the ability of 
an ASIC to have high wire density where required. Having a high wire 
density helps to pack muxes closely together and minimize routing delays. 

FPGA muxes are composed of logic elements which are relatively slow 
and expensive. FPGA muxes are relatively sparsely packed because the 
routing is fixed so circuits with a high concentration of muxes experience 
high routing delays. 

Processors naturally contain circuits with high concentrations of muxes. 
Metzgen [285] reports that 30% of the Nios II/f logic elements are used for 
muxing. Muxes are commonly used in bypass circuits (a.k.a. forwarding 
logic), general-purpose register write circuits, control register read circuits, 
barrel shift circuits, load data align circuits, and next PC (program counter) 
circuits. 

Pipelined processors use muxes to bypass results from later pipeline 
stages into earlier pipeline stages. The number of mux inputs is propor-
tional to the length of the pipeline and the number of mux bits equals the 
datapath width. There are typically two such bypass muxes in an RISC 
processor (one for each input operand). 

Processors use muxes to select among all possible instruction results to 
be written to the general-purpose register file. For example, a typical 
FPGA processor instruction set provides several arithmetic instructions 
(e.g. add, subtract), several logical instructions (e.g. and, or, xor), 
shift/rotate, load, and other instructions that all write the general-purpose 
register file. All of these instruction results are muxed together to create 
the register write value. All this muxing results in a 32-bit wide mux with 
several inputs. 

The control registers of a processor are typically read with a control reg-
ister read instruction. This instruction reads a specified control register and 
writes a specified general-purpose register. The control register read in-
struction uses a mux to select the desired control register value. 

Suggested techniques 
• Reduce the size of the bypass muxes by omitting some stages from the 

bypassing. This increases CPI because stalls are required to prevent 
pipeline hazards. 
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• Only bypass one of the 2-input operands. Compilers tend to only create 
pipeline hazards on one of the input operands so the bypass muxes for 
the other operand are rarely used. 

• Implement a multi-threaded version of the processor that performs 
round-robin context switching every cycle between threads. This 
technique was employed by Fort et al. [130] on a Nios II-compatible 
implementation. It eliminates the bypass logic entirely without a 
performance penalty assuming that the application has enough threads. 

• Provide early signals to the bypass muxes to allocate most of the cycle 
for the muxing and routing delays. 

• Add a pipeline stage before the general-purpose register file write to 
provide extra time to mux the write value. 

• Consider reducing the performance of the control register read 
instruction to allow more time to mux between the control registers. 
This instruction is typically not performance critical. 

• An Altera FPGA 4-input logic element is able to implement 2:1 priority 
mux. However, if the output of the mux is registered and the mux is 
wider than a few bits, a logic element is able to implement a 3:1 priority 
mux. Designing an FPGA processor with this in mind produces 
considerable increases in efficiency. 

Constants 

A logic element is much more efficient at storing a constant value than a 

Suggested Techniques 
• Whenever possible, convert run-time parameters to generation-time 

constants. For example, an ASIC processor typically stores the excep-
tion vector address in a control register. Storing an exception vector 
address in a register allows the most flexibility for software but isn’t 
always required. Instead, the exception vector address can be specified 
by the FPGA designer as a generation-time constant and the overhead of 
a control register is saved. 

Barrel shifters 

Barrel shifters perform a shift or rotate by any amount from 0 to 31. An 
ASIC implements a barrel shifter using several levels of multiplexers. For 

2

between them. 

variable value. Each logic element only has one flip-flop bit but also 
includes a 4-input lookup table that can store 16 1-bit constants and mux

example, a 32-bit barrel shifter that is composed of 2:1 muxes has log 32 = 5 
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FPGA is inefficient. 
Typically each logic element only implements one 2:1 mux so a 32-bit 

barrel shifter requires 160 logic elements for muxing and is five logic ele-
ments deep. This is a large number of logic elements for a relatively infre-
quent operation. Also, given the low density of muxes possible in an 
FPGA, the barrel shifter is slow due to long wire delays between the logic 
elements. 

Suggested techniques 
• An Altera FPGA 4-input logic element is able to implement a 4:1 mux 

when used in barrel shifters and the result of the mux is registered. A 
32-bit barrel shifter implemented using this technique requires 96 logic 
elements for muxing and is only log432 = 3 (when rounded up) logic 
elements deep. The negative edge of the clock may be used to reduce 
the barrel shift latency from three to two cycles. 

• A 32-bit barrel shifter may be implemented with a 32-bit multiplier 
block. Using a multiplier block takes advantage of the property that 
multiplying a number by 2n is equivalent to shifting it left by n bits. The 
5-bit shift value in the shift/rotate instructions is converted to 2n using 
logic elements and provided to the multiplier as one of the inputs. The 
other multiplier input is provided the value to be shifted or rotated. All 
combinations of shift, rotate, left, right, arithmetic, and logical can be 
implemented using this technique. More details on using a multiplier to 
perform barrel shifts are provided by Metzgen [285]. 

RAM blocks 

ASICs contain RAMs optimized for the design. An ASIC designer chooses 
the size, number of ports, and power vs. speed characteristics of each 
RAM. An FPGA contains a fixed set of RAMs. An FPGA designer uses 
those RAMs as best as possible. Because the FPGA RAMs are fixed, it en-
ables the FPGA designer to make some design choices not practical for 
ASIC designers. 

Suggested techniques 
• FPGA RAMs are typically dual-ported so an FPGA designer can take 

advantage of having more than just a single read/write port. An ASIC 
designer typically tries to utilize single port RAMs as much as possible 
at the expense of additional control logic and muxing to share ports. For 

levels of muxes. Using 2:1 muxes to implement a barrel shifter in an 
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an FPGA the RAMs already have a separate read and write ports so 
adding additional logic to share one read/write port is not efficient. 

Register files 

A typical single-scalar RISC processor requires a register file with two 
read ports and one write port. The processor uses the two read ports to read 
the 2-input operands and the write port to write back the instruction result. 

ASICs implement a register file with either flip-flops and muxes or 
RAMs. Implementing a register file using flip-flops and muxes on an 
FPGA is not practical due to the size and low speed of such a solution. For 
example, a register file with 32-bit registers requires 1024 logic elements 
just for the flip-flops and about the same number of logic elements to im-
plement a 32-bit wide 32:1 mux. Given the low performance of muxing on 
an FPGA, the read time for this register file is unacceptably slow. The only 
practical implementation of a register file on an FPGA is to use RAMs. 

Suggested techniques 
• Use multiple RAMs to implement a register file with multiple read 

ports. Each RAM is written with the same value at the same time so 
they have the same contents. Use two simple dual-port RAMs to 
implement a register file with two read ports and one write port. 

• Avoid circuits that require multiple write ports. The technique of using 
multiple RAMs to obtain more read ports doesn’t work to increase write 
ports. 

Power 

Power is not typically a large concern for FPGA processors because 
FPGAs tend not to be used in power sensitive applications. This is due to 
the relatively large power consumption of FPGAs over ASICs. 

Suggested techniques 
• ASIC processors optimized for low-power consumption only access 

internal RAMs for caches and register files when absolutely necessary 
because RAM accesses are power intensive operations. Reducing RAM 
accesses to reduce power consumption should be avoided in FPGA 
processors because the overhead to do this tends to add logic in critical 
paths. 

example, if a design needs a RAM that is rarely written and read at the 
same time, an ASIC designer can use a single port RAM. However, in 
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Instruction set issues 

Many of the original RISC philosophies created when ASIC technology 
was less advanced lend themselves well to FPGA processors. RISC advo-
cates using a load/store architecture, simple addressing modes, simple in-
struction formats, and only providing instructions usable by a compiler or 
those required to support the operating system. 

It is important to choose an instruction set that is efficient for a wide 
range of pipelines. Instruction set features that expose the pipeline such as 
branch delay slots or load delay slots are discouraged because they tend to 
increase the efficiency of some pipelines at the expense of others. 

Instruction encoding 

• Keep all the instructions the same length (e.g. 32 bits). Some ASIC 
processors support multiple instruction lengths to reduce code size. An 
FPGA processor could support multiple instruction lengths but the 
increased cost and reduction in performance outweigh the savings from 
reduced code size for most applications. 

• Keep the instruction set extremely regular to simplify instruction 
decoding and hazard detection. 

• Arrange opcodes to make good use of don’t cares to improve instruction 
decoding. 

• Avoid optimizations in the instruction set that utilize alignment 
requirements to obtain the maximum range of immediate fields. For 
example, if load instructions include a 16-bit immediate as an offset, it 
is tempting to treat the offset as a word offset for load word instructions 
and byte offset for load byte instructions. To do this requires a mux on 
the offset field. This mux may create a critical path so it is best to 
always treat the offset as a byte offset. 

• Provide only the minimum number of instruction formats. The practical 
minimum is two formats: register/register and register/immediate. The 
register/register format has two source operands consisting of general-
purpose registers. The register/immediate format has one source operand 
consisting of a general-purpose register and another operand consisting of 
an immediate value. Immediates are typically 16 bits. Adding another 
instruction format to support a larger immediate for subroutine call 
instructions is useful to reduce subroutine call overhead. 

instruction set for FPGA processors. 
This section provides examples of techniques to create an efficient 
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• Don’t combine barrel shifts with arithmetic/logical instructions. Barrel 
shifts tend to be substantially slower than arithmetic/logical instructions 
on FPGAs. Barrel shifts should be their own instructions. 

• Provide support for designers to extend the instruction set with custom 
instructions. Custom instructions can dramatically increase performance 
of some applications. 

• Avoid instructions with dependencies on other instructions such as 
branch delay slots or instruction pairs designed to create large imme-
diate values. Branch delay slots decrease the taken branch penalty but 
increase the control logic complexity and may introduce delays in 
critical paths. Branch delay slots also increase the design complexity 
and testing burden and tend to be a source of bugs. Branch delay slots 
are only a good fit for some pipelines; for other pipelines they are a 
burden to support. 

Registers 

• FPGAs use RAMs to implement the general-purpose register file. Even 
though RAM bits are relatively inexpensive on an FPGA, limit the 
number of registers to 32. More than thirty-two registers provide little 
performance improvement and increase the size of the register number 
field in instructions. A larger register number field means there are 
fewer bits in the instruction for other purposes and slows down the 
hazard detection logic. 

• Register windows are generally considered inefficient even for ASIC-
based RISC processors. They do reduce memory traffic but increase 

• Detecting branch instructions can be a critical path because they affect 
the early stages of the pipeline. Make it easy to detect branch instruc-
tions by minimizing the number of bits of the instruction required to 
detect a branch and by minimizing the number of bits of the instruction 
required to differentiate between conditional and unconditional branches. 

• Computing the branch target can be a critical path. Make it easy to com-
pute the branch target by making the branch target address be relative to 
the PC (program counter) of the branch instruction and always having 
the offset be located in the same bits of all branch instructions. 

• Minimize the number of instructions that are optional. Typically only 
multiply and divide should be optional. Make sure that omitted instruc-
tions can be emulated by a trap handler. 

control logic complexity which tends to reduce frequency and increase 
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Register windows can also cause very long (thousands of cycles) worst-
case interrupt response times. 

• Avoid special registers such as condition code registers or registers used 
by multiply and divide instructions. These registers complicate hazard 

• Minimize the number of control registers and control register bits. 
Adding control registers increases muxing. Adding control register bits 
uses logic element flip-flops. Generally flip-flops are readily available 
but they can increase the size of pipelines optimized for very small size. 
Reserve registers in the general-purpose register file for things like the 
exception return address instead of using dedicated control registers. 

• Don’t define configuration registers to provide information about the 
pipeline such as cache sizes and which instructions are present. This 
static information is better provided to software by utilizing a BSP 
(Board Support Package) that provides this information in a C header 
file. The main reason to have configuration registers is for debuggers to 
detect the characteristics of your processor. In this case, put this infor-
mation in the debug facilities of the processor instead of making them 
part of the base instruction set. 

Operating system 

• Provide a simple exception model. Most exceptions aren’t performance 
critical so can share a single exception vector address. Sharing reduces 
hardware costs at a modest increase in code size to process exceptions. 

• Don’t burden the base instruction set with support for low-latency 
interrupts such as shadow registers and interrupt vectors because many 
applications don’t require them. Provide optional add-ons such as an 
interrupt vector custom instruction to provide this functionality. 

detection, require extra muxing, and require extra instructions to manage
them.  

• Provide simple cache management instructions. Supporting many varia- 
tions of ways to flush a cache increases control complexity and isn’t
required by most applications. Minimally, there should be instructions
to flush a single line in the instruction and data cache. Flushing the entire
cache is rarely performed so can be handled by a software loop that 
flushes each line individually. 

cost. Register windows are particularly inefficient for FPGA processors. 
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FPGA processor instruction set comparison 

Table 11.2 provides information about the FPGA processor instruction sets 
from the leading FPGA vendors. All instruction sets are quite similar to the 
original Stanford MIPS RISC instruction set. The MicroBlaze is the oldest 

Table 11.2. FPGA processor instruction sets. 

 Nios II MicroBlaze Mico32 

Architecture RISC RISC RISC 

Instructions             
(excluding floating-
point) 

82 113 62 

Instruction formats register/register 
register/imm16 
imm26 

register/register
register/imm16 

register/register 
register/imm16 
imm26 

Instruction size 32 bits 32 bits 32 bits 

Datapath size 32 bits 32 bits 32 bits 

Minimum control 
register bits 

4 88 86 

Delay slot No Yes No 

Number of interrupts 32 1 32 

Vectored interrupts Optional via custom  
instruction 

No No 

Custom instructions Up to 256 No No 

Floating point Optional via custom  
instructions 

Optional No 

Integer multiply Optional Optional Optional 

Integer divide Optional Optional Optional 

Signed load Yes No Optional 

MicroBlaze is notable for its support of branch delay slots. 
instruction set of the three followed by Nios II and then Mico32. The 

registers 
General-purpose 32 32 32 
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Case study – Nios II 

The Nios II was introduced by Altera in 2004. It is a replacement for the 
original Nios processor which featured an instruction set with 16-bit in-
structions and register windows. The Nios II is representative of FPGA 
processors and is described in detail in this case study. 

This section provides an overview of the Nios II instruction formats, an 
overview of the Nios II/f processor, a description of the Nios II/f processor 
pipeline, a discussion of FPGA-related Nios II/f design decisions, and Nios 
II/f instruction performance. 

Nios II instruction formats 

The Nios II instruction set has the following instruction formats: immedi-
ate, register, and call. These formats are shown below. 

Immediate Format 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
SRC 

REGNUM 
DST 

REGNUM IMM16 OP 

Register Format 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
SRC1 

REGNUM 
SRC2 

REGNUM 
DST 

REGNUM OPX SHIFT 
COUNT OP 

Call Format 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IMM26 OP 

 
The immediate format provides a 5-bit source register number, a 16-bit 

immediate value, and a 5-bit destination register number. The immediate 

The register format provides two 5-bit source register numbers, a 5-bit 
destination register number, and a 5-bit shift count. The register format is 
used by arithmetic/logical instructions without immediates, shift/rotate in-
structions, and subroutine call/return instructions that jump indirectly to 
the address in a register. The OP and OPX fields specify the instruction. 

format is used by arithmetic/logical instructions with immediates, load/ 
store instructions, and branch instructions. The OP field specifies the ins-
truction. 
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The call format provides a 26-bit immediate. The call format is used by 
the subroutine call instruction that jumps to an immediate address. The OP 
field specifies the instruction. 

The destination register number is either implicit (implied by the in-
struction) or in one of two locations (depending on the instruction format). 
The source register number(s) are always explicitly specified in the in-
struction and are always in the same location when present. 

Nios II/f overview 

The Nios II/f processor achieves high performance and high efficiency in 
Altera FPGAs. A detailed analysis of the Nios II/f processor is available by 
Metzgen [285]. The Nios II/f processor has the following characteristics: 

• Six-stage pipeline 
• Requires 1800 4-input logic elements 
• Runs over 200 MHz and over 225 D-MIPS in an Altera Stratix II 

FPGAs 
• Optional instruction cache 

o Configurable size (up to 64 Kbytes) 
o 32-byte line 
o Direct-mapped 
o Critical word first 

• Optional data cache 
o Configurable size (up to 64 Kbytes) 
o Configurable line size (4, 16, or 32 bytes) 
o Direct mapped 
o Writeback with write allocate 
o One line writeback buffer 

 Allows line fill to occur before writeback on dirty 
miss 

• Dynamic branch prediction 
o 2-bit gShare algorithm developed by McFarling [13] 
o 256 entries in BHT (Branch History Table) 

Nios II/f pipeline 

dashed lines show the boundaries of the pipeline stages. A rectangle whose 
top touches a pipeline boundary contains a register. Arrows that cross 
pipeline boundaries have implicit registers at the pipeline boundary. Each 
stage of the Nios II/f pipeline is described in detail. 

 

Figure 11.4 shows the Nios II/f pipeline in its default configuration. The 
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Fig. 11.4. Nios II/f pipeline. 
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The branch history table is read to obtain the 2-bit branch prediction for 
the next instruction in case it is a conditional branch instruction. 

The instruction is decoded to provide inputs to control logic (not 
shown). 

The two source operands are read from the register file RAM and sent to 
the bypass logic. The 5-bit source operand register fields are fed from the 

The dependency checking logic determines if the decode stage needs to 
stall due to a dependency on an older instruction in the pipeline. It does 

comparisons are also used to control the bypass muxes to choose the cor-
rect version of the input operands. 

If the decode-stage instruction is a conditional branch, the branch pre-
diction information is consulted to determine if the branch is predicted 
taken or not taken.  If predicted taken, the next PC logic computes the 
branch target address and uses that as the next address. 

Execute stage 
The ALU uses the two source operands to compute the result for arith-

metic, logical, and comparison instructions. The comparison is also used to 
resolve conditional branch instructions. The ALU also computes the mem-
ory address for load/store instructions. 

If the execute-stage instruction is a shift/rotate instruction, 2n of the 
least-significant 5 bits of one source operand is computed and the result 
sent to the multiplier. Otherwise, the source operands are sent directly to 
the multiplier. 

Memory stage 
The data cache is read to obtain the data for load instructions and the 

multiplier computes its products. The multiplier is a hard-macro provided 
by the FPGA and doesn’t use logic elements. The multiplier has registered 
inputs and registered outputs. 

Align stage 
The data cache load data is aligned and sign-extended. The data cache is 

written for store instructions. 
The multiplier produces a 64-bit product from its two 32-bit source op-

erands. A 3:1 mux selects the least-significant 32 bits, the most-significant 

instruction against older instructions in the pipeline. The register number 
this by comparing the 5-bit register number field of the decode-stage 

The next instruction is fetched from the instruction cache using the next 
PC. 

Fetch stage 

Decode stage 

inputs. 
output of the instruction cache RAM into the register file RAM address
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A mux produces the final write data for the register file. 
Write stage 
The write data from the align-stage is written into the register file. 

Nios II/f design decisions 

In many respects, the Nios II/f pipeline is a classic RISC implementation. 
However, there are several key design decisions made to achieve an effi-
cient FPGA implementation. 

• The instruction cache RAM data out to register file RAM address is a 
critical path (largely due to long wire delays between RAMs). The 
instruction cache is direct mapped to avoid the additional delay of com-
paring tags to control a mux to select the appropriate instruction. Notice 
that the pipeline takes advantage of the Nios II instruction set properties 
related to the fixed location of source operand register numbers so that 
that the register file RAM address is extracted directly from the 5-bit 
source register fields in the instruction without any additional logic. 
Eliminating the need for each logic to decode source register numbers 
helps avoid a critical path. 

• Because RAM bits a relatively inexpensive on FPGAs, the instruction 
cache has one valid bit for each instruction instead of one valid bit for 
each line. This simplifies the instruction cache fill logic. 

• The BHT is read in the fetch stage but isn’t used until the decode stage. 
Using the BHT output in the decode stage avoids a long path from the 
output of the BHT RAM to the next PC logic and the instruction 
cache/BHT RAM inputs. 

• The load data is read in the memory stage from the data cache RAM but 
isn’t sent to the bypass muxes. This could be done for load word 
instructions which need no alignment or sign extension. However, this 
would create a long path from the data cache RAM output to the bypass 
muxes. 

• The instruction cache hit and data cache hit signals are computed in the 
fetch and memory stages (respectively). These signals aren’t used in 
their stages; instead they are pipelined into the next stage. This prevents 
a long path from the cache hit signal into the stall logic. Instead, the stall 
logic uses a registered version of the hit signal one stage later. 

• The multiplier block is used as a barrel shifter for shift/rotate instruc- 
tions. This avoids the overhead of using logic elements to implement
the shift/rotate instructions. 

32 bits, or the bitwise OR of them. This handles all cases required by the 
multiply, shift, and rotate instructions. 
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decode stage and then continuously recirculates back to 
the fetch stage until the instruction hits in the instruction 
cache. 

o When an instruction misses in the data cache, it still pro-
ceeds to the align stage and stalls while miss processing is 
active (line fills and/or spills to memory). 

• Minimal logic is in the path of signals sent to/from the multiplier block. 
This helps allow time for the typically long wire delays to/from the 
multiplier block. 

• Dynamic branch prediction using the gShare algorithm is used. The 
gShare algorithm achieves a prediction accuracy greater than 90% 

branches provide only 80% accuracy according to Ball and Larus [37] 
so are not used due to the resultant decrease in performance. 

• Dynamic branch prediction typically requires a BHT (Branch History 
Table) and a BTB (Branch Target Buffer). The Nios II/f BHT is a 256 
entry RAM with 2 bits per entry. These small RAMs are readily 
available on Altera FPGAs. The BTB is typically a much wider RAM 
because it stores the predicted target address. The Nios II instruction set 
encodes a branch target as a 16-bit PC-relative immediate offset. Given 
the relatively high performance of adders in FPGAs, the branch target is 
calculated faster than using a BTB (Branch Target Buffer) RAM to 
lookup the target address. This allows the BTB to be omitted in the Nios 
II/f. 

Nios II/f instruction performance 

Table 11.3 shows the number of cycles each Nios II instruction takes to 
execute on the Nios II/f processor. Only instructions which have a signifi-
cant performance effect are listed. 

Closing comments 

FPGA processor design in many ways is simpler than ASIC processor de-
sign because FPGA processors have to be simple to be efficient. Higher 
levels of performance on an FPGA are achieved by using custom instruc-
tions, custom accelerators, or multiple FPGA processors. 

o When an instruction misses in the instruction cache, it 
isn’t stalled in the fetch stage; instead it progresses to the 

as predicting taken on backward branches and not-taken on forward 
according to McFarling [280]. Static branch prediction schemes such
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Mapping a processor designed for ASIC implementation onto an FPGA 
produces an inefficient result due to the unique characteristics of FPGAs 
relative to ASICs. FPGA processors are their own design specialty. 

FPGA processors are an active area of research. Greater efficiencies for 
commercial offerings are possible using techniques such as round-robin 
threaded implementations. FPGA processors may also help drive the re-
quirements for future FPGA devices to help reduce some of the area and 
speed penalties of current devices. 

 
 
 

Table 11.3. Nios II/f instruction performance. 

 

Instruction Type Cycles

Arithmetic/logic instructions 1 

Branch (correctly predicted taken) 2 

Branch (correctly predicted not taken) 1 

Branch (mispredicted) 4 

Function call to immediate address 2 

Function call to address in a register 3 

Function call return 3 

Load/store (assuming hit in data cache) 1 

Shift/rotate 1 

Multiply 1 

Divide 4–67 
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Introduction 

Addressing the conflicting requirements of network-enabled embedded 
systems has become, in recent years, an important challenge for designers. 
Balancing the scale between the need for short time-to-market and the 
requirement for cost-efficient development cycles of new products is a 
demanding goal that has traditionally been approached by using general 
purpose processors (GPPs). However, general purpose microprocessors 
are no longer an appealing alternative for networking hardware due to their 
lack of optimized execution units for network processing. Using general 
purpose processors all networking functionality must be implemented in 
software. This in turn leads to very high CPU clock frequency requirements. 
General purpose processors that operate in a suitable frequency range are 
often too expensive, consume too much power or occupy physically too 
much space in the target system with all their required external circuitry. 
Also, many general purpose processor features, like floating point arith-
metic units (FPUs), can usually not be taken advantage of in networking 
applications.  

The increasing demands for functionality and performance of the current 
networking applications require the use of dedicated hardware circuits to 
boost the performance of the system. Consequently, extremely complicated 
application specific integrated circuits (ASICs) started to be developed. 
Being a hardware-based solution, they can provide higher performance, 
and lower power consumption and blueprint area than a general purpose 

© 2007 Springer. 
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processor implementation. The drawback is that the ASIC design process 
is demanding and expensive, and the time-to-market tends to be long. 
Also, ASICs are usually minimally programmable and thus need to be 
redesigned for updated or new network protocols, which makes them in-
flexible in dynamic market segments.  

As suggested for instance by Comer [86] and by Henriksson [189], the 
challenge in designing processors for network or protocol processing sys-
tems is to find an architecture that is as good a compromise as possible 
between a general purpose processor and a protocol-application-specific 
custom chip (i.e., an ASIC implementation). Network processors are often 
system-on-chip (SoC) or network-on-chip (NoC) type devices that typi-
cally contain a general purpose microprocessor core, and possibly also 
programmable parallel general purpose engines. In comparison, protocol 
processors are better categorized as coprocessors or intellectual property 
(IP) blocks used as part of a complex SoC or NoC device. 

An ideal protocol processor would harness both the programmability of 
general purpose processors and the application-specific hardware optimiza-
tion of ASICs. As a compromise solution, application specific instruction-
set processors (ASIPs) have emerged as a flexible, high performance, and 
cost effective alternative for these applications, tailored to process applica-
tion-specific tasks in an optimized manner. Typically, the architecture 
should be optimized for a family of applications, such that more than one 
application can be served by the same ASIP. ASIPs are biased to meet 
specific performance requirements by using dedicated processing elements 
implemented in hardware, to support the tasks demanding high perform-
ance. A GPP (also referred to as controller) is used to drive the activity of 
the processing elements. Using the program code running on this control-
ler, ASIPs may be programmed to serve several applications. Thus, they 
provide a good solution for complex applications, where flexibility is needed 
not only to accommodate design errors, but also to upgrade the specifica-
tions [80]. 

Being an optimized solution for a given application or a set of applica-
tions, ASIPs provide improved performance as compared to the general 
purpose processors. According to [226], this increase can be 2 to 100 times. 
Nevertheless, since ASIPs are not fully hardware-based solutions they can 
be several times slower as compared to a corresponding ASIC solution. 
Even with this drawback, the payoff is far greater in terms of flexibility 
and upgradeability. Programmable architectures bring important benefits 
like rapid time-to-market, flexibility of design, and consequently, an in-
creased product lifetime and upgradeability. Looking at the currently avail-
able solutions for embedded systems targeted at processing network data 
or protocols, it can be observed that there is a continuing need to better 
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understand the exact needs of protocol processing in terms of designing 
and implementing both hardware and software architectures. Thus, it has 
become obvious that in addition to developing new architectures with 
optimized processing elements, effort is also needed in developing applica-
tion-domain-specific processor design methodologies for protocol process-
ing. Such methodologies should support the designer in analyzing the 
application domain (and preferably the particular application in question), 
as well as in exploring and evaluating different hardware/software configu-
rations for performing the target application. This chapter provides an analy-
sis of the design space for programmable protocol and network processors, 
and makes an effort to point out characteristics and methodological require-
ments of this application domain that need to be dealt with when designing 
programmable protocol processors. 

This chapter has its foundation in our research originally presented in 
[428,439,440]. 

Domain and application analysis for optimized protocol 
processing hardware  

In computer networks the communication tasks are usually too complex to 
be implemented using monolithic protocols. Instead, modular, or layered, 
protocol architectures are preferred. The protocols form a stack of layers, 
in which each layer communicates with the one above it and the one below 
it, by passing information through predefined service access points (SAPs), 
using protocol-specific logical service primitives. The advantage of a lay-
ered protocol architecture is that each layer abstracts away some technical 
functions from the layer above it. For instance, a programmer designing a 
new networking application (working in the topmost layer) does not have 
to worry about voltage levels and their corresponding logic states in the 
lowest layer. Another important benefit of this construction is the possibil-
ity to use many different physical mediums and well designed standard 
protocols for each medium type to perform the same high level task. The 
best known protocol stack reference model is without a doubt the Open 
Systems Interconnection (OSI) reference model [96], defined by the Inter-
national Organization for Standardization (ISO).  

protocol are understood only by stations supporting the same protocol. 
PDUs are constructed of a header, a payload, and a trailer. The payload is the 
actual data being carried. The header and trailer contain protocol-specific 

Protocols encapsulate the information to be exchanged into protocol 
data units (PDUs). PDUs are protocol-specific, i.e., the PDUs of a certain 
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control information organized into fields defined in the protocol specifica-
tion. The fields may contain information such as protocol version, payload 
length, traffic class, receiving station address, error-checking checksum 
etc. Many protocols do not have a trailer part in their PDUs, but carry all 
the necessary control information in the header. 

Characteristics of protocol processing  

In order to develop devices for the protocol processing application domain, 
careful studies on protocols and protocol processing applications are 
needed. Emphasis should be on finding functionality that varies very little 
or not at all from one protocol to another. As a starting point, Jantsch et al. 
have identified three typical characteristics of protocol processing in [212]: 
(1) pattern matching and replacement in bitstrings (especially in frame or 
cell header analysis); (2) control dominated operation (large finite state 
machines and nested if-then-else and case structures); and (3) the need for 
irregular memory accesses (managing tables and buffers of various sizes). 
In [439,440], we have reviewed six widely used protocols in a search for 
additional characteristic functionality that could be taken advantage of in 
protocol processing hardware design. The emphasis in these studies has 
been on analyzing protocols that can be regarded as layer 1–3 protocols 
(physical, data link, and network layer) in the OSI reference model. The 
protocols in these layers are not end-to-end protocols, but require inter-
mediate stations (e.g., repeaters, bridges, switches, routers, etc.) between 
the source and destination devices. Thus, these protocols present a clear 
need for application-specific hardware systems in addition to application 
software, whereas the end-to-end protocols in OSI layers 4 and above are 
often completely implemented as software running on networked work-
stations. Table 12.1 summarizes some characteristic functionality for the 
protocols analyzed in [439,440]. 

As can be seen in this table, most of the detected characteristic function-
ality for a particular protocol was found to actually be characteristic to 
several other protocols as well. A processor with optimized hardware sup-
port for the found common functionality should be easily and clearly able 
to outperform a similar processor with general purpose processing units. 
Also, the power consumption and area use of such an optimized processor 
can be expected to be less than those of a general purpose implementation. 

This is on the one hand due to a reduced clock speed requirement (the 
optimized processor is likely to provide equal processing performance at a 
lower clock speed), and on the other hand due to the fact that the optimized 
processor needs to implement only the required subset of operations (gen-
eral purpose execution units may also implement extra functionality that is 



12 Protocol Processor Design Issues      261 

not needed for the desired protocol processing functionality). The last row 

metic (i.e., there is no need for managing negative values), which makes 
hardware implementations considerably simpler. 

Specifying and analyzing the target application  

General knowledge of inter-protocol similarities as discussed previously 
may not be adequate when optimizing an architecture for a particular pro-
tocol processing application. For this reason, the protocol processor design 

need for providing easy ways to integrate application-specific operations 
into hardware. 

The specifications of applications targeted to programmable architec-
tures have been traditionally written either in machine language or in a 
high-level programming language (typically C). In the latter case, the re-
sulting application specification is mapped onto the architecture using spe-
cialized tools. Currently, this approach cannot cope with the increasing 
complexity of specifications anymore, thus more elaborated methods for 
the application specification are needed. Not only the use of higher levels 
of abstraction is required, but also a systematic application analysis process. 

Table 12.1. Summary of typical and essential functions found in commonly used 
protocols. Bitwise manipulation means bit-pattern matching and/or masking inside 
data words, and/or n-bit shifting. High bitrate means speeds above 500 Mbps.  

Processing   IEEE IEEE    
Characteristic  SDH  802.3 802.11 ATM IP IPv6 
High bitrate  Yes  Yes No Yes Yes* Yes* 
Boolean evaluations  Yes  Yes Yes Yes Yes Yes 
Bitwise manipulation  Yes  Yes Yes Yes Yes Yes 
Counter functions  Yes  Yes Yes Yes Yes Yes 
Timer functions  Yes  Yes Yes No No No 
Checksum calculation  No**  Yes Yes Yes Yes No*** 
Random numbers  No  Yes Yes No No No 
Buffering  Yes  Yes Yes Yes Yes Yes 
Unsigned arithmetic  Yes  Yes  Yes Yes Yes Yes 
* The required processing speed in the network layer depends on lower layer protocols used.  
** SDH uses parity bits, the calculation of which does not classify as a checksum.  
*** Checksums are needed in some cases, e.g., in routers when processing control messages. 

design: protocol processing can be implemented using only unsigned arith-
in Table 12.1 displays a very important finding in terms of processor

operations within the particular target application. This in turn leads to the 
process should be such that it makes it easy to identify frequently used
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On the one hand, such techniques allow the designer to focus on the rele-
vant details of the specification at different development stages. On the 
other hand, they reduce the risk of missing functionality at later phases of 
the development process, which would delay the development cycle con-
siderably. 

Optimized hardware is one of the key aspects of ASIPs. The hardware 
resources of the architecture are the ones providing an increased perform-
ance as compared to a software-based approach. Hence, one of the most 
important issues in ASIP design is that from the application specification 
one can identify complex and frequently used processing tasks to be imple-
mented using dedicated hardware. Furthermore, these processing tasks 
may be optimized at application level by optimizing the application speci-
fication towards optimal performance. 

oriented principles and more recently of the model-driven ones caught 
ground, by providing the designer with higher levels of abstraction and a 
visual modeling environment for application specification. 

Using the mechanisms provided by the model-driven philosophy, the 
application specification process is spread out over several abstraction levels, 
each modeling the application at a specific level of detail. The starting 
point in the application specification process is extracting the requirements 
of the application from informal specifications like textual documents, cus-
tomer discussions etc. into a given formalism. The resulting specification 
is used as a starting point for the application analysis step, where the main 
features of the application are identified. This step is performed iteratively, 
at each iteration round new information is added to the specification. The 
main goal of the application analysis is identifying the functionality that 
has to be supported by the implementation platform, namely by the proto-
col processor under design. Several modeling languages have been pro-
posed for modeling the application specification, typically tailored for 
specific processor architectures [372] or general purpose architectures [316]. 

Hardware abstraction to handle the complexity 

Managing the complexity of hardware specifications requires the develop-
ment of abstract views of hardware implementations. As for software, 
abstractions have to be defined at several levels, starting from logical circuits 

software engineering domain. Among these techniques, the use of object-

In recent years, efforts have been put in improving the application spe-
cification process by employing techniques and concepts specific to the

of specifications 
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and continuing with the components of the architecture, each capturing 
only details relevant to a given step of the development. Similarly to software 
specifications, the hardware specification techniques gradually increased 
their level of abstraction over the years. If initially hardware has been 
designed in terms of transistors and logic gates, nowadays, hardware des-
cription languages (HDLs) (e.g., VHDL, Verilog) and even object-oriented 
system-level specification languages (e.g., SystemC) have become popular 
in industrial environments. 

Several studies have pointed out the need for abstraction levels to add-
ress the complexity of hardware specification [229,363]. 

Platform-based design  

The concept of Platform-based Design (PBD) was initially formulated by 
Sangiovanni-Vincentelli [363] as a solution for addressing the complexity 
of hardware specifications. PBD is defined as a conceptual framework to 
be applied to specific solutions and it was gradually adopted by the industry. 

The main concept of PBD is the platform, a collection of concepts pre-
sent on a given level of abstraction of a specification. A platform on a given 
abstraction layer is obtained as a refinement of a platform on a higher 
abstraction layer. Similarly, a platform on a given layer serves as an ab-
straction for the platforms specifying the system in the subsequent design 
steps. The evolution of the specification from one platform to the next is 
assumed via predefined transformers and specialized tools. A given pair of 
platforms in combination with the transformers forms a platform stack. 

As such an architecture platform represents a collection of predefined 
components that are designed interdependently to support a specific family 
of architectures, customized for a specific problem. The approach pro-
motes the use of component libraries, thus enabling automation and reuse. 
A subset of an architecture platform components selected for a specific 
application is referred to as an architecture platform instance. 

The architecture platform is abstracted even more to a level where soft-
ware primitives are describing the architecture. These software primitives 
are referred to as the programming model or the application programming 
interface (API) of a given architecture. 

Programming models  

In recent years, several programmable processors have been developed, also 
in the area of protocol processing [190]. Soon after, the difficulty in pro-
gramming them, due to their complex architecture and the variable instruc-
tion set, became an obstacle to using them in practice [276]. Consequently, 
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the use of a programming model of the architecture has been suggested 
[229] in order to provide not only an abstraction of the hardware details, 
but also a functional view of the architecture. Such a model facilitates 
programming the architecture by allowing the designer to focus on the 
functionality that the architecture provides, rather than on the hardware 
implementation of this functionality. 

A programming model for a protocol processor architecture needs to be 
defined for the following purposes: (a) to provide an abstraction of the 
hardware architecture, enabling the designer to focus on the functionality 
of the architecture, rather than on its physical details; (b) to bridge the gap 
between the hardware architecture and the application during the mapping 
process. 

Custom design frameworks  

The problem with the constantly increasing level of abstraction is that a 
small change at a high level may result in an unacceptable result in terms 
of circuit complexity in lower levels. For this reason, the target implemen-
tation architecture must support the system designer with adequate tools 
for reliable high level design, including simulators, physical characteristics 
estimators, and tools for the transition from the high abstraction level des-
cription to synthesizable processor models. Emphasis should be on being 
able to obtain reliable results rapidly from simulations and estimations, and 
on providing a precise and reliable synthesis model that correctly reflects 
the characteristics of the simulated model. 

The initial problem to be solved in protocol processor hardware map-
ping is selecting the target hardware platform or ASIP design environment 
for the implementation. The choice can be one from the numerous avail-
able commercial solutions like, for instance, the LISATek suite from 
CoWare [197] or the Chess/Checkers suite from Target Compiler Tech-
nologies [435]. The LISATek suite uses the LISA language for construct-
ing machine descriptions from which software tools and a synthesis model 
can be generated, whereas the Chess/Checkers suite includes a retargetable 
compiler and an instruction-set simulator generator that operate on an 
ASIP processor model called the instruction-set graph (ISG) [435]. 

ASIP design methodologies aim to find sequences of general purpose 
operations in the target application, and group these sequences into a 
hardware implementation [26,52,166,434]. The recurring command se-
quences that are chosen for hardware implementation are often quite short, 
usually less than 10 and often only 2–3 general purpose processor com-
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mands of length. In ASIP methodologies, often a general purpose process-
ing core is enhanced with hardware execution units for the detected com-
mand sequences. In [26], this kind of an approach provides a performance 
increase of no more than 30% when compared to a general purpose pro-
cessor designed with equal area and power constraints. Also, typical protocol 
processing operations are more complex than 2–3 sequential instructions, 
which seriously limits the usability of traditional ASIP methodologies for 
optimizing protocol processor performance: complex application-domain 

approaches due to the shortness of the detected command sequences. If 
larger, yet frequently occurring protocol processing operations could be 
detected for hardware implementation, greater increases in processing 
speeds could be expected. 

An optimal tuning of the architecture, with respect to the application 
requirements can be realized by employing collections of customized tools 
needed to configure, compile, analyze, optimize, simulate, explore, and syn-
thesize architectural configurations. Protocol processors are usually accom-
panied by custom design frameworks that enable the designer to squeeze 
the optimal performance out of a given architecture. Such a design frame-
work should provide several features: out of them, the architectural esti-
mation is one of the key ones. Embedded systems in general, and hardware 
in particular, imply high cost of designing and manufacturing. Therefore, it 
is important to be able to estimate the characteristics of the final product as 
early as possible in the development process. System-level estimation is of 
particular importance to embedded systems, since, by their definition, they 
are systems that must comply with tight constraints in terms of size, energy 
consumption, and cost. Based on the estimation results, the architectural 
design space exploration is performed. During this process, the designer 
evaluates several architectural configurations and selects the one(s) com-
plying best with the requirements of the application. Simulation represents 
an equally important technique in developing programmable architectures. 
To prevent and detect inherent errors in the specifications of both the app-
lication and the architecture, the simulation has to be performed at different 
levels of abstraction, with respect to both functional and non-functional 
requirements of the system. Finally, once the configuration of a given pro-
grammable architecture is chosen to implement an application, the hard-
ware synthesis enables the specification of the configuration in a HDL and 
also its synthesis, using specific synthesis tools. Furthermore, an important 
feature of such a design framework is its capability of rapid generation of 
different models (e.g., simulation, synthesis, estimation, etc.) of the system. 

cessing application domain) are likely to not be well optimized in ASIP 
specific operations (e.g., cyclic redundancy checking in the protocol pro-
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Design processes  

There are two important categories of methodological approaches that 
could be used and taken advantage of in protocol processor design. In the 
top-down approach [137,287,372], a high level system specification is 
gradually refined towards an implementation. When enough detail is gath-
ered, the refined specification is partitioned into hardware and software, 
and co-designed. Such approaches are also known as hw/sw co-design. 
The top-down approaches are typically based on a model of computation 
(MOC), in which notions of formal semantics for communication and con-
currency are defined. The methods in this category focus on the properties 
of the application and on the simulation of the system as a whole, but gene-
rally the implementation obtained is less efficient for families of applica-
tions and for applications using several distinct algorithms. An overview of 
top-down approaches may be found in [471]. 

In the meet-in-the-middle approaches, the application and the architec-
ture are developed independently. A top-down design flow is used to spe-
cify the application. The architecture is developed following a bottom-up 
flow, in which the functionality it provides is identified starting from the 
hardware layer of the architecture. When both specifications are complete, 
the application is mapped onto the architecture. Such an approach enables 
the reuse of both software and hardware, cutting down development times 
and design effort. The price to pay is the significant effort in designing 
complex libraries, since any new hardware component has to be designed 
from scratch. Here we adopt the second category to develop programmable 
architectures. 

Our choice is justified by two reasons: the architectures that we address 

and such architectures are intended to be used as an implementation plat-
form for several applications of the same family. 

The Y-chart approach 

The Y-chart approach [228,229] is a generic framework for designing pro-
grammable architectures, in which the architecture is tuned to provide the 
performance required by a set of applications. Being based on a meet-in-
the-middle flow, the Y-chart approach promotes the idea of a clear distinc-
tion between the application and the architecture, each being developed 
independently. The implementation of the application onto an instance of the 
architecture (i.e., of a configuration) is done through a mapping process. 
 

promote the reuse of IP components at different levels of abstraction, 



12 Protocol Processor Design Issues      267 

The general view of the approach is shown in Figure 12.1. The application 
running on a given architecture instance is obtained through the mapping 
process and the performance of the resulting implementation is evaluated 
in the Performance Analysis step. 

All three main artifacts of the approach (i.e., application, architecture, 
and mapping) are considered to be equally important in achieving an opti-
mal configuration of the architecture. Therefore, although the performance 
numbers aim mainly at suggesting improvements of the proposed configu-
ration(s), the other two artifacts may also be targeted. For instance, at 
application-level, some of the algorithms may be optimized, or the map-
ping process modified based on certain heuristics. The mapping process is 
performed iteratively until satisfactory performance numbers are obtained. 
The process of trying out different architectural configurations to find “the 
optimal” one is also known as design space exploration. 

Exploring the design space is very important to find a good, close to opti-
mal, combination of hardware and software for the given protocol process-

A very important aspect of any design framework or design process is 
tool support and automation. The importance is clear when considering the 
need for creating and editing the artifacts of the design flow at different 
levels of abstraction. In design frameworks that support multiple levels of 

Fig. 12.1. The Y-chart approach. © Springer, 2002 [229]. 

ing application. The exploration requires that several processor architecture
candidates for implementation are specified, and that the application soft-
ware is tuned for each candidate. 

abstraction, there are many tasks in refining the specifications at each step 
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of the design flow that benefit greatly from tools that reduce the need for 
manual design work or completely automate a certain part of the design 
process. Automated or semi-automated tools are also involved in generat-
ing different artifacts, for example a simulation model or a synthesis model 
from an abstract specification, or application software for a generated 
optimized protocol processor architecture. 

Another important feature appreciated by system designers is the possi-
bility of using component library based approaches. Such approaches allow 
the designer to conveniently reuse components from previous designs in 
new ones instead of designing new components every time, thus achieving 
shorter design and test time (the components in a library have already been 
tested for correct operation in the previous project). This kind of approach 
is especially useful in developing application-optimized protocol processor 
architectures as noted earlier in this chapter, many protocols and protocol 
processing applications exhibit similar requirements from processing func-
tionality. 

The TACO framework for protocol processor design 

Tools for application-specific hardware/software CO-design (TACO) 
[440,443] is an integrated design framework for fast prototyping, simula-
tion, estimation, and synthesis of programmable protocol processors based 

(like area and power use) are estimated in a Matlab model (discussed in 
more detail in Chapter 17, Early Estimation models of processors), and the 
processor configurations are synthesized using a VHDL model. The Sys-
temC and VHDL models are co-developed so that module characteristics 
in both models are the same. The processor resources are organized in a 
library of components, namely the TACO Component Library, from which 
the designer can create processor configurations by selecting those re-
sources needed to implement a given application. SystemC, Matlab, and 
VHDL models of the processor resources coexist inside the TACO frame-
work. Once a processor configuration is created one can simulate it using 
the SystemC model, estimate its physical characteristics using the Matlab 
model, and once configuration is validated, a VHDL model can be built to 
be synthesized in hardware. 

In this section we discuss how the TACO Framework addresses the pre-
viously discussed design issues of protocol processors. We start by intro-

detail in Chapter 18, System level simulations), their physical parameters 

on the transport triggered architecture (TTA) concept [92]. TACO pro-
cessors are simulated using a SystemC [418] model (discussed in more 
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ducing the TACO processor, then we discuss the abstraction layers in 
TACO and the TACO Component Library used to support IP-reuse and 
automation. After that, we discuss the TACO design methodology and 
exemplify the main steps with excerpts from an IPv6 router specification. 

The TACO processor  

and configurable protocol processor, which provides dedicated hardware to 
deal efficiently with protocol processing tasks. The processor is based on 
the TTA architecture, a processor architecture proposed for application 
specific processors. The architecture is modular, has a scalable perform-
ance, provides flexibility, and makes it easy to control the processor cycle 
time. A TACO processor (Figure 12.2) consists of a set of functional units 
(FUs) connected by an interconnection network (IN). The FUs may be of-
different types, each implementing its function(s) independently. Each FU 
performs an application-domain specific (i.e., protocol processing) opera-
tion or a group of parameterizable operations, for example Checksum cal-
culation or bitstring matching. Typically the operation is rather complex, 

Fig. 12.2. Generic architecture of the TACO processor. An architecture instance 
with three buses and four FUs is shown. 

The TACO processor is a programmable Hardware considerations. 

especially in comparison to traditional ASIP approaches. There may be more 
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than one FU of the same type in a TACO processor, allowing parallel exe-
cution of multiple instances of the same protocol processing task. In turn, 
the interconnection network is composed of one or many buses, which are 
controlled by an interconnection network controller.  

A protocol processing FU is basically composed of an interface to the 
interconnection network and an internal logic. The interface consists of 
several registers that are used for storing input and output values. Input 
registers are of two types: operand and trigger, respectively. Operand reg-
isters are used to store input values received from the buses. Trigger regis-
ters are a special kind of operand registers that, once written with data, 
trigger the computation of the FU. There may be zero, one or more oper-
and registers and exactly one trigger register in an FU. In addition, output 
registers are used for providing the result of the computation to the buses. 

Some FUs may also have a result signal that provides a Boolean result 
of the computation to the interconnection network controller. 

The FUs of TACO are connected to the buses via sockets. There are 
three types of sockets: operand, trigger, and result sockets, respectively. 
Operand sockets connect one bus to an input register of an FU. Trigger 
sockets are a special kind of operand sockets, which connect a given bus to 
the trigger register of an FU. There may be several trigger sockets con-
nected to the same trigger register of an FU, each socket corresponding to 
a different FU operation. Result sockets connect FU result registers to the 
buses. TACO processors may have several memory spaces, which may 
share the same physical memory block. A memory space is interfaced to 
the buses similar to any FU, and its data is accessed through the corre-
sponding input/output registers. 

Being a TTA-based architecture, TACO provides features like modular-
ity, flexibility, scalability of performance, and control of the processor 
cycle time, which are important concepts in the area of embedded systems 
design. The modularity of the architecture enables a good support in auto-
mating the design, each FU being designed separately from the other FUs 
and from the interconnection network. Each FU implements one or more 
pieces of functionality and the final configuration is assembled by connect-

Fig. 12.3. TACO instruction format. 

ing different combinations of the functional units. The FUs are completely 
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independent of each other and, at the same time, of the interconnection 
network, all of them being interfaced in a similar manner. The perform-
ance of the architecture can be scaled up by adding extra FUs, buses, or by 
increasing the capacity of the data transports and storage. The functionality 
of the architecture may be enhanced, by adding new FU types to provide 
computational support for the application. 

Software considerations. In TACO, data transports are programmed 
and they trigger operations, in contrast to the traditional processors, where 
the operations of the processor trigger data transports. The architecture is 
programmed using only one type of instruction, the move, which specifies 
data transports over the buses. An operation of the processor occurs as a 
side-effect of the transports between functional units. Each transport has a 
source, a destination, and data to carry from one FU register to another. 
The parallelism level in TACO can be exploited not only by increasing the 
number of FUs of the same type, but also by adding more buses. This allows 
for executing several bus transports in the same processor cycle. 

TACO has a variable-length instruction format based on the number of 
buses present in a given configuration. An instruction (Figure 12.3) is com-
posed of several subinstructions (i.e., moves), which specify data transports 
on individual buses. In addition, an IC field is used to specify immediate 
integers on the buses. In turn, a subinstruction consists of three fields: 
GuardID, SourceID, and DestinationID. 

The GuardID field enables the conditional execution of the subinstruc-

if (x>2 or y<3 or z<>0) then 
do_something1(); 

else 
do_something_else(); 

on a TACO processor configuration with three comparator FUs, one could 
define a GuardID based on the result signals of each comparator FU. Let 
these result signals be a (true for x > 2), b (true for y < 3), and c (true for 
z = 0), respectively. A guard that replaces the conditional statement can be 

ignored. GuardID values are configurable, based on combinations of result 

tion. Upon evaluation of this field by the interconnection network con-
troller, the subinstruction is either dispatched on its corresponding bus or

signal values received from FUs. For instance, 64 guard combinations can be 
defined, provided that a GuardID on 6 bits is used. The process of defining
the GuardIDs for a given processor configuration is done at configuration-
time based on the user experience and also on the application requirements.
Combinations of the FU result signals may be obtained using the negation
(not) and the conjunction (and) boolean operations. For instance, to imple-
ment the following hypothetical example: 
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written as myGuardID=!a.!b.c. As such, a TACO-like implementation of 
the previous code would be as below: 

 
compare(x>2);compare(y<3);compare(z=0); 
!myGuardID:do_something1; 
myGuardID:do_something_else; 
 
For brevity, the TACO subinstructions in the previous example have 

been replaced with a textual description of the operation performed (e.g., 
compare). We will discuss in the following sections, how the TACO opera-
tions are implemented, in practice, in terms of bus transports. 

Finally, the SourceID and DestinationID fields are used to specify the 
source and target logical addresses (i.e., sockets) between which a trans-
port takes place. 

The interconnection network controller is the “brain” of the processor, 
being in charge of implementing data transports on the buses. The control-
ler uses a program memory from which it fetches instructions, splits them 
into subinstructions, and dispatches each subinstruction on the correspond-
ing bus. It is important to mention that, when adding FUs, one does not 
have to change the instruction format, as long as the existing FUs are add-
ressable by the length of source and destination addresses. 

A program counter (PC) is maintained by the interconnection network 
controller. A built-in trigger socket is used to load the PC with a desired 
value (either absolute or relative), making possible to implement program 
jumps. More details on the actual implementation of the controller may be 
found in [440]. 

Visibility of data transports at the architectural level is an important fea-
ture of TACO, allowing compilers to optimize and schedule these trans-
ports. Since all the operations of the processor are side-effects of the data 
transports on the buses, the processor cycle-time depends on the availabil-
ity of the FU results. Furthermore, since the main emphasis of the TTA 
architecture is moving data, it provides an important platform for data-
intensive applications, like protocol processing. 
 
gramming TACO processors is a matter of moving data from output to 
input registers, identified using the address spaces of the corresponding 
sockets. An example of an instruction composed of three subinstructions is 
given below: 

g1:src1 > dst1; !g2:src2 > dst2; +02 > dst3; 
 
Using registers for interfacing FUs allows one to apply TTA-specific 

optimization techniques [92], like moving operands from an output register 

Programming for TACO. From the programmer’s point of view, pro-
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to an input register without additional temporary storage (bypassing), 
using the same output register or general purpose register for multiple data 
transports (operand sharing), or removing registers that are no longer in 
use, etc. All these techniques help in reducing code size and consequently, 
in reducing the number of bus transports. Some general compiler optimiza-
tions may also be performed on the TACO assembler code, like sinking, 
loop unrolling, etc. The necessary allocation and scheduling, along with 
transforming the assembler code into hexadecimal code is left as a task for 
the TACO compiler which is currently under development. 

Abstraction layers in TACO  

In this subsection we discuss the abstraction layers that are used in design-
ing the TACO processors. 

The TACO complete model. At the lowest level of detail lays the 
TACO Complete Model providing an accurate representation of the hard-
ware details of each component of the architecture. This view of the archi-
tecture is specified using VHDL and serves for synthesis purpose and for 
obtaining an exact measure of the physical characteristics of the system.  

The TACO complete model is implemented as a library of module des-
criptions in VHDL. The first version of the synthesis model was written 
using Alcatel’s 0.35 µm technology libraries. The current version is imple-
mented using 0.18 µm standard CMOS technology. The TACO VHDL 
module library includes descriptions for all hardware blocks of the TACO 
hardware platform, including functional units, sockets and the interconnec-
tion network controller. 

All VHDL descriptions of functional units as well as other modules in 
the hardware platform have already been individually simulated and syn-
thesized at the time of adding these descriptions into the TACO library. 
Thus, the individual VHDL module descriptions have already been veri-
fied to meet the functional specifications given in the corresponding Sys-
temC module descriptions at the time of writing or generating the top-level 
file. The top-level VHDL file defines exactly the same architecture as the 
architecture simulated in SystemC. Once the top-level VHDL file for a 
processor architecture has been generated, the architecture defined by it is 
simulated using VHDL simulation tools. In these simulations, the synthesis 
model is appended with a non-synthesizable part that is used for simulating 
the different memory blocks needed in the specified architecture. For 
example, program memory is simulated by reading the application code 
used in the SystemC simulations from a file. A similar solution is used for 
simulating the inbound and outbound network buffers. By using identi-
cal application code in both SystemC and VHDL simulations, identical 
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functionality and execution scheduling is expected: in TACO processors, 
the application code has been scheduled already at the time of application 
software implementation. Thus, the synthesis model is verified by compar-
ing the VHDL simulation results to the SystemC simulation results run-
ning the same application code and the same network data. Successful 
completion of the VHDL simulations permits proceeding to synthesis. 

The TACO cycle-accurate model. As an abstraction of the previous 
level, the Cycle-Accurate Model of TACO specifies the TACO architec-
ture with respect to the timing characteristics of each component. This 
specification serves for simulation purposes, in order to estimate the per-
formance of the processor at early stages of design. Currently, this view of 
the architecture is specified using the SystemC language. We will discuss 
the TACO SystemC simulation environment in detail in Chapter 18, System 
Level Simulations. 

The TACO component model. The Component Model specifies the 
TACO processor as a collection of components and their interconnections 
without giving details about their implementation. This model is used dur-
ing the configuration process of the TACO processor. Both the qualitative 
and the quantitative configurations of the TACO processor are specified at 
the Component Model layer. Qualitative configurations take into account 
functional requirements of the application, whereas quantitative require-
ments address non-functional requirements. UML [316] is employed as a 
modeling language for the component model. A UML profile for TACO 
[427] is used to model not only the physical architecture of the TACO 
processor, but also the Matlab estimations (area, gate delay, power con-
sumption) of the TACO components. 

The TACO programming model. On the highest level of abstraction, 
the Programming Model of the TACO processor provides an additional 
abstraction layer of the hardware architecture, where a set of programming 
primitives are defined and used to specify the functionality provided by a 
given TACO configuration. The TACO programming model is composed 
of several programming primitives, split into two categories: functional 
primitives and control primitives. 

Functional primitives (FPs) are the programming constructs providing 
computational support for a given application. Their main characteristic 
is that their presence in a TACO configuration varies with the types of 
TACO resources (FUs) included in a configuration. Each FU provides one 
or more processing functions, whereas buses are only used to support data 
transports between FUs. Each processing function is associated with a speci-
fic trigger socket. When data is written through this socket into the trigger 
register of an FU, the function is executed. For executing an FP, several 
bus transports may be required. In the first stage, the operand registers of 
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the FU are set up, whereas in the second stage, the trigger register is writ-
ten and, consequently, the operation is executed. This implies that an opera-
tion is equivalent with a number of TACO bus transports and, even more, 
every time the operation is invoked, the exact same sequence of transports 
is used. Therefore, we can abstract the operations of the processor as mac-
ros containing TACO bus transports. The benefit from this approach is 
that, every time an FP is used, it can be automatically translated into bus 
transports. For instance, an addition functional primitive can be expressed 
using three TACO bus transports, each of them writing or reading one of 
the registers of the FU (e.g., COUNTER FU) implementing the primitive. 

 
addition(a:int, b:int, c:int){ 
//COUNTER FU 
a > TSC; 
b > TIC; 
RC > c; 
} 
 
In turn, control primitives are used to support the sequencing of the 

operations more complex programming structures like loops, cases, sub-
routines, etc. can be defined. 

The set of functional and control primitives provided by a given proces-
sor configuration form the API of that configuration. Adding or removing 
FUs modifies accordingly the API of the configuration. The programming 
interface can be used not only as a language for programming TACO, but 
also as a bridge between the application specification and the architecture. 

The TACO component library 

To provide prerequisites for automation and reuse, the TACO processor 
resources are organized in a library of components, namely the TACO 
Component Library. Each resource included in this library is specified 
from three perspectives. A simulation model provides SystemC executable 
specifications, enabling the simulation of the processor configurations, in 
order not only to check its functional correctness, but also to evaluate its 
performance. A synthesis model provides implementations of each processor 
resource in VHDL. The synthesis model of TACO targets synthesizable 
off-the-shelf ASIC components, thus enabling the designer to generate 
synthesizable processor configurations at system-level. The simulation 
model is developed in concordance with the performance characteristics 
provided by the synthesis model, such that the simulation of the system 

configurations. Three types of control primitives are defined in TACO: 
unconditional jumps, conditional jumps, and labels. Using these types of 

FPs in a given application, and they are typically present in all TACO 
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physical characteristics like area, power consumption, and gate delay of 
the components. The estimates are based on a mathematical model (see 
Chapter 17) built in Matlab [312, 443]. 

Building the TACO Component library is an iterative process that relies 
both on the analysis of the processing needs of different protocols and on 
the TACO resources identified in previous applications. The SystemC and 
VHDL modules corresponding to each TACO resource are designed inde-
pendently. Each new FU is simulated, synthesized, and validated before 
being added to the library. TACO configurations are created using top-
level files, which specify the required modules and their interconnection, 
as we will discuss in the following sections. Based on the results obtained 
from the simulation and estimation models, optimizations may be sug-
gested for improving the provided performance, with respect to a given 
application family. 

Furthermore, in order to provide a “unified” component library, in 
which all the library information is available in a single model, we adopt 
an UML-based approach. The TACO UML Library not only conjoins, but 

• structural – internal structure of components, like registers, result signals, 
etc. 

• physical – characteristics estimates of area, power use, and gate delay; 
simulation and synthesis specifications pointers to the SystemC and 
VHDL implementations. 

• functional – FPs (ie., the API) provided by each component, and their 
implementations in terms of TACO bus transports, as well as additional 
implementations (e.g., using the C language). 

The TACO UML Library is modeled using the TACO Profile definition, 
in order to benefit from support in UML tools. The approach allows one to 
graphically create and maintain such a library, and moreover, to store it 
as a UML model. Figure 12.4 provides a snapshot of the TACO UML 

                                                      
1

estimation model allows one to obtain high level estimations of different 
provides cycle accurate results, with respect to the synthesis model. An

also abstracts the information of the four different libraries, in order to
facilitate the generation of the various TACO models. As such, four cate-
gories of information are included in the library: 

 Available for download at http://mde.abo.fi 

1Library for IPv6 routing using the Coral UML tool.
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Fig. 12.4. Caption of the TACO library for IPv6 in Coral.2 

At the bottom of the screen, a property editor allows one to edit the 
properties of TACO elements. In this particular example, a property editor 
for editing the methods of the MATCHER FU is shown at the bottom of 
the screen. The left-hand side panel provides a list of library elements, 
while the main editor lets one to graphically create and edit the library 
components.  

The TACO Library is currently built manually by the TACO hardware 
designer and complemented with estimation information extracted from 
the libraries of the TACO framework. The process of building the library 
might seem tedious, but the number of library elements is relatively small 
(e.g., 15 for IPv6 routing) and new additions may occur rather seldom. 
Nevertheless, once we have the TACO library built, we are able to quickly 
create processor configurations from which can further generate different 
artifacts of the development process. 

                                                      
2 The authors wish to thank Tero Nurmi, University of Turku for providing the 

physical estimates included in the TACO UML library. 
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Fig. 12.5. Development flow for programmable architectures. 

The TACO design methodology  

In this section we discuss the TACO design methodology. During our pre-
sentation small excerpts from an IPv6 router application implementation 
on TACO are provided as example. As mentioned previously, we follow 
the Y-chart approach [229] as the general framework to develop applica-
tions targeted to TACO. A general view of the employed methodology is 
given in Figure 12.5. Our methodology differs from the Y-chart method in 
the fact that only the Application Functional Requirements are taken into 
consideration during the application specification process. The impact of 
such an approach is that the mapping process of the architecture is per-
formed only with respect to the application functionality. Consequently, a 
qualitative configuration of the architecture is obtained. The Application 
Non-functional Requirements (e.g., performance and physical characteris-
tics) of the application are taken into account only later in the architecture 
exploration phase of the methodology, where a quantitative configuration 
of the architecture is obtained. 
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Application specification. In the Application Specification phase, the 
target application is analyzed with respect to the functional requirements in 
a top-down manner. Several subphases are used, for instance requirements 
analysis, application analysis, etc. At each subphase, more details are gath-
ered into the specification. The main goal of this phase is to identify the 
pieces of functionality of the application that have to be supported by the 
architecture.  

The Unified Modeling Language (UML) [316] is used as a graphical no-
tation during this phase. The result of the Application Specification Phase 

components of the system) communicate via a message-based scheme, 
while their internal behavior is modeled with activity graphs. 

Architecture specification. The Architecture Specification phase starts 
from the Architecture Requirements that capture the functionality that the 
architecture has to provide. The approach may be seen as a combination of 
a top-down and a bottom-up approach. In the former, hardware resources 
are identified from requirements of the TACO architecture; in the latter, 
the functionality supported by the architecture is extracted from its hard-
ware resources, i.e., starting from the TACO Complete Model towards the 
TACO Programming Model. Several subphases are used for specifying the 
system at various levels of abstraction. The end result of the architecture 
specification is a collection of domain-specific components, modeled at 
the three hardware abstraction layers of TACO and included in the UML 
model of the TACO library. 

Mapping. The specifications resulting from the application and archi-
tecture specification processes provide a functional view of the application 
and of the architecture, respectively, which in turn form the input to the 
Mapping process. During this phase, the functionality required by the app-
lication is mapped to the functionality provided by the architecture. Two 
artifacts are obtained: a qualitative configuration of the architecture to 
support the functional requirements of the application, and the application 
code to run on this configuration. If some functionality of the application is 
not supported by the architecture, new resources of the architecture may be 
suggested. The mapping process is based on three subphases: 

A. Express the application specification with TACO programming pri-
mitives. During this subphase the application is modeled using UML acti-
vity diagrams [316] to model the computations (represented as activity and 
subactivity states) that are applied on each PDU. The subphase is based on 
two steps. In the first one, the subactivity states are hierarchically decom-
posed into less complex subactivity states, until they match the granularity 
of the TACO FPs (see activity ‘G’ of Figure 12.6). This step is heavily based 

is a collaboration diagram (see Figure 12.6), in which the objects (i.e., 
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Fig. 12.6. Decomposing activity states to match the complexity of TACO opera-
tions. 

on the experience of the TACO domain expert and thus, performed manually. 
A certain level of tool support could be assumed in decomposing the 

the TACO programming model. We remind the reader that TACO FPs are 
available in the TACO UML Library, as discussed previously.  

B. Create qualitative configuration. The process consists of interrogat-
ing the TACO Component library in order to identify which functional unit 
supports each required programming primitive. In certain situations, the 
same programming primitive may be provided by several TACO FUs, in 
which case the designer chooses manually the desired FU. The result of 
this step is a qualitative configuration (see Figure 12.7) of the processor in 
which one FU of each required type and one bus are included. 

C. Create the application code. The process consists of two steps. 
Firstly, the control flow of the application is transformed into control 
primitives of the TACO architecture, as follows: 

 

(e.g., ‘G.3’) is implemented by one of the FPs (e.g., add()) provided by 
subactivity states, though. In the second step, each “leaf ” subactivity state 
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Fig. 12.7. Qualitative configuration of TACO for the IPv6 router. 

transformed into a TACO subroutine in which the first instruction is a 
label; 

jump instruction, where the address of the jump corresponds to the 
label of the target activity;  

are transformed into conditional jumps pointing at the label of the 
target subroutine.  

The result of applying the transformation to the example in Figure 12.6 
is shown below. In this example, the TACO FP implementing each action 

 
label A.1; 
 A.1; 
 JUMP C; 
 JUMP B; 
 
 label B; 
 B.1 
 JUMP ...; 
 ........ 
 
 label C.1; 
 C.1; 
 JUMP D.1; 
  

label D.1; 
 D.1; 
 JUMP E.1; 
 
label E.1; 
 E; 
 e: JUMP F.1; 
 
 label F.1; 
 F.1; 
 d: JUMP G.1; 
 !d: JUMP I.1; 

label G.1; 
 G1; 
 JUMP G.2; 
 
 label G.2; 
 G.2; 
 JUMP G.3; 
label G.3; 
 G.3; 
 JUMP H.1; 
 
 label H.1; 
 H.1; 
 JUMP F.1; 

 label I.1; 
 I.1; 
 JUMP J.1; 
 
 label J.1; 
 J.1; 
 JUMP K.1; 
 
 label K.1; 
 K.1. 
 JUMP B.1; 
 
 label B.1; 
 B.1; 
 JUMP B.1; 

vity states, in order to provide a better view of the structure of the presented
state has been replaced with the tag (e.g., ‘A.1’) of the corresponding acti-

code. 

1. each activity state, branch state, send signal, receive signal state is 

2. a transition between two blocks is transformed into an unconditional 

3. guarded transitions, only allowed in combination with branch states, 
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Secondly, the FPs identified at the first step are expanded into TACO 
bus transports, as follows: 

 
 00 LABEL G.1; 
 01 #read(addr_sum; sum); MMU FU 
 02 +00 > OPMM;         #base address for variables 
 03 addr_sum > TRMM;    #offset address 
 04 RMM > sum;          #read the result into sum 
 05 JUMP G.2; 
 
 06 LABEL G.2; 
 07 #read(dtg_addr, index; dtg); MMU FU 
 08 dtg_addr > OPMM;    #base address of the datagram 
 09 index > TRMM;       #offset of the next 32-bit word to be read 
 10 RMM > dtg;          #read the result into 'sum' 
 11 JUMP G.3; 
 
 12 LABEL G.3; 
 13 #add(sum, dtg; sum); COUNTER FU 
 14 sum > TSC;          #initialize counter with the 'sum' value 
 15 dtg > TIC;          #increment counter value with 'dtg' 
 16 RC  > sum;          # read result of the addition 
 17 JUMP H.1; 
 
 18 LABEL H.1; 
 19 #inc(index); COUNTER FU 
 20 index > TSC;        #initialize counter with the 'index' value 
 21 +01 > TIC;          #increment counter value by 1 
 22 RC  > index;        #read result of the addition into 'index' 
 23 JUMP H.2; 
 
 24 LABEL H.2; 
 25 #write(addr_index); MMU FU 
 26 +00 > OPMM;         #base address for variables 
 27 addr_index > TRMM;  #offset address of the 'index' 
 28 JUMP F.1; 
 
 29 LABEL F.1; 
 30 #cmp(index, len, 0; d); COMPARATOR FU 
 31 len > OPC;           
 32 index > TLTC;       # index < len, d is guard signal 
 33 d: JUMP G.1;        # conditional JUMP 
 34 !d: JUMP I1; 
 ...................................... 
 35 LABEL K.1; 
 36 #write_par(addr_chk, chksum); MMU FU 
 37 +00 > OPMM;         #base address for variables 
 38 addr_chk > TWMM;    #offset address 
 39 RMM > sum;          #write the result into memory 
 40 JUMP B.1; 
 
 41 LABEL B.1; 
 42 #read_par(addr_chk, chksum; chk); MMU FU 
 43 +00 > OPMM;         #base address for variables 
 44 addr_chk > TRMM;    #offset address 
 45 RMM > sum;          #read the result into sum 
 46 JUMP ...; 
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We remark that the send signal and receive signal activities constitute a 
special case. A shared memory location is used for passing the message 
from the sender to the receiver. Basically, the send signal activity writes 
the value of the message into a given memory location (lines 35–40) and 
the receive signal activity reads (lines 41–46) the value of the message 
from the same memory location. 

System-level simulation. In the Simulation phase, the functionality of 
the resulted system is validated, with respect to the requirements of the 
application. The validation is performed based on the input/output beha-
vior of the system. In the situation that errors in the specification (of both 
the application and the architecture) occur, corrections are suggested and 
once they are attended the mapping process is performed again. It is impor-
tant to mention that, by having already designed SystemC specifications 
for all the TACO components, allows that only the top-level configuration 
file of the processor need to be generated from the TACO component 
models. Issues related to the system-level simulation of TACO processors 
will be discussed in Chapter 18. 

Design space exploration. The Exploration phase deals with tailoring 
the architecture towards an optimal implementation of the application, in 
terms of performance requirements and physical constraints. This phase 
implies performing estimations of the architecture from several perspec-
tives. For instance, from the simulation process the designer may collect 
performance estimates with respect to the throughput of the application. 
Additionally, an estimation of the physical characteristics like occupied 
area, power use, etc. of the configuration is performed. Based on this data, 
mainly optimizations of the architecture, but also of the application speci-

For each quantitative configuration, the application code is optimized such 
that it takes into account the parallelism of the configuration. 

Synthesis. The designer selects from the exploration process one or 
many TACO processor configurations suited for implementing the applica-
tion and, subsequently, synthesizes them in hardware. To build a VHDL 
description of a TACO architecture, a top-level file specifying all needed 
modules and their interconnections have to be created. Again, having al-
ready built VHDL specifications stored in the TACO Component library 
enable us to automatically generate the TACO Complete model; i.e., the 
top-level configuration file corresponding to a given configuration. The 
code below presents as example the declaration of the Matcher functional 
unit of Figure 12.7. 

 
 

until a satisfactory configuration (i.e., quantitative configuration) is obtained. 
fication are suggested. The exploration process is performed iteratively
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 signal m1 op1 load, m1 od2 load, signal m1 trg load : std ulogic; 
 signal m1 OP1 : unsigned(datawidth-1 downto 0); 
 signal m1 OD2 : unsigned(datawidth-1 downto 0); 
 signal m1 TR : unsigned(datawidth-1 downto 0); 
 signal m1 ResultR : unsigned(datawidth-1 downto 0); 
 signal m1 guard bit : std ulogic; 
 matcher operand : input_socket 
    generic map (socket_address => 16#OPM1#) 
        port map (clk => clk, reset => reset, dst_address => 
        icnw_dst_address, net_data_in => icnw_data, load => 
        m1_op1_load, socket_data_out => m1_OP1); 
 matcher data : input_socket 
    generic map (socket_address => 16#ODM1#) 
        port map (clk => clk, reset => reset, dst_address => 
        icnw_dst_address, net_data_in => icnw_data, load => 
        m1_od2_load, socket_data_out => m1_OD2); 
 matcher trigger : input_socket 
    generic map (socket_address => 16#TM1#) 
        port map (clk => clk, reset => reset, dst_address => 
        icnw_dst_address, net_data_in => icnw_data, load => 
        m1_trg_load, socket_data_out => m1_TR); 
 matcher result : output_socket 
    generic map (socket_address => 16#RM1#) 
        port map (src_address => icnw_src_address, socket_data_in   
        => m1_ResultR, net_data_out => icnw_data); 
 matcher fu : matcher 
    port map (clk => clk, reset => reset, op1_load => 
    m1_op1_load, od2_load => m1_od2_load, trg_load => m1_trg_load, 
    OP1 => m1_OP1, OD2 => m1_OD2, TR => m1_TR,  
    ResultR => m1_ResultR, guard bit => icnw guard()); 

Conclusions  

Several issues have to be addressed in the process of designing protocol 
processors. The initial problem to be solved is the target hardware plat-
form. The alternatives vary from custom design frameworks with excellent 
application-domain optimization through traditional ASIP methodologies 
with a smaller level of domain optimization to fixed hardware implementa-
tions with minimal programmability (ASIC). The available tools for auto-
mating the design process at different abstraction levels depends on this 
choice. In any case, in order to evaluate the design processor models for 
simulation, physical characteristics estimation and logic synthesis are needed. 
A key issue in the development of such processor models is that they need 
to provide a simple enough API through which models for a given protocol 
processor architecture can be generated. This is especially important for 
system level simulations of architectures: in addition to functional verifica-

precise information, the simulations are also required to be very fast (i.e.,
by-cycle simulation and register transfer statistics. Whilst providing such 
tion, simulations need to provide hardware-accurate results like cycle-
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Another problem to be addressed is defining rigorous application speci-

increasing complexity of applications through abstraction layers and tool 
support, but also through employing application-domain-specific method-
ologies and specification languages/models that address the specifics of 
each application family. 

Last but not least, the application specification processes should be able 
to facilitate the mapping of the application on selected architectures natu-
rally and with as much tool support and automation as possible. 

to run a test bench in a matter of seconds) to facilitate rapid architectural
exploration at the system level. In Chapter 18, we discuss these issues in
more detail and also reflect on the use of object-oriented programming 
techniques and a heterogeneous level of abstraction in the simulator imple-
mentation. 

application required to tune up the implementation platform for optimal 
fication processes which are able to capture those characteristics of the 

performance. Such specification processes not only have to cope with the 



13 Java Co-Processor for Embedded Systems 

Tero Säntti, Joonas Tyystjärvi, and Juha Plosila 

University of Turku 

Introduction  

Java is very popular and portable, as it is a write-once run-anywhere lan-
guage. This enables coders to develop portable software for any platform. 
Java code is first compiled into bytecode, which is then run on a Java Virtual 
Machine (hereafter JVM). The JVM acts as an interpreter from bytecode to 
native microcode, or more recently uses just-in-time compilation (JIT) to 

only approach is quite inefficient in terms of power consumption and exe-
cution time. These problems rise from the fact that executing one Java 
instruction requires several native instructions. Another source for ineffi-
ciency is the cache usage. As the JVM is the only part of software running 
natively, it occupies the instruction cache, whereas the Java bytecode is 
treated as data for the JVM, hence being located in the data cache. Also the 
actual data processed by the Java code is assigned to the data cache. This 
clearly causes more memory accesses missing the cache. When the execu-
tion of the bytecode is performed on a hardware co-processor this is 
avoided and the overall amount of memory accesses is reduced. 

This work is a part of the REALJava project, which aims to design a 
Java co-processor that is easily integrated to various systems. We have 
chosen to use asynchronous techniques in this project because then we can 
achieve good performance with reasonable power consumption and very 
easy integration with existing systems, since no clock limitations need to 
be considered. Asynchronous self-timed circuit technology [386], where 
timing is based on local handshakes between circuit blocks instead of a 
global clock signal, provides a promising platform for obtaining a highly 
modular low-power and low-noise Java accelerator implementation.  

© 2007 Springer. 
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affect the same result a bit faster at the cost of memory. This software’s 
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The rest of the chapter is organized as follows. In the next section we 
shortly describe the structure of any JVM, and show how the REALJava 
co-processor fits into the specifications. The following section describes 
the hardware co-processor design, and the software portion of the virtual 
machine is presented in another section. Yet another section details the 
current status of the system. Finally, we draw some conclusions and des-
cribe the future efforts related to the REALJava co-processor. 

Generic virtual machine architecture  

Advantages of virtual machines  

One of the most important reasons to use a virtual machine is that the code 
is “write once, run anywhere”. This means that the code needs to be com-
piled only once, and then it can be run on any platform, even over the net. 
Another important advantage is that new versions of hardware need only a 
new virtual machine to run all existing software. This reduces development 
costs of a new generation of devices. 

Even though the reasons listed above are very attractive, especially to 
industry, if not the consumer, they are not the only reasons to use virtual 
machines. Virtual machines provide improved security features, the addi-
tional layer between the code and the executing hardware can be used to 
increase security. While making it hard for you to shoot yourself in the 
foot, it also makes it harder for others to shoot you in the foot. Software 
downloaded from the internet can be verified to ensure it is original and is 
not malevolent. 

The security advantages are also present in some fully interpreted lan-
guages, such as TCL and JavaScript. The difference here is in the execu-
tion time. Virtual machines get some kind of precompiled input files (Java 
bytecode for example) thus they need less run-time interpreting and mani-
pulation of the source code resulting in better performance. According to 
[286] TCL has been (informally) measured to be up to 200 times slower 
than fully compiled C++, whereas semi-compiled languages fall in the 
range of 10 to 20 times slower than C++. With modern technologies, such 
as JIT, the difference is dropping below “only” five times slower. The pen-
alty for JIT is increased memory requirements. The performance is still 
significantly below C++, due to the fact that a C++ compiler can optimize 
register allocation, whereas a JIT compiler has to work starting with Java 
bytecode operating on a stack. 
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JVM implementations  

The traditional way to implement a JVM is to use a software interpreter. 
This approach takes the precompiled Java bytecode and executes it by in-
terpreting one instruction at a time. The execution speed of this way is 
rather poor, partly due to stack emulation and partly because each byte-
code instruction is processed using an indirect jump from the main loop to 
the implementation of a given instruction with the current instruction as a 
key. Recent developments in this area have led to use of JIT, which means 

them to the underlying hardware’s native instruction set. The most advanced 
systems using this approach do not recompile or optimize everything, but 
focus more attention on code segments that are used often (loops, etc.). JIT 
is not suitable for resource limited environments, as the recompiled code 
segments require extra memory space at run-time, and the dynamic com-
piler required for the JIT takes both memory space and permanent storage 
space. Another downside of JIT is the unpredictability of execution time, 
one (usually) cannot know in advance if a given code segment is already 
compiled or not. Also resource limited systems might purge old recom-
piled segments out of the memory to make room for new segments. Both 
interpreting and JIT compiling run on the highest path in Figure 13.1.  

Java bytecode can also be transformed to some other virtual machine 
architecture (XVM) using a transcoder. This transcoding can be done at 
execution time or during software download. The execution time transcod-
ing moves along the highest path in Figure 13.1 breaking down at the last 
fork, whereas the download time option breaks down at the previous fork. 
This approach also allows other languages to be compiled for the same 
XVM, even all the way from the source code. However there are draw-
backs, such as increased storage space requirements to store the original 
code and the XVM code, longer download delays for non-local software 
that needs to be transcoded and successive optimizations performed by 
compilers with different targets producing inefficient code.  

Our virtual machine is of the first type, that is 100% bytecode compa-
tible, but it transfers the execution away from the CPU to a co-processor 
designed to execute simple Java bytecode instructions. The CPU still 
maintains control of all system specific operations (such as file system, 
network, I/O), complex instruction (class loading and verifying) and memory 

that the software executing bytecode takes pieces of the code and compiles, 

management (especially garbage collection). This partitioning provides easy 
integration to multiple systems, since the underlying host architecture is 
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Fig. 13.1. Possibilities to develop the Java virtual machine. 

irrelevant to the co-processor. The use of a co-processor can be seen as 
implementing the highlighted part of JVM in Figure 13.1 in hardware. 

Using hardware systems in virtual machine 
implementations 

A stand-alone solution implements the whole virtual machine in hardware, 
and thus needs no CPU. Examples of this approach include Sun’s Pico-
Java, JOP and aJile. With this strategy complex instructions (class loading 
and verifying, etc.) and garbage collection are hard to implement, and the 
resulting virtual machine is not easily integrated to an existing system. Out 
of these three example systems only PicoJava implements the full J2SE 
(standard edition of Java) [396]. The other two implement J2ME (micro- 
edition for small systems) [397] and for instance the garbage collection is 
completely left out from JOP, due to real-time performance goals set for 
the system. 

Using a co-processor for the execution of Java bytecode provides easier 
integration to existing systems, as platform dependent features, such as 
GSM stack for mobile phones and I/O devices, can be coded in software 
for the CPU. Also the physical size of the Java core is reduced, as complex 
functionality is performed in the CPU, leaving the co-processor to deal 
with the instructions that are suitable for direct hardware implementation. 
This approach has been used with inSilicon JVXtreme, CCL Java co-
processor and the REALJava co-processor discussed in this chapter. 

Co-processors typically use either autonomous or parallel execution 
model. Parallel model is similar to Intel x87 floating point unit architec-
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ture, where each instruction is routed to both the CPU and the co-processor 
and the unit whose instruction set a given instruction falls into executes it. 
On the other hand in autonomous execution model the CPU just configures 
the co-processor and lets it handle execution on its own. During this time 
the CPU is free for other tasks. The REALJava co-processor uses the 
autonomous model. It should be noted, that the autonomous model allows 
using several co-processors at once, unlike the other hardware schemes 
presented here. Using several co-processors in a JVM is well justified, as 
Java supports multithreading at language level. 

Solutions using a hardware interpreter have also been used. These are 
exclusively targeted to a certain CPU, as the interpreter translates the byte-
code instructions to the CPU’s native instruction set. ARM Jazelle [23] is a 
well-known example of this approach. 

Structure of the co-processor 

The pipeline structure [403] of the Java co-processor differs from the 
structure normally used for general-purpose processors. This is due to the 
fact, that normally the instruction set of a processor is engineered with 
hardware implementation in mind, but this is not the case for Java. The 
Java bytecode has been designed to be executed in software, resulting in 
several significant differences. Additionally the bytecode instructions are 
based on a stack, instead of the normal RISC approach of using several 
registers. This calls for optimizations not seen in modern general-purpose 
processor design. 

General-purpose processor pipeline architecture 

The normal strategy for pipelining a general-purpose processor involves 
five stages, namely: 

1.  Instruction fetch 

4.  Memory access 
5.  Write back 

This approach has been used in several processors and is also presented 
in several textbooks, such as the DLX processor presented in [187]. This 
strategy is based on the assumption that the processor has internal regis-
ters for temporary or working data storage. Usually these registers can be

2.  Instruction decode/register access 
3.  Execute/ALU 
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the DLX processor has 32 32-bit general-purpose registers. Some proces-
sors also include separate registers for storing floating point numbers. The 
DLX processor provides 32 32-bit floating point registers, which can be 
used as even–odd pairs to hold 16 64-bit double-precision values. Several 
register access optimization strategies have been developed, including 
operand forwarding and splitting register accesses to writes in the first half 
of the clock cycle and reads in the second half. 

The modified architecture for the Java co-processor  

The Java Virtual Machine Specification [267] states that the JVM has no 
internal registers, instead the temporary and working data is stored in a 
stack. Normally the software coder can improve performance by reorder-
ing the register accesses to keep the pipeline flowing, but in Java this is not 
possible, since all instructions manipulate data which is located at the top 
of the stack. This situation is somewhat comparable with normal processor 
architecture with only one register available to the programmer, or the old 
accumulator architecture. This would keep the pipeline stalled for a large 
portion of the time, because of data dependency issues. To keep our pipe-
line in effective use, we have modified the normal pipelining strategy to 
better suit the stack based operation. 

As shown in Figure 13.2, the modified architecture begins with instruc-
tion fetching, we just use a FIFO inside this unit to provide the folding unit 
with fast access to the instruction stream. The instruction decoder is the 
next unit. A technique called instruction folding, which will be explained 
in more detail in another section, is used to reduce unnecessary stack ac-
cesses, and the folding is also included in the decoder stage. After that we 
have an intermediate buffer level to store the folded instructions before 
execution. This buffer also performs minor operations, such as extending 
literal data items to 32 bits. 

The next stage performs operand fetching, if necessary. Then comes the 
ALU, which contains the write back stage. The write back stage is in-
cluded to the ALU because the bytecode instructions are based on the 
stack. One might wonder what this has to do with selecting the pipeline 

accessed in parallel, and there are several registers available. As an example 

take the operands from the stack and write the result back to the stack. This 
would cause the “normal” pipeline structure to generate excessive stalls to 
move the data to and from the stack. Thus the execution in the ALU would 

stages, but the answer is rather simple. In Java bytecode the instructions 
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Fig. 13.2. A simplified view of the pipeline. 

be often halted while the data is moved back and forth. Actually we will 
also describe two other methods to alleviate this problem, but they will be 
presented later in sections. 

Shared resources  

Several pipeline stages need to access shared resources. These include 
the stack, the control registers and the program counter. Access to these 
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resources is controlled by similar handshakes as the data flow through the 
pipeline. The main difference is that since several units need to access 
these resources, we must provide mechanisms to prevent simultaneous 
accesses and to guarantee the correct ordering of events. 

The pipeline control unit can also be seen as a shared resource, as it is 
connected to the pipeline stages. The pipeline control unit sends a halt 
command to all pipeline stages upon receiving an external halt command 
or a halt request from the fold and decode unit. The fold and decode unit is 
required to have halt access to facilitate pipeline halting when a software 
handled instruction is encountered. After the whole pipeline is idle, the 
pipeline control sends an IRQ to the host processor. Note that these two 
methods of halting differ in their reaction speed. If the halt is requested by 
the CPU, it is performed as soon as possible. When the halt is caused by a 
trapped instruction, the halt is performed when all previous instructions 
have been fully processed. 

The last shared resource is the local memory. The local memory is used 
to house the stack and local variables in the data side and bytecode seg-
ments of the methods to executed on the instruction side. This local memory 
is local logically, which means that it can be implemented as an external 
memory region assigned to the Java processing unit (JPU) or as a real local 
memory placed inside the JPU module. In case of a physically local memory 
the caches can be small or even omitted. Our tests have shown that rela-
tively small local memory space is required. According to [369] 98.75% of 
static methods in the run-time library are under 512 bytes in length, and 
our own studies have shown that the stack frame for one method rarely 
exceeds 10 words (40 bytes), which totals to about 1 kilobyte, including 
the local variables. Naturally larger is better, as returning from a method 
back to the calling one is much faster if the memory is large enough to con-
tain the stack frame and code segment for several methods at the same time. 

Instruction preprocessing  

This block starts after the instruction cache. The cache handles all commu-
nication with the physical memory, regardless of whether the memory is 
physically local or external. This partitioning of responsibilities allows using 
different memory technologies without modifications to the instruction 
fetching unit. The physical addresses are generated at the instruction fetch-
ing buffer, using the program counter (PC) and CODE_OFFSET registers. 
The CODE_OFFSET register holds the starting address of the current code 
segment in the memory. The instruction folding process is described later. 
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Fig. 13.3. The instruction preprocessing pipeline. 

The pipeline control unit is connected to the folding and decoding unit 
with two way communication. The folding unit needs to request a halt 
when it encounters an instruction to be handled in software. Of course the 
pipeline control unit must be able to stop the processing in this segment, so 
there needs to be bidirectional channel. The control unit also connects to 
all other pipeline stages, with a halt signal. The CPU can also request a 
halt, for thread switching or setting new values to internal registers. 

As shown in Figure 13.3, the folding and decode unit has two communi-
cation channels to the instruction buffer, one for actual instructions and 
one for literal data. After an instruction has been decoded and folded, the 
VLIW (very long instruction word) is sent to the FIFO in then main pipe-
line. The instruction folding unit is covered in more detail later. The FIFO 
is only a few levels long and provides timing margin for folding and per-
forms sign extension. 

Operand access, ALU and result storing  

The operand access unit takes care of providing the ALU with the actual 
operands, which may come from the local variable area, the stack or as 
literal data from the bytecode stream. The operand access has two read 



296      Tero Säntti, Joonas Tyystjärvi, and Juha Plosila 

duces unnecessary traffic to and from the stack. This can be demonstrated 
with an example of an addition followed by a multiplication. In the 
straightforward method the operations would be carried out as follows. 
First the addition is performed and the result stored to the stack, then the 
stack is read out to perform the multiplication. The result of the addition is 
consumed and does not remain in use. The improved method removes the 
consecutive write and read functions and replaces them with a straight 
connection from the result of the ALU to the operand access unit. This 
solution provides better performance in terms of execution time and power 
consumption. Please note that the bypass method provides similar benefits 
as instruction folding and they address the same shortcoming of Java byte-
code. The difference between these two methods is that folding can be 

as bypassing takes place after the first instruction is completed and is per-
formed on consecutive calculate type operations. It is also worth noticing 
that the bypass method is quite similar to operand forwarding in general-
purpose processors. 

Figure 13.4 shows the data connections in the execution part of the pipe-
line. The request and acknowledge signals are not shown, in order to keep 
the figure readable. The result of the ALU usually goes to the top of the 
stack. In some cases the result is directed to a local variable. The third pos-
sibility is to intercept the result and direct it straight to operand access unit. 
This happens when the current instruction in ALU pushes its result to the 
top of the stack and the next instruction pops it away. The state of the stack 
remains as if the first result had never been pushed. The interception thus 
saves power and time, at the cost of slightly more complex logic. 

Caches, stack and registers  

The JPU contains two caches, namely the data cache and the instruction 
cache. The instruction cache is (quite naturally) read-only, whereas the 
data cache can be written and read. The instruction cache is less complex 
also because it is connected to only one unit, namely the instruction buffer. 
The data cache, on the other hand, is connected to the stack and to the local 
variable control. The writing to the data cache is implemented using the 
write-through strategy, in order to keep the memory consistency during 

channels to the top of the stack, one read channel to the local variable area 
and one bypass channel to the end of the ALU. This bypass channel re-

state information to the pipeline control unit, to notify the controller when 
the current operations are finished. 

done in advance and is performed on load–calculate–store sequences, where-

traps and context switches easier to manage. Both caches are also giving 
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Fig. 13.4. The execution pipeline and data transportation. 

The stack is implemented as ring buffer with memory roll-back. The 
buffer holds the top of the stack. When the buffer is close to full, the bottom 
of the ring is rolled to the memory via data cache. Naturally if the buffer is 
close to being empty more data is retrieved from the memory. 

The stack performs these transactions automatically, and no direct com-
mands are required during normal execution. However a command for 
flushing the stack to the memory is required, since jumping to a method 
causes a new stack-frame to be initialized, with its own local variables, etc.  

The internal registers of the JPU are all addressable from the CPU. This 
is required in order to be able to configure the JPU in the beginning of the 
execution as well as during thread switching. The internal register file also 
contains configuration data from the JPU to the CPU. The most important 
piece of information delivered here is the size of the local memory. The 
system also supports multiple instruction sets so this information needs to 
be delivered to the software. Currently two instruction sets have been de-
signed, one with floating point instructions in hardware and one with soft-
ware emulation.  

Instruction folding in more detail  

The instruction folding [404] is performed in order to remove unnecessary 
cycles in ALU and also to minimize redundant stack accesses. These per-

a value to the stack and immediately popping it out for processing. The
formance hindrances are caused by bytecode instructions first pushing
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accesses, thus reducing power consumption and improving performance in 
time domain. Memory accesses dominate the power consumption of a 

memory accesses. The results are gathered using a software JVM running 
on ARMulator, an emulator for the ARM7TDMI processor. It is reason-

With the classes presented in Table 13.1 we can fold instructions in pat-
terns shown in Table 13.2. These patterns all produce VLIW instructions 
with up to two literal data elements, an opcode and a destination identifier. 
It can be noticed that the maximum length of folding is four instructions. 
This, however, does not mean “only” four bytes in the original bytecode 
stream. The original stream may have had some literal data included, and 
these are also placed in the VLIW, as shown later in Figure 13.5. 

The fact that the whole co-processor is asynchronous helps us in the 
folding. In asynchronous circuits the blocks can run at independent speeds. 

operations per second. The negative effects of independent speed, such as 
waiting for one long operation halting all other pipeline segments, can be 

Table 13.1. Instruction classes. 

Mnemonic Description 

LV 

OP An operation that uses the top two entries of the stack and produces 
a one word result which is stored on the top of the stack 

OP1 An operation that uses the topmost element of the stack and breaks 
the group 

OP2 An operation that uses the top two entries of the stack and breaks 
the group 

MEM A local variable store or a global register store 
NF Non-foldable instruction 
TRAP An instruction which is trapped by the hardware and is executed in 

software instead 

folding procedure removes these two instructions, and replaces them with 
one instruction carrying the value and the processing instruction to the ALU 
in one cycle. This eliminates some of the completely unnecessary memory 

able to assume that the power consumption of our HW/SW partitioned JVM
will follow same trends. 

JVM, according to [249] around 70–75% of the energy is consumed in 

reduced using an intermediate FIFO. The timing marginal for folding is 

constant 
A local variable load, a load from a global register or a push

foldings per second, whereas the ALU may be significantly slower, say n/2 
This means that the folding unit can perform for instance a maximum of n  
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Table 13.2. Possible patterns. 

Pattern Instructions 
LV LV OP MEM 4 
LV LV OP 3 
LV LV OP2 3 
LV OP MEM 3 
LV OP 2 
LV OP1 2 
LV OP2 2 
LV MEM 2 
OP MEM 2 

 
increased because with asynchronous techniques all units exhibit average 
case performance. This means that the ALU may complete some instruc-
tions (bit-wise OR, etc.) in very short time, whereas some instructions (32-
bit multiplication) take a lot more time. Since folding may produce new 
VLIW instructions at the rate of 1/1 to 1/4 in comparison to the original 
bytecode stream, the FIFO balances the effects of both folding and the 
average case performance of the ALU. In our architecture the FIFO also 
performs minor tasks, such as sign extension and address calculation for 
local variable accesses. 

The folding unit receives data from the instruction buffer. The instruc-
tion cache handles the actual memory accessing, so the instruction buffer 
needs only to access the cache. The address is generated at the instruction 
buffer. The fold and decode unit has two communication channels to the 
instruction buffer. This is required because instructions may be followed 
by data, such as literal operand or an address. The amount of data can be 
found out only by decoding the instruction first. After the decoding is 
completed, the correct amount of data bytes is read in parallel. The amount 
of data is between 0 and 4 bytes. If it is 0 bytes, no request is sent to the 
data read port. Since we read the data items in parallel to the fetch data 
module shown in Figure 13.5, the instruction buffer can move the next 
instruction to the output end of the buffer without unnecessary delays. 

After the instruction has been decoded and the data related to that in-
struction is read in, the next instruction is checked to see if it can be folded 
with the previous one. If it can be, then the procedure is repeated to see if 
the third instruction can be folded. If at any point the instructions cannot 
be folded together, the previous instructions are sent out, and the procedure 
starts over with the current instruction as a base for new foldings. 
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mized for hardware decoding. The instructions of Java bytecode are just 
listed in seemingly random order and given the order number as an op-

validated by the fact that we can easily store microcode and other metadata 
in the same table, as well as instruction classes and the number of literal 
data bytes related to a given instruction. This keeps our FSM simple and 
fast. All the entries in the ROM table are coded with one-hot scheme and 
the table is implemented as a precharged MOS NOR ROM matrix. The 
precharging is done when request is low, so the response time is minimal. 

The output format register stores partial foldings, until they are com-
pleted. If a folding pattern is not terminated with a valid instruction for that 
pattern, the partial folding is executed one by one, and folding of the next 
instruction will be attempted. The register keeps record of which fields in 
it are valid at any given time. When a pattern is completed, the register 
pushes its contents to the FIFO in the main pipeline, and prepares for a 
new folding autonomously. 
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Fig. 13.5. The internal structure of the folding unit. © IEEE 2005 [404]. 

Figure 13.5 shows the internal structure of the folding unit. The FSM 
stands for Finite State Machine, which controls the operation of the unit. 
The ROM table approach is chosen, because Java bytecode is not opti-

directly using standard logic elements. The ROM approach is also further 
code. This would lead to a very complicated decoder, if implemented
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Software support  

Because the JPU executes only a subset of the instructions in the JVM 
instruction set, executing actual Java programs with it requires supporting 
software written for a general-purpose CPU. This supporting software 
needs to do most of the things that a generic virtual machine does, but it 
also needs to control bytecode execution and memory usage on the JPU. 
In this section, we briefly discuss the operation of a generic JVM and the 
software components required to support a JPU. 

Virtual machine software  

A typical JVM implemented purely in software loads Java classes, manages 
resources such as memory and threads, provides an interface to the virtual 

tion. The part of a virtual machine that executes bytecode is called its exe-
cution engine. This is the part that typically uses the largest amount of 
CPU time. 

The simplest software implementation of a bytecode execution engine is 
a bytecode interpreter. In an interpreter, the software fetches one instruc-
tion at a time, branches according to its opcode and executes the native 
instructions corresponding to the Java bytecode instruction. This loop is 
continued until the interpreter encounters an instruction that requires spe-
cial processing. For example, a method invocation instruction may require 
calling a native function. 

Although an interpreter is simple to implement, it is not very efficient. 

 
ALOAD_0 ;  push 1  
SIPUSH 5  ;  push 1  
IMUL  ;  pop 2, push 1  
ASTORE_0  ;  pop 1  

 
There is also a per-instruction overhead in an interpreter caused by the 

pointer access used to fetch the instruction and by the instruction dispatch 
itself. 

Many optimizations have been developed to reduce this overhead. 
Direct- and inline-threading [63] seek to reduce the instruction fetch and 
instruction dispatch time by converting opcodes into the corresponding 

machine for native code, and most importantly, controls bytecode execu-

amount of memory accesses even for relatively simple operations. For
example, the following sequence of instructions, which multiples a local
variable with 5, requires 6 stack accesses:  

Since the JVM is entirely stack-based, interpreting bytecode requires a large
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rated code and reduces stack accesses as well by using the host CPU’s 
registers to store intermediate results. Because the bytecode instructions 
are replaced with native instructions, all of these optimizations also remove 
the bytecode program counter. 

The structure of the execution engine needs to be changed to support a 
bytecode co-processor. Rather than executing every instruction in soft-
ware, when the virtual machine encounters a sequence of instructions that 
the co-processor can execute, it delegates execution to the co-processor. 
The co-processor executes instructions until it encounters an instruction 
that it cannot execute or the software commands it to halt. 

Since most of the processing is done on the co-processor, many improve-
ments to the software part of the execution engine become unnecessary 
and impractical to implement. Because the virtual machine needs to be 
able to update the stack and the internal registers of the co-processor when 
it resumes execution, optimizations that reduce stack accesses or replace 
the program counter become unusable as such. However, they also become 
largely unnecessary, because the co-processor takes care of most of the bulk 
stack manipulation.  

We implement a simple JVM in C++ with support for JNI [395] and the 
standard edition of the Java 2 platform [396]. The current version of our 
virtual machine only works on Windows and Linux on x86 computers. Our 
virtual machine also contains a simple emulator of the hardware’s capabili-
ties, and can be used for testing new functionality on software. 

The structure of our virtual machine is shown in Figure 13.6. Like a 
generic virtual machine, our virtual machine contains a native interface, a 
heap memory manager and a class loader. Our execution engine, however, 
is split between the software and the co-processor. Our virtual machine 
also manages memory on the co-processor for java stack and method usage 
and implements a simple thread scheduler for allocating co-processors to 
separate threads. 

Bytecode execution and trap handling  

The virtual machine needs to do some preparation before it starts executing 
code on a co-processor. First, it has to acquire the lock on the co-processor. 
Co-processor locking is discussed in the next section. Second, it has to 
check that the current thread’s stack frame and the current method are 
loaded in the co-processor’s memory. Memory management will be dis-
cussed further in a later section. Finally, it has to update the internal registers 

 

native instructions before execution. JIT [94] further optimizes the gene-
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Fig. 13.6. Logical layout of the REALJava virtual machine. 

of the co-processor. While the co-processor is executing bytecode, the soft-
ware is free to do other tasks. For example, it could optimize methods by 
converting instructions to “fast” versions in advance or load and verify 
classes that will be needed soon. 

When the virtual machine calls a new method on the co-processor, it has 
to do some extra work on the stack. First, it checks if there is enough space 
for the method invocation in the currently allocated stack page. If there is 
not, or a stack page is not currently allocated for the thread, it allocates a 
new stack page on the co-processor. Once there is enough space for the 
method invocation, the method parameters are popped from the stack and 
the current registers are pushed to the stack top in reverse order. If the pre-
vious stack frame was swapped out by the allocation or there is none, a 
magic number (we use a bit pattern of all ones) is pushed instead of the 
current program counter. After the registers have been pushed, the local 
variable pointer is set to the current stack top pointer, the stack top pointer 
is incremented by the amount of local variables, and the method para-
meters are stored in the local variables. Once this is done, execution can 
proceed on hardware. 

Sometimes, a return from a function must be executed in software when 
a method returns in the bytecode. For example, when calling a Java 
method from native code, the software needs to be able to return to the 
proper native function after the call. For this reason, the software must be 
able to force a trap in one of the return instructions. The most significant 
bit of the program counter register is used for this purpose. A limitation in 
Java’s exception handler implementation practically limits the Java pro-
gram counter to 16 bits [267], so the upper 16 bits can be used to store data 
required by the virtual machine. If a software return is required, the bit is 
set to 1 when storing the registers of the previous stack frame. When the 
return instruction traps, the software handles it like the co-processor would, 
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The virtual machine also needs to be able to handle traps from the co-
processor. Most of the time this means simply replying to the interrupt so 
execution can be continued later and executing code for the instruction that 
caused the trap. We use a simple interpreter based on a “switch” statement 
whose “default” branch moves execution back to the co-processor. This 
way, the instructions that can be handled on the co-processor are never 
executed in software. 

Co-processor allocation with multithreading  

In a single-threaded environment, controlling co-processor usage is simple. 
Since there is only one thread using the co-processor, no locking or pre-
empting is necessary. When the single thread needs to execute code on the 
co-processor, it always knows that the co-processor is in the state that it 
was when it made the last interrupt request. Therefore, it can send “con-
tinue” commands to the co-processor any time it wants. 

In a multithreaded environment, the virtual machine must control co-
processor usage for two reasons. First, to prevent invalid behavior, two 
threads must be prevented from accessing a single co-processor simultane-
ously. For this reason, each co-processor has to have a lock that the threads 
acquire before using it. Second, a single thread must be prevented from 
holding the lock on a co-processor indefinitely, because it could lead to 
starvation and possibly deadlocks. 

We implement a simple time slice-based pre-empting system on soft-
ware. To implement pre-empting, we have each thread’s “resume” routine 
occasionally poll the virtual machine’s access control system to see if it 
has exceeded its time slice. If it has, it sends the co-processor a “halt” 
command, stops execution and releases its lock on the co-processor. Once 
it can acquire the lock again, it can resume execution. We also poll the 
access control system whenever the co-processor traps normally. Another 
way to implement pre-empting, which requires hardware support, is to 
have the hardware trap after a predefined number of clock cycles has 
passed since execution was last resumed. This removes the need for active 
polling. 

A thread must also release its lock on a co-processor if it does something 
that could potentially take a long time without needing the co-processor. 
Otherwise, other threads might starve or even become deadlocked. The 
most common possibly lengthy operations during normal execution are 
monitor acquisitions and native method invocations. For monitor acquisi-

except it also clears the most significant bit of the program counter and
returns once in the software thread. 
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acquired and acquire it if possible, so a co-processor release is only neces-
sary if the monitor is acquired by another thread. 

Native methods, on the other hand, are essentially “black boxes” for the 
virtual machine, since it cannot know what a dynamically loaded chunk of 
native code will do, and how long it will take to execute the code. A native 
function might, for example, initiate a native I/O operation and block until 
input arrives. Therefore, for most native method calls, the lock on the co-
processor must be released. As an exception, certain known “safe” func-
tions in the standard library can be assumed to execute quickly. The 
method Math.sin, for example, takes a constant, short amount of time to 
execute regardless of input, and therefore should not require releasing the 

Co-processor memory management  

In our current implementation, memory on the co-processor is used for two 
purposes: thread stacks and method bytecode. Memory on both is allocated 
in a similar way. The memory is split to a stack region and a method region 
when the virtual machine starts. We currently split the available memory 
simply in half, but in practice, the amount of memory required for stacks is 
not very large. Programs that do not use heavy recursion usually do not 
require stacks larger than 10 kilobytes [63]. 

Memory is allocated in fixed-size pages. This makes reclaiming and 
swapping out memory easier. The virtual machine must swap out memory 
from the co-processor if it runs out of memory allocated for stack pages. 
Methods are never swapped out, because they are always stored in the host 
CPU’s memory. If the virtual machine has to allocate a new method page, 
it simply overwrites the least recently used page. 

We store some information in software for each page. First, we use a bit 
vector in which one indicates a page that is currently in use. Second, we 
use an array to store the time that the page was last used and certain infor-
mation used when swapping out pages. The time is updated every time the 
page is used by the software. 

In order to allocate pages, the virtual machine first checks if there are 
unused pages in the region required. If there is, this page is returned. 
Otherwise, the virtual machine finds the least recently used page, swaps it 
out to the host CPU’s memory if it is a stack page and returns that. We use 
a simple “sliding window” algorithm to allocate multiple pages. 

machine. 
lock. A simple list of such methods can be implemented in the virtual

tions, it is usually possible to atomically test whether a monitor can be 
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to the swapped out page, the previous frame’s program counter in that 
frame is set to the magic number mentioned in an earlier section. When 
this return is executed, the page is swapped back in. Swapping out method 
pages is easier, because the only thing that needs to be done is to remove 
the mapping from the swapped out methods to the pages. 

Garbage collection considerations  

Garbage collection means finding the set of objects that are reachable and 
reclaiming the memory used by unreachable objects. Reachable objects are 
ones that are referred to from the thread stacks, the local variables, static 
member variables or other reachable objects. Most JVMs implement gar-
bage collection to ensure that unreachable objects will not cause the virtual 
machine to run out of memory. 

Although the garbage collector can be modified to run in parallel with 
normal execution, the rest of the system is usually stopped for garbage col-
lection. Garbage collection is started when the virtual machine runs out of 
heap memory. Since the virtual machine is often running multiple threads, 
the garbage collector has to wait until each of these has stopped running. 
The individual threads therefore need to poll the garbage collector at cer-
tain points during execution to check if garbage collection is starting. 
These points usually include method invocations and backwards jumps. 
Polling at backwards jumps is important because without it, an infinite or 
very long loop could prevent garbage collection and stall the whole virtual 
machine. 

When the code is being executed on a co-processor, polling for garbage 
collection at backwards jumps becomes impractical and time-consuming. 
However, since the co-processor thread scheduler is guaranteed to halt any 
execution at some point after the thread’s time slice runs out, this is not a 
problem. Polling can be done every time a thread releases the lock on the 
co-processor or interpreter it owns. This way, every thread is guaranteed to 
stop at some point. 

The virtual machine also needs to be able to locate the current stack 
frames for garbage collection. We use a simple array to store for each 
stack page the information of whether the page is loaded in, what its hard-
ware address is and if it is not loaded in, what its contents are. All stack 
frames are found by traversing backwards from the top stack frame until 
the stack bottom is reached. 

If a stack page refers to another page that gets swapped out, the referring 
page must be updated to prevent return statements from returning to a page 
used by another thread. Therefore, if there is a stack frame with a pointer 
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Current status and future work  

The virtual machine has been implemented with an FPGA-based co-
processor and PC-based software portion. This system provides all the 
basic functionality of the final system, and runs at 100 MHz. Currently the 
system does not provide reasonable execution speed due to massive com-
munication overhead. This overhead is caused by the link between the 
FPGA board and the PC. The link utilizes standard parallel port, and 
achieves maximum data rate of about 80,000 bytes per second in burst 
mode. The main reasons for building this prototype include validating the 
co-processor concept and facilitating early testing of hardware and software 
cooperation. These goals have been met, and the system passes several test 
programs, including Embedded Caffeine Mark [62]. The limitations in the 
system are mostly due to the GNU Classpath implementation, which is not 

Our next step is moving the co-processor and the software portion to the 
same chip. This will be done using a Xilinx ML310 demonstration board 
housing a Virtex II Pro FPGA chip with an embedded PowerPC 405 core. 
This PowerPC core will be executing the software portion, and the co-
processor logic will be implemented in the FPGA fabric. With this setup 
we will see the true performance of the system more accurately, as the 
communication data rate will be more appropriate. This system also models 
the whole target domain more accurately, as the raw calculation power of a 
modern PC is far superior in comparison to the relatively slow processors 
used in embedded systems and portable devices. 

In the software portion we plan to develop a smaller memory footprint 
version of both the libraries and the software portion of the JVM. The tar-
get would be somewhat similar to the J2ME [397] provided by Sun for 
small embedded devices. Also garbage collection and possibilities for 
hardware assistance in it will be investigated further. We will take a closer 
look on the real-time performance [420] in this context. Since current 
embedded systems are required to run several application programs at the 
same time, it makes sense to study the effects of creating a multitasking 
JVM using several co-processors. Please note that multitasking means hav-
ing several applications running at the same time on the same system, 

complete at this time. Two different local memory strategies have been tested 
with this system. The first version used a 32 megabyte external SDRAM chip

local memory. The smaller memory was implemented using single clock
for local memory whereas the second used only 49,152 bytes of physically

cycle Block RAMs in the FPGA chip, providing massive throughtput
advantage over the 70 ns external memory. In all our tests so far the smaller 
memory size has been adequate. 
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while multithreading means having several threads of execution in a single 
task.  

As the final step, we will design an asynchronous implementation of the 
co-processor using the Haste design language and Timeless Design Envi-
ronment (TiDE) toolset for asynchronous design by Handshake Solutions 
[175]. The goal will be to achieve a sufficient operation speed with very 
low-power consumption. To demonstrate performance of our asynchro-
nous Java core in its intended environment, we will establish an NoC case 
study in which a number of Java co-processors and general-purpose CPUs, 
and possibly some other functional units, are integrated into a single chip. 
We plan to use the communication platform described in [266], as it pro-
vides support for both synchronous and asynchronous cores. 

Summary  

This chapter shortly described the strategies used in JVM implementations, 
along with some examples of using hardware solutions. To address the 
issues that were discovered to be sources of inefficiency, a co-processor 
architecture was presented. In order to make use of the co-processor, the 
software portion of the JVM was also discussed. The current status of 
implementing the co-processor and resulting virtual machine were des-
cribed, with final notes outlining the future efforts related to the REAL-
Java co-processor. 
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Introduction 

The physical realities of wire delay and power consumption seriously chal-
lenge the ability of microprocessor designers to continue designing mono-
lithic architectures with centralized resources. Materials and process changes 
have proven insufficient to solve the fundamental physics problems, and it 
is increasingly challenging for existing architectures to turn chip resources 
into higher performance, at tractable costs. Fast moving VLSI technology 
will soon offer tens of billions of transistors, massive chip-level wire 
bandwidth for local interconnect, and a modestly larger number of pins. 
Processors need to convert the abundant chip-level resources into power-
efficient application performance, while mitigating the negative effects of 
wire delays. 

This chapter discusses the architecture of the Raw Microprocessor, an 
early multicore processor developed at MIT [411,447]. Raw is a tiled 
multicore architecture containing 16 homogeneous tiles arranged in a grid. 
Each tile contains a processor, caches, and several mesh routers. Raw is a 
general-purpose multicore architecture in that it supports various models of 
computation including instruction-level parallelism (ILP), streaming, data-
level parallelism (parallelism:DLP), and thread-level parallelism (TLP). 
Raw’s point-to-point interconnection networks between tiles support these 
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models by routing both scalar operands and streams with extremely low
latency between architecturally exposed function units. The Raw chip was 
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Fig. 14.1. The Raw board. The Raw multicore chip is in the center. DRAMs, PCI 
slots, and a support chipset implemented in FPGAs surround the Raw chip. 

The Raw processor is an early prototype in a growing trend for proces-
sor design toward chip multiprocessors, or as commonly called today: multi-
core processors. For example, the IBM/Toshiba/Sony Cell processor has 
9 cores [199], the Sun Niagara has 8 cores [235], the Cavium Octeon has 
16 cores [472], RMI XLR732 has 8 cores [347], the IBM/Microsoft Xbox 
360 CPU has 3 cores [17], and most vendors are shipping dual-core chips. 
In addition, Intel has demonstrated an 80 core prototype code named Polaris 
[215], and Cisco has described a next-generation network processor con-

Multicore architectures address the physical challenges of power and 
wire delay by favoring several simpler cores over a large monolithic pro-
cessor. Tiled multicore processors further arrange the abundant on-chip 
resources – including logic, wires, and pins – in a scalable tiled pattern. 
Tiled multicore architectures replace global-access centralized structures 
(such as giant register files, buses, and centralized caches), where wire 
delay and power efficiency scale poorly, with small distributed structures 
(such as mesh-based on-chip networks) that facilitate efficient local  
accesses. 

The tiled multicore architecture methodology is equally effective at im-
proving power efficiency because it replaces a large monolithic core by 
several smaller voltage-scaled cores. Small decentralized structures are 

successfully fabricated and demonstrated in 2002. Figure 14.1 shows a
photograph of the Raw system prototype. 
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known to be significantly more power efficient compared to a large mono-
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taining 192 Tensilica Xtensa cores [111]. 
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lithic structure. Thus, while Raw was not specifically designed as a low-
power architecture, it is 80% more efficient in terms of ops/Watt compared 
to a monolithic (centralized) processor with equivalent resources. 

Design philosophy 

Just as VLSI advances have created an opportunity for massively parallel 
multicore processors, they have also expanded the number of applications 
that are implementable in application-specific integrated circuits (ASICs). 
Early studies [31,447] to determine the factors responsible for the signifi-
cantly better performance of application-specific VLSI chips revealed four 
main factors: specialization; exploitation of parallel resources (gates, wires, 
and pins); management of wires and wire delay; and management of pins. 
The goal of multicore processors is to leverage these four factors, and yet 
implement the gamut of general-purpose features such as functional unit 
virtualization, unpredictable interrupts, instruction virtualization, and data 
caching. The processor also needs to exploit ILP in sequential programs, 
and space and time multiplex (i.e., context switch) threads of control for 
thread and task-level parallelism. 
1. Specialization: ASICs specialize each “operation” at the gate level. In 

both the VLSI circuit and microprocessor context, an operation roughly 
corresponds to the unit of work that can be done in one cycle. A VLSI 
circuit forms operations by combinational logic paths, or “operators”, 
between flip-flops. A microprocessor, on the other hand, has an instruc-
tion set that defines the operations that can be performed. Specialized 
operators – for example, implementing an incompatible floating point 
operation, or implementing a linear feedback shift register – can yield an 
order of magnitude performance improvement over an extant general-
purpose processor that may require many instructions to perform the 
same one-cycle operation as the VLSI hardware. As an example, custo-
mized Tensilica ASIC processors take advantage of specialization by 
augmenting a general-purpose processor core with specialized instruc-
tions for specific applications. 

2. Exploitation of parallel resources: ASICs further exploit plentiful sili-
con area to implement enough operators and communications channels 
to sustain a tremendous number of parallel operations in each clock 
cycle. Applications that merit direct digital VLSI circuit implementa-
tions typically exhibit massive, operation-level parallelism. While an 
aggressive VLIW implementation like Intel’s Itanium II [303] executes 
six instructions per cycle, graphics accelerators may perform hundreds 
or thousands of word-level operations per cycle. Because they operate 
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on very small word operands, logic emulation circuits such as Xilinx-II 
Pro FPGAs can perform hundreds of thousands of operations each cycle. 
The addition of MMX and SSE-style multigranular instructions that 
operate on multiple subwords marks an effort to improve the efficiency 
of microprocessors by exploiting additional parallelism available due to 
smaller word sizes. 
The Itanium II die photo reveals that less than two percent of the die 

area is dedicated to its 6-way issue integer execution core. Clearly, the 
ALU area is not a significant constraint on the execution width of a modern- 
day wide-issue microprocessor. On the other hand, the presence of many 
physical execution units is a minimum prerequisite to the exploitation of 
the same massive parallelism that ASICs are able to exploit. 

1. Management of wires and wire delay: ASIC designers can place and 
wire communicating operations in ways that minimize wire delay, mini-
mize latency, and maximize bandwidth. In contrast, it is now well known 
that the delay of the interconnect inside traditional microprocessors limits 
scalability [2,196,321,361,412]. Itanium II’s 6-way integer execution 
unit presents evidence for this – it spends over half of its critical path in 
the bypass paths of the ALUs. ASIC designers manage wire delay 
inherent in large distributed arrays of function units in multiple steps. 
First, they place close together operations that need to communicate 
frequently. Second, when high bandwidth is needed, they create multiple 
customized communication channels. Finally, they introduce pipeline 
registers between distant operators, thereby converting propagation 
delay into pipeline latency. By doing so, the designer acknowledges the 
inherent tradeoff between parallelism and latency: leveraging more 
resources requires signals to travel greater distances. The Alpha 21264 
is an example of a microprocessor that acknowledges this tradeoff on a 
small scale: it incurs a one-cycle latency for signals to travel between its 
two integer clusters. 

2. Management of pins: ASICs customize the usage of their pins. Rather 
than being bottlenecked by a cache-oriented multilevel hierarchical 
memory system (and subsequently by a generic PCI-style I/O system), 
ASICs utilize their pins in ways that fit the applications at hand, maxi-
mizing realizable I/O bandwidth or minimizing latency. This efficiency 
applies not just when an ASIC accesses external DRAMs, but also in the 
way that it connects to high-bandwidth input devices like wide-word 
analog-to-digital converters, CCDs, and sensor arrays. There are cur-
rently few easy ways to arrange for these devices to stream data into a 
general-purpose microprocessor in a high-bandwidth way, especially 
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The software crisis 

The proliferation of multicore architectures has given rise to a software 
crisis. This crisis is two-fold. First, while multicore architectures excel at 
parallel processing, they seldom support legacy single-threaded applications
unless the applications are recompiled to take advantage of the on-chip

the usage of pin resources, by hiding them through a hierarchy of 
caches. 

The Raw processor 

The Raw processor addresses the challenge of whether future general-
purpose multicore architecture could be built to run a wide range of appli-
cations with reasonable performance in the face of increasing wire delays. 
This chapter evaluates the Raw microprocessor and discusses its success in 
achieving these goals. Raw takes the following approach to leveraging the 
four factors behind the success of ASICs. 

1. Raw implements the most common operations needed by ILP or stream 
applications in specialized hardware mechanisms. Most of the primitive 
mechanisms are exposed to software through a new ISA. These mecha-
nisms include the usual integer and floating point operations, specialized 
bit manipulation operations, scalar operand routing between adjacent 
function units, operand bypass between function units, registers and I/O 
queues, and data cache access (i.e., data load with tag check). 

2. Raw implements a large number of these operators which exploit the 
copious VLSI resources, including gates, wires and pins, and exposes 

them for both ILP and highly parallel applications. 
3. Raw manages the effect of wire delays by exposing the wiring channel 

operators to the software, so that the software can account for latencies 
by orchestrating both scalar and stream data transport. By orchestrating 
operand flow on the interconnect, Raw can also create customized 
communications patterns. Taken together, the wiring channel operators 
provide the abstraction of a scalar operand network [48] that offers very 
low latency for scalar data transport and enables the exploitation of ILP. 

4. Raw software manages the pins for cache data fetches and for 
specialized stream interfaces to DRAM or I/O devices. 

since DRAM must almost always be used as an intermediate buffer. In 
some senses, microprocessors strive to minimize, rather than maximize, 

them through a new ISA, such that the software can take advantage of 



resources in multicore processors facilitate the execution of legacy codes 
(with acceptable performance) through the use of dynamic binary trans-
lation engines. The engines can spatially implement the components of 
traditional superscalar processors across the distinct cores in a multicore 
processor. 

The second factor contributing to the software crisis is the fact that very 
few programmers know how to program the massive on-chip parallelism 
afforded by multicore systems. Existing programming models are largely 
inadequate for parallel programming by non-expert end-users who are, for 
the most part, trained in classical von Neumann imperative languages such 
as C or Java. The von Neumann model provides a simple abstraction of a 
single thread of control reading and writing data sequentially from memory. 
With parallel processing, there are multiple threads of control that requires 
thoughtful orchestration to deal with non-determinism, and avoid dead-
locks and data races. 

Several new programming models have emerged (or re-emerged) in res-
ponse to the parallel programming software challenge. Some of these 
models (e.g., Fortress [9], X10 [73], UPC [430]) are designed to target the 
general-purpose programming population, while other models are domain-
specific and target important application areas. 

The stream programming paradigm is a promising example. Stream 
programming breaks the von Neumann language barrier by encapsulating 
computation in actors. Each actor has its own thread of control, as well as 
its own address space to avoid the pitfalls of a shared address space. Data is 
streamed between the actors (or I/O devices and peripherals) in a producer–
consumer fashion, often using FIFO channels (first-in-first-out), much as 
in power-efficient ASICs. An actor reads data from its input stream, ope-
rates on the data, and outputs the results to a new stream that is consumed 
by another actor. Architectures like Raw support the streaming program-
ming model by allowing streams to be efficiently carried over the inter-
connection network between tiles for processing by the actors resident on 
the cores. 

Streaming offers an approach for exposing parallelism and communica-
tion in a manner suitable for mapping programs to multicore architectures 
without the heroic efforts needed to extract parallelism from von Neumann 
languages. The stream programming model is motivated by trends in the 
application space toward network processing, image, voice, and multimedia 
programs, cryptography, and security. Stream processing is increasingly 
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parallelism. Recent work [452], however, has shown that the parallel 

crucial to a plethora of embedded systems, including handheld computers,
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Fig. 14.2. The Raw microprocessor comprises 16 tiles. Each tile has a compute 
processor, routers, network wires, and instruction and data memories.  

Raw architecture overview 

The Raw architecture supports an ISA that provides a parallel interface to 
the gate, pin, and wiring resources of the chip through suitable high level-
abstractions. As illustrated in Figure 14.2, the Raw processor exposes the 
copious gate resources of the chip by dividing the usable silicon area into 
an array of 16 identical, programmable tiles. A tile embodies a single core, 
with an 8-stage in-order single-issue MIPS-style processing pipeline, a 
4-stage single-precision pipelined FPU, a 32KB data cache, two types of 

router, respectively. Each tile is sized so that the amount of time for a sig-
nal to travel through a small amount of logic and across the tile is one 
clock cycle. Future Raw processors may have hundreds or even thousands 
of tiles. 

The tiles are interconnected by 4 32-bit full-duplex on-chip networks, 
consisting of over 12,500 wires (see Figure 14.2). Two of the networks are 
static (routes are specified at compile time) and two are dynamic (routes 
are specified at run time). Each tile is connected only to its four neighbors. 
Every wire is registered at the input to its destination tile. This means that 
the longest wire in the system is no longer than the length or width of a 
tile. This property ensures high clock speeds, and the continued scalability 
of the architecture. 

cell phones, and DSPs. And there is already growing evidence that stream-
ing applications consume a substantial fraction of the computation cycles on
consumer machines [355]. 

software-managed instruction caches for the processing pipeline and static 
communication routers (static and dynamic) and 32KB and 64KB of 



On-chip networks 

The design of Raw’s on-chip interconnect and its interface with the pro-
cessing pipeline are its key innovative features. These on-chip networks 
are exposed to the software through the Raw ISA, thereby giving the pro-
grammer or compiler the ability to directly program the wiring resources 
of the processor, and to carefully orchestrate the transfer of data values 
between the computational portions of the tiles – much like the routing in 
an ASIC. Effectively, the wire delay is exposed to the user as network 
hops. A route between opposite corners of the processor takes six hops, 
which corresponds to approximately six cycles of wire delay. To minimize 
the latency of inter-tile scalar data transport (which is critical for ILP) the 
on-chip networks are not only register mapped but also integrated directly 
into the bypass paths of the processor pipeline. The register mapped ports 
allow an instruction to place a value on the network with no overhead. 
Similarly, instructions using values from the network simply read from the 
register mapped ports. The programmable switches bear the responsibility 
of routing operands through the network. 

Raw’s on-chip interconnects are examples of scalar operand networks 
[412], which provide an interesting way of looking at modern day proces-
sors. The register file used to be the central communication mechanism 
between functional units in a processor. Starting with the first pipelined 
processors, the bypass network has become largely responsible for the 
communication of active values and the register file is more of a check-
pointing facility for inactive values. The Raw networks, and in particular 
the static networks, serve as 2D bypass networks between tiles. 

The static router in each tile contains a 64KB software-managed instruc-
tion cache and a pair of routing crossbars. Compiler generated routing in-
structions are 64 bits and encode a small command (e.g., conditional 
branch with/without decrement) and several routes, one for each crossbar 
output. Each Raw static router, also known as a switch processor, contains 
a 4-way crossbar, with each way corresponding to one of the cardinal 
directions (north, east, south, and west). The single-cycle routing instruc-
tions are one example of Raw’s use of specialization. Because the router 
program memory is cached, there is no practical architectural limit on the 
number of simultaneous communication patterns that can be supported in a 
computation. This feature, coupled with the extremely low latency and low 
occupancy of the in-order inter-tile ALU-to-ALU operand delivery (three 
cycles nearest neighbor) distinguishes Raw from prior systolic or message 
passing systems [18,164,245]. 

The switch processor instructions may route operands already on the 
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network (for example, reading from the north and sending south), inject 
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Fig. 14.3. Example of a 2-tile Raw program. Dashed edges represent dependences 
between switch instructions and solid edges represent dependences between a 
processor and its switch. 

operands from the processor into the network, or drain operands from the 
network and send them to the processor or to a local register. If the switch 
wants to pull the incoming value from the north and send it west, the in-
struction looks like $cNi $cWo, where the i and o represent input and 
output, and the N and W represent north and west, respectively. The input 
ports ($cNi, $cWi, $cEi, $cSi) each have 4-element FIFOs to buffer incom-
ing data. To send a value from the network to the processor, the switch 
must read from one of the input ports or a local register and write to $csti. 
The FIFO between switch and processor allows the switch to write four 
words of data before the processor reads any values. To read a value from 
the switch, the processor simply reads from $csti. 

Figure 14.3 shows an example of a 2-tile Raw program where the two 
tiles are located next to each other in a horizontal row. The program con-
tains processor code and router code for each tile. Both tiles and switches 
have the same control flow, with one tile calculating the branch condition 
and using the switches to propagate the condition to both switches and the 
other tile. Solid edges represent data dependences between a processor and 
the local switch. The dashed edges represent data dependences between the 
two switches. In the figure, instruction opcodes containing a “!” symbol 
write to the register mapped network port called $csto. Physically, $csto is 
implemented via a queue. The processor inserts words into the queue and 
the switch reads words from the queue. The switch may place values read 
from the $csto queue onto the network or into a local switch register. The 
queue contains eight words of storage space allowing the processor to 
write up to eight words to the register mapped port before the switch reads 
any values. The Raw ISA provides a route opcode for moving operands 
around. For brevity and space, this opcode is omitted from the example. 



Raw’s two dynamic networks support cache misses, interrupts, dynamic 
messages, and other asynchronous events. The two networks use dimension- 
ordered routing and are structurally identical. One network, the memory 
network, follows a deadlock-avoidance strategy to avoid end-point dead-
lock. It is used in a restricted manner by trusted clients such as data caches, 
DMA and I/O. The second network, the general network, is used by un-
trusted clients, and relies on a deadlock-recovery strategy [245]. 

Raw supports context switches. On a context switch, the contents of the 
processor registers and the general and static networks on a subset of 
the Raw chip occupied by the process (possibly including multiple tiles) 
are saved off and the process and its network data can be restored at any 
time to a new offset on the Raw grid. 

Direct I/O interfaces 

On the edges of the network, the network channels are multiplexed down 
onto the pins of the chip to form flexible I/O ports that can be used for 
DRAM accesses or external device I/O. To toggle a pin, the user programs 
one of the on-chip networks to route a value off the side of the array. The 
package is a 1657-pin CCGA (ceramic column–grid array) and provides 
14 full-duplex, 32-bit I/O ports. Raw implementations with fewer pins are 
made possible via logical channels (as is already the case for two out of the 
16 logical ports), or simply by bonding out only a subset of the ports. 

The static and dynamics networks, the data cache of the compute pro-
cessors, and the external DRAMs connected to the I/O ports comprise 
Raw’s memory system. The memory network is used for cache-based 
memory traffic while the static and general dynamic networks are used for 
stream-based memory traffic. Systems designed for memory-intensive 
applications can have up to 14 full-duplex full-bandwidth DRAM banks by 
placing one on each of the chip’s 14 physical I/O ports. Minimal embed-
ded Raw systems may eliminate DRAM altogether: booting from a single 
ROM and executing programs entirely out of the on-chip memories. In 
addition to transferring data directly to the tiles, off-chip devices connected 
to the I/O ports can route data through the on-chip networks to other 
devices in order to perform glueless DMA and peer-to-peer communication. 

ISA analogs to physical resources 

By creating first class architectural analogs to the physical chip resources, 
Raw attempts to minimize the ISA gap – that is, the gap between the re-
sources that a VLSI chip has available and the amount of resources that are 
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Table 14.1. How Raw converts increasing quantities of physical entities into ISA 
entities.  

 
usable by software. Unlike conventional ISAs, Raw exposes the quantity 
of all three underlying physical resources (gates, wires and pins) in the 
ISA. Furthermore, it does this in a manner that is backwards-compatible – 
the instruction set does not change with varying degrees of resources. 

Table 14.1 contrasts the ways that the Raw ISA and conventional ISAs 
expose physical resources to the programmer. Because the Raw ISA has 
more direct interfaces, Raw processors can have more functional units and 
more flexible and efficient pin utilization. High-end Raw processors will 
typically have more pins, because the architecture is better at turning pin 
count into performance and functionality. Finally, Raw processors are more 
predictable and have higher frequencies because of the explicit exposure of 
wire delay. 

This approach makes Raw scalable. Creating subsequent, more power-
ful, generations of the processor is straightforward, and is as simple as 
stamping out as many tiles and I/O ports as the silicon die and package 
allow. The design has no centralized resources, no global buses, and no 
structures that get larger as the tile or pin count increases. Finally, the 
longest wire, the design complexity, and the verification complexity are all 
independent of transistor count. 

Related architectures 

Raw distinguishes itself from others by being a modeless architecture and 
supporting all forms of parallelism, including ILP, DLP, TLP, and streams. 
Several other projects have attempted to exploit specific forms of parallel-
ism. These include systolic (iWarp [164]), vector (VIRAM [237]), stream 
(Imagine [219]), shared-memory (DASH [262]), and message passing 
(J machine [309]). These machines, however, were not designed for ILP. 
In contrast, Raw was designed to exploit ILP effectively in addition to these 

Physical Entity Conventional ISA Analog 

Tiles, new  Gates 

Wires, Wire  
delay 

instructions 
New instructions 

Routes, network 
hops 

Pins  I/O ports none 

none 

Raw ISA Analog



requires that the architecture be able to transport scalar operands between 
logic units with very low latency, even when there are a large number of 
highly irregular communication patterns. A recent paper [412] employs a 
5-tuple to characterize the cost of sending operands between functional 
units in a number of architectures (see Table 14.5 for a list of the compo-
nents in this 5-tuple). Qualitatively, larger 5-tuple values represent propor-
tionally more expensive operand transport costs. The large values in the 
network 5-tuples for iWarp <1,6,5,0,1>, shared memory <1,18,2,14,1>, 
and message passing <3,7,1,1,12>, compared to the low numbers in the 
5-tuples of machines that can exploit ILP (e.g., superscalar <0,0,0,0,0>, 
Raw <0,1,1,1,0>, Grid <0,0,½,0,0>, and ILDP <0,1,0,1,0>) quantitatively 
demonstrate the difference. The low 5-tuple of Raw’s scalar operand net-
work compared to that of iWarp enables Raw to exploit diverse forms of 
parallelism, and is a direct consequence of the integration of the interconnect 
into Raw’s pipeline and Raw’s early pipeline commit point. We will fur-
ther discuss the comparison with iWarp here, but see [412] for more details 
on comparing networks for ILP. 

nication patterns, and can switch between these patterns quickly. However, 

switch during that cycle. Because the switch program memory in Raw is 
large, and virtualized through caching, there is no practical architectural 
limit on the number of simultaneous communication patterns that can be 
supported in a computation. This virtualization becomes particularly im-
portant for supporting ILP, because switch programs become as large or 
even larger than the compute programs. 

Processors like Grid [304] and ILDP [230] are targeted specifically for 
ILP and propose using low latency scalar operand networks. Raw shares in 
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Raw supports statically orchestrated communication like iWarp or
NuMesh [375]. iWarp and NuMesh support a small number of fixed commu-

Raw and Grid perform compile time instruction assignment to compute

uses compile-time operand matching, while Grid uses dynamic associative
nodes, while ILDP uses dynamic assignment of instruction groups. Raw

operand matching queues, and ILDP’s dynamic scheme uses full-empty
bits on distributed register files. Accordingly, using the AsTrO categori-
zation (Assignment, Transport, Ordering) from [413], Raw, Grid, and

their ILP philosophy, and implements a static-transport, point-to-point sca-
lar operand network, while Grid uses a dynamic-transport, point-to-point net- 
work, and ILDP uses a broadcast based dynamic-transport network. Both 

other forms of parallelism. ILP presents a difficult challenge because it 
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orchestrated communication by using a programmable switch that issues 
an instruction each cycle. The instruction specifies the routes through the 

establishing a new pattern is more expensive. Raw supports statically 
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designs project lower network 5-tuples than Raw, but the final numbers 
should be forthcoming as their implementations mature. Taken together, 
Grid, ILDP and Raw represent three distinct points in the scalar operand 
network design space, ranging from the more compile-time oriented app-
roach as in Raw, to the dynamic approach as in ILDP. 

Raw took inspiration from the Multiscalar processor [385], which uses a 
separate one-dimensional network to forward register values between ALUs. 
Raw generalizes the basic idea, and supports a two-dimensional program-
mable mesh network both to forward operands and for other forms of 
communication. 

Both Raw and SmartMemories [273] share the philosophy of an exposed 
communication architecture, and represent two design points in the space 
of tiled architectures that can support multiple forms of parallelism. Raw 
uses homogeneous, programmable static and dynamic mesh networks, 
while SmartMemories uses programmable static communication within a 
local collection of nodes, and a dynamic network between these collections 
of nodes. The node granularities are also different in the two machines. 
Perhaps the most significant architectural difference, however, is that Raw 
(like Scale [242]) is modeless, while SmartMemories and Grid have modes 
for different application domains. Another architecture that represents a 
natural extreme point in modes is Tarantula [121], which implements two 
distinct types of processing units for ILP and vectors. Raw’s research focus 
is on discovering and implementing a minimal set of primitive mechanisms 
(e.g., scalar operand network) useful for all forms of parallelism, while the 
modes approach implements special mechanisms for each form of parallel-
ism. We believe the modeless approach is more area efficient and signifi-
cantly less complex. We believe the issue of modes versus modeless for 
versatile processors is likely to be a controversial topic of debate in the 
forthcoming years. 

Finally, like VIRAM and Imagine, Raw supports vector and stream 
computations, but does so very differently. Both VIRAM and Imagine sport 
large memories or stream register files on one side of the chip connected 
via a crossbar interconnect to multiple, deep compute pipelines on the other. 
The computational model is one that extracts data streams from memory, 
pipes them through the compute pipelines, and then deposits them back in 
memory. In contrast, Raw implements many co-located smaller memories 
and compute elements, interconnected by a mesh network. The Raw com-
putational model is more ASIC-like in that it streams data through the pins 
and on-chip network to the ALUs, continues through the network to more 

ILDP can be classified as SSS, SDD, and DDS architectures, respectively, 
where S stands for static and D for dynamic. Both the Grid and ILDP 



of the on-chip network with the compute pipelines, make Raw more suit-
able for ILP. 

Raw chip implementation 

The Raw chip is a 16-tile prototype implemented in IBM’s 180 nm 1.8 V 
6-layer CMOS 7SF SA-27E copper process. Although the Raw array is 
only 16 mm × 16 mm, an 18.2 mm  18.2 mm die is used to allow for the 
high pin-count package. The 1657-pin ceramic column grid array (CCGA) 
package provides 1080 high speed transceiver logic (HSTL) I/O pins. 
Measurements indicate that the chip core averages 18.2 W at 425 MHz 
(unused functional units, memories, and tri-state unused data I/O pins are 
quiesced). The target clock frequency was 225 MHz under worst-case con-
ditions, which is competitive with other 180 nm lithography ASIC proces-
sors, such as VIRAM, Imagine, and Tensilica’s Xtensa series. The nominal 
running frequency is typically higher – the Raw chip core, running at room 
temperature, reaches 425 MHz at 1.8 V, and 500 MHz at 2.2 V. This com-
pares favorably to IBM-implemented microprocessors in the same process: 
the PowerPC 405GP runs at 266–400 MHz, while the follow-on PowerPC 
440GP reaches 400–500 MHz. 

The processor is aggressively pipelined, with conservative treatment of 
the control paths in order to ensure that only reasonable efforts would be 
required to close timing in the backend. Despite these efforts, wire delay 
inside a tile was still large enough to warrant a special infrastructure to 
place the cells in the timing and congestion-critical data paths. More 
details on the Raw implementation are available in [411]. 

As one can infer from the empirical results that follow, moving from a 
single issue compute processor to a two-issue compute processor would 
have likely improved performance on low-ILP applications. Estimates indi-
cate that such a compute processor would have easily fit in the remaining 
empty space within a tile. The frequency impact of transitioning from 
1-issue to 2-issue is generally held to be small. 

A prototype motherboard (shown in Figure 14.4) using the Raw chip 
was designed in collaboration with the Information Sciences Institute (ISI) 
East. A larger system, consisting of 64 Raw chips, connected to form a vir-
tual 1024-tile Raw processor, is also being fabricated in conjunction with 
ISI East. 
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ALUs, and finally through the network to the pins. Raw’s ALUs also can 
store data temporarily in the local memories if necessary. We believe the 
lower latencies of the memories in Raw, together with the tight integration 
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Fig. 14.4. Photos of the Raw chip (top) and Raw prototype motherboard (bottom). 



Methodology for performance analysis 

The evaluation presented here makes use of a validated cycle-accurate 
simulator of the Raw chip. The evaluation is focused on three application 
domains that are predominant in embedded systems: stream, ILP, and bit-
level computing. 

Using the validated simulator, as opposed to the actual hardware, facili-
tates the normalization of differences with a reference system, e.g., DRAM 
memory latency, and instruction cache configuration. It also allows for 
exploration of alternative motherboard configurations. The simulator was 
meticulously verified against the gate-level RTL netlist to have exactly 
the same timing and data values for all 200,000 lines of the handwritten 
assembly-code test suite, as well as for a number of C applications and 
randomly generated tests. Every stall signal, register-file write, SRAM write, 
on-chip network wire, cache state-machine transition, interrupt signal, and 
chip signal pin matches in value on every cycle between the two. This 
gate-level RTL netlist was then shipped to IBM for manufacturing. Upon 
receipt of the chip, a subset of the tests was compared to the actual hard-
ware to verify that the chip was manufactured according to specification. 

Reference processor 

It is important for the evaluation to ground the empirical data to an existing 
commercial system. For fairness, this comparison system must be imple-
mented in a process that uses the same lithography generation, 180 nm. 
Furthermore, the reference processor needs to be measured at a similar 
point in its lifecycle, i.e., as close to first silicon as possible. This is because 
most commercial systems are speedpath or process tuned after first silicon 
is created [79]. For instance, the 180 nm Intel Pentium 3 (P3) initial pro-
duction silicon was released at 500–733 MHz and gradually was tuned 
until it reached a final production frequency of 1 GHz. The first-silicon 
value for the P3 is not publicly known. However, the frequencies of first-
silicon and initial-production silicon have been known to differ by as much 
as 2x. 

The P3 is especially well suited for comparison with Raw because it is 
in common use, because its fabrication process is well documented, and 
because the common-case functional unit latencies are almost identical. 
The back ends of the processors share a similar level of pipelining, which 
means that relative cycle-counts carry some significance. Conventional 
VLSI wisdom suggests that, when normalized for process, Raw’s single-
ported L1 data cache should have approximately the same area and delay 
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with working sets that fit in the L1 caches, the cycle counts should be quite 
similar. And given that the fortunes of Intel have rested (and continue to 
rest, with the Pentium-M reincarnation) upon this architecture for almost 
ten years, there is reason to believe that the implementation is a good one. 
In fact, the P3, upon release in 4Q’99, had the highest SpecInt95 value of 
any processor [171]. 

Normalization details 

The selection of a reference CPU implementation is followed by a selec-
tion of an enclosing computer. A pair of 600 MHz Dell Precision 410 
workstations were used to run our reference benchmarks. These machines 
were outfitted with identical 100 MHz 2-2-2 PC100 256 MB DRAMs, and 
several microbenchmarks were used to verify that the memory system 
timings matched. 

To compare the Raw and Dell systems more equally, the Raw simulator 
extension language was used to implement a cycle-matched PC100 DRAM 
model and a chipset. This model has the same wall-clock latency and 
bandwidth as the Dell 410. However, since Raw runs at a slower frequency 
than the P3, the latency, measured in cycles, is less. The term RawPC is 
used to describe a simulation which uses eight PC100 DRAMs, occupying 
four ports on the left-hand side of the chip, and four on the right-hand 
side. 

Because Raw is designed for streaming applications, it is necessary to 
measure applications that use the full pin bandwidth of the chip. In this 
case, a simulation of CL2 PC 3500 DDR DRAM was used as it provides 
enough bandwidth to saturate both directions of a Raw port. There are 14 
physical ports on the Raw chip and 16 logical ports: 1 logical port for each 
tile side that borders the chip periphery. A few of the logical ports share 
the same physical port. The simulation is configured to use 16 PC 3500 
DRAM modules, 1 for each of the 16 logical ports on the chip, in conjunc-
tion with 16 memory controllers, implemented in the chipset, that support 
a number of stream requests. This configuration is called RawStreams. A 
Raw tile can send a message over the general dynamic network to the 
chipset to initiate large bulk transfers from the DRAMs into and out of the 
static network. Simple interleaving and striding is supported, subject to the 
underlying access and timing constraints of the DRAM. 

The placement of a DRAM on a Raw port does not exclude the use of 
other devices on that port – the chipsets have a simple demultiplexing 
mechanism that allows multiple devices to connect to a single port. 

as the P3’s dual-ported L1 data cache of half the size. For sequential codes 



Except where otherwise noted, gcc 3.3 -O3 was used to compile C and 
Fortran code for both Raw1 and the P3.2 For programs that do C or Fortran 
stdio calls, newlib 1.9.0 was used for both Raw and the P3. Finally, to 
eliminate the impact of disparate file and operating systems, the results of 
I/O system calls for the Spec benchmarks were captured and embedded 
into the binaries as static data using [410]. 

One final normalization was performed to enable comparisons with the 
P3. The cycle-accurate simulator was augmented to employ conventional 
2-way associative hardware instruction caching. These instruction caches 
are modeled cycle-by-cycle in the same manner as the rest of the hardware. 
Like the data caches, they service misses over the memory dynamic net-
work. Resource contention between the caches is modeled accordingly.  

Tables 14.2 and 14.3 show functional unit timings and memory system 
characteristics for both systems, respectively. Table 14.4 shows Raw’s 
measured power consumption [231]. Table 14.5 lists a breakdown of the 
end-to-end message latency on Raw’s scalar operand network. The low 
3-cycle inter-tile ALU-to-ALU latency and zero cycle send and receive 
occupancies are critical for obtaining good ILP performance. 

Table 14.2. Functional unit timings. Commonly executed instructions appear first. 
FP operations are single precision.  

                                                      
1 The Raw gcc backend, based on the MIPS backend, targets a single tile’s 

compute and network resources. 
2 For P3, the -march=pentium3 -mfpmath=sse flags were added. 
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 Latency Throughput   Operation 
1 Raw Tile P3  Raw  P3   

ALU  1  1  1  1   
Load (hit)  3  3  1  1   
Store (hit)  –  –  1  1   
FP Add  4  3  1  1   
FP Mul  4  5  1  1/2   
Mul  2  4  1  1   
Div  42  26  1  1   
FP Div  10  18  1/10  1/18   
SSE FP 4-Add – 4  –  1/2   
SSE FP 4-Mul  –  5  –  1/2   
SSE FP 4-Div  –  36  –  1/36   
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Table 14.3. Memory system data. 

 1 Raw Tile P3 

CPU frequency 425 MHz 600 MHz 

Sustained issue width 1 in-order 3 out-of-order 

Mispredict penalty 3 10–15 

DRAM freq (RawPC) 100 MHz 100 MHz 

DRAM freq (RawStreams) 2 × 213 MHz – 

DRAM access width 8 bytes 8 bytes 

L1 D cache size 32K 16K 

L1 D cache ports 1 2 

L1 I cache size 32K 16K 

L1 miss latency 54 cycles 7 cycles 

L1 fill width 4 bytes 32 bytes 

32 bytes 32 bytes 

L1 associativities 2-way 4-way 

L2 size – 256K 

L2 associativity – 8-way 

L2 miss latency – 79 cycles 

L2 fill width – 8 bytes 

 
Table 14.4. Raw power consumption at 425 MHz, 25°C. 

 Core  Pins    
Idle – full chip  9.6 W  0.02 W   
Average – per active tile  0.54 W  –   
Average – per active port  –  0.2 W   
Average – full chip  18.2 W  2.8 W   

 
 
 

L1/L2 line sizes 



Table 14.5. Breakdown of the end-to-end latency (in cycles) for a one-word mes-
sage on Raw’s static network.  

 Latency   
Sending processor occupancy 0   
Latency from ALU output to network  0   
Latency per hop  1   
Latency from network to ALU input  2   
Receiving processor occupancy  0   

Stream computation 

Stream computations arise naturally out of real-time I/O applications as 

We present two sets of results for stream computation on Raw. First we 
show the performance of programs written in a high-level stream language 
called StreamIt. The applications are automatically compiled to Raw. Then, 
we show the performance of some handwritten streaming applications. 

StreamIt 

StreamIt is a high-level, architecture-independent language for high-
performance streaming applications. StreamIt contains language constructs 
that improve programmer productivity for streaming, including hierarchi-
cal structured streams, graph parameterization, and circular buffer man-
agement. These constructs also expose information to the compiler and 
enable novel optimizations [421]. The StreamIt programming model al-
lows the programmer to build an application by connecting components 
together into a stream graph, where the nodes represent filters that trans-
form the data communicated along the edges. 

The StreamIt compiler includes a Raw backend that performs auto-
matic load balancing, graph layout, communication scheduling and routing 
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well as from embedded applications. The data sets for these applications are 
often large and may even be a continuous stream in real-time, which makes 
them unsuitable for traditional cache based memory systems. Raw provides
more natural support for stream-based computation by allowing data to be
fetched efficiently through a register-mapped, software-orchestrated net-
work. 
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[160,161]. The partitioning adjusts the granularity of a stream graph to 
match the number of tiles in the target architecture. A layout phase then 
maps the partitioned stream graph to a given network topology. Lastly, the 
scheduling and routing generates a fine-grained static communication pat-
tern for each computational element. The results presented here leverage 
the on-chip static networks for routing data between cores: filters are fused 
together to match the number of Raw cores, and then layed out in space 
with data streamed between the cores. There are alternative ways of per-
forming stream computation on Raw that also take advantage of the dyna-
mic network and its massive bandwidth off chip. The interested reader can 
review [160] for details. 

StreamIt experiments 

We evaluate the performance of RawPC on several StreamIt benchmarks, 
which represent large and pervasive DSP applications. Table 14.6 summa-
rizes the performance of 16 Raw tiles vs. a P3. For both architectures, we 
use StreamIt versions of the benchmarks; we do not compare to hand-
coded C on the P3 because StreamIt performs at least 1-2X better for 
four of the six applications (this is due to aggressive unrolling and con-
stant propagation in the StreamIt compiler). The comparison reflects two 
distinct influences: (1) the scaling of Raw performance as the number of 
tiles increases, and (2) the performance of a Raw tile vs. a P3 for the same 
StreamIt code. To distinguish between these influences, Table 14.7 shows 
detailed speedups relative to StreamIt code running on a 1-tile Raw con-
figuration. 

Table 14.6. StreamIt performance results. 

Speedup vs. P3 Benchmark  Cycles Per  
Outputon Raw Cycles  Time   

Beamformer  2074.5  7.3  5.2   
Bitonic sort      11.6  4.9  3.5   
FFT      16.4  6.7  4.8   
Filterbank    305.6  15.4  10.9   
FIR      51.0  11.6  8.2   
FMRadio  2614.0  9.0  6.4   

 
 



Table 14.7. Speedup (in cycles) of StreamIt benchmarks relative to a 1-tile Raw 
configuration. From left, the columns indicate the StreamIt version on a P3, and 
on Raw configurations with one to 16 tiles. 

StreamIt on n Raw tiles StreamIt on P3 Benchmark 

1 2 4 8 16  
Beamformer  1.0 4.1 4.5 5.2  21.8 3.0  

1.0 1.9 3.4 4.7  6.3 1.3  
FFT  1.0 1.6 3.5 4.8  7.3 1.1  
Filterbank  1.0 3.3 3.3 11.0  23.4 1.5  
FIR  1.0 2.3 5.5 12.9  30.1 2.6  
FMRadio  1.0 1.0 1.2 4.0  10.9 1.2  

 
The primary result illustrated by Table 14.7 is that StreamIt applications 

scale effectively for increasing sizes of the Raw configuration. For FIR, 
FFT, and Bitonic, the scaling is approximately linear across all tile sizes 
(FIR is actually super-linear due to decreasing register pressure in larger 
configurations). For Beamformer, Filterbank, and FMRadio, the scaling is 
slightly inhibited for small configurations. This is because (1) these appli-
cations are larger, and IMEM constraints prevent an unrolling optimization 
for small tile sizes, and (2) they have more data parallelism, yielding speed-
ups for large configurations but inhibiting small configurations due to a 
constant control overhead. 

The second influence is the performance of a P3 vs. a single Raw tile on 
the same StreamIt code, as illustrated by the second column in Table 14.7. In 
most cases, performance is comparable. The P3 performs better in two cases 
because it can exploit ILP: Beamformer has independent real/imaginary 
updates in the inner loop, and FIR is a fully unrolled multiply-accumulate 
operation. In other cases, ILP is obscured by circular buffer accesses and 
control dependences.  

In all, StreamIt applications benefit from Raw’s exploitation of parallel 
resources and management of wires. The abundant parallelism and regular 
communication patterns in stream programs are an ideal match for the 
parallelism and tightly orchestrated communication on Raw. As stream 
programs often require high bandwidth, register-mapped communication 
serves to avoid costly memory accesses. Also, autonomous streaming com-
ponents can manage their local state in Raw’s distributed data caches and 
register banks, thereby improving locality. These aspects are key to the 
scalability demonstrated in the StreamIt benchmarks. 
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Hand-optimized stream applications 

ISI East, the MIT Oxygen Team, and MIT CAG have coded and manually 
tuned a wide range of streaming applications to take advantage of Raw as 
an embedded processor. These include a set of linear algebra routines im-
plemented as Stream Algorithms, the STREAM benchmark, and several 
other embedded applications including a real-time 1020-node acoustic 
beamformer. The benchmarks are typically written in C and compiled with 
gcc, with inline assembly for a subset of inner loops. Some of the simpler 
benchmarks like the STREAM and FIR benchmarks were small enough 
that coding entirely in assembly was the most expedient approach. This 
section presents the results. 

Streaming algorithms 
Table 14.8 presents the performance of a set of linear algebra algorithms 

on RawPC vs. the P3. 
The Raw implementations are coded as Stream Algorithms [198], which 

emphasize computational efficiency in space and time and are designed 
specifically to take advantage of tiled microarchitectures like Raw. They 
have three key features. First, stream algorithms operate directly on data 
from the interconnect and achieve an asymptotically optimal 100% com-
pute efficiency for large numbers of tiles. Second, stream algorithms use 

With the exception of Convolution, we compare against the P3 running 
single precision Lapack (Linear Algebra Package). We use clapack version 
3.0 [16] and a tuned BLAS implementation, ATLAS [453], version 3.4.2. 
We disassembled the ATLAS library to verify that it uses P3 SSE exten-

Table 14.8. Performance of linear algebra routines. 

Speedup vs. P3 Benchmark  Problem 
Size 

 MFlops 
on Raw Cycles Time 

Matrix multiplication  256 × 256 6310 8.6 6.3 

LU factorization  256 × 256 4300 12.9 9.2 

Triangular solver  256 × 256 4910 12.2 8.6 

QR factorization  256 × 256 5170 18.0 12.8 

Convolution  256 × 4610 9.1 6.5 

peripheral memories.  
element. Third, data are streamed through the compute fabric from and to
no more than a small, bounded amount of storage on each processing

 16 

sions appropriately to achieve high performance. Since Lapack does not  



Table 14.9. Performance (by time) of STREAM benchmark. 

Bandwidth (GB/s) Problem Size 

P3 Raw NEC SX-7

Raw/P3 

Copy  0.567 47.6  35.1  84   

Scale  0.514 47.3  34.8  92   

Add  0.645 35.6  35.3  55   

Scale & Add  0.616 35.5  35.3  59   

 
provide a convolution, we compare against the Intel Integrated Perform-
ance Primitives (IPP). 

As can be seen in Table 14.8, Raw performs significantly better than the 
P3 on these applications even with optimized P3 SSE code. Raw’s better 
performance is due to load/store elimination, and the use of parallel re-
sources. Stream Algorithms operate directly on values from the network 
and avoid loads and stores, thereby achieving higher utilization of parallel 
resources than the blocked code on the P3. 

STREAM benchmarks 
The STREAM benchmark was created by John McCalpin to measure 

sustainable memory bandwidth and the corresponding computation rate for 
vector kernels [277]. Its performance has been documented on thousands 
of machines, ranging from PCs and desktops to MPPs and other super-
computers. 

We hand-coded an implementation of STREAM on RawStreams. We 
also tweaked the P3 version to use single precision SSE floating point, im-
proving its performance. The Raw implementation employs 14 tiles and 
streams data between 14 processors and 14 memory ports through the 
static network. Table 14.9 displays the results. As shown in the right-most 
column, Raw is 55x–92x better than the P3. The table also includes the 
performance of STREAM on NEC SX-7 Supercomputer, which has the 
highest reported STREAM performance of any single-chip processor. Note 
that Raw surpasses that performance. This extreme single-chip performance 
is achieved by taking advantage of three Raw architectural features: its 
ample pin bandwidth, the ability to precisely route data values in and out 
of DRAMs with minimal overhead, and a careful match between floating 
point and DRAM bandwidth. 

Other stream-based applications 
Table 14.10 presents the performance of some hand-optimized stream 

applications on Raw. We are developing a real time 1020-microphone 
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Acoustic Beamformer which will use the Raw system for processing. On 
this application, Raw runs 16 instantiations of the same set of instructions 
(code) and the microphones are striped in a data-parallel manner across the 
array. Raw’s software-exposed I/O allows for much more efficient transfer 
of stream data than the DRAM-based I/O on the P3. The assumption that 
the stream data for the P3 is coming from DRAM represents a best-case 
situation. The P3 results would be much worse in an actual system where 
the data is transmitted over a PCI bus. For FIR, we compared to the Intel 
IPP. Results for Corner Turn, Beam Steering, and CSLC are discussed in 
the previously published [392].  

ILP computation 

This section examines how well Raw is able to support conventional se-
quential applications. Typically, the only form of parallelism available in 
these applications is ILP-level parallelism. For this evaluation, we select a 

and degrees of ILP.  
Much like a VLIW architecture, Raw is designed to rely on the compiler 

to find and exploit ILP. We have developed Rawcc [39,257,258] to ex-

the computation and communication to maximize parallelism and mini-
mize communication stalls. 

Speedup vs. P3   Benchmark 

 

Machine  
Configuration 

Cycles  
on Raw Cycles Time 

Acoustic beam-
forming  

RawStreams  7.83M 9.7 6.9   

512-pt 
Radix-2 FFT  

RawPC  331K 4.6 3.3   

16-tap FIR  RawStreams  548K 10.9 7.7   

CSLC  RawPC  4.11M 17.0 12.0   

Beam steering  RawStreams  943K 65 46  

Corner turn  RawStreams  147K 245 174  

plore these compilation issues. Rawcc takes sequential C or Fortran pro-
grams and orchestrates them across the Raw tiles in two steps. First, Rawcc 
distributes the data and code across the tiles in a way that attempts to
balance the tradeoff between locality and parallelism. Then, it schedules 

Table 14.10. Performance of handwritten stream applications. 

range of benchmarks that encompass a wide spectrum of program types 



Table 14.11. Performance of sequential programs on Raw and on a P3. 

Speedup vs. P3   Benchmark 
 

Source 
 

# Raw 
Tiles 

Cycles 
on Raw

Cycles Time 

Dense-Matrix Scientific Applications
 

Swim  Spec95  16 14.5M 4.0 2.9   
Tomcatv  Nasa7:Spec92 16 2.05M 1.9 1.3   
Btrix  Nasa7:Spec92 16 516K 6.1 4.3   
Cholesky  Nasa7:Spec92 16 3.09M 2.4 1.7   
Mxm  Nasa7:Spec92 16 247K 2.0 1.4   
Vpenta  Nasa7:Spec92 16 272K 9.1 6.4   
Jacobi  Raw bench. 

suite  
16 40.6K 6.9 4.9   

Life  Raw bench. 
suite  

16 332K 4.1 2.9   

Sparse-Matrix/Integer/Irregular Applications   
SHA  Perl Oasis  16 768K 1.8 1.3   
AES Decode  FIPS-197  16 292K 1.3 0.96   
Fpppp-kernel  Nasa7:Spec92 16 169K 4.8 3.4   
Unstructured  CHAOS  16 5.81M 1.4 1.0   

 
Rawcc is a prototype research compiler and is, therefore, not robust 

enough to compile every application in standard benchmark suites. Below 
are the results for a selection of benchmarks that it can compile. The speed-
ups attained in Table 14.11 shows the potential of automatic parallelization 
and ILP exploitation on Raw. Of the benchmarks compiled by Rawcc, 
Raw is able to outperform the P3 for all the scientific benchmarks and 
several irregular applications. 

Table 14.12 shows the speedups achieved by Rawcc as the number of 
tiles varies from 2 to 16. The speedups are compared to performance of a 
single Raw tile. Overall, the improvements are primarily due to increased 
parallelism, but several of the dense-matrix benchmarks benefit from 
increased cache capacity as well (which explains the super-linear speed-
ups). In addition, Fpppp-kernel benefits from increased register capacity, 
which leads to fewer spills. 
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Table 14.12. Speedup of the ILP benchmarks relative to single-tile Raw. 

Benchmark 
 1 2 4 8 16 
Dense-Matrix Scientific Applications 
Swim  1.0 1.1 2.4 4.7 9.0   
Tomcatv  1.0 1.3 3.0 5.3 8.2   
Btrix  1.0 1.7 5.5 15.1 33.4   
Cholesky  1.0 1.8 4.8 9.0 10.3   
Mxm  1.0 1.4 4.6 6.6 8.3   
Vpenta  1.0 2.1 7.6 20.8 41.8   
Jacobi  1.0 2.6 6.1 13.2 22.6   
Life  1.0 1.0 2.4 5.9 12.6   
Sparse-Matrix/Integer/Irregular Applications   
SHA  1.0 1.5 1.2 1.6 2.1   
AES Decode  1.0 1.5 2.5 3.2 3.4   
Fpppp-kernel  1.0 0.9 1.8 3.7 6.9   
Unstructured  1.0 1.8 3.2 3.5 3.1   

 
For completeness, we also compiled a selection of the Spec2000 bench-

marks with gcc for a single tile, and ran them using MinneSPEC’s [233] 
LgRed data sets to reduce the length of simulations. The results, shown in 
Table 14.13, represent a lower bound for the performance of those codes 
on Raw, as they only use 1/16 of the resources on the Raw chip. The num-
bers are quite surprising: on average, the simple in-order Raw tile with no 
L2 cache is only 1.4x slower by cycles and 2x slower by time than the full 
P3. This suggests that in the event that the parallelism in these applications 
is too small to be exploited across Raw tiles, a simple 2-way Raw compute 
processor might be sufficient to make the performance difference negligible. 

Bit-level computation 

We measure the performance of RawStreams on two bit-level computa-
tions [52]. Table 14.14 presents the results for the P3, Raw, FPGA, and 
ASIC implementations. The FPGA implementations use a Xilinx Virtex-II 
3000-5 FPGA, which is built using the same process generation as the Raw 
chip. The ASIC implementations were synthesized to the IBM SA-27E 
process that the Raw chip is implemented in. For each benchmark, we pre-
sent three problem sizes: 1024, 16384, and 65536 samples. These problem 

Number of Tiles   



Table 14.13. Performance of SPEC2000 programs on one tile on Raw. 

Speedup vs. P3  Benchmark 

 

Source 
 

# Raw
Tiles 

Cycles 
on Raw Cycles Time 

172.mgrid  SPECfp 1  0.240B 0.97 0.69  
173.applu  SPECfp 1  0.324B 0.92 0.65  
177.mesa  SPECfp 1  2.40B 0.74 0.53  
183.equake  SPECfp 1  0.866B 0.97 0.69  
188.ammp  SPECfp 1  7.16B 0.65 0.46  
301.apsi  SPECfp 1  1.05B 0.55 0.39  
175.vpr  SPECint 1  2.52B 0.69 0.49  
181.mcf  SPECint 1  4.31B 0.46 0.33  
197.parser  SPECint 1  6.23B 0.68 0.48  
256.bzip2  SPECint 1  3.10B 0.66 0.47  
300.twolf  SPECint 1  1.96B 0.57 0.41  

Speedup vs. P3 

Raw 

Benchmark  
 

Problem 
Size 

Cycles 
on Raw 

Cycles Time 
FPGA 
Time 

ASIC 
Time 

1024 bits  1048  11.0 7.8 6.8 24 

16408 bits  16408  18.0 12.7 11 38 802.11a  
ConvEnc  

65536 bits  65560  32.8 23.2 20 68 
1024 bytes  1054  8.2 5.8 3.9 12 
16408 bytes  16444  11.8 8.3 5.4 17 8b/10b  

Encoder  
65536 bytes  65695  19.9 14.1 9.1 29 

sizes are selected to fit in the L1, L2, and miss in the cache on the P3, res-
pectively. We use a randomized input sequence in all cases. 

On these two applications, Raw is able to excel by exploiting fine-grain 
pipeline parallelism. To do this, the computations were spatially mapped 
across multiple tiles. Both applications benefited by more than 2x from 
Raw’s specialized bit-level manipulation instructions, which reduce the 
latency of critical feedback loops. Another factor in Raw’s high performance 
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to reference sequential implementations on the P3. 

Table 14.14. Performance of two bit-level applications: 802.11a Convolution
Encoder and 8b/10b Encoder. The hand-coded Raw implementations are compared
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Table 14.15. Performance of two bit-level applications for 16 streams: 802.11a 
Convolution Encoder and 8b/10b Encoder. This test simulates a possible workload 
for a base-station that processes multiple communication streams. 

Speedup vs P3   Benchmark 

 

Problem Size 

  

Cycles  
on Raw  Cycles  Time   

16*64 bits  259  45  32   
16*1024 bits  4138  71  51   802.11a  

ConvEnc  
16*4096 bits  16549  130  92   
16*64 bytes  257  34  24   
16*1024 bytes  4097  47  33   8b/10b  

Encoder  
16*4096 bytes  16385  80  56   

 
on these applications is Raw’s exposed streaming I/O. This I/O model is in 
sharp contrast to having to move data though the cache hierarchy on a P3.  

Table 14.15 presents the results for the operation on 16 parallel input 
streams. This is to simulate a potential workload for a base-station com-
munications chip that needs to encode 16 simultaneous connections. For 
this throughput test, a more area-efficient implementation was used on 
Raw. This implementation has lower performance on a single stream but 
utilizes fewer tiles, achieving a higher per-area throughput. Instantiating 16 
copies of this implementation results in the maximum total throughput. 

Conclusion 

latency for scalar data transport. Raw’s compiler manages the effect of wire 
delays by orchestrating both scalar and stream data transport. The Raw 
processor demonstrates that existing architectural abstractions like inter-
rupts, caches, and context-switching can continue to be supported in this 
environment, even as applications take advantage of the low-latency scalar 
operand network and the large number of ALUs. 

Our results demonstrate that the Raw processor performs at or close to 
the level of the best specialized machine for each application class. When 
compared to a Pentium III, Raw displays one to two orders of magnitude 
more performance for stream applications, while performing within a factor 

This chapter describes the architecture and implementation of the Raw
microprocessor. Raw’s exposed ISA allows parallel applications to exploit 
all of the chip resources, including gates, wires and pins. Raw supports ILP 
by scheduling operands over a scalar operand network that offers very low 



of 2 for low-ILP applications. It is our hope that the Raw research will 
provide insight for architects who are looking for ways to build versatile 
processors that leverage the vast silicon resources while mitigating the 
considerable wire delays that loom on the horizon. 

Acknowledgments 

We thank our StreamIt collaborators, specifically M. Gordon, J. Lin, and 
B. Thies for the StreamIt backend and the corresponding section of this 

motherboard, firmware components, and several applications. T. Konstan-
takopoulos, L. Jakab, F. Ghodrat, M. Seneski, A. Saraswat, R. Barua, A. Ma, 
J. Babb, M. Stephenson, S. Larsen, V. Sarkar, and several others too 
numerous to list also contributed to the success of Raw. The Raw chip was 
fabricated in cooperation with IBM. Raw is funded by Darpa, NSF, ITRI, 
and the Oxygen Alliance. 

338 Michael Bedford Taylor et al.

C. Chen, S. Crago, M. French, L. Wang, and J. Suh for developing the Raw 
paper. We are grateful to our collaborators from ISI East including



15 Processor Clock Generation and Distribution 
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Introduction 

The clock is a periodic synchronization signal used as a time reference for 
data transfers in synchronous digital systems. Since the clock plays a central 
role in the operation of a synchronous system, significant effort is invested 
in the design, optimization and verification of high-performance clock dis-
tribution schemes. Because the clock edges determine the state updates 
in a synchronous system, higher clock frequencies are generally (but not 
always) associated with a higher system performance. Clock frequency for 
mainstream microprocessors has increased significantly over time, driven 
by the process technology scaling, aggressive circuit design techniques and 
deeper pipelines. 

The clock distribution is particularly affected by process scaling. Smaller 
process geometries allow designers to pack more functionality on a single 
die. The number of sequential elements that need the clock is constantly 
increasing, thus making the clock distribution a more difficult task. Tran-
sistors are getting smaller and faster, so clock deskew or compensation 
circuits are cheaper to design. However, the metal interconnect does not scale 
well and that requires careful extraction and modeling of the clock tree 
lines resistance and capacitance. This trend is aggravated by the increase 
in die size since the clock needs to be distributed to all the sequential cir-
cuits on the die, therefore the clock lines are getting longer and require 
more buffering levels. For high frequency clocks (generally above 1 GHz) 
the inductive effects in the clock distribution lines must also be modeled. 
 

© 2007 Springer. 
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Fig. 15.1. Characteristic parameters for a clock system. 

Clock parameters and trends 

Figure 15.1 shows the main parameters of a clock distribution network. 
The clock skew is the spatial variation of the clock signal as distributed 
through the chip. We distinguish between global (chip-level) and local 
(block level) skew. A proper clock distribution design typically attempts to 
reduce the clock skew to zero. However, as we will show in Section 4, inten-
tional skew insertion is sometimes used to relieve timing critical paths, 
which allows a chip to run at a higher frequency. An ideal clock distribu-
tion network would minimize the skew across the entire die. However, it is 
important to recognize that clock skew is relevant only when there is a data 
transfer from one sequential element to another. Since the speed of data 

This chapter is organized as follows: A section on clock parameters and 
trends defines the main characteristics of a clock distribution network and 
examines their evolution over time. A section on clock distribution networks 
reviews several clock distribution schemes, with specific examples from 
high-performance microprocessor designs. A section on deskew circuits 
presents the evolution of deskew circuits and their benefits, while section 
jitter reduction techniques describes jitter reduction circuit techniques. 
Since power is a limiting factor in most digital designs today, we review 
several low-power clock distribution ideas in section low power clock 

cusses several future directions in clock distribution, including distributed 
VCOs and PLLs, as well as rotary and standing wave clock distribution. 

distribution. Finally, section further directions in clock distribution dis-
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Fig. 15.2. Historical clock skew trends. 

traveling across the chip is also limited by the RC delay of the metal wires, 
we cannot have data signals traveling across the entire die in a single cycle. 
Therefore, the clock skew between two corners of the chip is not relevant 
and will not affect the operating frequency of the design. Detailed model-
ing of the clock skew must take into account the actual cycle-level data 
transfers across the chip. Figure 15.2 shows the clock skew as a function of 

(ISSCC) or Journal of Solid-State Circuit (JSSC) published papers on large 
microprocessor designs by major industry players. As expected, the skew 
decreases as the frequencies are increased. 

A better way to measure the clock skew is to express it as a percentage 
of the cycle time, as shown in Figure 15.3. Notice that the skew has been 
averaging about 5% of the cycle time, although a wide variability exists 
between different designs (2–8%). As the frequencies continue to increase 
in the multi-GHz space, designers have to pay more attention to containing 
skew and that could explain the slightly downward trend seen in the figure. 
One skew reduction technique that is gaining popularity in large micro-
processor designs is the use of deskew circuits, which will be described in 
a later section. 

The main sources of clock skew are shown in Figure 15.4 [143]. Notice 
that more than half of the skew is caused by device mismatches. The dif-
ference in the local supply levels for the intermediate clock buffers  
accounts for about a quarter of the skew. 

the cycle time. The points in the chart represent the skew vs. operating
frequency, as reported in International Solid-State Circuits Conference 
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Fig. 15.3. Clock skew as percentage of the cycle time. 

Fig. 15.4. Clock skew sources [143]. 

The load mismatch is due to imbalances in the clock distribution trees 
and can be corrected by investing additional design effort. However, most 
of this extra effort is manual, so typically design teams accept the residual 
skew that remains after balancing out the clock trees using automatic tools. 
Another approach is to use a clock grid that shorts all the clock end-points. 
As we will see in Section 3, clock grids have lower skews but consume 
significantly more power. Finally, the temperature mismatch has a small 
impact on the clock skew. This is good news for the clock designers, since 
large temperature gradients exist in modern high-performance designs. 
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Fig. 15.5. Historical clock jitter trend. 

The clock jitter is the temporal variation of the clock signal with respect 
to a reference edge. We differentiate between long-term jitter (that accu-
mulates over a long period of time) and cycle-to-cycle jitter (which is 
measured between adjacent clock cycles). Long-term jitter accumulates as 
a phase error relative to the reference clock and degrades setup and hold 
timings for the entire circuit. The cycle-to-cycle short-term jitter is seen by 
the logic circuits as a frequency shift, similar to the clock skew. 

Figure 15.5 shows the clock jitter trend as a function of the processor 
frequency as reported in major processor papers at ISSCC or JSSC. Notice 
that this graph has a lot fewer data points, since not all papers report on the 
clock jitter results. This could be explained by the fact that clock jitter is 
very difficult to measure in a VLSI circuit. Most probing techniques like 
e-beam or laser probing rely on time averaging, thus removing any jitter 
information. The most common technique is to drive a clock node to an 
external pin and measure the jitter with an oscilloscope. However, the 
additional clock buffers needed to bring the clock out introduce additional 
jitter and the scopes introduce their own jitter too. 

The main sources of clock jitter are the power supply noise coupling 
into the voltage-controlled oscillator (long-term jitter) and the supply noise 
modulation of the clock network buffer delay (short-term cycle-to-cycle or 
multi-cycle jitter). Jitter reduction techniques will be discussed later. 

The clock duty cycle is the ratio of the clock high and low times. Ideally 
we would like the duty cycle to be 50/50, although small intentional devia-
tions may enable higher operating frequencies in phase-based designs. The 
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most common way for achieving a 50/50 duty cycle is to synthesize a 
double clock frequency and divide it by two before sending the clock to 
the distribution tree. 

Clock distribution networks 

Figure 15.6 shows several clock distribution options. The most common 
distribution network is the tree, where buffers are inserted along the clock 
distribution path forming a tree structure. All paths from the root of the 
tree to all the branches have an identical number of buffers, although their 
sizes may be adjusted to match the different loads. The number of buffer 
stages between the tree root and the clocked registers depends on the total 
capacitive loading, metal resistance and allowed skew. To further reduce 
skew, we can short the outputs of the intermediate buffers, creating a mesh 
clock structure. The clock grid can be driven from two sides (as shown in 
the figure) or from all sides. 

Another approach to ensure zero clock skew uses hierarchical H or X-
tree structures. In this approach, the clock is driven from the center of an H 
structure to its four corners. Each corner drives another, smaller H struc-
ture. This distribution process is repeated through progressively smaller, 

Fig. 15.6. Common clock distribution structures. 

hierarchical H structures. The end-points of the smallest H shape drive the 
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Fig. 15.7. Clock distribution for the Pentium® 4 Processor [247]. 

clocked registers. Due to the symmetry of the H or X-trees, the path from 
the clock source to each end-point has the same delay. As the interconnect 
resistance increases with the technology scaling, adequate intermediate 
buffers are required along the H-tree distribution. 

The tapered H-tree matches the clock line impedance to minimize reflec-
tions at branching points. The width of the clock trunk decreases as the 
signal propagates through the tree. The impedance of the line exiting each 
branch point is designed to be twice the impedance of the line feeding the 
branch point. Notice that perfectly symmetrical H-trees are difficult to 
implement in actual designs due to floorplan constraints. Actual clock 
trees require careful extraction and characterization to achieve a balanced 
design. 

Figure 15.7 shows the clock distribution of the Pentium® 4 Processor 
[247]. The clock is distributed using a triple spine approach to cover the 
large die. Each spine contains a binary distribution tree, with each of the 
47 leaf nodes providing an independent domain clock. Local clock drivers 
are used to buffer the clock load as well as produce the proper frequency 
and clock type for each particular block. The drivers are connected to the 
appropriate domain clocks through delay-matched taps. The maximum RC 
delay from the output of the local drivers to the input of a latch is restricted 
in order to minimize the local clock skew. 

Figure 15.8 shows the evolution of the clock distribution network for the 
Alpha microprocessor [163] through three consecutive generations of the 
design. 

The 21064 had a two-phase single-wire clocking scheme. A single 
driver was located in a stripe distributed across the center of the die. The 
clock accumulated skew as it propagated towards the edges of the die. To 
handle the large transient currents in the power grid when the clock driver 
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Fig. 15.8. Evolution of the clock distribution network for the Alpha processors 
[163]. 

switched, on-chip decoupling structures were placed around the clock 
driver. Roughly 10% of the chip area was allocated to decoupling capaci-
tance. 

In the 21164, the main clock driver was split into two banks and placed 
midway between the center of the die and the edges. The pre-driver was 
located in the center of the die to distribute the clock to the two main 
drivers. The clock skew was reduced by a factor of two using this approach. 
In addition, by distributing the main clock driver over a larger area, the 
localized heating seen on the 21064 was reduced. 

In the 21264, the power consumption became a major concern in de-
signing the clocking system. To reduce it, a single wire global clock 
(GCLK) was routed over the entire chip as a global timing reference. The 
GCLK drivers were distributed around the four quadrants to reduce clock 
grid delay and distribute clock power. The GCLK drives a hierarchy of 
thousands of buffered and conditioned local clocks used across the chip. 
There are several advantages to this clocking scheme. First, conditioning 
the local clocks saves power. Second, circuit designers can take advantage 
of multiple clocks to add local skew that benefits timing critical paths. 
Finally, using local buffering significantly lowers the GCLK load, which 
reduces clock skew to less than 75 ps. 
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Fig. 15.9. Power4 microprocessor clock distribution [349]. 

The Power4 microprocessor clock distribution is shown in Figure 

processor chip, the clock distribution is relatively simple. A single chip-wide 
clock domain is used, with no active or programmable skew-reduction 
circuitry. A single PLL is used near the center of the chip to minimize the 
global clock distribution delay. The clock is distributed by 64 tuned trees 
driving a single full-chip clock grid at 1024 points. The grid smoothes out 
clock skew caused by across-chip process variations, but it does consume 
more power than a balanced tree structure. Experimental measurements 
using pico-probes at 19 locations across the die showed a maximum skew 
of 25 ps. Optical probing on 9 of the 64 sector buffers confirmed less than 
18 ps skew at the leading edge of the photon pulses. 

The clock distribution of the first Itanium® Processor [408] is shown 
in Figure 15.10. The clock topology is partitioned into three segments. 
The global distribution consists of the clock synthesis using an on-die 
phase-locked loop (PLL) and the distribution of the core clock and the refe-
rence clock from the PLL clock generator to the deskew buffers (DSK). 
The regional distribution includes the clock distribution from the DSKs 
to the 30 regional clock grids. Finally, the local distribution consists of the 
local clock buffers (LCBs) taking the input from the regional clock grid 
and the local interconnect to support the clocked elements. The clock des-
kew function will be discussed in detail in Section 4. The regional clock 
grid is implemented using metal 4 horizontal and metal 5 in the vertical 
direction. As with the global clock network, the regional clock grid con-

able metal 5 and up to 4.1% of the available metal 4 routing over a region. 
inductive return paths. The regional clock grid utilizes up to 3.5% of the avail-
tains full lateral shielding to ensure low capacitance coupling and good

15.9 [349]. Considering the complexity of this 174 million transistor dual-
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Fig. 15.10. Clock distribution for the Itanium® Processor [408]. 

Fig. 15.11. Clock distribution for the 65nm dual-core Xeon® Processor [358]. 

The clock distribution of the 65 nm dual-core Xeon® Processor [358] is 
described in Figure 15.11. Each core has its own independent high fre-
quency core grid. Within the uncore area, there are two horizontal clock 
spines and nine vertical spines responsible for distributing the various 
clocks. The ZCLK grid supports the front side bus (FSB) areas with the 
quad-pumped FSB clock. A binary tree embedded inside a horizontal and a 
vertical clock spine delivers the pre-global FSB clock from the output of 
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the IOPLL to the FSB areas and the isolated FSB clock islands. The un-
core clock SCLK grid covers the entire un-core area. Since minimizing 
power is a primary objective, two sparse grid structures are used. To mini-
mize the within-die clock skew, fuse-programmable deskew buffers are 
inserted at the base of the vertical spines to provide a simulated de-skew 
range of 60 ps with four selectable steps. The fuse-based deskew is an 
efficient and robust method to address skews caused by structural design 
mismatches or to introduce intentional skew to improve the operating fre-
quency. A regression flow incorporating a complete set of test vectors and 
system validation suite is used to derive and validate the optimal fuse 
settings. 

The last topic in this section is the inductive effect in clock distribution 
networks and the need to carefully model these effects when designing 
high frequency clock trees. 

Low resistance copper interconnects together with fast clock edge rates 
result in inductive wire impedance comparable to the pure resistive im-
pedance. As a result, high frequency clock grids are modeled as two-
dimensional distributed RLC transmission line structures, as shown in [464]. 
Detailed 3D field simulations are used to extract accurate per unit length 
RLC clock grid values in the presence of finite coplanar current return 
paths. 

Transmission line effects, like signal reflections near the clock drivers 
as well as overshoot and undershoot at the far end of the grid, are clearly 
observed in Figure 15.12. Distributed wire inductance increases the delay 
between the early clock (near the driver) and the late clock (at the end of 
the grid). 

Fig. 15.12. Inductive effects on clock distribution grids [464]. 
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Fig. 15.13. Block diagram of a two-spine clock deskewing circuit [143]. 

Clock loads near the driver are inductively shielded from remote loads 
during the clock transition and observe a faster clock. On the other hand, 
remote loads receive the clock later due to additional signal phase imposed 
by wire inductance. Optimal clock driver sizing requires that the equiva-
lent output impedance be smaller than the grid characteristic impedance to 
guarantee a high amplitude incident wave, and yet that the clock rise and 
fall times at the drivers are sufficiently slow to ensure that voltage over-
shoot and undershoot are not excessive at the far ends. 

Deskew circuits 

The first active deskew circuit was reported by Geannopoulos and Dai 
in [143]. The circuit equalizes the skew between two clock distribution 
spines, as shown in Figure 15.13. The phase detection (PD) circuit deter-
mines the phase relationship between the two clocks. The deskew controller 
adjusts one of the delay lines to minimize the skew between the two spines. 
The delay line is implemented with two inverters in series, each having 
eight capacitive loads connected to the output. The delay shift register con-
trols the addition or removal of the capacitive loads, enabling 17 mono-
tonic discrete delay steps with an average delay per step of 12 ps. The 
phase detection between the two clock spines uses two symmetrical phase 
detectors and an adaptive noise band filter. The phase detectors are cross-
coupled NAND gates configured as RS latches sized to minimize metasta-
bility. The noise band filter removes high frequency power supply voltage 
noise to avoid false corrections that would add to the phase error. 
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Fig. 15.14. Itanium® Processor clock deskew scheme [408]. 

A more refined scheme was introduced in [408], where the entire chip 
area was split in 30 skew zones, as shown in Figure 15.14. Each zone has 
an independent deskew circuit that adjusts the regional clock delay to 
match it with the reference clock. This adjustment is repeated until a mini-
mum phase error is achieved. Therefore, any load mismatches and within-
die variations in the core clock distribution are automatically compensated. 
Since all the clock regions use the same reference clock, the residual skew 
of the reference clock, the uncertainty of the phase detector and the mis-
matches of the feedback clocks determine the overall skew across these 
regions. 

The deskew operation is executed in parallel for the 30 clock regions 
during the initial microprocessor reset. The global deskew controller moni-
tors the progress and signals the deskew completion. Once this occurs, the 
DSK delay register settings are fixed until the next power up sequence. 
This mode compensates for the process variations and most of the voltage 
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and temperature variations. An alternative operating mode is to allow the 
deskew operation to continue during normal microprocessor operation. This 
mode compensates for the dynamic effects such as temperature variations 
and supply voltage drift over time, but has the additional risk of creating 
new timing critical paths. 

Adjustments to the core clock delay are accomplished through the vari-
able delay circuit shown in Figure 15.15. This is a digitally controlled 
analog delay line using a 20-bit delay control register, a two-stage variable 
delay circuit and a push–pull style output buffer. The delay control register 
forms a 20-steps linear delay coding that provides a good balance between 
the delay step-size resolution and the total buffer delay range. Delay adjust-
ment can be accomplished by shifting a “1” from one end of the register to 
decrease its delay or by shifting a “0” from the opposite end to increase its 
delay. In addition to the input derived from the local deskew controller, the 
delay control register also accepts input from the test access port (TAP) inter-
face. This feature permits a manual adjustment of the deskew buffer delay 
through the TAP interface, which can be used for post-silicon timing opti-
mization. The variable delay circuit is constructed of CMOS inverters and 
two arrays of passive loads. The delay across the inverters varies in accor-
dance to the setting stored in the delay control register. Advantages of this 
design over a starving inverter approach are linear delay steps and more 
symmetric layout. The push–pull style output stage consists of 12 parallel 
drivers that can be enabled individually via mask options to match the 
extracted loading of each region. This allows one standard design to accom-
modate a wide range of regional clock loads. The measured delay range of 
the deskew buffer is 170 ps with a step size of 8.5 ps. 

Fig. 15.15. Deskew buffer schematic [408]. 
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Fig. 15.16. Logical diagram of the skew optimization circuit in the Pentium® 4 
Processor. 

Figure 15.16 presents the schematic of the deskew circuit implemented 
in the Pentium® 4 Processor [247]. The main components of the skew 
optimization circuit are 47 adjustable delay domain buffers and a phase-
detector network of 46 phase detectors. The delay adjustment control for 
the domain buffers and the output of the phase detectors are accessible 
from the TAP. 

One domain buffer at the center of the die is chosen as the primary refe-
rence. The remaining buffers are categorized as secondary, tertiary, and 
final buffers. Figure 15.17 shows the phase-detector network, which coupled 
with the TAP, aligns the domain buffers to the primary reference. To limit 
the phase detector accumulation errors, the domain buffers go through at 
most three levels of phase detection. First, phase detectors adjust the delay 
of the secondary references to the primary reference. The phase detector 
outputs a high or low based on the leading or lagging inputs. The output is 
read out into a scan chain controlled by the TAP. Based on the outcome, 
the clock domain buffers are adjusted. This is repeated until all the second-
ary reference clocks are deskewed. Then, after the secondary reference 
delays have been adjusted, a second set of phase detectors adjust the delay 
of tertiary references. Similarly, the final stage buffers are adjusted to the 
tertiary references. With this scheme, the skew is adjusted to within an error 
of about 8 ps, limited mainly by the resolution of the adjustable delay 
elements. 
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Fig. 15.17. Phase detector network in the Pentium® 4 Processor. 

Table 15.1. Summary of clock deskew techniques. 

Author Source Zones Skew Before Skew After Step Size 
Geannopoulos ISSCC 1998 2 60 ps 15 ps 12 ps 
Rusu ISSCC 2000 30 110 ps 28 ps 8 ps 
Kurd ISSCC 2001 47 64 ps 16 ps 8 ps 
Stinson ISSCC 2003 23 60 ps 7 ps 7 ps 

Table 15.1 summarizes all published clock deskew designs. Notice that 
all designs manage to reduce the clock skew to less than a quarter of the 
value measured without the deskew mechanism. As the process technology 
shrinks, the step size is reduced, without requiring any additional control 
bits. 

Jitter reduction techniques 

Clock jitter can originate in the PLL and in the clock distribution tree. To 
minimize the jitter form the PLL, all modern processor designs include a 
special filter for the PLL supply that can be a simple LC filter all the way 
to a sophisticated on-die regulator. The clock distribution jitter is due to 
the fact that intermediate clock buffering stages are connected to the noisy 
core supply and are distributed all over the chip. The supply noise causes 
these buffering stages to have slightly different delays depending on the 
core switching pattern. To reduce this jitter, we want to keep the delay of 
the global clock distribution to a minimum. Another technique is to filter 
the supply voltage for the clock buffering stages. Figure 15.18 shows a 
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Fig. 15.18. Low jitter, RC-filtered power supply for clock drivers [247]. 

Fig. 15.19. Active clock supply regulator [358]. 

simple low-pass RC filter designed to reduce the core supply noise for the 
clock buffers [247]. The resistance is implemented using PMOS devices. 
The optimal design has an IR drop of 70mV with an RC constant of 2.5 ns, 
while minimizing the layout area required by the capacitor. The actual 
component values for the RC filter were adjusted for the different clock 
buffer types to a fixed IR drop and RC time constant. The filter circuit 
model simulations with typical supply noise waveforms show up to 5X 
noise amplitude reduction on the filtered supply. 

Another technique is to use an active voltage regulator as described in 
[358] and shown in Figure 15.19. The core voltage of 1.5 V is used as a 
reference after passing it through a low-pass filter (LPF). The I/O voltage 
of 2.5 V is used to generate a clean, local supply for the delay-lock loop 
(DLL) circuits. The regulator attenuates supply noise frequencies in excess 
of 1 MHz by more than 15 dB, while lower supply noise frequencies are 
easily tracked by the DLLs themselves. 



356      Stefan Rusu 

Low power clock distribution 

In modern VLSI devices, the clock distribution network and the clocked 
sequential elements (latches and flip-flops) are the largest components of 
the total power dissipation, accounting for 20% to 45% of the total power. 
The flip-flops and the last branches of the clock distribution network that 
drive them consume 90% of the total clock power. The reason for this 
large power consumption of the clock system is that the transition pro-
bability of the clock is 100% while that of the ordinary logic is less than 
10% in average. It is therefore desirable to minimize the power consumed 
by the clock distribution and sequential elements. 

To accomplish this, we start from the dynamic power equation 

P = Cf V 2 (15.1)

where C is the total switched capacitance, f is the operating frequency and 
V is the supply voltage. Lowering the clock frequency contradicts the basic 
trend outlined in Section 1 of pursuing higher operating frequencies 
through design and process technology scaling. This is only feasible on a 
part-time basis, like lowering the clock frequency during idle periods of 
time in mobile computing devices. Lower active power is best achieved by 
reducing the voltage and switched capacitance of the design. Since the 
voltage is squared in the power equation, it has a larger impact. Kojima 
et al. [234] proposed a half-swing flip-flop (HSFF) design, where the volt-
age swing of the clock is reduced to half the operating voltage. The HSFF 
requires four clock signals as shown in Figure 15.20. Two clock phases 
with a swing between Vdd and Vdd/2 drive the PMOS devices, while the 
other two phases with a swing between Gnd and Vdd/2 drive the NMOS 
transistors. A theoretical analysis of this scheme shows that the clocking 
power is reduced by 75% compared to the full clock swing distribution. 

Experimental savings of 67% were demonstrated on a 0.5 µm CMOS 
test chip with only 0.5 ns degradation in speed. However, this scheme 
requires additional area for the special clock drivers and suffers from skew 
problems between the four clock phases. 

Kawaguchi and Sakurai [222] proposed a reduced clock swing flip-flop 
(RCSFF) that needs only one clock signal that swings between Gnd and 
Vck, where Vck is lower than Vdd, as shown in Figure 15.21a. To control 
the leakage of the pull-up P-transistors driven by this low swing clock, a 
well-biasing technique is used to increase the threshold voltage of these 
devices. Several reduced swing clock drivers can be used, as shown in 
Figure 15.21b. Type A drivers use the same Vdd supply as the rest of the  
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Fig. 15.20. Flip-flop design using half-swing clock [234]. 

 

Fig. 15.21. Reduced clock swing flip-flop [222]. 

core, while Type B use an external Vclock supply. While this scheme can 
achieve up to 63% clock power reduction, it requires additional layout area 
for the well biasing scheme. 
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Fig. 15.23. Clock-on-demand flip-flop [174]. 

A NAND-type Keeper Flip-Flop (NDKFF) proposed by Tokumasu et al. 
[424] is shown in Figure 15.22. Notice that all transistors driven by the 
clock signal are NMOS devices, which enables the NDKFF to operate with 
a reduced clock swing without concern over PMOS pull-up leakage. The-
NAND-type keeper eliminates unnecessary transitions at the internal node 
X, further reducing the power consumption. 

Hamada et al. [174] propose a conditional clocking flip-flop shown in 
Figure 15.23. In this design, the internal clock is activated only when the 
incoming data will change the state of the flip-flop. This amounts to the 
finest granularity (single bit level) of clock gating. The conditional clock-
ing flip-flop generates a self-aligned pulsed clock internally, that enables 

Fig. 15.22. NAND-type Keeper Flip-Flop [424]. 
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the latch circuit to operate like an edge-triggered flip-flop. The design has 
an exclusive-NOR whose output gates the clock buffer for the master latch 
and an exclusive-OR whose output gates the clock of the slave latch. The 
proposed design consumes less power than a conventional flip-flop when 
the data transition probability is less than 55%. The setup time is more 
than double that of the conventional flip-flop because the conditional 
clocking flip-flop has to decide whether the clock pulse is required before 
the external clock rises. On the other hand, the hold time is a larger nega-
tive value. The cell area increases by 33%. Experimental measurements on 
a 90 nm MPEG4 codec chip using the conditional clocking flip-flop for 
24% of the total storage elements showed that there is no degradation of 
the maximum operating frequency due to the worse setup time of the con-
ditional clocking flip-flops. Power is reduced by 8–31% depending on the 
input vectors. 

Another approach to reduce the clock power is to use dual-edge trig-
gered storage elements that can achieve the same throughput as single-
edge clocked flip-flops at half the clock frequency. Nedovic et al. [308] 
proposed the design shown in Figure 15.24. The first stage consists of two 
symmetric pulse-generating latches that create data conditioned clock 
pulses on each edge of the clock. The second stage is a 2-input NAND 
gate, effectively used as a multiplexer. 

Fig. 15.24. Dual edge flip-flop circuit [308]. 
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Simulation results in 0.11 µm technology show an energy-delay product 
and delay comparable to the best single-edge designs. The clock load of 
this design is similar to the clock load of single-edge flip-flops used in 
high-performance processor designs, allowing a power savings of about 
50%. The main drawback of dual-edge clocking is that it requires tight 
control of the clock duty cycle, as any variation in the clock duty cycle 
becomes clock skew. 

Future directions in clock distribution 

Mizuno and Ishibashi [292] proposed using distributed voltage-controlled 
oscillators (VCO) to generate local clocks as shown in Figure 15.25. Metal 
lines of equal length l short the outputs of the VCOs to minimize the skew 
between the multiple oscillators. The voltage Vc is the frequency control 
signal for the VCOs that is distributed across the chip instead of the global 
clock signal. Careful shielding and filtering are required to insure the noise 
immunity for this analog voltage level. 

Fig. 15.25. Clock distribution using synchronous distributed oscillators [292]. 
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Fig. 15.26. Matrix configuration of synchronous distributed oscillators [292]. 

 
Fig. 15.27. Distributed phase locked loops [170]. 

A two-dimensional matrix configuration distributes the VCOs over the 
entire chip area, as shown in Figure 15.26. Using this scheme, each VCO 
is placed close to the local clock distribution network. A test chip fabri-
cated in 0.25 µm CMOS technology achieved a mean skew of 17 ps. 

Gutnik and Chandrakasan [170] propose distributing phase-locked loops 
(PLLs) at multiple points across the chip, as shown in Figure 15.27. Each 
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locally generated clock is distributed only to a small section of the chip 
(tile). Phase detectors at the boundaries between tiles produce error signals 
that are summed by an amplifier in each tile and used to adjust the fre-
quency of the node oscillator. Since this technique requires many nodes 
(16 in the example shown in Figure 15.27), the total area and power con-
sumption of all PLLs is higher than the single PLL conventional approach. 
The voltage-controlled oscillator uses an NMOS-loaded ring oscillator to 
minimize the power supply noise. A 4×4 test chip in a standard 0.35 µm 
CMOS technology demonstrated a long-term jitter between neighboring 
tiles of less than 30 ps and cycle-to-cycle jitter of less than 10 ps. 

Another promising technique is resonant clocking that recycles the 
clock energy from cycle to cycle and features very low clock skew and 
jitter. There are three types of resonant clock networks that have been 
published so far: 

• Traveling wave clock distributions use coupled transmission line rings 
to generate low-skew and low-jitter clocks that have constant amplitude 
but varying phase across the distribution 

• Standing wave clock distributions have a constant phase but produce a 
clock amplitude which varies spatially across the network 

• Coupled LC oscillators that have uniform phase and uniform amplitude 
across the clock grid 

We will review an example from each type. 
Wood et al. [462] proposed a rotary clock distribution architecture to 

achieve a low skew and jitter, gigahertz rate clock distribution. Figure 
15.28a illustrates the theory behind the rotary clock architecture, using a 
simple, open loop of differential conductors connected to a battery through 
an ideal switch. When the switch is closed, a voltage wave starts to move 
counter-clockwise around the loop. Once the wave is started, it can be 
maintained through a logical inversion by crossing over the wires instead 
of the battery supply. To overcome losses, anti-parallel inverter pairs are 
used. The energy is recirculated in the closed electromagnetic path, provid-
ing a significant power savings, since losses are due only to I2R dissipation 
in the wires and not CfV2 dissipation as in the conventional clock distribu-
tion. Figure 15.28b shows the layout of a rotary clock with 25 intercon-
nected rings. Each ring consists of a differential line driven by anti-parallel 
inverters distributed around the ring. The clock wave frequency depends 
on the electrical length of the ring and the inductance and capacitance of 
the lines. A prototype circuit was built in a 0.25 µm 2.5 V CMOS process 
and has a 12000 µm long ring with 60 µm conductors on a 120 µm pitch. 
Simulations predicted a clock frequency of 925 MHz, while measured 
waveforms clocked at 965 MHz. Jitter was measured to be 5.5 ps rms. 



15 Processor Clock Generation and Distribution      363 

 

Fig. 15.28. Rotary clock distribution architecture [462]. 

O’Mahony et al. [315] describe a 10 GHz standing-wave clock distribu-
tion system that achieves sub-picosecond skew and jitter using on-chip 
interconnects and distributed buffers to create a network of coupled oscil-
lators. Standing waves have the same phase at all points, as opposed to the 
rotary clock scheme discussed earlier that generates traveling waves.  
A standing-wave oscillator is similar to a differential LC oscillator (both 
shown in Figure 15.29) where the gain and tank are distributed. The 
NMOS cross-coupled pairs provide enough gain to compensate for wire 
losses. The PMOS diode-connected loads set the common mode voltage 
and allow injection of an external clock reference. 

Figure 15.30 shows a prototype standing wave oscillator clock network 
implemented in a 0.18 µm, 1.8 V CMOS process with six AlCu metal 
layers. The differential λ/2 lines are 3 mm long, 14 µm wide and are 4 µm 
apart in metal 6. The clock jitter added by the clock grid is below 0.5 ps. 
The measured skew is 0.6 ps (0.6%) when the grid is tuned to 10GHz with 
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Fig. 15.29. LC vs. standing wave oscillator [315]. 

Fig. 15.30. 10GHz standing wave clock distribution test chip [315]. 



15 Processor Clock Generation and Distribution      365 

Fig. 15.31. Components and topology of a resonant clock sector [71]. 

a single control voltage for all varactors and 3.2 ps when half of the grid is 
de-tuned by 1%. The worst-case skew between any two adjacent points is 
1.4 ps for the de-tuned grid. 

Researchers from IBM and University of Columbia designed a uniform-
phase, uniform-amplitude resonant-load global clock distribution that pre-
serves the frequency and area scalability of a traditional design [71]. In this 
implementation, a tree-driven grid is rendered resonant with a set of dis-
crete on-chip spiral inductors distributed throughout the clock network. 
The large clock capacitance resonates with this inductance, reducing the 
gain required in the distribution, which in turn saves power, reduces skew-
through a reduction in clock latency, and reduces power-supply noise-
induced jitter. Figure 15.31 shows the topology of a resonant clock sector 
using a single-ended topology. Four spiral inductors are attached to the 
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clock tree on one end and to a large decoupling capacitance at the other 
end. The MOS decoupling capacitors are positioned adjacent to the spiral 
inductors. Local clock buffers tap into the global clock grid within a sector 
and provide additional gain needed to drive the latches and gates in the 
design. The spiral inductors do not represent a significant area overhead, 
since active circuitry can be implemented in the area under the inductors. 
Experimental results show that approximately 20% of the clock power is 
being recycled. Further power reductions can be achieved by reducing the 
buffering in the global clock distribution, which also reduces the jitter by 
up to 60%. 

Summary 

High-performance processors require a low skew and jitter clock distribu-
tion network. The best designs achieved a clock skew of ~2% of the cycle 
time, while the average of published designs hovers around 5%. 

Clock distribution techniques are being optimized to achieve the best 
skew and jitter with reduced area and power consumption. Deskew tech-
niques were demonstrated to cut the skew to one quarter of its original 
value. On-die supply filters (both passive and active designs) are used to 
reduce jitter. 

Finally, intensive research is focused on novel clock distribution tech-
niques, like optical or resonant clocking. 
 



16 Asynchronous and Self-Timed Processor 
Design 

Jim Garside and Steve Furber 

The University of Manchester, UK 

The great majority of microprocessors are clocked; that is, their internal 
operations are controlled and timed by an external periodic timing refer-
ence known as a clock signal. Clocks are convenient, simplify design, and 
are the foundation upon which most design automation tools are built. How-
ever, clocks are not all good news. They cause a circuit to generate exces-
sive electromagnetic interference, to dissipate excessive power, and they 
force all circuit functions to operate at the same rate however unnatural 
that may be for any particular function. The challenge of designing a micro-
processor that operates without a central clock has appealed to some de-
signers for many years, and the results of their research have now made 
fully clockless designs not only feasible but also commercially available, 
albeit still as a minority interest. In this chapter we survey some of the 
developments in asynchronous processors and speculate as to where these 
might lead in the future. 

Motivation for asynchronous design 

Asynchronous circuits are a Bad Idea; all electronics students are taught 
this early in their courses. This is because the synchronous model removes 
one of the more unpleasant ‘unknowns’ from the design process, simplify-
ing debugging and allowing the designer to concentrate on the logical 
correctness of the system. Asynchronous inputs, such as interrupts, should 
be synchronised as soon as possible to confine timing problems to tiny 
areas of the device. 

© 2007 Springer. 
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So why would anyone want to make something as complex as a micro-
processor without a clock? There are several possible answers to this. 

Power consumption 

The majority of the power in CMOS circuits is dissipated during switch-
ing. A fundamental assumption of the synchronous model is that all state 
holding elements are clocked regularly and simultaneously, yet many 
change relatively infrequently. The necessity of distributing a fast clock to 
arrive at every part of a system with the same phase can itself consume 
significant power. Up to 40% of the overall power budget can be expended 
on the clock signal. In power sensitive applications – an increasing propor-
tion of all applications – clock gating may be applied to reduce the con-
sumption in parts of the device which are temporarily idle. However this, 
in itself, is a complication, especially to the clock distribution network as it 
can introduce undesirable skew if not managed correctly. 

An asynchronous circuit is inherently event driven: instead of being 
clocked it processes on demand and stops when not needed. This applies to 
every part of the device and is inherent and automatic, thus any subcircuit 
– or, indeed, the whole processor – will shut down and restart instantane-
ously, using only the power required to do the job. 

Clock distribution and modularity 

As integration levels continue to rise an increasing number of different 
subsystems can be integrated onto a single device. Often these take the 
form of commercial IP (Intellectual Property) blocks making up an SoC 
(System-on-Chip) where processors and peripherals may be imported from 
a number of sources. Achieving timing closure, i.e. getting all these devices 
to work together at the desired clock rate, is an increasingly difficult task, 
especially as the clock frequency tends to rise as well as the number of 
devices increasing. Of course it may not be necessary to run all the subsys-
tems at the speed of the fastest, but synchronous design makes this inher-
ently attractive. 

Even in terms of processor design this is a problem. A modern processor 
is a complex system in itself and there may be several processing cores in 
a single ‘processor’. Getting these to work together at high frequencies is 
an expensive business. 

In an asynchronous system each subsystem processes at its own rate; a 
slow module will therefore slow down the system – at least when that 
module is in use – but will not cause a functional failure. Asynchronous 
systems can therefore integrate different subsystems more conveniently 
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than a globally synchronous system. Of course, if certain timing con-
straints are to be met then faster modules may be needed, but these can be 
inserted relatively painlessly because there is no global effect. In software 
terms, the clock is a global variable and global variables always cause 
problems! 

The degree of asynchronicity varies from system to system. Currently 
an attractive compromise appears to be GALS (Globally Asynchronous, 
Locally Synchronous) systems where timing closure is addressed using an 
asynchronous bus or network between clocked components. However this 
chapter concentrates on the extreme example where there are no clocks 
within the processor either. 

EMC 

In some applications, especially those involving radio, electromagnetic 
compatibility is a big issue. In a synchronous circuit the peak current 
demands on the power supplies are correlated by the clock. This produces 
large, regular current spikes which are ideal for radiating radio-frequency 
energy concentrated in particular clock harmonics. In an asynchronous cir-
cuit switching occurs at different times in different parts of a device and, 
often, will be at irregular intervals. The supply current demands are there-
fore much more constant and, with lesser changes in current, the radia-
tion is much lower in intensity as well as being broad spectrum. In particular, 
‘spikes’ at harmonics of the clock are not apparent (Figure 16.1). 

Transistor variation 

The tremendous impact of digital electronics has been achieved by the 
huge progress made in integration by shrinking components. However 
transistors have now shrunk to the size where their ‘strength’ is becoming 
harder to predict, because variations in the doping and gate length are, 
proportionately, large. Coupled with the enormous number of transistors 
on a chip it is hard to determine the maximum clock frequency at which 
each chip can function reliably. 

Self-timed logic offers a possible way to bypass this problem; if the chip 
is correct by design it will function when manufactured. Operations which 
turn out faster than typical will be exploited automatically; those which are 
slower will impact performance, but not significantly if they are rare. 

Of course this does not help in marketing where there is no ‘GHz’ number 
to quote and two ‘identical’ devices will show different speed behaviour in 
a side-by-side comparison! 
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Fig. 16.1. Electromagnetic emissions of comparable synchronous and asynchro-
nous ARM devices. 

The development of asynchronous processors 

Before looking at some detailed aspects of asynchronous processor design 
it is interesting to look at the history of the subject, especially develop-
ments through the 1990s. 

Many of the early vacuum tube computers were asynchronous in their 
design principles, but they employed a number of ad-hoc techniques and 
manual adjustments that made their design approaches difficult to scale to 
the complexity of modern design. 

Probably the first systematic approach to asynchronous design was that 
employed on the Macromodules project at Washington State University, 
completed in 1974 [82]. Here a number of basic functional modules were 
developed with asynchronous interfaces that allowed the modules to be 
reconfigured to implement a wide range of computational functions. The 
system was robust, scalable, and flexible in a way that would have been 
very hard to deliver using the synchronous technology of the time. 
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The first asynchronous microprocessor (that is, processor on a single 
chip) was designed at Caltech by a group led by Alain Martin and fabri-
cated in 1989 [275]. This milestone design incorporated a 16-bit datapath 
and performed all of the functions expected of a microprocessor apart from 
handling interrupts and exceptions. 

The first asynchronous microprocessor that implemented a commercial 
instruction set architecture was Amulet1 [463], which was developed bet-
ween 1991 and 1993 at the University of Manchester in the UK. Amulet1 
was an asynchronous re-implementation of the ARM 32-bit RISC architec-
ture [133]. It executed the ARM6 instruction set, and had full support for 
interrupts and exceptions (including support for memory management 
faults). Amulet1 was followed in 1996 by Amulet2, which was integrated 
into the Amulet2e embedded controller [134], and in 2000 by Amulet3 
[142], an ARM9-class processor developed in collaboration with a German 
telecommunications company who wished to use it in an ISDN-DECT 
base-station on account of its superior electromagnetic emissions proper-
ties compared with a clocked equivalent. Unfortunately the industrial col-
laborator ran into financial difficulties just as the part became available on 
silicon, and Amulet3 never went into a commercial product. The complete 
chip incorporating Amulet3 was called DRACO. Die plots of the Amulet 
processor family are shown in Figure 16.2. 

During the 1990s, in parallel with the Amulet developments at Man-
chester, a group first at Tokyo Institute of Technology and later the Univer-
sity of Tokyo developed the TITAC series of asynchronous microprocessors. 
TITAC1 was an 8-bit microprocessor with a bespoke instruction set [306], 
whereas TITAC-2 was an asynchronous re-implementation of the MIPS 
instruction set architecture [406]. 

All of the microprocessors mentioned so far were implemented using 
full custom manual layout techniques, but by the late 1990s the main-
stream ASIC and SoC businesses were leaving full custom ‘hard core’ 
processors behind. They were steadily being replaced by synthesisable 
‘soft’ IP cores. The problem for asynchronous processors was (and to 
some extent still is) that synthesis tools for asynchronous circuits are some 
way behind their equivalents for clocked circuits. However, the future 
clearly lay with synthesis, so this problem had to be addressed. 

At the lower performance levels asynchronous synthesis tools emerged 
during the 1990s: the most advanced was Tangram, developed by Philips 

80C51 [224] and this processor has enjoyed considerable product success 
since its introduction. It was first used on pager chips, but Philips pulled 

in the Netherlands. Tangram was used to synthesise an asynchronous 
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Fig. 16.2. The Amulet processor family: (a) Amulet1; (b) Amulet2e; (c) DRACO; 
(d) SPA. 

out of the pager business soon thereafter. It was then used to great effect 
on a range of contactless smart cards, where its excellent power-efficiency 
enabled the on-card system to make the most of the meagre power deliv-
ered through the RF link. Since then it has found use on a number of small 
microcontrollers and related products, and has led to Philips becoming by 

During the late 1990s, the Manchester group were also developing a 
synthesis system for asynchronous circuits along the same lines as Tan-
gram, in this case called Balsa [116]. Balsa was used to develop the fourth 
Amulet processor, SPA [337], as part of a European-funded project inves-
tigating the contribution asynchronous logic could make to smart-card 
security, in particular through the intrinsic resistance of well-designed 
asynchronous logic to differential power analysis and EMC attacks [470]. 

ducts world-wide. 
far the biggest commercial producer of asynchronous semiconductor pro-
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A die plot of the SPA chip is shown in Figure 16.2. SPA was very slow 
compared with the earlier, custom Amulet processors. Some of this lack of 
performance could be put down to the primary research objective of the 
work, which was security, not speed. Quite a lot of performance was lost 
due to this being the first use of Balsa to develop a 32-bit processor, and a 
fair number of (in retrospect) avoidable mistakes were made in the course 
of the design work. But after all of these factors have been removed, it is 
still the case that it is difficult to synthesise an asynchronous processor that 
can compete with a clocked processor in performance. 

Finally, however, in 2006 the ARM966 was announced. ARM966 is the 
result of a collaboration between ARM Ltd. and Handshake Solutions, a 
Philips company that was formed to commercialise the Tangram (now 
renamed ‘Haste’) tools. Although it is still not competitive with a clocked 
ARM9 for performance, the ARM966 has respectable performance com-
bined with excellent power-efficiency, and therefore meets a market need. 
Following on from the established success of the Philips asynchronous 
80C51 at the low end, there is now a commercially available and supported 
32-bit asynchronous processor. 

The asynchronous microprocessors mentioned above all implement 
conventional instruction set architectures, but these were designed with 
clocked processors in mind. Might it not be the case that asynchrony offers 
an opportunity for a radical departure in instruction set architecture? Many 
have felt this to be the case, and there have been a number of highly inno-
vative attempts to exploit this opportunity. Of particular note are the Sun 
Labs counterflow pipeline architecture [387] and the FLEET communica-
tions-oriented architecture [84]. None of these more radical designs have 
yet been proven to offer advantages on silicon, but the world of silicon is 
forever moving on, and asynchronous design may be just what is required 
to cope with the variability and unreliability that is forecast to be a feature 
of near-future deep submicron process technologies. 

Asynchronous design styles 

The defining characteristic of asynchronous logic is, of course, the absence 
of a clock. Bar that there are numerous and varied approaches to construct-
ing the circuits themselves. Perhaps fortunately, these need not be exam-
ined in detail here, but a brief overview is useful. 

There are two ‘main’ philosophies to asynchronous logic: the first is 
usually called ‘bundled data’ and is closely analogous to conventional 
logic design. In a bundled-data circuit a datapath is produced and its timing 
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is modelled by a delay circuit which substitutes for the clock in a synchro-
nous circuit. This timing is local, so different parts of a device will have 
their own timing models and run at their own speeds. The delay can also 
be varied on a ‘per cycle’ basis according to the function being performed: 
for example an ALU might perform an addition with one delay but a logical 
operation with a different, shorter delay. 

The production of a reliable delay model is the most obvious problem 
with this approach. However it is not always as difficult as it might appear; 
in many circuits it is possible to add an extra ‘bit’ to the datapath which 
has the same delays as the data evaluation and, because it is in close pro-
ximity on the silicon, tracks manufacturing, temperature and supply voltage 
variations appropriately. The silicon overhead for timing is therefore small. 

An alternative philosophy is to embed the timing information with the 
data. The ‘purest’ realisation of such codes are known as ‘delay insensi-

such a manner is very difficult, but a close approximation, known as ‘quasi 
delay insensitive’ (qDI) – where it is assumed that an isochronic fork1 is 
possible – has been widely explored. 

The simplest illustration of a qDI code is a dual-rail encoding, as shown 
in Figure 16.3. Here a single bit is encoded on two wires. The wires remain 
‘at rest’ until a bit needs to be signalled, then one makes a transition. When 
the transition arrives – after any arbitrary delay – the bit has arrived, and 
which wire was used indicates the state of the bit. The handshake is com-
pleted with an acknowledgement, only after which can the data change 
again. A single acknowledgement can be used for more than one data bit if 
the bits are resynchronised by the receiver first. 

Such a scheme carries a significant overhead both in silicon area (which 
is roughly doubled over a synchronous or bundled-data implementation) 

known before layout. It could also be useful in future processes where 
manufacturing variations in transistors make the exact prediction of circuit 
speeds difficult. 

The above styles are not mutually exclusive. A nice example is a ripple-
carry adder: in a synchronous system this is a very slow circuit because the 
clock period must accommodate the worst-case delay, even though that 

                                                      
1 An isochronic fork is where it is assumed that a signal reaches all its destina-

tion gates/modules at essentially the same time, i.e. the wire delays are the same 
for all branches of a fan-out. 

delays added to any gate or wire. Unfortunately, constructing real circuits in 
tive’ because the circuit is guaranteed to function even with arbitrary 

and power consumption. However it is immune from any variations in 
delays which makes it attractive for synthesis where wire delays may be un-

occurs very rarely because, typically, carries are ‘generated’ and ‘killed’ at  
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Fig. 16.3. A dual-rail encoded handshake interface. 

intervals throughout the word. In an asynchronous (‘self-timed’) adder it is 
possible to detect that the carry signal has arrived at every bit position 
using a dual-rail signal. Modelling the time for a single-bit addition is 
straightforward; therefore an adder can be built without expensive carry 
look-ahead (or similar) which can perform, on average, competitively with 
a more expensive synchronous one [140]. 

The exact style of the implementation is not particularly relevant to the 
architecture of an asynchronous processor. Whilst bundled data may not be 
‘pure’ at the circuit level, the handshakes connecting modules are still 
delay-insensitive. Implementation detail is therefore largely neglected in 
subsequent sections of this chapter. 

Asynchronous pipelines and handshakes (locality) 

Before describing some implementations specific to asynchronous proces-
sors a brief summary of the way asynchronous systems have been con-
structed to date may be useful. Foremost amongst these is the extensive 
use of pipelining, particularly as this is very easy in this paradigm. 

An asynchronous pipeline is like a queue of traffic: a number of packets 
(vehicles) travel serially along a pipeline (road); when there is a gap ahead 
a packet can move forwards into it, reproducing the gap behind it. There is 
no compulsion that a packet has to move at any particular time but in order 
to do so it has to satisfy two conditions: it has to be there and there has to 
be a gap ahead. It can choose to move any time after this local synchroni-
sation has been performed. 

Synchronisation is performed by handshake signals. In a bundled-data 
implementation these will be explicit ‘request’ and ‘acknowledge’ signals; 
with a dual-rail protocol the request is implicitly coded with the data. The 
principles are the same in each case: 
• the sender asserts request; 
• when the receiver is ready it accepts the data; 
• the receiver asserts acknowledge. 

(It is often convenient to de-assert the signals too, although it is not 
essential to the signalling process and single (either edge) transitions have 
been used in some implementations [398].) 
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There is naturally some uncertainty about a packet’s position. Clearly 
the capacity imposes an upper limit to the number of packets in any par-
ticular pipeline and there is a lower limit of zero but, between these, any-
thing can be happening. Therefore any non-local interactions have to be 
planned for. The case of register forwarding, described below, poses one 
such problem because it is not known at issue time if, when and to where 
an instruction’s results should go (other than to the stated destination) 
without predicting future instructions. 

Features of asynchronous design 

The following section describes some of the more novel possibilities 
which are on offer to the asynchronous processor designer. In most cases 
examples of their employment are given. However, before beginning this, 
it is worth looking at some of the ‘tricks’ available to a synchronous de-
signer which must be abandoned. Some of the opportunities available in an 
asynchronous architecture are then outlined with, in many cases, specific 
examples of their exploitation. 

Assumptions in synchronous design 

Whatever detailed design style is used, asynchronous circuits generally 
communicate by handshaking with their neighbours. At a macroscopic 
level, this is the significant difference from synchronous circuits. A syn-
chronous designer can make assumptions as to where data will be at a 
given time and know that a copy can be taken from a particular place at a 
particular time. 

A good – and relevant – example is register forwarding in a micro-
processor. If an instruction needs to read a particular register in a given cycle 
it can often recover the relevant data from an intermediate pipeline stage 
because it is known that the data will be there at that time. In an asynchro-
nous processor this is not the case: the data may be there, but they may not 
have reached that point, may have already moved on or even may be in 
transit at the critical time. Thus a different mechanism must be sought. 

Other mechanisms have been exploited in synchronous designs, not all 
of which have turned out to be good ideas. Related to the forwarding 
example, the original MIPS design relied on the ability to resolve depend-
encies in software; this seemed a good idea until a re-implementation 
changed the pipeline structure. A similar example is visible in the ARM 
architecture, where reading the PC (which appears in the register file as 
R15) yields a value two words advanced from the address of the current 
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instruction; this was a consequence of the original pipeline structure but is 
more awkward for other implementations, both synchronous and asynchro-
nous. 

Elasticity 

In a synchronous environment a designer must be aware of the effect of 
pipeline stalls at the system level. Stalls are undesirable not only because 
of the performance penalty but because all parts of the system need to adapt 
their behaviour. This can influence the macroscopic design; for example 
the desire for ‘single-cycle execution’ may exclude certain desirable instruc-
tions from an ISA because the implementation cost is unreasonably high. 

The ARM architecture has always contained multiple register loads and 
stores (LDM/STM) which can transfer up to the whole 16 registers from or 
to memory. Clearly these are cases for multi-cycle operations. However in 
an asynchronous pipeline only the instruction decoder has to recognise this. 

appearing to be slow at clearing the decoder and is handled in the normal 
fashion by the pipeline ‘backing up’. ‘Downstream’ the additional cycles 
are not distinguishable from any other form of instruction. 

Another example of this process, exploited in Amulet3 [142], was to 
split certain (rare) multiplication instructions into two at the decoder. Due 

other parts of the system but saved both a read and a write port on the main 
register bank. 

Just as it is possible to insert cycles within the pipeline it is equally pos-
sible to remove them. Perhaps the commonest example is a compare 
(CMP) instruction which is similar to a subtraction but does not produce a 
(full width) result. This instruction can ‘disappear’ after the ALU, saving 
the need for a ‘dummy’ writeback cycle, reducing power consumption and, 
possibly, increasing speed. 

Halt 

It has been suggested that asynchronous processors may not be the fastest 
devices for doing ‘something’ but are very good at doing nothing! Because 
the system consists of handshaking components, if one part stalls then 
interacting parts will have to wait and inactivity spreads very rapidly 

sequence of sub-instructions for later pipeline stages. The ‘upstream’ pro-
cess will indeed stall, but this is simply a consequence of the LDM/STM

When the instruction is decoded the decoder can iterate, producing a

to the microarchitecture of the multiplier – which, internally, operated in 
several cycles although appearing, externally, to take one elongated cycle – 
this imposed no performance penalty, required no special measures in 

across the whole system. 
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In low power CMOS technologies a halted system dissipates very little 
power. However in the synchronous world this involves not only disabling 
registers but disabling the clock and, possibly an oscillator and PLL. In 
this last case the latency involved in resuming operation can be very sig-
nificant and is often a deterrent to using ‘deep sleep’ modes, even when 
they are available; however if it is not done the power consumption can be 
too high for many embedded applications. 

In contrast halting an asynchronous processor is extremely easy. The halt 
can be instigated anywhere in the system (i.e. wherever it is most conven-
ient) and no other parts will need to be modified. Halt spreads ‘naturally’ 
as units stall waiting for input or output and, when the halt is rescinded, the 
system frees up in a similar manner. Full speed operation recommences 
instantly from the deepest sleep. This makes such systems attractive in 
applications where there are frequent short bursts of activity, perhaps in 
some response to a real-time input [433]. 

Data-dependent timing 

Some operations take longer than others to perform. For example an addi-
tion will take longer than a bit-wise AND because of the need for carry 
propagation. Although it is not necessary to do so, it is possible to exploit 
this in an asynchronous system. This is particularly attractive when com-
mon operations can be performed quickly and the ‘worst-case’ is rare. As 
has been mentioned already, it may also be possible to exploit the data pat-
terns within the adder to allow early completion or, alternatively, reduce 
hardware complexity at the cost of the occasional longer delay. 

An incrementer is an excellent example of a structure which can exploit 
data-dependent timing. An incrementer always changes the least signifi-
cant bit of a word: then, successively either it changes the next most sig-
nificant bit (if the current bit went to ‘0’) or it has finished. Although, in 
the worst-case, this process can be very slow the average number of bit 
changes is (just under) two, regardless of word length and every alternate 
incrementation in a series changes only one bit. Given a small amount of 
elasticity in the pipeline, implementing (e.g.) a program counter with a 
ripple carry adder is cheap yet effective. 

Other opportunities to exploit data-dependent timing can be found at all 
levels of the system. Some examples, in brief, can include: 

• Multiplier: this may be a sequential machine (internally) with early 
termination determining the number of cycles performed; externally it is 
just a block with a variable delay. 



16 Asynchronous and Self-Timed Processor Design      379 

• Memory access: it is possible to exploit (for example) sequential access 
in a cache line where a hit may be on the line last read. This can then be 
faster than a ‘random’ hit which, in turn, is faster than a cache miss. 
Such behaviour will influence the performance of a synchronous system 
(in terms of stalling for a number of clock periods) but is already 
implicit in an asynchronous system and is useable at much finer ‘grain’. 

Non-determinism 

With the possible exception of inputs such as interrupts, a synchronous 
microprocessor is a fully deterministic system; given a particular system 
state its future behaviour can be predicted exactly. The same can be true of 
an asynchronous microprocessor, but the latter can also be made to include 
some non-deterministic behaviour whilst still executing a program cor-
rectly. 

If an instruction turns out to be a branch the pipeline flow must be  
altered at source. One approach to this is to control the pipeline occupancy 
by circulating tokens so that each retired instruction allows another to be 
fetched; this leads to a deterministic prefetch depth. An alternative app-
roach is for the pipeline to run freely but allow branches to interrupt the 
prefetch process to redirect the flow; as the time of the interruption is 
imprecise this leads to a non-deterministic prefetch depth. 

The second approach imposes fewer constraints on the system as the 
pipeline normally flows freely from source to sink. However it leaves the 
designer with two problems: how to ‘interrupt’ the flow reliably with an 
asynchronous input and how to determine what the prefetch depth was so 
that speculatively fetched instructions can be discarded. 

The first problem can be solved with an arbiter. In the synchronous do-
main arbitration is a difficult problem: making a decision before the next 
clock edge is always subject to a chance of failure. In the asynchronous 

resolution could take unbounded time.) 
 

domain it is possible to defer the decision indefinitely so that a reliable 
decision can always be made. (The disadvantage is that, theoretically, this 

The advantage of allowing non-determinism comes in the scheduling of 
operations; as timing is not predictable it is sometimes expedient to allow 
the order in which events happen to vary. A reasonable example is instruc-
tion prefetch. In a processor pipeline the PC generates a sequence of addres-
ses, each of which flows down the pipeline being translated successively 
into instructions, operations and, finally, results. In an asynchronous pro-
cessor each of these can proceed at its own rate so the pipeline occupancy 
may vary; this is irrelevant whilst the pipeline flows unimpeded. 
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The problem of an unknown prefetch depth means that the execution unit 

branch. Instead an ‘asynchronous’ solution has to be found. One such – used 
in the Amulet devices – involves ‘colouring’ the addresses at the prefetch 
unit and changing colour when the flow changes. It operates as follows: 

• prefetch a sequence of ‘blue’ instructions; 
• execute ‘blue’ instructions until a branch is taken; 
• interrupt the prefetch unit with the branch target address; subsequent 

prefetches are ‘red’; 
• discard all ‘blue’ instructions; only commit to instructions which are 

‘red’. 

Because nothing is completed following a branch until the new stream 
arrives it is possible to implement this scheme with a single ‘colour’ bit, 

In Amulet3 this mechanism was extended to employ two colour bits to 
allow late occurring data aborts. Imagine a data load is issued followed by 
a branch; the branch changes one colour bit as described above and the 

illustrated in Figure 16.4. 
switching back to ‘blue’ when a ‘red’ branch is taken. This sequence is

cannot simply discard the next N instructions following its committal to a 

Fig. 16.4. Colour-change flush mechanism. R = red, B = blue. 
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Fig. 16.5. Arbitrating branch mechanism. 

branch should not have been taken (or at least not yet). Toggling a second 
colour bit allows instructions from both the original stream and the branch 
target stream to be discarded so that execution resumes cleanly after the 
trap to the abort handler. 

Although non-determinism and arbitration can be convenient, they 
should be exploited with caution. As with any asynchronous process it is 
possible to introduce cyclical dependencies which result in deadlock. To 
continue with the branch example, suppose that the arbiter decides to  
ignore the interruption for a while – it can, after all, make arbitrary deci-
sions! The branch will wait patiently whilst the prefetch unit continues to 
feed addresses into the pipeline. If the branch is still blocking the pipeline 
it will ‘back up’ and can reach the point where there is no free space for 
anything to move; the branch cannot now break the cycle because there is 
no free space and the system halts. In this instance, the problem is easily 
resolved by moving the taken branch off the main pipeline; this can then 
continue to flow (in theory, indefinitely) discarding prefetched operations 
until the branch finally manages to change the direction, as illustrated in 
Figure 16.5. This cannot deadlock because a second branch cannot be 
taken until the first has been accepted. Comfortingly, the simplest arbiters 
select the first arriving request so will not always choose the ‘wrong’ 
alternative. 

Another ‘problem’ with the use of arbitration occurs during system veri-

multiplies up the number of possible legal states. In general not all these 
states will be explored by simulation, which has its own set of timing rules, 
therefore other tools and models are desirable to guarantee that errant  
behaviour is forbidden. 

prefetch colour switches. Subsequently the load aborts which means the  

fication. If the designer wishes to explore all states reachable by the system –
a reasonable approach to a safe design – each non-deterministic element 
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Non-local Interactions – an asynchronous reorder buffer 

The asynchronous reorder buffer is a means of solving several of the micro-
architectural problems posed above without resorting to a clock [150]. As 
it is also a good example of a number of asynchronous techniques it is des-
cribed in some detail below. 

Before delving into the asynchronous implementation it is worth a brief 
overview of the function of a reorder buffer. Its primary function is to 
accept data – typically results heading for retirement into registers – at 
arbitrary times and output them in a predetermined sequence. This means 
that its outputs are sequenced correctly. In a processor’s register bank this 
prevents write-after-write (WAW) hazards; it also enables a failure, such 
as an abort, to be processed in sequence and thus aids fault recovery. 
Because it may delay the retirement of data the reorder buffer’s secondary 
function is to forward values on demand to avoid stalls whenever possible. 

In the following description it is assumed that the reorder buffer is sort-
ing results being returned to a microprocessor’s registers and is able to for-
ward the appropriate values on demand. A unit of this form was included 
in the Amulet3 processor, shown in Figure 16.6. 

In its asynchronous implementation, four different timing domains con-
nected with the reorder buffer can be identified, as depicted in Figure 16.7. 
The first domain can be subdivided into two alternative phases: in the first 
phase requests for forwarding are processed; this phase will be described 
later. Following this is an allocation phase (during instruction decode) 
where the result register(s) of an instruction are identified. These are then 
associated with numbered ‘slots’ in the reorder buffer in the order that they 
are to be read out. The slot associated with the calculation is carried for-
wards with the instruction packet. 

An arbitrary time later the packet arrives at the reorder buffer. As each 
slot in the buffer has a unique number, and only one outstanding packet 
can have this number at any time, the value can be stored immediately. 
This is irrespective of other packets which may be arriving before, after, at 
the same or at overlapping times. Once written the reorder buffer notes the 
arrival in two places: these are signals to the other timing domains. 

The third domain contains the straightforward task of moving around 
the reorder buffer, waiting for the subsequent data arrival and writing it 
back to the register bank. This process relies on an important observation: 
although it is not possible to predict when something will arrive or depart 
in an asynchronous pipeline stage it is possible to wait for a packet’s arri-

arrival flag is reset to await reallocation and refilling. 
val without need for arbitration. Having copied the data out the specific
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Fig. 16.6. Amulet3 reorder buffer structure. 

Fig. 16.7. Data flows in the decode/execution pipeline. 

A simple analogy illustrates this: if someone is to open a door for you it 
is safe to proceed once you see that the door is open. If the door is opened 
before you arrive this causes no problems. The risk of injury only comes if 
someone tries to close the door after you have committed to going through. 
This last case is prevented if closure is your task. 

The final timing domain deals with forwarding requests. These are  
issued from the decoder as a reverse chronological list of the register slots 
which have been allocated to the required register. (The same destination 

conditional, thus the first expected source for forwarding may not have 
been used.) The process then waits until a candidate slot has been filled 
and forwards the value – or if it is invalid moves back to the previous can-
didate. Again the process merely waits for an expected (or past) event. If 
all forwarding attempts fail an older value is available from the register 
bank. 

register may have been specified in several instructions. In an ARM imple-
mentation, such as Amulet3, this is a list because any instruction can be 



384      Jim Garside and Steve Furber 

Any value may be forwarded zero or more times. It is thus important to 
know when a value has arrived but, unlike the writeback process, forward-
ing does not ‘clear’ the slot. Additionally, forwarding is asynchronous to 
the writeback process, as well as any other concurrent forwarding pro-
cesses. Its operation exploits the fact that a packet may have already de-
parted before the forward is requested but the data has been copied out; the 
value is still present and will remain until over-written. Over-writing depends 
on the slot being reallocated and allocation is done by the decoder and is 
naturally synchronised with forwarding request. Thus, if a mechanism can 
indicate data arrival without worrying about its departure, this can proceed. 

This can be done by toggling a status bit associated with the slot when it 
has been filled. Like the branch mechanism, this can be thought of as 
‘colouring’ the reorder buffer slot and is probably best illustrated by an 
example: 

 LDR R0, [R1] ; Instigate a load 
 ADD R1, R0, #1 ; Increment loaded value 
Imagine the reorder buffer is ‘empty’ with all its slots coloured ‘blue’. 

As it is decoded, the load (LDR) instruction is assigned slot 0 as its desti-
nation. When the data arrives the slot will turn ‘red’. 

Whilst decoding the add instruction it is observed that it has a source 
which is a ‘recent’ result and which should be forwarded. The forwarding 
process knows to wait until slot 0 is ‘red’ before reading the data. After 
forwarding has been requested the destination is assigned to slot 1, which 
will turn ‘red’ when the increment is complete. Forwarding will take place 
sometime after slot 0 has turned ‘red’, even if the result is being copied out 
at the time, because the processes are entirely independent. 

As the reorder buffer is cycled, a few instructions later slot 0 will be 
reassigned. Imagine this instruction performs this: 

 SUB R0, R0, #1 ; 
The first action is to forward the existing (red) R0 value from slot 0; the 

slot is then reassigned for the destination, which cannot be overwritten 
before the forwarding is complete for obvious reasons! The result arriving 
will turn slot 0 ‘blue’ again. An instruction following the subtraction and 
wanting to read R0 will therefore wait for this colour change. The colours 
therefore alternate on alternate cycles of the reorder buffer. 

There is one asynchronous hazard remaining in the mechanism des-
cribed above: it is theoretically possible to issue more instructions (strictly, 
more register destinations) than there are reorder buffer slots. Thus, in the 
example above, a forward request waiting for ‘slot 0, blue’ could be issued 
before it has turned ‘red’. This could cause extreme embarrassment! To 
prevent this, allocation of a slot is throttled. 
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The throttle is a simple mechanism. It can be thought of as a FIFO 
through which the slot numbers are recycled although, in practice, there is 
no need to pass data because allocation is always cyclic. At reset the FIFO 
holds a number of tokens not exceeding the number of reorder buffer slots. 
Each time a register is to be written to, the decoder collects a token from 
this queue. If no token is available this process waits until one arrives. 
Tokens are replenished by the writeback process after it has retired the re-
order buffer entry back to the register bank (in order). This ‘dataless’ FIFO 
is a very cheap asynchronous structure and the FIFO throttle is a ‘natural’ 
asynchronous mechanism. 

Cacheing and memory systems 

Although a slight diversion from the microprocessor core there are some 
interesting features in implementing an asynchronous cache which help to 

When a cache miss occurs it is necessary to fetch a new line from the 
memory. (For the moment it will be assumed that the rejected line can 
simply be abandoned.) For optimum performance the required word 
should be fetched, after which two processes proceed: one is the processor 
continuing execution, the other is the continuing fetch until the line is 
complete. Unfortunately these processes may not be independent, in that 
the processor may demand a word which is being fetched concurrently, 
thus requiring a (n unpredicted) synchronisation. 

One solution to this is to assemble the fetched words in a specialised 
‘line fetch latch’ (LFL) rather than the cache RAM, see Figure 16.8 [141]. 

Fig. 16.8. Cache line fetching – an example of asynchronous process flows. 

illustrate aspects of general asynchronous hardware design [200]. 
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The line fetch process then runs like this: 

• wait for any previous line fetches to be complete; 
• instigate line fetch; 
• concurrently, copy any LFL contents into the cache RAM before 

allowing any words to be received; 
• as the LFL is now ‘empty’, cause the processor to wait for its desired 

word; 
• as the words arrive, assemble them in the LFL; 
• when the desired word arrives the processor is free to proceed; 
• when the fetch is complete, stop, leaving the data in the LFL. 

A subsequent cache hit will either be in the cache RAM – in which case 
it proceeds independently from the line fetch process – or in the LFL – in 
which instance it waits until the desired word arrives, as above. In all cases 
any desynchronised processes are merely caused to wait for another event 
(which may have already happened) and this can be done without recourse 
to arbitration. It is interesting to note that this mechanism automatically pro-
vides features such as non-blocking access, streaming and hit-under-miss. 

An assumption made above was that a rejected cache line could simply 
be over-written. This is valid for an instruction cache, a write-through 
cache or an unmodified data line. In a write-back cache the mechanism is 
slightly more complicated but still quite tractable. The rejected line is first 
written back before the LFL is copied over it. Of course this ‘writeback’ 
may be very quick if the line is ‘clean’ (unmodified) where the process can 
be ‘short-circuited’ internally. It is also sensible to sideline the data in a 
write buffer to avoid obstructing the more urgent line fetch. In practice this 
will all occur whilst the memory is still contemplating the first data fetch. 

(RAW) hazard; a fetch from a line in the write buffer is trapped and the 
entire line returned to the LFL immediately. This can be done in a very 
similar way to the reorder buffer forwarding, already described. The fact 
that the LFL is faster than normal is, of course, irrelevant. However there 
are two slight ‘down-sides’ to this mechanism: 

• Firstly, a line in the write buffer could be at any stage of being written 
back and it is therefore expedient to proceed and complete this 
operation. This may result in a slight increase in memory writes, 
although the line arriving back in the LFL is known to be ‘clean’. 

• Secondly, to take full advantage of a write buffer of more than one 
entry, a second line fetch may be allowed to pre-empt a writeback. This 

although this requires a forwarding mechanism to avoid a read-after-write 
It is also easy to extend the write buffer to more than one entry, 
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is then needed to prevent the write buffer filling up with rejected lines, 
stalling the read process and deadlocking the system. 

A bonus is that the forwarding write buffer, which retains valid data 
during and after the writeback, automatically provides a victim cache. 

An interesting consequence of the asynchronous implementation of both 
processor and local memory is the ease of exploitation of timing differ-
ences. Amulet3 has separate instruction and data buses to a local RAM 
which are subsequently unified onto an on-chip bus, as shown in Figure 
16.9. The local memory is split into interleaved blocks so that access con-
flicts are unlikely and the two buses can operate largely independently. 
When a (rare) conflict does occur arbitration is necessary and a cycle may 
be stretched; this is easily accommodated by the processor without need 
for modification or explicit ‘wait’ cycles. The result is a local memory that 
provides performance close to that of a dual-port RAM at a cost similar to 
a single-port RAM. 

Another consequence is that the processor’s two buses can run at 
slightly different cycle rates: the instruction bus – which is the busier of 
the two – is unidirectional and simplified for speed; the data bus is some-
what slower as it supports not only processor writes but external accesses 
from the system bus. However the ratio of the bus speeds does not have to 
be a rational number, allowing the instruction bus to run faster than it 
could if everything were synchronised. 

Fig. 16.9. Amulet3 local memory interface. 

decision requires arbitration as the requests are desynchronised. A throttle 
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Summary and conclusions 

It has been demonstrated that, at least in some domains, it is perfectly fea-
sible to produce asynchronous processors which are competitive with their 
synchronous counterparts. No ‘show stopping’ features have been encoun-
tered which suggest that the synchronous paradigm is the only successful 
model for processor construction. In certain areas, such as EMC, it seems 
that asynchronous processors provide advantages, although these are not 
great enough to discard accepted practice yet. The promise of extremely 
high speed through fine-grained asynchronous pipelining has also yet to 
materialise. That said there are asynchronous processors both commer-
cially available and embedded in products right now. 

At the same time it needs to be noted that asynchronous processor de-
sign is difficult. Partly this is its unfamiliarity to designers, partly the lack 
of direct support from CAD tool vendors. It may be that tools such as 
Haste (formerly known as Tangram) will change this by providing easier 
design flows. Developing technology may also reduce the desirability – or 
even feasibility – of distributing a global clock at the desired rates. 

This chapter has concentrated on ‘conventional’ processors, largely 
looking at asynchronous implementations of features common in synchro-
nous processors. However asynchronous design also encourages thoughts 
about ‘different’ ways to realise an architecture. After a while a designer 
may think more in terms of message passing than finite state machines. 
This has led to other architectures into which such dataflows may naturally 
fit, and it is worth mentioning a couple of these to conclude. 

SCALP [120] was a dataflow-like architecture developed at the Univer-
sity of Manchester as a software model to investigate the exploitation of 
‘natural’ flows around an asynchronous system. In this architecture, a reg-
ister bank is a secondary feature and most operations route results directly 
from one functional unit to the next. The intention was to use parallelism 
inherent in a dataflow graph and rely on sychronisations (when required) 
being provided implicitly by the implementation. Whilst the performance 
of this particular design was disappointing its operation demonstrated that 
such an approach is feasible and relatively easy in an asynchronous envi-
ronment. 

by Fulcrum Microsystems, Inc. – a spin-off from the Caltech asynchronous 
research. This is a long instruction word machine which, like SCALP, ex-
ploits parallelism by routing data elements from functional unit to func-
tional unit (or registers, or memory if storage is needed). Whilst the first, 

More recently a similar, but much more sophisticated architecture, Vortex
[268] was developed and implemented in silicon. Vortex was produced 
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experimental device did not meet all its designers’ expectations it still pro-
vided respectable speed due both to its parallel nature and implementation 
methodology. 

In conclusion, although the great majority of the world’s processors use 
clocks, it is entirely practical to design a processor that operates without a 
clock. The quality of such designs has improved steadily, and a small 
number are now in commercial use. So far, most progress has been made 
in redesigning existing processor architectures to operate without a clock, 
but clockless design opens up a new range of possibilities for architects 
that may enable asynchronous and self-timed processors to develop away 
from mainstream architectures into new and exciting areas that we have 
only just begun to explore. 
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Introduction 

We are hitting power budget and power density limitations ever harder 
with continuing electronics miniaturization. High power density is not a 

processes. This time there is no such alternative, more energy efficient 

tectural innovation for more efficient energy utilization. Intel’s Senior Vice 
President and CTO, Patrick P. Gelsinger, has noted that for every doubling 
of available transistors, we have gained approximately 40% in design per-
formance. This observation suggests that performance per transistor, and 
hence energy efficiency, has degraded significantly. 

Desktop computers deliver a high performance by means of instruction-
level parallel (ILP) processing. Efficient implementation of ILP processors 
requires speculative processing and instruction reordering to maintain pro-
gram consistency. This requires a considerable amount of supporting logic. 
The supporting logic itself consumes a lot of energy. The problem is com-
pounded by discarded branches that were processed speculatively. The 
result is power density that exceeds physical limits of heat sinking and thus 
limits performance. 

Portable devices incorporate multiple processors for different functions. 
Current CMOS processes feature a low switching energy for the transis-
tors, but high energy utilization in the wires. Thus, even if the processors 
are located on the same silicon die there is a severe energy utilization 

when data is transferred from memory to memory, memory to processor, 
processor to memory, or processor to processor. In some cases it may be 
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new problem: CMOS technologies were adopted in the late 70s and early 
80s mainly because of their lower power density in comparison to bipolar 

penalty associated with all data transfers. This penalty manifests itself 

technology at sight. Thus, the solution lies in methodological and archi-
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more energy efficient to re-compute a value rather than fetch it from the 
memory. 

Processor throughput is typically enhanced through operation pipelin-
ing. Pipelining leads to the need to forward intermediate results from a 
later pipeline stage to an earlier one bypassing the register file. The for-
warding mechanisms need a lot of multiplexing. Multiplexer realizations 
are problematic on FPGAs where they utilize the large and slow look-up 
table resources. The associated slowdown drastically diminishes the bene-
fits of pipelining on FPGA. This is why FPGA optimized RISC processors 
usually feature from three to four pipeline stages. 

This chapter presents a methodology how to model and estimate per-
formance of processor architectures in advance and how to use this infor-
mation to optimize architecture instances to meet design objectives in  
a best way. The focus is in architecture optimization in the presence of 
different constraints due to technology and cost/power limitations. 

First some historical early estimation models are shortly presented, and 
their drawbacks to predict modern processors’ performance are discussed. 
Some required properties are suggested to adapt those models to better 
meet the properties of modern architectures. After that a more detailed 
model for a processor based on a modified transport triggered architecture 
(TTA) is presented shortly and the model is used in architecture optimiza-
tion in order to find the best possible architecture instance to meet the sys-
tem requirements for selected case study applications. In section 5 of this 
chapter some issues relating to a leakage current and power are discussed 
and the impact of synthesis optimizations on logic structure and drive 
strength at 90 nm CMOS technology is presented. 

Finally, there is a short overview on the physical design issues that are 
relevant when we are heading towards sub-100 nm technology genera-
tions, especially true with future technologies of feature sizes at 20–50 
nanometers. 

History of early estimation models for computer 
architectures 

In order to predict and evaluate the performance of a microprocessor some 
performance estimators based on analytical equations have been intro-
duced since the end of 1980s. H. B. Bakoglu presented the well known 
SUSPENS model first in a journal article [34] and later in the book [33]. 
Later CPU cycle-time model by Sai-Halasz [115,359,360] and also by Mii 
[288] were introduced. Those models are based on average wiring statistics 



17 Early-Estimation Modeling of Processors       393 

and use different device technology, design and architecture parameters as 
their inputs. 

Here the basic properties of those models and their possible drawbacks 
are examined. 

SUSPENS 

The SUSPENS model uses technology, design and architecture parameters 
as its inputs and then by using analytical equations results clock frequency, 
power dissipation and chip size. The calculations are based on the total 
number of logic gates and average length interconnects. SUSPENS lacks 
long interconnects, (on-chip) memory and various types of interconnect 
schemes. Donath’s wiring statistics [107] are used to estimate the average 
length of on-chip interconnections. The cycle time includes the delay 
through a series of logic gates (logic depth) and a long interconnect that 
crosses the chip halfway diagonally. The model was derived to both 
NMOS and CMOS microprocessor circuits. 

Because SUSPENS does not take various interconnect schemes into 
account and uses only one metal level it has to be updated to include those 
effects and schemes. 

The Sai-Halasz performance estimator 

This estimator can be considered an extension to the SUSPENS model. It 
uses a two-way NAND gate with a fanout of two as an average logic gate. 
The basic function is to calculate the delay through a given number of 
CMOS stages that can be regarded as a generic critical path of one clock 
cycle. The model relies on earlier observations of mainframe complexity 

modern on-chip circuits. 
Some details have been added to the earlier models, such as taking 

memory size, level-to-level blockage and the power and ground distribu-
tion network into account. Anyhow, because it introduces some empirical 
parameters based on the actual chip designs its success in predicting some 
different types of architectures can be weaker. 

The Mii performance estimator 

The Mii performance estimator uses a hypothetical microprocessor projected 
from previous generations of IBM computers. This model uses a fixed inter-
connect structure as was the case also with the Sai-Halasz estimator. Dif-
ferently from the Sai-Halasz model this model lacks level-to-level blockage 

uniprocessors [202]. For this reason it may not be a suitable estimator for 
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which makes the model inaccurate in that sense. On-chip cache is taken 
into account. The model uses the same logic depth for all CPU generations 
assuming that the increase of CPU complexity changes only parallelism 
but not logic depth. Again this type of assumption may not be true for dif-
ferent types of processor architectures. 

Adapting models to meet modern processor architectures 

As noticed in the previous section that different models may have some 
limitations in their prediction accuracy. Clearly, one limitation in the 
SUSPENS model is that it does not include the internal cache memory. In 
modern processors there are several levels of caches on the chip which 
may be large in size. Two other models (the Sai-Halasz and Mii perform-
ance estimators) are based on earlier design cases of certain types of pro-
cessor architectures and are not good in predicting new types of (special) 
processor architectures. Nowadays it is the metal pitch, not MOS gate 
length, that determines (logic) gate density. 

The more detailed interconnect performance analysis is not covered in 
these models. In modern design the effects such as clock distribution net-
work, power supply voltage variation in different parts of a circuit, signal 
crosstalk and even process parameter variations have to be taken into 
account. In addition to these technology-related features one needs to take 
architecture related features into account. If some modifications into the 
existing architectures are done or even new types of architectures are used, 
this becomes very important fact when evaluating the performance of dif-
ferent architecture instances. 

Some newer estimators, such as GENESYS [113,114], BACPAC [399] 
and RIPE [148], are developed to better take those different interconnect 
(or technology) related features into account. Actually, there is a common 
technology extrapolation framework named GTX that combines several 
individual models and provides a robust, portable framework for inter-
active specification and comparison of modeling choices, such as system 
cycle time, chip size or power consumption. The GTX framework was pre-
sented in the DAC conference in 2000 [64] and the framework can also be 
found via Internet for creating and developing new models. 

In the following section the RIPE estimator has been used as a starting 
point when developing estimators. After that modifications have been done 
to have the estimator better adapted to meet the special details of the  
selected architecture. 
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Architecture modeling 

In our co-operation activities we have developed a multi-core system 
which uses either a synchronous or an asynchronous approach in commu-
nication between different system blocks. In our system [313], we use a 
RISC-based “COFFEE” processor and TTA-based “TACO” processor in 
handling the IPv6 data packets and decoding MPEG-coded data. Because 
the case study is presented in [313] we do not go into details of the case 
study here but instead look closer how different aspects of the architecture 
itself are taken into account. 

Basics of TTA processors 

A TTA architecture and a concept was developed in Delft university of 
Technology, The Netherlands, in the 1990s. Henk Corporaal’s group’s 
work there resulted in the MOVE TTA architecture template described in 
[92]. The original concept of transport triggering was earlier introduced for 
digital controllers by Lipovski et al. in [405] in 1980. 

A TTA processor consists of functional units (FUs) that communicate 
using an interconnection network of buses, controlled by an interconnec-
tion network controller (INC) unit. The FUs connect to the buses through 
modules called sockets. Each FU has input and output registers, and each 
of these registers has a corresponding socket. If there are e.g. two input 
registers and one output register there are three sockets altogether. Thus, 
by changing the type and number of FUs and/or by changing the connec-
tivity and capacity (bus width) of the interconnection network, a wide 
range of TTA processor architectures can be specified. Although there are 
practically unlimited range of opportunities to vary a processor configura-
tion the experience has shown that certain configurations are better in a 
certain application than the others when some constraints are set for per-
formance or cost of a processor. 

Traditionally processors are programmed by specifying operations which
then cause data transports to occur in the processor as a “side effect” . In

by the operations that are determined by the specific function in a func-

TTA-based processors, instead of programming operations those are the data
transports that are programmed. Those data transports are then followed

tional unit (FU) that receives the data. Here only the basics of TTA pro-
cessors are told; more elaborate discussion can be found in Corporaal’s
book [92]. 
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The TACO (Tools for Application-specific hardware/software CO-design) 
protocol processor design framework consist of two parts: a hardware plat-
form optimized for protocol processing and a design methodology and a 
toolset for rapidly specifying, simulating, evaluating and synthesizing proto-
col processors based on the mentioned hardware platform. Finally, we con-
clude this subchapter by giving results for the case studies presented in earlier 
articles. In the methodology part, the main focus in this chapter is to discuss 
evaluation issues. However, as will be seen later, it is necessary to have 
some information from system simulations and synthesis of individual FUs 
for evaluating and predicting the performance and cost of a final processor. 

TACO protocol processor architecture 
Using the terminology defined in [92] TACO processors use only spe-

cial functional units (SFUs) that are application-domain specific and are 
not very frequently needed in general purpose processing. In TACO pro-
cessors there are no general purpose FUs (e.g. like ALU or multiplier). 

The TACO interconnection network can be fully connected or partially 
connected. In the fully connected case all buses have connections to all 
sockets. Using the fully connected configuration ensures maximal use of 
bus bandwidth. There are two kinds of buses in the interconnection net-
work: data buses and control buses. Control buses carry information on 
which FU acts as a data transmitter and which FU acts as a receiver. 

The programming is done by using a TACO instruction word. The TACO 
instruction word can be divided into several subinstructions. The number 
of subinstructions depends on the number of buses; if there are e.g. three 
buses, there are three subinstructions. In each subinstructions there are a 
certain number of bits reserved for source and destination IDs; the source 
and destination IDs define the addresses from/to which data is moved. The 
addresses refer to registers in FUs. More information on the details of the 
TACO instruction word can be found in [440]. 

The key tasks of the interconnection network controller mentioned 
earlier are: 

• fetching instructions from the program memory; 
• maintaining the program counter (PC); 
• evaluating guard signals and guard IDs for conditional execution; 

TACO –  a design framework for protocol processing applications 

A TACO processor in general includes SFUs, memory management units, 
sometimes generic registers, some internal memories (program memory,
user data memory and, in the case of protocol processing domain, protocol
data memory), interconnection network and of course a controller for that
network (an interconnection network controller, INC). 
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• splitting long instruction words into subinstructions; 
• dispatching (decoding) subinstructions onto the buses; 

As noticed it is the interconnect network controller that delivers correct 
source and destination IDs (accurately, source and destination identifiers) 
to the sockets. Additionally, the INC also fetches instructions from the pro-
gram memory and divides them into subinstructions that are then sent to 
sockets. If there is a match between a hard-coded identifier and an identi-
fier in the instruction bus (source ID or destination ID bus) the socket stores 
the result of the decoding process to be used in the next pipeline stage. 

Instruction execution in TACO processors consists of four pipeline 
stages: fetch, decode, move and execute. First two were explained earlier, 
in the move pipeline stage FUs with enabled sockets write/store data 
to/from the buses and in the execute stage the FUs execute their operations. 
The operations are initialized with the data coming to the trigger (input) 
register of the corresponding FU. 

More details and information of the TACO architecture and TACO pro-
cessors can be found in [440]. 

Design methodology relating system simulations and physical design 
In this chapter we concentrate on early estimation modeling of TACO 

formance of a processor with 100% accuracy, there is a need for additional 
information that is extracted based on the results of system simulation. In 
addition to system simulations we need also the information of the FUs 
used in the target processor architecture. That information is extracted 
from the synthesis results of VHDL descriptions used for FUs. If the  
required function is not available a new FU executing that function has to 
be designed (i.e. a VHDL description of that function has to be written). 

In the early estimation modeling part of TACO design methodology we 
estimate the delays of different pipeline stages and additionally the area 
and power consumption of the target processor. That information is then 
used in the TACO protocol processor design flow together with the infor-
mation on the synthesized FU blocks (i.e. the area of the block and the 
relative portion of combinatorial and sequential gates in the FU) and the 
information coming from system simulations (the clock cycle length is 
constrained by those results). 

In the following text portions, we first discuss how to model delays of 
different pipeline stages, then discuss how the results from VHDL synthesis 
of individual FUs are utilized in early estimation modeling and what are 

• extracting and dispatching immediate integers specified in program code. 

design flow. Because the early estimation modeling can never predict per-
processors and thus discuss only that part of TACO protocol processor 
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the results of the models. We continue by discussing how the results of 
system simulations are affecting early estimation modeling and again what 
are the results of the models. 

Delay modeling 
As said before there are four pipeline stages in TACO processors. The 

cycle time of a TACO processor is defined by the delay produced by the 
slowest pipeline stage. So far we have assumed that the longest pipeline 
stage delay is either in execute or move stage. However, when heading into 
sub-100 nm technologies the longest delay shifts more to move and fetch 
stages because of the increasing dominance of interconnect delay over 
logic gate delay. We have assumed with TACO processors that FUs can 
execute their operations within one clock cycle. When clock frequencies 
are increasing that sets a great challenge to design interconnection network 
that carry signals from one FU to other FUs. 

Also fetch stage sets challenge when clock cycle times are diminishing: 
memories have to be located close to the location where the data is needed 
because of increased interconnect delays. Program memory has to be  
located near the INC. If some memories for storing protocol or user data 
are needed they should be located near the location they are needed fre-
quently. Also some effort has to be put into memory hierarchy in order to 
deal with the delay of the fetch stage when implementing TACO proces-
sors with future technologies. 

A more detailed analysis and the equations to predict the delay of the 
move stage are found in [443]. 

FU modeling 
Earlier we have developed some models to predict the area of individual 

FUs based on Rent’s rule [251]. However, we noticed in our analysis that 
the evaluation of the area of individual is very difficult and the errors in 
the area can be very large even though the variation in the values of Rent’s 
parameters (Rent’s constant and Rent’s exponent) is small [7]. 

Thus, we have omitted the FU area estimation method that is based on 
gate netlists of a functional unit. Instead, we get area information from 
VHDL synthesis results of individual FUs. In addition to area information, 
synthesis results reveal also very useful information about the relative 
amount of combinatorial and sequential logic in an FU. That information is 
very relevant when estimating power consumption of an FU. 

The dynamic power consumption of an FU can be defined: 

clockddtotdtot fVCfP 2=  (17.1) 
where fd is the activity factor, Ctot represents the total nodal switching capa-
citance in an FU, V clock is the clock frequency. dd is the supply voltage and f
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Thus, by knowing the relative amount of combinatorial and sequential 
gates in an FU we can better evaluate the power consumption in the whole 
FU. The key factor in this evaluation is the activity factor. 

Bus traffic and power modeling 
For bus traffic and power evaluations one needs always a case study. It 

is important to know how signals traveling in adjacent wires are switching 
because of crosstalk effect. The capacitance ratio of the capacitance over 
the ground capacitance of a single wire increases with sub-100 nm techno-
logies. This is because the aspect ratio (height/width) of a wire increases. 

So far we have investigated the power consumption in a bus using Hspice 
simulations. Power consumption is examined by feeding input patterns 
extracted from real data (IPv6 protocol headers) into a 32-bit wide bus. 
Thus, power consumption varies depending on how the bit patterns change 
in the bus (i.e. depending on how many bits change at the clock edge and 
which direction, up or down, the bits are switching in adjacent wires). The 
results will be presented in a forthcoming article on bus traffic modeling. 

The information on bus traffic is extracted from system simulations. 
System simulations are conducted by using SystemC. Those results give a 
constraint for a maximum allowed clock cycle time. The results tell how 
many clock cycles a required application task takes. By changing processor 
configuration the number of clock cycles varies. Processor configuration 
can be changed by varying the number of FUs and/or the number of buses. 
By increasing the number of buses and using redundancy for certain FUs 
may decrease the total number of clock cycles considerably depending on 
an application. 

Additionally, those system simulations reveal utilization of different 
buses. This information helps when one estimates the total energy consump-
tion (in picoJoules) of an application task. Finally, system simulations 
reveal also register transfer statistics that can also be used for estimating 
the power consumption in the bus. Thus, if two registers are inputting/ 
outputting information very frequently, they (or the FUs they are located in) 
should be placed near to each other. As noticed, the information received 
from system simulations helps to design a floorplan for a processor. 

TACO case study results 
We have used the TACO processor for three case study applications in 

protocol processing domain. Later TACO has been used also for digital 
signal processing applications but the case studies were not so extensively 
covered. In protocol processing application, TACO has been used in ATM 
AIS cell processing, IPv6 router and IPv6 client applications. 

For the ATM AIS cell processing case study [443] we used 0.35 µm 
technology. In this case study we explored few processor configurations 
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where we had either 1, 2 or 3 buses and additionally we used redundancy 
for some FUs by duplicating their amount in the processor. In that case 
study the shortest time to execute a given task was achieved by using 
double-2 (certain FUs were duplicated and two buses were used) configura-
tion. We also noticed that bus utilization was nearly 100% when double FU 
configuration was used (compared to the case when there were one FU of 
each type). This was the result of using instruction-level parallelism (ILP). 
We made also some area and energy consumption estimates but due to the 
lack of extensive synthesis results those estimates could not be verified. 

In the second case study, IPv6 client as a part of a larger system [313], 
we noticed that the use of Rent’s rule to estimate the FU areas gives some-
times quite accurate results, sometimes not. This is because our FUs do not 
follow normal random logic idea, they are customized so that they execute 
their function in one clock cycle. Also power estimates were conducted for 
each FU. 

In the third case study, IPv6 router, we examined some routing func-
tions used in an IPv6 router and compared the results to a commercial net-
work processor [442]. We noticed that especially checksum calculation 
was considerably with our TACO processor than with a commercial pro-
cessor. This was due to the fact that our TACO processor had a special unit 
for checksum calculation. Some area estimates were also done and they 
predicted rather well the size of FUs. From the estimates of individual FUs 
area estimates for the whole processor were done but not verified. 

In both IPv6 case studies 0.18 µm technology was used. 

Processor logic optimization at 90 nm technology 

Leakage issues 

CMOS transistor is considered to be in a non-conductive high resistance 
state called cut-off when the gate to source voltage (Vgs) is less than the 
threshold voltage (Vth, also called pinch-off voltage and denoted with Vp). 
When Vgs is greater than Vth the transistor is in a conductive state, which 
can be divided into two regions. If the drain to source voltage (Vds) is 
greater than Vgs th
state called saturation. With Vds below Vgs–Vth, the transistor is in a semi-
conductive variable resistance state described with three different names: 
triode, linear or ohmic region. 

When voltage is supplied to a CMOS circuit, it consumes power even in 
an idle state. There are two substantial sources of this static power con-
sumption: 

–V , the transistor is in a highly conductive low resistance 
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• Subthreshold leakage current results from the channel resistance not 
being infinite at cut-off. 

• Gate leakage occurs when there is voltage over the insulation layer 
causing some current flow (electron tunneling) through it. 

leakage is the more problematic one. It increases with shorter effective 
channel length Leff resulting from downscaling, and gets more prominent at 
high temperatures. Gate leakage can be effectively lowered through high-κ 
dielectrics. The International Technology Roadmap for Semiconductors 
(ITRS) [208] projects that high-κ dielectrics are in mainstream production 
after 2010. 

th
higher channel resistance at cut-off. A higher Vth can be achieved through a 

th

other hand, a high Vth lengthens the time required for a transistor to enter 
conductive state and hence limits the achievable operating speed. 

Reference [322] discusses this power-delay tradeoff with 90 nm tech-
nologies. With 90 nm technologies currently at the market, the static power 
consumption of extremely high speed technologies is ten thousand times 
higher in comparison to very low power technologies. The high speed 
technologies are approximately three times faster than the slowest low 
power technologies. 

The leakage power of course causes the device to heat up and limits the 
power budget left for the dynamic operation. With increasing gate densi-
ties, power density approaches the physical limits of heat sinking. For the 

Impact of synthesis optimizations on logic structure and drive 
strength 

sions made at the higher levels of abstraction. However, these decisions 

Out of these two sources of static power consumption, subthreshold 

decreases thanks to shorter short circuit times during logic switching. On the 

A processor’s implementation characteristics are affected most by deci-

must be backed by thorough knowledge of the lower level issues discussed  

very high end products the best modern heat sinking solutions have app-
roached the capability of dissipating a hundred watts per square centimeter.
In mobile devices however, the practical limits of heat dissipation are much 
lower. For this and battery lifetime reasons the laptop computers now
feature an increasing amount of custom designed low-power devices. 

Subthreshold leakage can be reduced through higher V  to provide 

thicker gate insulation layer, which effectively lowers the gate leakage
at the same time. With a high V  also the dynamic power consumption 
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Table 17.1. Impact of Synthesis Optimizations on Processor Logic Structures. 

Design Coffee RISC Milk FP MOVE TTA 
Equiv. gates 
Std. cells 
Leakage power 

+45.18% 
+40.90% 
+83.32% 

+81.75% 
+105.68% 
+152.90% 

+82.34% 
+26.54% 
+159.64% 

Net count 
Avg. fanout 

+35.31% 
–10.05% 

+84.59% 
–8.29% 

+24.26% 
–11.73% 

 
above. Here we take a look at the effects of optimizations during register-
transfer level (RTL) to gate-level synthesis. 

Three different processor architectures were chosen for this study: the 
Coffee RISC processor core, the Milk floating-point (FP) co-processor, 
and a MOVE architecture instance designed for radix-2 FFT execution. 
MOVE is a template and design tool framework for transport triggered 
architecture (TTA) processor instantiation. 

First step is to fix the target technology and the targeted operating envi-
ronment, or the PVT (acceptable Process variability, supply Voltage, and 
junction Temperature) corner. In this study the processor architectures 
were synthesized to a slow/slow process corner (worst case process vari-
ability and operating environment) of a 90 nm technology. Results from 
optimization for the highest achievable operating speed were compared 
against the results from optimization for the smallest achievable area. The 
relative differences between the two resulting logic structures are summa-
rized in Table 17.1. 

It is obvious that the impact of optimizations in conjunction with logic 
synthesis is considerable. Optimization for low delay results in utilization 
of gates with low input degree. Reason for this is that fastest implementa-
tions are usually achieved with two-input logic. 

Higher increase in leakage power than in logic area is the other obvious 
result from delay minimization. This happens because higher drive strength 
is used to achieve shorter rise and fall times. High drive strength translates 
into wide channel output transistors for high capacitive loads, which in 
turn increases leakage per area. Hence high speed is always associated 
with exponentially increasing power consumption whether it is achieved 
through faster logic structure or higher supply voltage. 

Speed of the MOVE TTA processor is dominated by the crossbar bus 
that connects the FUs. Therefore the delay optimization process results in 
only minor changes in logic structure. This can be seen in Table 17.1. as 
low increase in standard cell instance and net (interconnect) count. How-
ever, high drive strength cells and buffers are instantiated to achieve lower 
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interconnect delay. This shows up in Table 17.1. as considerable increase 
in leakage power and area (equivalent gate count). 

The impact of optimizations is the most uniform with the Coffee RISC 
processor. Complexity of the logic structure (standard cells and intercon-
nects) as well as drive strength of critical cells is increased. As a result, area 
and leakage power penalties are the lowest among the three architectures. 

Physical design issues in the era of sub-100 nm 
technologies 

When technologies enter onto a sub-100 nm and even sub-50 nm era there 
will be certain physical and electrical design issues which have to be taken 
into account when designing circuits with high dependability. In this sub-
section some of those issues are shortly presented and their effect on proc-
essor design at architectural level is investigated. 
• Front-end-of-line challenges 

• Back-end-of-line (BEOL) challenges 
For line widths below 100 nm there is a great increase in resistivity of 

metal wires. Because the proportion of the conductor cross-sectional area 
of barrier material with higher resistivity is larger the effective resistivity 
increases. At the same time, the contribution of surfaces in the properties 
of a wire increases; the effect of surface and edge scattering has to be 
taken into account. Additionally, the variation in wire dimensions due to 
chemical–mechanical planarization (CMP) processes used leads into the 

signing e.g. wiring strategy and tolerance against variation in wire per-
formance. Signal crosstalk is a natural result from technology scaling when 
wire separation diminishes. Delay dependence on crosstalk and signal 

of freedom allowed to the optimizer. Out of the three designs, most change
in logic structure takes place with the most complex design, the Milk 
floating-point co-processor. Standard cell instance and net (interconnect)
count both roughly double as a result of delay optimization. Fabrication cost

The complexity of the longest combinational paths determines the degree

(required silicon area, and amount of metal) increases accordingly, while
leakage power penalty is also high. 

Transistor performance does not anymore follow the earlier rule, i.e. that 
performance would be proportional to the reciprocal of gate length. Addi-
tionally, lower supply and threshold voltages result to increasing leakage
currents. That means that in a processor more power is consumed in standby
mode outside clock transitions. 

variation in wire performance that has to be taken into account when de-
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transitions in adjacent wires has to be evaluated. Use of low-κ dielectrics 
together with problems in contact and especially via (contact) scaling con-
clude BEOL issues to be addressed in processor design at sub-100 nm 
technology nodes. 
• Process control and reliability 

As mentioned already process control is essential for assuring reliable 
operation of future processors. With decreasing dimensions features as line-
edge roughness (LER) is becoming an increasing concern. LER affects 
many transistor parameters and increases also an overlap capacitance (Cgd) 
and reduces channel length [460]. 

Vth variation is influenced by random dopant fluctuations and gate criti-
cal dimension (CD) variation. Thinner gate oxide causes many effects such 
as negative bias temperature instability (NBTI).  
• Lithographic issues 

After 180 nm technology generation, the CD has been smaller than the 
ultraviolet wavelength used in lithography. This is called as a subwave-
length regime and a gap between the CD and UV wavelength as a sub-
wavelength gap. This means that a new lithographic generation has to be 
developed. Below the 90-nm technology node aggressive optimal proximity 
correction (OPC) is necessary. Other possible resolution enhancement 
techniques are e.g. specialized illumination patterns, subresolution assist 
features and alternating phase-shift masks [460]. 

As a result of the widening subwavelength gap, mask and lithographic 

• Modeling challenges 
Finally, new models have to be created to take different scaling-related 

parameters into account. For example, BSIM4 models include new fea-
tures that were not included in BSIM3 models, such as a halo or pocket 
implant, gate-induced drain leakage (GIDL), gate direct tunneling, and 
trench isolation stress effects. 

how to get along with the aforementioned physical features in mixed-
signal circuit design, electrostatic discharge protection design, input/output 
design and memory (DRAM) design. It also addresses challenges in inter-
connect design that were shortly discussed in this subsection (“Back-end-
of-line challenges”). 

costs will increase exponentially in subsequent generations. This will affect
and decrease the number of manufacturing companies that can afford to
expensive lithographic equipment. 

Wong et al.’s book [460] presents many solutions and design procedures 
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Introduction 

Due to the increasing complexity of system specifications, new methods 
are required for detecting design errors at the early stages of the develop-
ment process, as well as for ensuring the performance characteristics of the 
final product. Among these are estimation of physical characteristics (dis-
cussed in the previous chapter, Early Estimation Modeling of Processors) 
and system simulation at a high abstraction level, that is, the system level 
as defined in [344]. High abstraction level estimation and simulation have 
both become necessities for the design activity. System level simulation 
enables the evaluation of system specifications against requirements at 
early stages of the development, before proceeding to hardware implemen-
tation. The approach eliminates costs and shortens the design cycle of new 
products. According to [294], most of the integrated circuits developed 
today require at least one return to early phases of the development, due 
to errors. Furthermore, simulation contributes to reducing the testing effort 
that is performed at different stages of the design process. 

Simulation allows one to execute the system specification at different 

performed as early in the development process as possible, in order to 
avoid the propagation of design errors to later phases. On the other hand, 

© 2007 Springer. 

embedded systems. On the one hand, the simulation process should be  
levels of abstraction. There are two conflicting trends in simulating
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performing the simulation at later phases of development, when the system 
specification is more complete, allows one to check a wider range of the 
system’s properties. System level simulation enables the verification of the 
correct functionality of the system’s specification with respect to its func-
tional requirements. Due to the low level of detail in the executable speci-
fication, the simulation process provides less accurate estimations of the 
specification, yet these results are obtained in a relatively short time frame. 
In addition, eventual modifications of the system specification at this 
level are fast and inexpensive. In fact, system level simulation is typically 
used in taking strategic decisions for providing a specific implementation 
solution. 

Modeling and simulation 

A system does not exist in the real world before being implemented. 
During the development of that system, designers create more or less ab-
stract specifications (that is, models) of that system, which enable them to 
focus on the relevant aspects of the system at a given stage of the deve-
lopment process. The simulation is the process of executing a given system 
specification in a computer based environment. As such, the system speci-
fication has to be executable. Even though specifications are not always 
executable [183], in the rest of this chapter we consider models to be 
executable specifications. 

Processor-based embedded systems consist of a coherent combination of 
hardware and software. As such, simulation has to be applied not only to 
each of the hardware and software partitions and components in part, but 
also to the entire system as a whole (co-simulation). 

The idea behind executable specifications is that instead of reading 
through a large quantity of documents describing the desired functionality 
of a system, the system designer could simply run the executable specifica-
tion and see how the system is supposed to work. Such an executable 
specification is gradually refined to contain more and more implementa-
tion details during system development. This refinement of the original 
executable specification can be targeted towards reaching a high abstrac-
tion level simulator of the target system. So, ideally an executable specifi-
cation serves as documentation throughout the design project, and after it 
contains enough detail, it becomes an accurate system simulator while all 
the coding has been done in a single specification and simulation language. 
Executable specifications are expected to provide unambiguity, complete-
ness and correctness to system specification [146]. 

As the system design size and complexity increase, high abstraction 
level design methods are needed to rapidly explore the design space and 
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verify system functionality. At a high level of abstraction, we can imple-
ment models that describe the system functionality without specific details. 
System models can then be used for simulating the system and evaluating 
its functionality and performance. Based on the results obtained from 
simulating the system models, the initial models of the system may be re-
fined and improved until satisfactory (with respect to the requirements of 
the system) ones are obtained. Moreover, system verification can be done 
before the real life implementation using the high-level models, which 
alleviates the burden of verification, and makes it less costly and time con-
suming. 

System models that are created during the development process should 
satisfy the requirements of the real designs. Models need to fulfill their 
behavioral and Quality-of-Service (QoS) requirements, such as perform-
ance, timing, and power consumption. Therefore, accurate behavioral 
models of the system are needed to assist in verifying system functionality. 
Moreover, we need efficient and flexible models to rapidly explore the de-
sign space in order to make optimal design choices for the target architec-
ture early at the design stage. For example, Virtual System Prototypes (VSP) 
have been suggested for creating executable system specifications. A VSP 
is an accurate, high performance, and complete system model defining 
the hardware architecture, and it fulfills the product’s business and func-
tional requirements. Therefore, it serves as a golden reference model of the 
design. VSPs remarkably advance the high-level design and modeling 
[184]. Consequently, several companies, such as VaST, Virtio, Virtutech, 
CoWare, and Carbon Design Systems, have developed VSPs during the 
past 10 years. 

Several tools and languages for system level modeling have been sug-
gested in the recent past. As examples, we briefly discuss Polis, Esterel, 
Ptolemy, VCC, COSY, Matlab, and Simulink here. Polis [177], developed 
at the University of California in Berkeley, is a framework for hardware/ 
software co-design of embedded systems. Designers can use a high-level 
language, such as ESTEREL [48,207], to write a specification, which can 
be translated directly into a co-design finite state machine (CFSM). The 
Ptolemy project [419] for modeling, simulation, and design of concurrent, 
real-time embedded systems includes a simulator, which can perform the 
co-simulation of the CFSM within Polis framework. 

Cadence Virtual Component CoDesign (VCC) aims at the design of sys-
tem level design tools and supports platform based design. Furthermore, 
Philips Semiconductor has established a new system level design methodo-
logy, which focuses on HW and SW Intellectual Property (IP) reuse. 
Philips Semiconductor’s COSY initiative employs the Cadence VCC when 
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building a library of reusable IP blocks, whose accurate performance esti-
mations can be used by designers at early phases of the design process and 
thus shorten design cycle times and the time-to-market [61]. 

The Mathworks’s Matlab [416] is a high-level language for technical 
computing and an environment for algorithm development and data manag-
ing. Moreover, Matlab includes tools for design exploration. The Math-
works also has a platform for multi-domain simulation and model-based 
design, Simulink [417]. Simulink has full access to Matlab, for example 
for the purpose of data analysis and visualization. 

Abstraction levels  

Abstraction hides implementation details, that is, the amount of informa-
tion decreases with the increasing level of abstraction. By abstracting away 
implementation details, a designer is able to concentrate on essential de-
sign aspects and to reduce the required design effort to evaluate a model 
under development. The high-level architecture exploration and design 
decisions steer the development towards promising architectural solutions 
for specific application areas. Mastering different abstraction levels is the 
key to an efficient design of modern multiprocessor systems and to im-
proving productivity. 

There is no unique general definition in existence for the way in which 
hardware abstraction levels should be categorized and used, as this de-
pends on the characteristics of the system under design and of the method-
ology selected. In addition, some design methodologies may require fewer, 
whereas others may require more levels of abstraction. One possible way 
of categorizing abstraction levels is defined in [344]. Based on this defini-
tion, Figure 18.1 shows hardware abstraction levels commonly met in 
several design methodologies (we have combined the three lowest levels 
defined in [344] into a single RT level in the figure). Another example is 
Transaction Level Modeling (TLM) [149,418]. It defines four abstraction 
levels from which the highest and lowest levels match the system and RT 
levels in Figure 18.1, respectively, whereas the two middle ones together 
form the module level. 

It is important to notice that in addition to selecting a hardware abstrac-
tion level, the designer must also make a decision on the communication 
abstraction to be used. At higher abstraction levels communication is often 

details of the communication between system modules, and thus allow the 
modeled using function calls. Function calls hide the implementation 
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Fig. 18.1. Levels of Abstraction. 

designer to concentrate on the functionality of the system under design. 
For example, in TLM function calls are used at the three highest levels, 
and only at the lowest level functions are transformed into detailed com-
munication primitives. 

The different abstraction levels at which the simulation is performed 
affect not only the architectural details, but also the accuracy of the simula-
tion results and the simulation time. In other words, the simulation time 
that is required to estimate different architectural solutions shortens with 
the increasing level of abstraction. However, at the same time the accuracy 
of the estimation results decreases. Therefore, at high abstraction levels, 
one estimates architectural (system level) properties of the systems, with-
out concern for the implementation details. The latter are in turn simulated 
and verified at lower abstraction levels: there the promising architectural 
solution is expected to have a sound basis, since alteration of high-level 
design decisions at lower abstraction levels is expensive. 

As stated above, all the abstraction levels have their own architectural 
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details, the higher we are, the less accurate representation of the real system
we have. The amount of details grows rapidly when shifting the  abstraction
level towards lower ones, as both the computation and the communication
details proliferate. Below we have gathered some of the main characteristics
of the given abstraction levels and their effect on simulation.
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• At System level the specification focuses on the requirements of the 
system and its basic concepts that collaborate in achieving these 
requirements. It encompasses two different views: an architectural view 
provides a high-level perspective on the components of the system and 
their interconnections; an algorithmic view specifies implementations of 
operations. The implementation can be purely executable model with 
or without partitioning and mapping information. No implementation 
related information of the components or their intercommunication is 
taken into account at this level. Communication can be modeled using 
functions calls. The System level model is typically obtained from a 

challenge is to model the requirements and functionalities of the system 
under development using a programming language, either informal or 
formal one. The semantics of formal languages are grounded in mathe-
matics, whereas informal languages are specified using natural lan-
guages. However, the challenge to form the first model remains the 
same in both approaches. 

• At Module level, or functional module level [344], the algorithms that 
implement the functionality of each component are selected and repre-
sented using block diagrams. In addition, an appropriate communication 
model is instantiated, for instance bus-based or network-on-chip (NoC), 
to support the communication between different components. Perform-
ing simulation at this level provides more detailed results as compared 

• At Register Transfer level (RT level) the module level components are 

Furthermore, the module level communication is also refined into de-
tailed pin-accurate communication based on the detailed description of 
the communication protocols and their transmission medium. At this 
level, real (hardware) data types are used. Moreover, often the RT level 

hardware synthesis tools for hardware implementation. Simulations at 
this level ensure the correctness of the architectural decision and the 
implementation of the algorithms. Since the model is synthesizable, a 

specification that is often written in natural language. Therefore, the first 

to the system level simulation. These results enable the evaluation of dif-
ferent implementations of algorithms and the instantiated communication
medium. Depending on the needs of the design process, the estimates result-
ing from the module level simulation process may be time-approximate
or time-accurate. The former provides general indications on the trend 
on which the characteristics of the system vary with architectural changes.
The latter provides accurate estimations of the time the application takes
to execute on a given configuration.  

specification of a system is also synthesizable, that is, it can be input to 

refined into logical building blocks such as adders, flip flops, and latches. 
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comparison between pre- and post-synthesis simulations can be 
performed. That is, the functional and temporal behavior of the system 
is verified against the system implementation. In terms of computer time 
this is an expensive process, due to the high effort in developing cycle-
accurate models of the system components. Although simulations at this 
level can provide accurate results, the running times of the RT models 
are often too long to support an effective development process without 
employing high level simulation. 

Simulation and languages  

Modeling systems at higher abstraction levels has not been possible in the 
early days of hardware design. A major impact on the development and 
abstraction level in which systems are currently designed has been made 
by the introduction of hardware description languages (HDL’s). Two 
popular examples of such languages are Verilog [203,438] and the VHSIC 
Hardware Description Language (VHDL) [27]. Like HDL’s in general, 
VHDL enables a designer to model a system under development at RTL 
level (see Figure 18.1). At this level, VHDL enables one to describe the 
structure of the system in a hierarchical manner and to define how its sub-
systems are interconnected. Most of all, VHDL enables the simulation of 
designs before the implementation. That is, using VHDL several possible 
alternatives could be compared without the cost of manufacturing process, 
therefore reducing time-to-market and lowering the development costs. 

Verilog is very similar to VHDL as a HDL, but some differences exist. 
Although their function is very similar, their syntax is different: Verilog 
resembles C, whereas VHDL resembles more Ada or Pascal. Moreover, 
Verilog has been unable to provide as high-level design constructs as 
VHDL. Verilog also lacks reusability, because it includes neither a concept 
of packages, nor libraries [438]. 

Nowadays, the traditional VHDL development method is facing the 
reality of being unable to answer the challenges posed by the continuously 
increasing system complexities and level of integration. In addition to 
mentioned challenges, demands of mixed hardware–software design capa-
bilities in embedded system development must be answered. There are 
basically two major approaches in adopting system level design languages. 
One approach is to extend the existing HDLs to support higher level of 
abstractions (see for instance System Verilog [402,205]). Such an approach 
typically implies complementing the initial language constructs with con-
structs for hardware descriptions like module, ports, signals and support 
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for timing and concurrency. Another approach is to adapt high-level pro-
gramming languages like C and C++ for hardware description, see for 
instance CynLib from former CynApps, HandelC [70], CycleC from C 

As mentioned, System Verilog employs the first approach, that is, an 
existing HDL is extended with features required in system level design. 
Employing the latter approach has enabled one to take benefit from object-
oriented principles for answering and alleviating the modern design chal-
lenges. As such, the SystemC language has rapidly become one of the 
most widely adopted system level simulation environments in the industry. 

System Verilog  

System Verilog is built on top of Verilog 2001 by the EDA organization 
Accellera. System Verilog extends the Verilog 2001 to meet the system 
level design requirements, but it preserves all the Verilog 2001 features. 

System Verilog adds many new, mostly C-like, constructs and features 
to Verilog 2001, such as strings, enumerated types, new integer types, 
structs, unions, new logic and bit data types, dynamic processes for model-
ing pipelines, and assertion-based verification. Furthermore, System Verilog 
supports object oriented programming by providing classes, class instantia-
tion, polymorphism, and data encapsulation. The new constructs and fea-
tures improve the readability and usability of Verilog based designs. 
Moreover, they raise Verilog’s level of abstraction, which has been lower 

are originally VHDL features. Therefore, it is also possible to integrate 
System Verilog designs into the VHDL environment. 

Despite the different approach when building System Verilog and Sys-
temC, both languages offer the ability to high-level modeling and object 
oriented design. System Verilog may outperform SystemC when writing 
Register Transfer Level (RTL) description and Transaction Level (TL) 
testbenches, as well as when considering extensive tool support for the 
final RTL descriptions. However, SystemC is more suitable for abstract 
TL model writing for architectural exploration [368]. 

SystemC  

The Electronic Design Automation (EDA) community is gradually adopt-
ing executable specifications as a potential replacement for traditional 
written specifications, and as a basis for building system simulators. C and 

Several EDA companies support System Verilog, such as Bluespec, Cadence,
Mentor Graphics, and Synopsys [206]. 

in comparison with VHDL [1,205]. Many of the System Verilog features 

Level Design, SpecC [137,432], or SystemC [204,265]. 
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C++ have been the most popularly chosen bases for implementing execu-
table specification, as well as high-level simulator development languages 
and environments already for several years, as seen in e.g. [137,146,345]. 
The choice to use these two languages is obvious in terms of availability 
and cost: existing tools and programming skills can be used, since compa-
nies already use C++ in their software development and C in their embed-
ded system programming. Also, operating systems like Linux [425] provide 
C and C++ compilers and utilities free of charge. However, these lan-
guages are designed for writing computer programs, not for describing 
computers or other hardware devices. Therefore, they lack necessary func-
tionality and features for describing clocks, signals, reactivity, and parallel 
processing. Also, most current design flows that start from a C or C++ 
based functional level description contain a “jump phase” in which the 
functional model written in C/C++ is translated into an HDL (hardware 
description language) [136,265]. This phase is often manual and involves 
refining the model down to the RTL level. To solve this problem, either a 
system description language should be built on top of C or C++, or a lan-
guage designed specifically for system description should be created. 

SystemC explores the first option by providing a C++ class library for 
designing executable specifications and cycle-accurate simulators of hard-
ware. SystemC is distributed under an open license and is supported by 
several major EDA companies [401], such as Synopsys, Cadence, Celoxica, 
and Mentor Graphics. It provides support for hardware-oriented data types 
like modules, ports, and signals. Originally, there were two major goals in 
designing SystemC [265]: to provide a single language framework for 
co-verifying systems at varying, possibly mixed, abstraction levels, and to 
allow system designers to gradually refine their models towards the RT 
level without translating them into a HDL. 

When SystemC was introduced in 1999, it seemed to have a lot of poten-
tial in system level modeling. SystemC development seemed to be on the 
right track, providing a modeling and simulation platform for combining 
the advantages of object oriented (OO) programming techniques available 
in C++ with the support for cycle-accurate simulations and hardware data 

tion has improved in later versions (SystemC 2.0 onwards), but still certain 
limitations for object oriented programming are enforced (for example, 
ports cannot be defined inside a member function, which would in certain 
cases be very useful). Initially it seemed that the SystemC community 
widely used SystemC for constructing low level descriptions of hardware 
devices in a similar way as hardware is described in traditional HDLs. How-
ever, research presented in EDA conferences and discussions in online 

actively discouraged the use of C++’s object oriented techniques. The situa-
types provided by SystemC. Surprisingly though, initially SystemC
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discussion groups nowadays focus on higher abstraction levels and include 
also the use of object oriented techniques in context with system design 
using SystemC. 

As discussed previously, the constantly increasing system complexity in 
design projects has required design teams to move to higher abstraction 
levels in their design representations. Similarly it has become evident that 
the system models used for simulations necessarily become more complex, 
thus leading to slower simulation speeds. In addition to raising the abstrac-
tion level also in simulation model representation, the problem can be 
addressed by resorting to object oriented programming techniques in con-
structing simulators for complex hardware. 

An important concept deemed problematic in terms of using object-
oriented techniques in hardware simulation and modeling is the use of 
polymorphism: because of the late binding, one cannot tell the exact type 
of the object until the run-time. Some other drawbacks of object orienta-
tion have been summarized in [345] and [366]. Among these are results 
stating that it is difficult to implement a method call in hardware, and that 
protocol mechanism communication does not always fit real hardware. 
Another well-known problem called inheritance anomaly [367], reveals 
that synchronization mechanisms and inheritance often conflict. One pos-
sible solution for resolving inheritance anomaly has been given in [367]. 

However, employing mechanisms like inheritance and data encapsula-
tion proved beneficial in terms of code reuse and error removing. Further-
more, by taking advantage of the power of abstraction provided by object 
orientation, one is allowed to describe the system under design at several 
abstraction levels, as follows: 

study. This view is taken very early in the analysis phase. 

type is the interface of the class. A type can have many classes that 
implement it, and a class can implement many types.  

guage. 

Inheritance is an implementation technique that is used to implement 
subtyping in many object oriented languages. Subtyping on the other hand 
allows polymorphism, where a function may be called with several differ-
ent argument types. The reason that polymorphism is difficult to imple-
ment in hardware is simply that in hardware all types (objects) have to be 
static, since they are physical objects. However, it can be claimed that in 
any practical hardware design these kinds of situations do not arise, or the 
corresponding code can be rewritten in a way that circumvents the problem. 

1. Conceptual level: The classes represent concepts in the domain of 

2. Specification level: The classes specify interfaces of the system. A type

3. Implementation level: Classes represent code in a programming lan-
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This holds, because in an instance of a hardware system the set of objects 
is fixed. It does not change and thus the types of the variables in the pro-
gram do not change while the system is running. Indeed this is exactly the 
case with the TACO SystemC simulation framework discussed in the next 
section. 

Polymorphism and inheritance are very powerful concepts that have 
allowed programmers to increase their productivity substantially mainly 
because they enable reuse of code. Therefore, since hardware design is 
more and more becoming a programming activity, the importance of allow-
ing hardware “programmers” to use these techniques should not be under-
estimated.  

TACO configurable SystemC simulator  

Tools for Application-specific hardware/software CO-design (TACO), a 
framework for designing and evaluating protocol processors, is an ongoing 
research effort at the Turku Centre for Computer Science, Finland, since 
1999. In this framework we have developed tools and methods for helping 
the designer in specifying, simulating, evaluating and synthesizing a certain 
type of protocol processors, TACO processors. TACO processors are 
based on the Transport Triggered Architecture (TTA) [92,405]. A detailed 
discussion on the TACO protocol processor architecture and the way the 
TACO SystemC simulation model fits into the overall TACO protocol 
processor design flow was already provided in Chapter 12 (Protocol Proc-
essor Design Issues). In this chapter we focus on details of the configur-
able SystemC simulator of the TACO framework. This section has its 
foundation in our research originally presented in [440,443,444]. 

The TACO simulation library  

To be able to rapidly simulate, evaluate and explore architectures for a 
given protocol processing application or algorithm, an object oriented con-
figurable protocol processor simulation model was devised for the TACO 
framework. The component library based model is written in SystemC and 
maintained in a standard x86 PC running Linux. The model contains imple-
mentations of functional units (FUs), sockets, interconnection buses, and
the interconnection network controller. Using the simulation model it is 
possible to construct a cycle-accurate simulator of any given TACO archi-
tecture, and to simulate both the functionality of the hardware as well as the
software. The application software code is input to simulations as hexadecimal
values (i.e. compiled TACO instruction words). 
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The level of abstraction used in implementing the TACO simulation 
model is heterogeneous in the following sense: the inter-module communi-
cation is handled at the RT level, whereas the internal functionality of the 
modules is implemented as higher level C++ using SystemC’s fixed bit-
string length data types (e.g. sc_uint<32>, 32-bit unsigned integer). 
The motivation for using heterogeneous abstraction in the simulation 
model implementation is that simulators are notably faster when the execu-
tion logic is implemented as normal C++ instead of RTL style coding; 
high-level C++ can be used inside the modules as long as the correct 
amount of cycle delays (i.e. SystemC wait statements) is inserted into 
modules requiring more than one clock cycle to complete their execution. 
On the other hand, since the communication is modeled at RTL level, very 
precise bitwise details on data transportation can be extracted from simula-
tions. 

Since the functional units of the TACO hardware platform have a very 
similar interface, and since the simulation model needs to be easily ex-
pandable, inheritance is used as a structuring mechanism in the TACO 
SystemC simulation model (see Figure 18.2). This is done by gathering the 
behavior and connectivity that is the same for all functional units into a 
parent class, and placing only the additions to the port/signal configuration 
required by individual modules as well as the code for the particular FU’s 
execution logic to the child classes. The approach has obvious benefits: the 
code is more compact and readable (the interface code is not repeated mul-
tiple times), there are less errors to debug (only additions to the interface 
are coded) and adding new functional units to the SystemC component 
library is faster (most FUs in the hardware platform differ only in the in-
ternal implementation, not so much in the physical interface). New FUs are 
always verified for correctness at the time they are made available in the 
TACO component library. Thus, all FU descriptions in the library are known 
to have already been verified. 

The execution of a TACO simulator for a given architecture consists of 
two phases. In the setup phase all modules are instantiated. This phase 
relies heavily on polymorphism to allow automatic socket instantiation and 
addressing, and to connect different kinds of functional units to buses 
through sockets. After the setup phase all modules in the processor have 
been instantiated. No more modifications to the architecture are made, and 
polymorphism is no longer used. The second phase, simulation, is started 
when the command sc_start() is issued in the sc_main() routine 
(SystemC’s equivalent to the main() routine found in all C++ programs). 
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It is important to realize that at the moment the simulation starts, the pro-
cessor architecture is completely static and no more modules are dynami-
cally constructed. For this reason, it is possible (although it would require 
some effort) to mechanically remove the polymorphic code used for auto-
matic simulator construction. Also the inheritance can be mechanically 
removed, thus making it possible to have static module instantiation and 
standalone modules without a class hierarchy. Such removal of polymor-
phism and inheritance would be useful, were it necessary to develop the 
code at RTL level for direct synthesis from SystemC; certain commercial 
tools nowadays support logic synthesis of system descriptions written in a 
predefined subset of SystemC. However, in the TACO framework this is at 
least currently not necessary, since we have a separate VHDL model for 
logic synthesis, and a design tool that sets up the synthesis model exactly 
according to the simulated configuration. 

The classes that are used for simulating hardware are derived from the 
class sc_module provided by SystemC. This class provides among other 
things macros for simulating signals and ports. The TACO SocketMan-
ager class is not a hardware simulation module: it is used by objects from 
the functional unit classes during the setup phase for generating, con-
necting, and maintaining sockets, socket ID’s and signals dynamically. 
During the simulation phase, SocketManager is used for obtaining 
pointers to any modules that inherit from sc_module and were dynami-
cally created in the setup phase of simulator execution. 

We recall from Chapter 12 (Protocol Processor Design Issues) that 
there are three different types of sockets in a TACO processor: Input sock-
ets are used for writing data into operand registers in FUs, output sockets 
for reading data from result registers, and trigger sockets for writing data 
into trigger registers and simultaneously triggering FU operations. In the 
simulator all sockets are derived from the base class Socket that pro-
vides most of the socket interfacing and a state machine for each socket. 
The subclasses add their own internal functionality and interface require-
ments to the base class description. 

The three level hierarchy for functional units was needed to overcome 
certain SystemC limitations that we have discussed in detail in [440,444]. 
The base classes FuBase and FunctionalUnit provide the interfac-
ing and a state machine needed by each FU. Additions to the base FU in-
terface (e.g. an additional register) and the actual processing task to be 
executed by a specific functional unit are placed into the FU leaf classes 
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(Matcher, Comparator, Counter, etc. in Figure 18.2). A functional unit is 
added to the TACO SystemC simulation model component library by 
specifying a new leaf class under the FunctionalUnit unit class, speci-
fying additional FU registers (if any), specifying the identifiers for logical 
trigger socket IDs, specifying whether the FU needs a result bit signal, and 
writing the code for the operation to be performed. However, due to limita-
tions of the SystemC version used in implementing TACO (SystemC 
1.0.1), some additional code is also needed. For example, the system clock 
needs to be tied to the new FU at this level of the class hierarchy. 

A simple adder FU with one operand, one trigger and one result register 

clarity, bypass code for the previously mentioned SystemC issues is not 
included in the example. 
 
class Adder: public FunctionalUnit { 
  void assignTriggerIds(){ 
    trigger->setId(SocketManager::reserveInSocketId("TADD"));  
  }; 
  void triggerOperation() { 
    resultReg = operandReg + triggerReg;  
  }; 
}; 

example. Note the use of SocketManager for reserving a socket ID. For 
and no result bit would be added to the library as seen in the following

head points to parent class), and lines indicate association.  © Inderscience Publishers, 
Fig. 18.2. SystemC simulator class hierarchy. Arrows indicate inheritance (arrow
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In the above code example, a new leaf class Adder is specified under 
the parent class FunctionalUnit. Then, a logical trigger ID called 
TADD is allocated to the new functional unit. Note that the sockets are de-
fined in the parent class; thus, in the leaf class only the logical trigger IDs 
need to be defined. Next, the operation to be performed is defined. For 
FUs that are able to perform more than one operation on the data, addi-
tional logical trigger IDs need to be allocated. This is done by repeating 
the allocation line of the code example with different ID names. 

The code in the function triggerOperation() defines that once 
the FU is triggered (i.e. when data is written into the trigger register), the 
values stored in the operand and trigger registers are added together, and 
the result of this addition is placed in the result register. Timing issues for 
register reads and writes are managed in the parent class; in the leaf class 
only the operation to be performed in the execute pipe stage needs to be 
defined. 

The interconnection network controller (class NetControl) does not 
have any subclasses since there is always only one such module in a TACO 
processor. The controller is responsible for extracting bus instructions from 
TACO instruction words, generating immediate values and evaluating 
guard expressions for conditional execution. The interconnection network 
controller implementation in the simulation model is state machine based. 

Instantiating the TACO SystemC model 

The simulation model is set up for simulating a given TACO architecture 
by instantiating as many interconnection network buses as necessary and 
then instantiating as many functional units as necessary (and specifying 
their types). This is done either manually or using a tool like the TACO 
design tool [441]. The functional units are connected to the interconnection 
network by calling connect routines in the newly created bus objects. The 
creation of sockets and the signals required for connecting the sockets to 
buses and functional units is done automatically and dynamically by speci-
fying which FU registers connect to which buses as seen in the code  
example below (line numbers have been added for commenting purposes): 
no code in the TACO top level file (main.cpp) is needed for instantiat-
ing and connecting the socket modules between buses and FUs. 
 

0: NetControl* nc = new NetControl("NC");  
1: Bus* bus1 = new Bus("Bus1");  
2: Bus* bus2 = new Bus("Bus2");  
3: Matcher* m1 = new Matcher("M1",clk);  
4: bus1>insertOperand(m1);  
5: bus1>insertData(m1);  
6: bus2>insertData(m1);  
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Line 0: Create the interconnection network controller nc. 
Lines 1 and 2: Create two buses and connect them to nc. 

Line 5: Create an input socket for the data register of m1, create signals for  

Line 6: The data input socket already exists; just connect the socket to bus2. 
 
As can be seen in the code example, much of the complexity in specify-

ing the interconnections between different modules has been abstracted 
away from the designer by resorting to object oriented programming tech-
niques. Still, using the TACO design tool for simulator instantiation should 
be preferred: the tool generates the instantiation file completely and with-
out errors every time, which is more demanding to achieve with manual 
instantiation. Once the architecture has been specified in the described 
manner in the top level TACO SystemC file (main.cpp), the simulator is 
compiled. This is done by issuing the command make in the directory in 
which the SystemC model resides. Normally the compilation takes less 
than a minute. The executable produced by the compilation is the simula-
tor for the specified architecture. The architecture can then be simulated by 

• Functional verification. The key result of any simulation is of course 
verification of correct system functionality. Such is also the case in 
TACO: the most important goal in a processor simulation is to find out 
whether the simulated architecture functions correctly when executing 
the target protocol processing application. 

• Clock cycle count. TACO simulators count the number of clock cycles 
used in each simulation run. This information along with the network 
speed requirement of the target application (100 Mbps Ethernet, 622 
Mbps ATM, etc.) and the estimated achievable clock speed determines 
whether the architecture being simulated is able to execute the applica-
tion fast enough.  

• Bus utilization. During each simulation, TACO simulators calculate the 
number of possible data transfers and the number of actual data transfers 
for each bus in the interconnection network. Thus, when a simulation 
ends, the simulator is able to report relative bus utilization values for 
each bus (e.g. 150 data transfers actually made out of 200 possible ones: 
relative bus utilization = 75%). 

• Register transfer statistics. During simulations TACO simulators also 
record the source and destination addresses for each data move into a 

Line 4: Create an input socket for the operand register of m1, create signals  
          for connecting the socket to m1, connect the socket to m1 and bus1. 

connecting the socket with m1, connect the socket to m1 and bus1. 

Line 3: Create a matcher functional unit m1, connect the system clock to it. 

architecture provide the following results for design quality evaluation: 
starting the executable. The SystemC simulations of TACO processor 
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database. At the end of each simulation, the values in the database are 
used for calculating the frequency of data moves between individual 
registers. This list of data move frequencies is then sorted into descend-
ing order and reported as register transfer statistics to the designer. 

The results extracted from the simulation process are returned either in a 
human-readable format or are written into a computer-readable format (i.e. 
XML file) that can be used for passing the simulation results on to a dedi-
cated analysis tool. 

By studying the source code of the SystemC class library it can be ob-
served that by using the internal calls in the SystemC implementation a 
cleaner design of the TACO simulation model could probably have been 
obtained. However, since the SystemC internals were not really documented 
and standardized at the time, the decision to use the official SystemC API 
was made for the TACO SystemC simulation model implementation. If the 
TACO simulation framework development would start today with the most 
recent SystemC version, we would probably still decide on using the offi-
cial SystemC API, among other reasons to ensure compatibility with Sys-
temC-enabled EDA tools nowadays in existence. 

We have performed several simulation case studies, for example those 
presented in [5,442,443]. In these studies we have been able to determine 
that TACO simulators execute very fast: one run of a packet processing 
loop can be performed in less than a second or at most a few seconds on a 
standard PC. At least two reasons for this can be identified. First, the 
implemented class hierarchy of the system level simulation framework 
seems to be well suited for simulating this type of protocol processors. 
Second, since it has been possible to implement certain parts of the Sys-
temC simulation model in high-level C++, fast simulations can be ex-
pected. Naturally, the simulation speed in terms of clock cycles per second 
in the simulated processor depends on the complexity of the architecture 
being simulated, and on the performance of the PC used for simulation. As 
an example of simulation speed from one of our previous case studies, we 
have determined that a simple TACO processor (an IPv6 client processor) 
can be simulated at 2950 clock cycles per second in a 1000 MHz PC with 
256 MB RAM [5]. In this particular case study this translates to about 1.5 
IPv6 datagrams per second. Obviously the total simulation time depends 
also on the number of protocol data units (PDUs) processed in the simula-
tion; in the IPv6 client processor simulator the simulated processing of 
1000 IPv6 datagrams takes 10–11 minutes. We would expect to see similar 
performance figures in any simulations involving the use of high-level 
C++ with SystemC. 
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The simulation process allows the designer to detect bottlenecks in the 
performance of the system by analyzing simulation results for different 
processing tasks. Consequently, optimizations of the simulated TACO 
configurations can be deemed necessary and incorporated into the simu-
lated configuration. Optimizations can be made either by increasing the 
parallelism level or by designing even further optimized FUs. It is impor-
tant to remark, though, that each newly designed FU provides its own 
functional primitives, which may be used to express the application speci-
fication during the process of mapping the application to hardware and 
software partitions. Therefore, the mapping process has to be performed 
again for the processing tasks that benefit from the newly designed FUs. 

High-level instruction set simulator generator for COFFEE 
Risc Core  

An instruction set simulator (ISS) is a tool that mimics target processor’s 
behavior when running an application program. ISSs can be either com-

ISSs are useful tools for exploring new processor architectures and for 
verifying embedded systems. ISS generation allow designer to easily cus-
tomize and configure them for different target architectures. Commercial 
approaches of ISS generators are for instance Tensilica’s Xtensa [414], 
ARC Cycle-Accurate simulator (CAS) [20], Target’s Chess/Checkers tool 
suite, which includes a retargetable ISS generator [147], and CoWare 
Processor Designer [93]. Also academic approaches exist, such as Aachen 
Lisa Tools [431] and PEAS III ASIP Design Environment [210]. 

At the Institute of Digital and Computer Systems at Tampere University 
of Technology (TUT), we have a recently started a research project for im-
plementation of an instruction set simulator generator to create instruction 
set simulators for different Reduced Instruction Set Computer (RISC) 
architectures. The purpose of our work is to alleviate the burden of appli-
cation verification and to evaluate the consequences of changes in instruc-
tion set. Moreover, considering that the simulator generation is nearly fully 
automated, we can easily generate various simulators in order to direct 
application software to appropriate target processor. At first, we aim at 
generating ISSs for COFFEE Risc Core. 

 
 

interpretive simulators can dynamically adapt to program code changes.
piled or interpretive. Compiled simulators are fast, but not flexible, whereas 
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COFFEE RISC Core [248] is an open source processor core developed 
at the Institute of Digital and Computer Systems at TUT. The objective of 
the COFFEE project is to design a core as an Intellectual Property (IP) 
block and to define a “perfect” instruction set. For the purpose of instruc-
tion set exploration, our simulator generator is able to generate flexible and 
reusable ISSs. That is, instructions, number of registers, memories, their 
sizes, and different operating modes among other processor-specific in-
formation are generated according to the processor description. Let us next 
present the generator flow and the structure of generated simulators more 
in detail. 

Simulator generation  

struction set should contain at least the definition of the instructions, but it 
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Fig. 18.3. Simulator generator and application simulation flow. 

 
 
 

Figure 18.3 depicts the generator and simulator flow. We describe the 
instruction set of the application target processor in XML format. The in-
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may also contain information of the required parameters, their types, and 
possible restrictions. A Parser reads the instruction set file and extracts in-
formation of each instruction, which the Simulator generator uses when 
generating the body of the Simulator (that is, instruction header files, 
which function as the interface to other classes). Generating the functiona-
lity of the instructions is most likely nearly impossible due to the diversity 
of their possible functionality. Therefore, we have an Instruction library 
from which the already verified implementations of different instructions 
can be selected. In case the instruction implementations cannot be found or 
they are very different to the example implementations, they must be writ-
ten manually and connected to the simulator. 

As seen in Figure 18.4, generated simulators are class based and each 
instruction is a class. Hence, the number and implementation of instruc-
tions can be changed without regenerating the simulator, only recompila-
tion is required. 

Simulator structure and application simulation  

We have used object oriented C++ to implement the generated simulators. 
A simulator consists of the base class Instruction from which all the  
instructions (from Inst_0 to Inst_n) are inherited. The benefits of object 
oriented design and inheritance were discussed earlier in this chapter. 

Instructions are connected to Arithmetic library, Simulator, Register, 
and Memory classes. The Arithmetic library contains implementations for 
arithmetic, Boolean, and bitfield manipulation operations. The Simulator 
class controls the simulation of instructions and for instance the register and 
memory read and write operations, whereas Register and Memory classes 
only implement them. 

The right-hand side of Figure 18.3 illustrates the application simulation 
flow. At first, Application software traverses through a processor Compiler 
flow, which produces the Application binary file. The Instruction set simu-
lator reads the binary and executes the application instructions. As a result, 
the simulator produces separate text files for register and memory use for 
register and memory operation analysis. In the future, we will implement a 
hardware interface, which allows the running of application code in the 
simulator and on hardware in parallel, as well as a model of a pipeline to 
make the high-level model more consistent with real hardware. 
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Fig. 18.4. Class hierarchy of a generated simulator. 

Conclusion 

In this chapter we have discussed the general principles behind system 
level simulation and positioned the system level simulation abstraction in 
the design flow relative to other levels of abstraction that may be used in 
modeling and simulating processors. System level modeling and simula-
tion languages are nowadays often based on C or C++. With C++ based 
languages, the powerful concepts and benefits provided by object oriented 
programming techniques become available for the system designer model-
ing hardware. The design community has regarded some object oriented 
techniques as problematic, but as discussed in this chapter, this can also be 
seen as a misinterpretation of the way the system is represented by objects 
and classes. We discussed these issues, and system level design in general, 
especially in terms of the SystemC modeling language. 

As examples of system level simulation frameworks we discussed the 
modeling and simulation of TACO protocol processors using SystemC, 
and instruction set simulator generation for the COFFEE RISC processor 
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using C++. The TACO system level simulation framework takes advantage 
of object-oriented programming techniques like polymorphism and inheri-
tance. The communication between hardware entities is modeled at the 
register transfer level, whilst the internal functionality of the entities is 
implemented using high-level C++. The goal in the TACO simulation 
framework implementation has been to be able to provide accurate, rapid 
configuration and simulation of TACO architecture instances using afford-
able PC computers, thus making the system level design space exploration 
process fast and cost-efficient. The achievable simulation speed of the 
TACO simulation framework depends on the complexity of the simulated 
architecture, the speed of the PC used for simulation, and the target proto-
col processing application. For example, for IPv6 client operation we have 
measured the speed of 1.5 datagrams per second on a 1000 MHz PC with 
256 MB RAM (2950 processor clock cycles per second). 

An instruction set simulator generator for the COFFEE RISC processor 
was also discussed in this chapter, focusing on how the generation process 
and, respectively, how the simulation is performed. Future plans for the 
COFFEE instruction set simulator generator include the implementation of 
a hardware interface that allows running the application code in the simu-
lator and on hardware in parallel, as well as a model of a pipeline to make 
the high-level model more consistent with real hardware. 

As a general remark, from the two simulation experiments discussed in 
this chapter we can conclude that the system level simulation does not 
provide a magical solution for ensuring the correctness of the final system. 
Firstly, a system level executable specification of a system, as complete as 
it may be, does not represent the real system, but only an abstraction of it. 
This means that, in fact, we are not simulating the system as such, but only 
its specification. Secondly, since embedded computer systems are reactive 
systems (they react to stimuli from the environment and eventually provide 
response) their I/O behavior has to be tested. This is a nontrivial task, 
since generating test data to cover all possible scenarios can prove difficult. 
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The capability to tailor processor instruction set architecture (ISA) around 

Mask-Time Configurable Processors (MTCPs) to Run-Time Reconfigur-
able Processors (RTRPs), ISA customization is performed transferring the 
implementation of critical kernels from software to hardware. This intro-
duces a new design-space exploration problem that requires skills in both 
software and hardware design. Since adaptive processors appear as the 
natural extension of Digital Signal Processors (DSPs), programming tools 
for customizable processors need to be as similar as possible to standard 
software development environments, in order to enable the adaptive com-
puting to the wide audience of DSP programmers. While fast design-space 
exploration can be performed using high-level description languages, pro-
grammers proficient in hardware design can further improve performance 
through “structural” descriptions involving, for example, the direct utiliza-
tion of macro-operators or the possibility of balancing critical paths 
through register insertion. The widespread knowledge of ANSI C among 
developers suggests its usage as main entry language for both configurable 
and reconfigurable architectures. This in turn introduces the problem of 
translating C codes (or C dialects) into some kind of hardware description, 
be it HDL in case of MTCPs or bit-stream for RTRPs. In this context, 
data-flow graphs (DFGs) can be efficiently used to close the gap between 
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the computational requirements of a given application is proposed today
as the most appealing way to match performance with very short time-
to-market, thus reduction non-recurring engineering (NRE) costs. From 



hardware and software design, bridging hardware and software with a 
computational model common to both the design environments. Standard 
ANSI C can also be used by the programmer for the management of the 
application control flow on the processor core. Custom-designed instruc-
tions are then embedded in the C code using standard, compiler-friendly 
mechanisms, such as intrinsics and assembly inlining. 

Algorithm development on reconfigurable processors 
(programming issues) 

way to perform computation in the electronic marketplace. Today, at least 
one processor is present in every SoC in order to handle in a simple 
fashion the overall system synchronization, providing the operating system 
functionalities (i.e. multi-tasking management, real-time issues) and I/O 
communications. Usually, general-purpose embedded processors, like ARM9, 
PowerPC, MIPS, do not have responsibility of the computation that is 
demanded to high-performance co-processing engines. Depending on app-
lication constraints and on the required degree of flexibility, computation 
intensive parts are implemented on dedicated hardware accelerators (when 
non-recurring costs allow that) or on application-specific digital signal pro-
cessors (DSPs). Since they are software programmable, application-specific 
DSPs are proposed as a way to match flexibility with high performance. 
Architectures like the Texas Instruments OMAP or the STMicroelectronics 
STW51000 (also known as GreenSIDE) are examples of state-of-the-art 
commercial SoCs including ARM-based system that achieve performance 
efficiency through one or more application-specific DSPs and one or more 
dedicated hardware accelerators. 

One of the most interesting trends in the field of high-performance 
energy-aware SoC design is the introduction of dynamically (or run-time) 
reconfigurable hardware (e.g. embedded FPGAs, reconfigurable data-paths 
and reconfigurable processors) in addition or in substitution to the constel-

In general terms, the exploitation of such kind of architectures implies 
the capability to tailor the SoC functionalities around the computational 
requirements of the given application, extending the base instruction set of 
the main processor (for example, the ARM in the previously cited examples), 
thus making reconfigurable hardware a run-time extension of the baseline 
computation engine. 
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lation of DSPs and dedicated hardware accelerators [38,50,97,98,274,343]. 

Processor-based Systems-on-Chip (SoC) are becoming the most popular 
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As in the case of DSPs and dedicated accelerators, the exploitation of 
any degree of parallelism at bit-, word-, instruction-, iteration- and task-
level is the control lever for the effective utilization of the reconfigurable 
hardware. This requires from the programmer a deep knowledge of both 
application and system architecture to understand at best how to partition 
and how to map algorithms over the different available computational re-
sources. On the other hand, this also requires to the programmer the capa-
bility to investigate a hybrid design-space including both software and 
hardware concepts. For application developers long used to C/assembly 
design environments, this requirement is not so usual given the common 
lack of skills in hardware design flows. 

With respect to mask-time programmable hardware accelerators, recon-
figurable computing offers to the programmer the capability to design after 
fabrication its extensions in order to fulfill application requirements. For 
that, the capability of providing soft-hardware (or hardware programmable 
as software) is probably the key point to enable the large market of appli-
cation developers to effectively utilize reconfigurable devices [99]. In the 
past, reconfigurable devices borrowed tools and methodologies from the 
discrete FPGA world (thus utilizing design flows based on hand-coded 
RTL HDL), although it was clear from the beginning the severe lack of 
user-level programmability coupled to this approach. But very soon, the 
utilization of C language has been clearly established as the most promis-
ing way to approach the customers at the “reconfigurable” proposal. 

A lot of C-oriented dialects have been presented including entire new 
object classes dedicated to hardware design, like in SystemC or Handel-C. 
This kind of approach moves C towards the hardware, design making 
hardware description friendlier for application developers. In this context, 
the C-based languages basically become yet another HDL, therefore  
requiring hardware skills to developers. 

A more promising approach is to use standard ANSI C code and translate 
it into some kind of RTL, making use of some sort of C-to-RTL hardware 
compilation. Companies like Celoxica, Mentor Graphics, Impulse, Altium 
and CriticalBlue offer stand-alone C-to-RTL and/or C-dialect-to-RTL syn-
thesizers that can be integrated in standard flows for FPGAs and that were 
used in many works on reconfigurable system implemented using com-
mercial FPGAs. 

In the case of embedded applications, the reconfigurable device is a part 
of a usually complex system with a rigid cost, power and area budget. 
This precludes the utilization of standard FPGAs, since they are too area 
demanding and not so appealing in terms of performance, power consump-
tion and cost. Reconfigurability is provided either through embedded-FPGAs 
(small FPGA suitable for SoC integration), or reconfigurable data-paths 



and reconfigurable processors that offer flexibility under severe constraints 
in terms of area. 

In fact, the area occupation of reconfigurable devices is very often con-
sidered a key issue for SoC designers. This means that the reconfigurable 
device needs to be as small as possible, while configuration efficiency 
must grow up to the peak performance offered by the device. 

On the architecture side, area limitation can be accomplished by accu-
rate trade-off between logic and interconnect, reducing for example the 
impact of programmable interconnect with respect to the area required for 
computational logic. In island-style programmable architectures it is possi-
ble to achieve better area figures increasing the grain of the basic logic 
element with respect to the interconnect structure, or decreasing the inter-
connect capabilities, limiting the connection at level of rows or supporting 
only communication among the neighbors logic elements [380,445]. This 
implies an undeniable reduction in term of flexibility, paid to the need of 
guarantee small area budget. 

On the programming side, the increase of design constraints and the 
reduction of degree of freedom in the mapping of algorithms imply that 
any inefficiency of the automated high-level synthesizer lead to a dramatic 
performance loss. To avoid this, many reconfigurable devices provide 
“structural” languages in which operators are directly mapped into the 
device without synthesis. Application designers can tune, refine or re-write 
from scratch the implementation in order to maximize the performance 
benefit in the same way that the DSP programmer can use the assembly 
language. 

All these preliminary considerations can be summarized in few points 
that we can see as requirements for an application development environ-
ment in the field of reconfigurable computing: 

• to be appealing for the wide “world” of software/DSP programmers, 
such environment needs to be as similar as possible to traditional 
software-only environments; 

• to be effective and compliant to the huge investment in term of area and 
costs required by reconfigurable hardware, such environment needs to 
provide capability to exploit as much as possible architectural features. 

Instruction set extension implementation on a standard 
compilation tool-chain 

The extension of a standard software tool-chain in order to support instruc-
tion set metamorphosis implies to analyze the role played by each tool 
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and the efficiency required by each step, with the final goal of proposing to 
application developers a tool-chain in which hardware and software can be 
handled together. The introduction of instruction set extensions implies 
modification in each step of the compilation process, and the addition of 
bitsream generation tools dedicated to the mapping of instruction set exten-
sions in the reconfigurable hardware. In this section we focus on the soft-
ware support necessary to handle instruction set reconfiguration from a C 
compiler. Aspects concerning the extension definition and its mapping on 
the hardware will be dealt with in the next sections. 

In general terms, modifications in non-optimizing assembler and in the 
linker are kept as minimal as possible, since the assembler can be reduced 
to a simple mnemonic translator and the linker needs to include the even-
tual bit-stream for the hardware customization. On the contrary, high-level 
compilers or optimizing back-end tools (for example, instruction schedul-
ers) needs to be aware of the reconfigurable parts in order to help the user 
in the optimization process. We can require to programming tools for re-
configurable processors many tasks: 

• provide to the user the capabilities to define and instance an extended 
instruction; 

• schedule extension instruction accurately; 
• automatically recognize user-defined extended instructions in a general-

purpose code; 
• detect critical kernels and automatically generate a set of extension 

instructions. 

The definition of extension instructions is usually accomplished by dedi-
cated tools, while the capability of instancing extension instructions in a 
software code can be obtained by using the same functionalities provided 
for assembly inlining. Although apparently similar to software tools required 
for configurable processors, the last three points are very specific of recon-
figurable computing. The main difference is in that cost metrics and con-
straints management change significantly between an application-specific 
custom design and a soft-programmable hardware design. Accurate schedul-
ing and identification of custom instructions, be it performed in compiler 
front-end or optimizing back-end tools, can be handled by modifying the 
machine description and the intermediate representation (a sort of virtual 
machine-independent assembler) of the compiler. 

In the case of traditional C tool-chains, like, GNU GCC [157], this 
implies the complete recompilation of the compiler front-end since the 
machine description, as well as the pattern matching automata detecting 



deal with extended instruction in the same way that a compiler handles 
floating-point extensions, describing the required functional units in the 
intermediate representation [56]. Of course, this proves to be a hard obstacle 
for most application developers, also in terms of time required during the 
design-space exploration when the instruction set extension is under defi-
nition. 

Alternative approaches have been proposed in research projects on ad-
vanced high-level compilers like Impact [72] and SUIF [393]. In these 
cases, machine descriptions and intermediate representations can be dy-
namically extended without rebuilding the tools, since the target descrip-
tion is read before each compilation. Consequently, pattern recognition and 
instruction scheduling are accomplished by mean of generic algorithms or 
implemented by dynamically built optimizing structures. State-of-the-art 
compiler capable to handle optimized scheduling of long latency custom 
instructions can be found, for example, in the MOLEN project [436] and in 
the DRESC framework [282], respectively based on SUIF and Impact. The 
Trimaran framework [426] proposes a scheduling mechanism based on 
simulation/profiling back-annotations to reduce stalls in a computation-
aware environment, although this has a significant impact on compilation 
time. 

This point introduces the last issue that reconfigurable computing im-
poses on programming tools: the reconfiguration of the simulator. Simi-
larly to the case of the compiler, the simulator needs to be adapted to the 
change/extension of the instruction set. Language for Instruction Set Archi-
tecture (LISA), commercially available from CoWare and Axys, as well as 
open-source architecture description languages like Arch-C, are examples 
of frameworks where cycle-accurate instruction set simulators are built 
with the support of native structures implementing typical processor objects, 
like the pipeline or the register file. This approach requires a rebuilding of 
the instruction set simulator every time the instruction set is changed. In 
[300] an alternative approach is proposed. A dynamically linked library is 
used to model the instruction set extension, while the main processor is 
modeled by standard simulator support. The mechanism is applied on both 
functional and cycle-accurate simulation, integrating the mechanism on a 
LISA/System-C environment and on a pure-functional debugging envi-
ronment based on the GNU GDB simulator. 
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the assembly instruction, is implemented statically. It is thus possible to 

Figure 19.1 shows a simplified and very general block diagram for a 
programming environment supporting reconfigurable computing. It includes 
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Fig. 19.1. Basic software toolchain extension to support reconfigurability issues. 

the basic software support (compiler + assembler + linker + simulator) 
previously described, and the partitioning and configuration parts. The par-
titioning is the process, automatic or not, of design-space exploration in 
which critical tasks (kernels) are moved from software implementation to 
hardware (and/or vice versa) depending on the required performance con-
straints (speed, energy, …). Today, this process is usually under the complete 
control of the programmer, although it can be helped by the usage of tools. 
Research is going in the direction of full automation of the partitioning, since 
this may represent the key enabling step towards true soft-programmable  
 

 
 

hardware (e.g. [83]). Despite this, very few works are at the moment leaving 
the academic/research environment to challenge the market, and these few 
works are focused in the field of mask-time programmable devices (e.g. 
[35 6]). As explained in the introduction, the configuration efficiency 



The last block in Figure 19.1 is the configuration engine, a tool that 
starting from some kind of description language is capable to provide the 
configuration bit-streams for the reconfigurable device. This tool is (of 
course) tightly coupled with the underlying hardware, and for C-based 
configuration flows it represents the bridge from software to hardware. 
The following sections describe in detail the mapping aspect, since we 
believe it represents one of the most critical enabling points for the recon-
figurable computing success, while the last section provides an overview 
of the programming tools for reconfigurable computing. 

Bridging the gap from hardware to software through  
C-described data-flow graphs 

Programming of reconfigurable devices can be performed in many differ-
ent ways, borrowing methods and tools from standard hardware design 
(VHDL or Verilog) or from software compilation. As stated in [68], there 
is no real difference between high-level behavioral synthesis and non-
optimizing compilation of programming languages, since they are both tran-
slations of an initial language to an intermediate representation. On the 
contrary, the optimization is a very different step in hardware synthesis 
from the software synthesis, with different metrics and cost-functions. An-
other common point between compilation and synthesis is that graphs are 
most often used as a mean for internal representation. In software programs, 
we can distinguish between two kinds of graphs: control- and data-flow 
graphs (respectively CFG and DFG). The CFG is the representation of the 
paths that might be traversed in a program during its execution. Each node 
of the CFG is known as basic block and its graph representation is a DFG. 
The DFG describes the dependencies among the set of operations required 
in the data processing. As shown in the example in Figure 19.2, branches 
of a conditional statement (if…then…else…) are represented as nodes of 
the CFG, while the operations performed in each branch are described by a 
DFG “attached” to CFG nodes. 
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In hardware description languages we have co-existence of both sequen-
tial and concurrent definitions of operations. As an example, the behavior 

required to run-time dynamically reconfigurable devices can be accomp-
lished only by full exploitation of the computational capability, and only a
very restricted margin is left to the natural the overhead that an automatic
design flow can introduce. 
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of a process or the expression assigned to a signal follow a sequential 
paradigm, although this not means that the same semantic of the software 
languages is used. Operations can be viewed as nodes in the DFG, as well 
as sub-graphs of a DFG, depending on the granularity we choose to assign 
to the node. Hardware description languages use an event-driven activation 
mechanism in which more than one DFG and more than one DFG node 
can be active per time natively. This represents the most significant differ-
ence with respect to control flow resolution in software languages. Of course, 
during the compilation for processors featuring some degree of parallelism 
(e.g. VLIWs, Superscalars, TTAs, …) this constraint is heavily relaxed, 
bringing software implementation near to the hardware even though with 
different optimization metrics. 

For the definition of a suitable bridge between hardware and software in 
the field of reconfigurable computing, the DFG represents the most natural 
choice. In the case of reconfigurable processors, control is typically managed 
by the processor core, while DFGs are implemented through hardware 
acceleration. Hence, the DFG suitable for the mapping on the reconfigur-
able device can be described by a sequential language, like C, while it can 
be viewed as an abstract circuit representation. 

Fig. 19.2. Example of control- and data-flow graphs. 



Parallelism exploitation is the key point for the effectiveness of recon-
figurable computing, either at word-level or loop-level. Standard software 
compilation techniques like software pipelining [8], iterative modulo 
scheduling [346] and vectorization [314] are examples of well-known 
methods that increase instruction-level parallelism by the exploitation of 
loop-level data parallelism. Loop transformations are widely used in com-
pilation for VLIW processors to maximize performance, and they are app-
lied to utilize SIMD (Single-Instruction Multiple-Data) extensions (like the 
Intel MMX or AMD 3DNow!). These software-oriented methodologies 
can be efficiently utilized to transfer loop-level parallelism to instructions 
in the loop body, thus increasing the instruction-level parallelism of the 
innermost DFG. On the other hand, hardware-oriented methods can be 
applied for efficient mapping of DFGs over reconfigurable devices. Start-
ing from a DFG software description where instructions (or DFG nodes) 
are computed in the same order in which they are written in the code, we 
can relax the enabling rule of the DFG computing each node when inputs 
are available and outputs can be overwritten, as described in [437]. The 
run-time execution of a DFG can thus be modeled by Petri Nets as in 
[139,302]. By nodes scheduling and register insertion it is possible to build 
the DFG in a pipelined form, without affecting the functionality. In this 
case, it is possible to overlap the execution of successive DFG activations 
(if data-dependencies allow that) hence improving performance by the 
exploitation of parallelism at level of iteration, as in [384,449]. 

So far, we have discussed about the role played by DFG as bridge bet-
ween software and hardware. One more point is of course represented by 
the way in which the DFG can be described in order to meet the require-
ments of effectiveness and friendliness posed as basis of a programming 
tool-chain for reconfigurable processor. We said that the entry language 
must be appealing to software programmer and must be effective in term 
of hardware utilization. An interesting option is to use the C language for 
that goal. C of course allows describing DFGs since DFGs are representa-
tions of the basic blocks. It also allows handling the DFG topology under 
simple restrictions. For example, the utilization of a single-assignment 
form, in which each variable is assigned exactly once, can help the user in 
the DFG modeling, providing a simple way of handling efficiently all the 
data-dependencies, as proposed in [305]. Single assignment is today intro-
duced in many compilation frameworks as an important intermediate rep-
resentation in order to simplify and/or optimize internal steps. Starting 
from the version 4, also the GNU GCC toolchain makes extensive use of 
single-assignment representations, although the conversion to single assign-
ment is performed (in our knowledge) only for scalar register values (every-
thing except memory) at level of basic block. For this reason, conditional 
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statements (if…then…else) are converted computing concurrently each 
branch of the statement and introducing merge-nodes that select the correct 
outputs among the branch-replication, similarly to multiplexers in the 
hardware design. In general, the translation of standard C and C-dialects 

memory access issues are considered (i.e. pointers) [371]. In the case of 
reconfigurable processors, the processor core can normally handle memory 

thus simplifying synthesis requirements [380]. 
Summarizing, single-assignment forms are restrictions of the C semantic, 

and they are useful to accurately handle and optimize DFG performance 
(parallelism and pipeline structure). Their significant advantage is that they 
can be extracted from high-level C compilers. The application developer 
can thus start the implementation over a reconfigurable processor from the 
application description written in C, selecting the critical kernels suitable 
for the reconfigurable hardware mapping. Depending on the efficiency 
required, the application developer can choose to use an automatic transla-
tion mechanism or to hand-code the kernel with a low-level description 
language such as single-assignment C stripped of non-hardware-friendly 

by the time spent to the development. 

Overview of programming tools for reconfigurable 
processors 

Programming frameworks for reconfigurable architectures are highly 

Milestones of the research on reconfigurable processors, like the Garp 
[65] processor, and commercial state-of-the-art reconfigurable processors 
[25,32,119,364] propose C-based design environments envisioning the 
possibility to offer the end-user the capability of automatically partition the 
source code, and then to co-compile the same code over both the processor 
core and the reconfigurable logic. The Nimble compiler [264], targeting 
the Garp processor, is one of the first tools that automatically transfers 
critical kernels from a processor core to reconfigurable hardware accelera-
tor, selecting them from the basic blocks found in the innermost loops. 

access, eventually with the help of DMAs to speed up the memory access, 

dependent on the structure, the hardware granularity and the language used. 
Although far from being an ideal hardware description language, C was
selected as an appealing entry-point for the configuration of reconfigurable
processors since the first architectures (e.g. PRISM [29]). 

constructs. This evaluation introduces a third trade-off point represented 

into some kind of hardware description is a complex problem addressed 
by many research programs [100,132,167,221,394], especially if the 



data-paths, is configured using a single-assignment language with C opera-
tors (called DIL, Dataflow Intermediate Language). RaPiD [95] features a 
C-based proprietary language, RaPiD-C, that consists of nested loops des-
cribing pipelines. Language extensions allow the programmer to explicitly 
handle synchronization, and specify parallelism and data movement (that 
is stream-based). Another example of popular coarse-grained architecture 
is represented by the RAW architecture [411] developed from the MIT: in 
this case a SUIF-based compiler partitions the application over a sort of 
RISC-based multiprocessor, rather than performing technology mapping. 
Another programming approach based on C language was provided for 
the NAPA architecture [158], including a C-programmed reconfigurable 
device as I/O co-processor. 

part of the programmability offered by high-level languages the program-
ming efficiency (MOPS/mm2), as reported in the Hartenstein’s retrospec-
tive [180]. In general, the underlying architecture has a strong impact on the 
technology mapping, on the placement and to a lesser term on the routing 
algorithm. 

Direct mapping is probably the most used methods for coarse-grained 
architectures: operators are mapped to the programmable elements that 
compound the device without a real logic synthesis step. PACT XPP [445] 
and MorphoSys [380] are examples of this kind of approach. In both cases, 
a tentative to virtualize the underlying mapping layer using C-based high-
level compiler flows is provided [282,449]. This notwithstanding, for full 
exploitation of the architecture capabilities, low level, architecture specific 
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Many reconfigurable devices are programmable at assembly-level and/  
or by graphical tools for manual mapping, in a way that seems to trade 

approaches are utilized. PACT XPP is programmed through the Native 
Machine Language (NML), a structural event-based netlist description  lan-
guage. Specific tools are proposed for the place-and-route phase [390] 
where the strongly pipelined structure requires to pipeline also interconnec-
tions across rows by dedicated registers. For the MorphoSys architecture,
a SUIF-based compiler is provided for the host processor, while partitioning
between hardware and software is performed manually by the programmer.
MorphoASM, a structural assembly-like language, is used to configure
each programmable element to the functionality required. Usually, the pro-
grammer need to take into account also the interconnect capabilities of each
programmable element in order to distribute processing elements in the 
device pipeline in a way compliant to timing requirements.  

PipeRench [59, 159], one of most popular coarse-grained reconfigurable 
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In general, application mapping on coarse-grained architectures different 
from the island style of FPGAs, requires specific management constructs. 
As an example, in the Garp processor, the GAMA tool [65] maps the DFG 
using a tree covering algorithm that splits the original graph into sub-trees 
with single fanout nodes, introducing significant overhead in resource 
utilization. Furthermore, only acyclic graphs are supported. Modules detected 
by the tree covering are placed in Garp array rows (only one module per 
row) using bit-slice methods proposed for data-paths synthesis in regular 
architectures. The DRESC compiler [282] is an example of high-level 
compiler targeting a MorphoSys-like coarse-grain architecture. It focuses 
on the exploitation of loop-level parallelism and perform place-and-route 
for the reconfigurable hardware using an extended iterative modulo sched-
uling algorithm. A simulated annealing strategy is used to determine when 
a legal configuration can be accepted or not, helping to escape from local 
minimum. 

In some cases, where the reconfigurable processor is integrating an 
embedded FPGA or it is implemented on a stand-alone FPGA (like in 
MOLEN [436]), VHDL and Verilog are used for the hardware customiza-
tion. The optimization process is typical of hardware design flows: beha-
vioral RTL HDL descriptions are substituted by FPGA-specific macros, 
when expected performance are not achieved directly from synthesis. For 
what concerns programmability issues, since HDL is the entry-point all 
C-based languages and tools generating VHDL can be applied to provide 
a more software-oriented approach, but the optimization process is per-
formed under the hardware design paradigm, for example analyzing timing 
constraints and critical paths. 

An example of algorithm development environment  
for reconfigurable processors: the Griffy-C approach  

This section describes, as an example of algorithm development environ-
ment, the Griffy-C approach proposed for the XiRisc reconfigurable pro-
cessor and developed at the Arces/ST joint lab of the University of Bologna. 
In this context [270] reconfiguration is performed at level of assembly 
instruction, while the functionality associated to each extension instruction 
is modeled as a DFG. The reconfigurable device is fit in the processor 
pipeline as an additional functional unit, triggered by a specific assembly 
directive (pgaop).  

 



Fig. 19.3. XiRisc algorithm development environment. 

Figure 19.3 overviews the programming environment proposed to the 
application developer. In particular, through profiling analysis the pro-
grammer manually identifies critical kernels suitable for the mapping on 
reconfigurable hardware (pgaops). The compiler tool-chain is based on a 
retargeted version of the GNU GCC and instruction set extensions are 
handled through assembler inlining. No specific scheduling support is pro-
vided for the extended instruction set. Software simulation is provided for 
both functional debugging on the GNU GDB and cycle-accurate instruction 
set simulation in the LISA/SystemC environment. With respect to the com-
piler, the simulation environment supports instruction set metamorphosis 
through the utilization of dynamically linked shared library (so library 
under Linux environment). The emulation library of the instruction set 
extension is automatically generated from DFG compilation, and plugged 
in both GDB and LISA/SystemC environment [300]. 

The functionality of each instruction set extension is described starting 
from a single-assignment manually-dismantled C syntax called Griffy-C 
[299]. Griffy-C is a structural description in which basic C operators (e.g. 
sum, subtraction, bitwise logical operation and comparisons) are directly 
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instanced on hardware resources, without logic synthesis. Figure 19.4 shows 
an example of the Griffy-C code used to implement a sum of absolute differ-
ences (SAD) from video encoding and the corresponding (non-optimized) 
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DFG. Griffy-C does not support control flow statements, with the only 
exception of the conditional assignment (“?:”) used to implement multi-
plexers, in hardware terms, that is a merge-node under the data-flow para-
digm. 

The C-oriented description implies that some operations with constant 
operands may be resolved by constant folding and collapsing on following 
nodes. This kind of operators does not need explicit instantiation of pro-
cessing elements. This can be regarded as a very basic synthesis step. An 
example of such approach is the utilization of the routing resources to im-
plement constant amount shifts in fine-grained routing architectures. Figure 
19.4(a) shows the collapsing of shifts used in the previous SAD example 
for unpacking the input variables, thus providing the optimized pipelined 
DFG depicted in Figure 19.4(b). Horizontally aligned nodes represent a 
single pipeline stage, and dotted nodes represent collapsed operators. 

 The single-assignment syntax used in Griffy-C allows the user to handle 
accurately the pipeline structure and at the same time can be automatically 
generated from a high-level compiler tool-chain as proposed in [254]. Spe-
cific extensions for the bit-level definition of the variable size are provided 

Fig. 19.4. Example of Griffy-C code and the corresponding DFG. 



Fig. 19.5. Example of optimization of routing-only operators. 

through #pragma directives in order to reduce area occupation. The map-
ping process can be divided in five main steps: 

• Instruction-Level Parallelism extraction. Starting from the data-
dependencies of the DFG an optimized scheduling algorithm builds the 
pipeline structure. Griffy-C code is analyzed and scheduled in pipeline 
stages applying an earliest enabling rule, in which instruction are exe-
cuted as soon as possible. Detection of routing-only instructions allows 

feedbacks (e.g. described by static variable in the C syntax) requires 
special management (see Figure 19.5). 

• Physical Mapping. The arithmetic/logic operations that require com-
putational resources on the array are generated with a proper configura-
tion. The result is a netlist, annotated with configuration bits, where 
elements are hierarchically organized for pipeline stages and macro-
elements (i.e. set of basic computational blocks implementing a Griffy-C 
operation). 
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mechanisms required for the pipeline evolution are programmed (Figure 
19.6). 

• Placement, routing, and pipeline synchronization. In this phase the net- 
list is arranged on available hardware resources, and synchronization 

to build optimized pipeline stages, although the presence of internal 



19 Programming Tools for Reconfigurable Processors      443 

 

Fig. 19.6. Placement and routing visualization. 

• Bit-stream generation is the last step in the configuration process, and 
provides the set of bits necessary for hardware configuration in a C 
vector form that can be included in any standard processor tool-chains. 

The validation process or debugging is an focal capability required to 
any algorithm development environment. In reconfigurable architectures 
controller by a standard processor core, the overall simulation can be man-
aged by a software debugger such as the one provided in the GNU environ-
ment (GDB and DDD) and/or by the cycle-accurate simulation frameworks 
such as those based on LISA/System-C. In both cases, in the Griffy-C 
environment the validation of the reconfigurable part is handled by a sepa-
rate viewer that shows the same Griffy-C code written by the user anno-

 

 

in general are handled by the processor debugger, and the application 
developer can inspect in every moment the status of the reconfigurable 
unit. As an example, Figure 19.7 provides a screen-shot of the GDB-based 
debugging environment. 

tated with intermediate results. Breakpoints and, control flow management 



 
Fig. 19.7. Griffy-C debugging and validation environment. 

Application development under the Griffy-C approach is a process in 
which the programmer can iteratively move application kernels from soft-
ware to hardware in a sort of continuous space. In fact, the user, starting 
from the original C code, is required to rewrite manually his kernels in 
Griffy-C usually working with C-based operators and then start perform-
ance analysis. The partitioning between C-code on the processor and 
Griffy-code on the reconfigurable device is an iterative process of refine-
ment where experience and knowledge play a crucial role. But, differently 
from methodologies borrowed from FPGA design, this kind of approach is 
mainly software-oriented. The user can change the partitioning and/or op-
timize the kernel moved to the reconfigurable hardware in the same way 
that DSP programmers use assembly for speeding-up their applications. 
Optimization of Griffy-C code can leverage on two main factors: pipeline 
re-arrangement and intrinsic optimization. In the first case, the pipeline 
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structure is modified playing with data-dependency in order to retime 
the graph or to adjust the write-back point in pipeline, for example using 
software pipelining methods [384,449]. In the second case (intrinsic opti-
mization), the programmer can substitute part of the code with optimized 
operations like the direct instance of a look-up table. For software pro-
grammers this seems the assembly-level optimization in which high-level 
code is substituted by built-in functions, linear assembly or assembly, since 
the syntax remains strongly sequential and imperative, without any kind of 
direct parallelism exposition. Only tools are responsible of that. 

A set of applications has been developed measuring the relationship bet-
ween performance achieved and time spent for the development. The experi-
mental analysis has been obtained monitoring application developers of 
different skills and back-ground, including students and researchers. Results 
are provided in Figure 19.8 where it is possible to distinguish between two 
main regions. 

The first region shows a trend, typical of software programming, in less 

(more than one month) it is possible to obtain up to an order of magnitude 
performance improvement. The reference, in this case, is the same RISC 
processor used to handle the reconfigurable device. 

Fig. 19.8. Performance vs. Development Time trade-offs. 

 

than 10 days it is possible to achieve an average speed-up of ~3x with res-
pect to a processor-only implementation, while spending additional time 



This methodology, originally developed in the context of the XiRisc 
project [270], was also applied to an evolution of the XiRisc processor des-
cribed in [271], including an additional embedded FPGA as co-processing 
engine. As a proof of concept, a first prototype of tool generating behav-
ioral VHDL from Griffy-C descriptions was implemented as described in 
[301]. 

With respect to other approaches, Griffy-C allows also user unexperi-
enced of hardware design to achieve interesting performance improve-
ments (2–3x speed-ups) in a relatively short time, since it is based on the 
same optimization principles of digital signal processors. For experienced 

design methodologies allows to spend most of the development time on 
few critical kernels implemented with an hardware perspective, whereas 
other kernels can be optimized according to faster implementation strate-
gies. This allows developers to consider and engineer the time spent on the 
implementation as a cost, and to consequently exploit a further trade-off in 
addition to performance and energy consumption. 
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users, on the other hand, the possibility to explore hardware/software co-
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No silicon integrated circuit (IC) manufacturing process is perfect. There-
fore, IC testing is used to screen imperfect devices before shipping them 
to customers. Chips containing manufacturing defects are potentially mal-
functioning chips that may cause system crashes and lead to financial 
deficit, environmental disaster, and/or jeopardize human life. Moreover, if 
manufacturing defects are not detected early, the cost of repair is increased 
by an order of magnitude at each step after the chip fabrication line. It 
comes naturally that chip testing is an important factor of the business in 
computer and communications industries, since customers demand reliable 
products at a reasonable cost and manufacturers, in order to stay competi-
tive in business, must find the means to provide the best products at the 
lowest cost. 

IC testing is done in several phases of chip realization process. When a 
new chip is first designed and fabricated, first silicon debug and validation 
of early prototypes of the chip in the design laboratory should verify that 
the design is correct and meets all specifications. During this phase, func-
tional tests are applied, comprehensive AC and DC measurements are 
made, design errors are corrected, final specifications are set (e.g. the 
limits of chip operating values), as well as the manufacturing process and 
corresponding yield are improved. Besides, during this phase, test develop-
ment for manufacturing testing is verified and improved, as well. Success-
ful first silicon debug and validation marks the beginning of large scale 
manufacturing for the new chip. Every fabricated chip is subjected to 
manufacturing testing in the factory which can only be less comprehensive 
than first silicon debug and validation, but it verifies that the chip meets all 
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for instruments used to apply test vectors (i.e. binary patterns) to the input 
of the chip, analyze its responses and mark the chip as good when its res-
ponses match with the expected ones, or faulty otherwise. The time inter-
val where the chip remains on the ATE is termed test application time and 
should be as short as possible to reduce the chip test cost. The test vectors 
may not cover all possible functions and input data patterns, but it is man-
datory to provide a very high detection coverage of modeled faults where a 
modeled fault is a formal, convenient representation of the effect of the 
physical faults on the system operation. For example the most popular 
fault model is the single stuck-at (SSA) fault model at the logic gates level 
of representation, where the circuit is modeled as an interconnection of 
logic gates and only one input or output of a gate is permanently set to 
either 0 or 1. The single stuck-at fault model is still widely used today as a 
solid basis for manufacturing testing. 

The shrinking device dimensions that very deep submicron (VDSM) 
technologies offer, have revised the cost models of modern System-on-Chip 
(SoC) manufacturing, since very complex SoCs are designed and manufac-
tured at reasonable costs, reusing existing cores based on mature electronic 
design automation (EDA) tools. The SoC design process supported by 
highly sophisticated EDA tools that integrate pre-designed, pre-verified, 
intellectual property (IP) cores around industry standard on-chip buses, 
dramatically improves design productivity and reduces time-to-market and 
design cost. However, as the cost for designing complex SoCs has been 

to 60% of their total manufacturing cost and according to Intel the com-
bined cost of first silicon debug and validation and manufacturing testing 
is its major capital cost, and not the multi-billion silicon fabrication lines. 
In order to control testing cost, the design and test engineers must consider 
the design and test complexity and adopt testability solutions that reduce 
the testing cost without imposing excessive hardware, performance, and/or 
power consumption overheads. 

Embedded processors integrated with other IP cores constitute the heart 
of today’s complex SoCs. Manufacturing testing of a SoC built around one 
or more processor cores is a new challenging task. Test data volume (test 
patterns and test responses) required for external ATE-based testing of 
embedded processors and SoCs is becoming excessively large [208] result-
ing in very long test application times, while the test application cost using 
high-performance ATE (also known as functional testers) is very high. 
Furthermore, new types of defects appear in deep-submicron technologies 
and affect the functionality as well as the performance of the processor and 

increased significantly. Many system companies consider testing to be 50% 
reduced, the percentage of the total cost attributed to testing has been

relevant specifications. Automatic Test Equipment (ATE) is the usual term 
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the SoC built around. These new types of defects require at-speed testing1 
in order to achieve high test quality. The Murphy experiments [279] corro-
borate that at-speed tests identify more defective chips. However, the 
increasing gap between ATE frequencies and SoC operating frequencies 
makes external at-speed testing almost infeasible. Moreover, ATE measure-
ment accuracy problems can lead to serious yield loss [208]. 

Traditional hardware-based self-test (or built-in self-test – BIST) moves 
the testing task from external resources (ATE) to internal hardware, syn-
thesized to generate test patterns and to evaluate test responses of the cir-
cuit under test. Hardware-based self-test achieves at-speed testing reducing 
the overall test costs of the chip [208] and is a reusable approach since 
self-test hardware can be used in different stages of the chip’s life cycle. 
Recent applications of commercial hardware-based Logic BIST techniques 
in industrial designs [191] and microprocessors [75] reveal that extensive 
and manual design modifications have to be performed in order to make 
the design hardware BIST-ready. In particular, design adjustments should 
prevent the circuit from reaching an unknown state that will corrupt the 
compacted test response.2 Logic BIST applies pseudorandom patterns, and 
test points are inserted to enhance the testability of random pattern resistant 
circuits. These design modifications, increase the circuit area and degrade 
its performance. Therefore, the use of Logic BIST on high-performance and 
power-optimized embedded processors imposes several limitations. 

                                                      
1 Test application at the actual operating frequency of the device. 
2 Test responses of a circuit under test may be compacted in test signatures to 

reduce the total size of test response data. 

Software-based self-test (SBST), also called instruction-based self-test, 
is the process of detecting physical defects (or faults that model them) in a 
processor or processor-based system by executing processor instructions in 
its normal mode of operation. SBST has recently emerged as an effective 
methodology for the manufacturing testing of microprocessors and embed-
ded processors along with other components in Systems-on-Chip (SoCs). 
SBST is a non-intrusive approach that embeds a “software tester” with the 
form of a self-test program in the processor’s on-chip memory. It leverages 
the use of low-speed, reduced pin-count external ATE providing high qua-
lity, at-speed testing virtually without introducing any hardware or per-
formance overheads. An outline of the software-based self-test concept is 
shown in Figure 20.1. Numerous test technology research groups as well 
as key microprocessor companies such as Intel [326] and Sun [41] have 
recently recognized the potential of SBST adopting it in their test flows. 
We provide a comprehensive elaboration on all recent approaches in the 
next section of the chapter. 
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Initially, the self-test program is loaded into the processor’s on-chip 
memory using a low-speed, low-cost structural tester (Figure 20.1a). 
Secondly, during test application (Figure 20.1b), the processor executes 
the self-test program from its on-chip memory at its normal clock fre-
quency, thus achieving full at-speed testing. During this phase, the proces-
sor collects the test responses (possibly compressed in a test signature), 
and stores them in its on-chip data memory (Figure 20.1c). Finally, the 
low-speed, low-cost tester is used again to unload the test responses from 
the on-chip memory for further external analysis (Figure 20.1d). Since 
modern microprocessors integrate large caches on the same die, execution 
from on-chip cache is considered a further advantage provided that a 
cache-loader mechanism exists to load the test program and unload the test 
response(s). 

SBST changes the role of the external ATE from actual test application 

Fig. 20.1. Software-based self-testing concept outline. 

to a simple interface with the on-chip memory before and after the test 
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execution. Therefore, SBST achieves the goal of at-speed testing using 
low-speed ATE. In addition, since the means for applying SBST programs 
are existing processor instructions, at-speed testing is feasible without 
the risk of thermal damage due to excessive signal activity in special test 
modes of circuit operation. Furthermore, by utilizing the processor’s  
Instruction set architecture (ISA) and complying with all the restrictions 
enforced by both the ISA and the designers’ decisions, SBST avoids over-
testing (for faults that do not appear during normal circuit operation) and 
saves valuable yield.  

SBST is a scalable, portable, and reusable methodology for high quality 
testing at virtually zero performance, power or circuit area overhead. 
SBST can be reused at different stages of the microprocessor or micro-
processor-based system life cycle. SBST routines can be used during both 
first silicon debug and validation of early prototypes of a chip and manu-
facturing testing when a chip moves to full production. Besides, SBST 
can be used during the operation of the chip in the application field via 
periodic on-line testing for the detection of failures that did not exist or did 
not manifest themselves during manufacturing. In this case, SBST routines 
may be stored in on-chip ROM or Flash memory. On-line periodic SBST 
can be applied to improve reliability of low-cost systems based on embed-
ded processors where hardware, software or time redundancy can not be 
applied due to their excessive cost in terms of silicon area and/or execution 
time. Table 20.1 summarizes the different application stages of SBST and 
the different requirements of each stage in terms of self-test code and data 
size, application time and power consumption. 

This chapter gives a review of the state-of-the-art on the emerging area 

processor design and test engineers. The several advantages of SBST over 

Table 20.1. Application stages of SBST and corresponding requirements. 

 
 
Stage Self-Test  

Code/Data  
Stored in 

Test  
Program  
Size 

Test  
Application 
Time 

Test  
Power  
Consumption 

First silicon debug 
and validation 

Low-speed ATE 
On-chip cache 

Large to  
very large 

Long to  
very long 

High 

Manufacturing  
testing 

Low-speed ATE 
On-chip cache 

Small to  
medium 

Short to  
medium 

Average to  
high 

On-line periodic  
testing 

ROM or flash 
memory 

Small Short Low 

of SBST of embedded processors that recently captured the interest of 

traditional structured design-for-testability (DFT) and hardware-based 
self-testing techniques made SBST a very attractive testing approach, and 
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numerous SBST methodologies have been proposed by research groups in 
universities, research centers and industry. In this chapter, several different 
SBST strategies proposed in the research literature are briefly discussed 
showing the evolution of SBST and experimental data sourcing from suc-
cessful applications of the SBST approach are provided wherever avail-
able. Subsequently, a high-level component-based SBST methodology for 
embedded processors that aims to high structural fault coverage of the pro-
cessor at a minimum test cost is presented. The high-level SBST methodo-
logy is demonstrated through its complete application to several processor 
benchmarks with escalating complexity. 

Evolution of software-based self-test 

At-speed functional testing 

Traditionally, processor testing resorted in functional testing approaches. 
Functional test program development is based on either functional fault 
models or just the reuse of test sequences developed originally for design 
verification. 

The latter approach has been extensively used in industry over the last 
two decades. Test programs generated by verification suites to verify the 
functionality of the processor design, are reused for at-speed functional 
manufacturing testing in an ATE-based setup. The drawback of verification-
based functional testing is that it does not take account of the actual struc-
tural testability requirements of the processor, which are related to the 
physical defects and are formally described by fault models. Since the 
development of verification-based test sequences does not target structural 
faults (for instance single stuck-at faults) but rather processor functionality 
and compliance with the processor’s ISA, when fault graded with respect 
to a structural fault model, the resulting fault coverage does not usually 
meet the required test quality goals. To increase the structural fault cover-
age, the functional-based test programs are usually augmented with manu-
ally written code by engineers with substantial knowledge of the processor 
architecture. Despite this additional test development effort, functional test 
programs cannot achieve acceptable levels of fault coverage by them-
selves. 

In functional testing, external ATE (also called functional testers) is 
used to supply test patterns to the processor, mimicking the test program 
execution and the interaction between the processor and the main memory, 
i.e. the processor’s functionality. First, simulations with a processor model 
are performed to capture the trace at processor I/O during the execution of 
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test program (see Figure 20.2). Afterwards, the simulation trace is trans-
lated into ATE test language and stored in the ATE memory. Finally, dur-
ing test application, the ATE applies the test patterns to the processor input 
pins to mimic the execution of instructions while at the same time it cap-
tures the test responses at the processor output pins. 

It has already been mentioned that at-speed testing is mandatory for 
achieving high test quality in today’s deep-submicron manufacturing tech-
nologies. Thus, the ATE used for at-speed functional testing of a processor 
must have the following characteristics: 

• ability to supply test patterns at-speed (i.e. ATE technology needs to 

However, the increasing gap between ATE frequencies and processor or 

deeply embedded processor cores in complex SoCs, make external at-
speed functional testing extremely costly and in many cases almost infea-

 

Fig. 20.2. Traditional at-speed functional testing. 

• large memory to store the test patterns and test responses. 

follow high-end microprocessors technology); 
• high pin count to drive all processor I/O pins; 

SoC operating frequencies, the large test data volume, the difference bet-
ween external and internal bandwidth along with the limited access to 

sible. All these drawbacks including not acceptable fault coverage as well, 
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lead microprocessor industry to move slowly (when compared e.g. with 
ASIC industry) towards more intrusive, structural DFT test approaches, 
such as scan-based testing and BIST. However, such techniques usually 
have a non-trivial impact on a circuit’s performance, size and power con-
sumption and are applied with serious consideration and careful incorpora-
tion into the processor design. 

The pioneer work of Thatte and Abraham [415], is considered a land-
mark paper in processor functional testing. Based on the register transfer 
(RT) level description of the processor the authors introduced a functional 
fault model and considered the processor as a graph model. Since then, 
many processor functional testing methodologies were proposed. Those 
approaches were either based on a functional fault model (the model of 
[415] or other similar ones), or based on verification principles without 
assuming any functional fault models at all. The functional testing work of 
[415] was complemented by the work of Brahme and Abraham [53] which 
reduces the complexity of the generated tests for the processor’s instruc-
tion sequencing and execution logic. A functional model based on a reduced 
graph is used for the microprocessor and a classification of all faults into 
three functional categories is given. Tests are first developed for the regis-
ters read operations and then for all remaining processor instructions. The 
developed tests are proposed for execution in a self-test mode by the pro-
cessor itself. 

These traditional functional test approaches are characterized by the 
required high level of abstraction but need a large investment in manual 
test writing effort. Usually very little fault grading was done on structural 
processor netlists while high fault coverage was not guaranteed. 

Software-based self-testing 

In contrast to functional testing where an external ATE is used to drive the 
input test patterns and capture the output responses, SBST embeds a “soft-

memory. SBST is a non-intrusive approach that leverages the use of low-
speed external ATE providing high quality, at-speed testing without intro-
ducing any hardware or performance overheads. 

The various advantages of SBST make it a very attractive testing app-
roach when compared to traditional at-speed functional testing or structural 

[152]. Experimental results provided in [75] demonstrate several advan-
tages of SBST for processors over traditional structured DFT approaches 
such as full scan design and hardware Logic BIST. 

ware tester” with the form of a self-test program in the processor’s on-chip 

DFT approaches, so it comes as no surprise that numerous SBST method-
ologies have been proposed; a comprehensive survey can be found in 
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Although the single stuck-at fault model dominates among the SBST 
approaches presented so far, SBST has been proved to be very effective on 
delay fault testing [244,250,381], speed binning3 [450], interconnect cross 
talk faults testing [74], fault diagnosis [47,76], and validation [91, 373] as 
well. 

The SBST approaches presented so far in the literature can be classified 

[40,41,326,353,373] that have a high level of abstraction and are func-
tional in nature. A common characteristic of such SBST approaches is the 
almost exclusive use of randomized instructions and/or operands. The sec-
ond category includes the SBST approaches [75,77,89,90,216,239,240, 
241,329,341,362] which are structural in nature and require structural 
fault-driven test development. The third category includes the SBST app-
roaches [168,169,451] which combines the previous two categories such 
that randomized instruction test programs are followed by test programs 
that apply ATPG deterministic tests targeting hard-to-detect structural 
faults, thus constituting a “hybrid” SBST approach that provides improved 
fault coverage. A comprehensive list of SBST approaches from all three 
categories is briefly discussed in the following subsections. 

SBST approaches using randomized instructions and/or operands 
The development of functional SBST programs, based on randomized 

instruction sequences and random operands has a major advantage. Due to 
its high level of abstraction, SBST development requires only basic know-
ledge of the processor architecture, and therefore requires limited test deve-
lopment effort and cost. However, in most cases, manual intervention is 
required to determine an efficient mix of instruction sequences (possibly 
by defining and fine-tuning instruction frequency biases) along with archi-
tecture expertise to increase fault coverage. Instruction sequences charac-
terized as corner cases are usually targeted by specific handwritten code. 
Functional self-test code development does not consider any fault model 
and the test programs are randomly generated; thus a long test program is 
typically required to achieve an acceptable level of fault coverage. Despite 

                                                      
3 Speed binning is the process that classifies processors according to their actual 

silicon speed so that they are marketed accordingly. 

into three main categories. The first category includes the SBST approaches 

coverage is usually observed due to pseudorandom operands used. Further 
the large number of instruction sequences, saturating behavior in fault 

increase of the random test program size is usually proved ineffective in 
targeting the remaining hard-to-detect faults and manual test development
is a necessary supplement. 
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In [373], Shen and Abraham proposed a functional self-test methodo-
logy, which generates a random sequence of instructions that enumerate all 
the combinations of the processor operations and systematically selected 
operands. Test development is performed at a high level of abstraction 
based on ISA. However, since test development is not based on an a priori 
fault model, the generated tests – applicable for design validation as well – 
cannot achieve high fault coverage without the use of large code sequences 
and a considerable manual effort. When applied on the GL85 processor 
(model of Intel’s 8085) consisting of 6,300 gates and 244 FFs, a test pro-
gram consisting of 360,000 instructions was derived and the attained single 

In [40], Batcher and Papachristou proposed instruction randomization 

nique. Self-test is performed with processor instructions that are random-
ized by a special circuit designed outside the processor core. Randomization 
occurs at the operand level as well. IRST does not add any performance 
overhead to the processor and the extra hardware is relatively small com-

27,860 gates DLX-like RISC processor core). The obtained fault coverage 
after an iterative process considering different parameters for the processor 
core following the execution of a random instructions sequence running 
for 50,000 instruction cycles is 92.5%, and after the execution of 220,000 
instruction cycles it is 94.8%. 

In [326], Parvathala et al. proposed an automated functional self-test 
methodology called functional random instruction testing at speed (FRITS) 
based on the generation of random instruction sequences with pseudoran-
dom data generated by software LFSRs; on-chip cache is used for applica-
tion. Instruction-based constraints are extracted and built into the generator 
to ensure generation of valid instruction sequences also ensuring that no 
cache misses and bus access cycles are produced during self-testing. The 
high-level functional nature of the proposed approach requires a large 
amount of cycles to be applied that makes fault grading a non-trivial task. 
The methodology achieved 70% fault coverage when applied on the Intel 
Pentium® 4 processor in an industrial environment and helped to detect 
the defects that escaped the normal test flow. Also, application of the app-
roach to the integer and floating point units of Intel Itanium™ processor 
led to 85% single stuck-at fault coverage. 

In [353], Rizk et al. proposed a self-test program design technique for 
embedded DSP cores. The method requires minimal knowledge of the 
core’s internals and minimal insertion of external LFSR hardware. The test 
program consists of a small set of instructions which operate iteratively on 

stuck-at fault coverage was 90.2%. The fault coverage was reduced to 86.7% 
when the responses were compressed in a signature. 

self-test (IRST) for processor cores, a pseudorandom self-testing tech-

pared to the processor size (3.1% hardware overhead is reported for a 
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pseudorandom data generated by the LFSRs to test the DSP core compo-
nents. The method introduces instruction-based testability analysis metrics, 
namely the controllability and observability metrics. The instruction met-
rics are computed through simulation with random data with respect to 
internal modules of the processor. Whenever a module is considered for 
test generation, the methodology selects the most appropriate instructions 
for test vector application and fault effect propagation. If, however, instruc-
tions with good metrics cannot be found through simulation, the high-level 
description of the processor is used to identify instruction sequences with 
good testability for the module under test (MUT). Experimental results are 
provided and the proposed methodology is evaluated on a pipelined DSP 
core achieving high test coverage of 98.33% with a small test program of 
34 instructions which is looped for 6,000 times. The test program applies a 
total of 204,000 test vectors. 

Recently, Bayraktaroglu et al. [41] proposed the conversion of existing 
legacy tests, either handwritten or randomly-generated to cache resident 
tests aiming to eliminate cache misses. The basic objective of this work 
was to apply SBST fully avoiding the non-determinism of memory accesses 
in high-end microprocessors with several cache memory levels based on 
the use of low-cost ATE. They demonstrated their method, called Load&Go, 
to an 8-core, 32-thread Sun UltraSPARC T1 processor model. 

Structural SBST approaches 
The development of SBST programs targeting structural faults using a 

deterministic approach clearly results a higher fault coverage when com-
pared to randomized instructions/operands SBST approaches where no 
fault model is considered at test development phase. Although SBST app-
roaches targeting sequential fault models (such as the path delay fault 
model) have been presented [244,250,381], the single stuck-at fault model 
dominates among the SBST approaches since it reduces significantly the 
complexity; it is implementation technology independent while test pat-
terns for stuck-at faults are proved effective to target most manufacturing 
defects. The structural SBST approaches that will be discussed in the fol-
lowing paragraphs, target the SSA fault model. 

The contribution of the work presented by Chen and Dey in [75] is two-
fold. First, it demonstrates the superiority of SBST for embedded processors 
over traditional DFT approaches such as Full Scan design and hardware 
Logic BIST. This is shown by applying Logic BIST to a very simple 8-bit 
accumulator-based processor (Parwan) and a stack-based 32-bit soft pro-
cessor core that implements the Java Virtual Machine (picoJava). In both 
cases, Logic BIST adds more hardware overhead compared to full scan, 
but is not able to obtain satisfactory structural fault coverage even when a 
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logy is proposed which is structural in nature, targeting specific compo-
nents and fine-tuning test development to the low, gate-level details of the 
processor core. Initially, pseudorandom pattern sequences are developed 
for each processor component in an iterative method taking into considera-
tion manually extracted constraints imposed by its instruction set. Then, 
test sequences are encapsulated into self-test signatures that characterize 
each component. Alternatively, component tests can be extracted by struc-
tural automatic test pattern generation (ATPG) and downloaded directly in 
embedded memory by the tester. The component self-test signatures are 
then expanded on-chip by a software-emulated LFSR (test generation pro-
gram) into pseudorandom test patterns, stored in embedded memory and 
finally applied to the component by software test application programs. 
Application to an accumulator-based CPU core, Parwan, consisting of 888 
gates and 53 FFs, resulted in 91.4% fault coverage in 137,649 cycles using 
a test program of 1,129 bytes. 

In [77], Chen et al. proposed a methodology that extends previous work 
[75] by automating the complex constraint extraction phase, while empha-
sizing in ATPG-based test development instead of pseudorandom. Statisti-
cal regression analysis is applied on the RT-level simulation results using 
manually coded instruction templates, to derive a model of the surrounding 
logic of the MUT. The learned model is converted into virtual constrained 
circuit (VCC) followed by ATPG on the VCC-MUT in an iterative way. 
Application of the methodology on the combinational logic in the execu-
tion stage of a processor from Tensilica (Xtensa™) with 24,962 faults 
resulted in 288 ATPG test patterns and 90.1% fault coverage after con-
strained ATPG. When the tests are applied using processor instructions in 
a test program of 20,373 bytes, the fault coverage for the targeted compo-
nent is increased (due to collateral coverage) to 95.2% in 27,248 cycles. 

In [89], Corno et al. proposed a partially automated test development 
approach. First, a library of macros is generated manually by experienced 
assembly programmers from the ISA, consisting of instruction sequences 
using operands as parameters. Then, a greedy search and a genetic algo-
rithm are used to optimize the process of random macro selection among 
the macros set, along with selecting the most suitable macros parameters to 
build a test program that maximizes the attained fault coverage when the 
test program is applied and fine-tuned on the gate-level netlist of the pro-

8-bit microcontroller design of 6,000 gates using 624 instructions. 
In [90], Corno et al. proposed an automated test development approach 

based on evolutionary theory techniques (MicroGP), that maximizes the 
attained fault coverage when the evolved test program is applied on the 

very high number of test patterns are applied. Secondly, an SBST methodo-

cessor. The approach attained 85,2% fault coverage when applied on a 8051 
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gate-level netlist of the processor. It utilizes a directed acyclic graph for 
representing the syntactical flow of an assembly program and an instruc-
tion library for describing the assembly syntax of the processor ISA. Man-
ual effort is required for the enumeration of all available instructions and 

of 12,000 gates, resulted in 90% fault coverage. 
In [216], Kambe et al. proposed a template generation methodology for 

hierarchical test generation targeting structural faults. According to the 
methodology, gate-level test generation is performed for each MUT, and a 
test program is generated to justify test patterns from primary input to the 
MUT and propagates test responses at instruction level. The proposed 
methodology enumerates possible templates considering dependence of 
instructions each of which involves one or more data transfers between 
registers. In order to justify value of MUT inputs, a concept of adjacent 
registers of the MUT is introduced that makes it possible to consider input 
spaces of the MUT determined by signals from other modules as well as 
signals directly from registers. Templates are generated considering depen-
dence of instructions each of which invokes one or more data transfers 
between registers. The approach is demonstrated on an accumulator-based 
8-bit CPU core, Parwan. Out of 276 templates generated for testing the 
ALU of Parwan, 12 templates contributed to the fault coverage, and the 
fault coverage achieved for the ALU was 99.44%. 

In [239], Kranitis et al. introduced a high-level structural SBST method-
ology, showing for the first time that small deterministic test sets, applied 
by compact test routines provide significant improvement when applied to 
the same simple accumulator-based processor design, Parwan, which was 
used in [75]. Compared to [75], the methodology described in [239] re-
quires 20% smaller test program using 923 bytes, 75% smaller test data 
and almost 90% smaller test application time using 16,667 cycles. Both 
methodologies achieve single stuck-at fault coverage slightly higher than 
91% for the simple accumulator-based Parwan processor. 

Despite the successful first application of the approach of [239], scaling 
from simple accumulator-based processor architectures to more realistic 
ones in terms of complexity like contemporary complex processors imple-
menting commercially successful ISAs (i.e. RISC), brings out several test 
challenges that remained unsolved. These challenges arise when high-level 
test development is applied to complex processor architectures that contain 
large functional components (i.e. fast parallel multipliers, barrel shifters, 
etc.) and large register banks, while trying to keep the test-cost as low as 
possible. In [240], Kranitis et al. addressed low-cost SBST challenges by 
defining different test priorities for processor components, showing that high-
level self-test code development based on ISA and RT-level description of 

their possible operands. Experiments on a 8051 8-bit microcontroller design 
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MIPS R3000 application specific instruction set processor (ASIP) with 
5-stage pipeline designed using the ASIP/Meister design environment. 

In [329], Paschalis and Gizopoulos identified the stringent characteristics 
of an SBST test program to be suitable for on-line periodic testing of 
embedded processors. SBST for on-line periodic testing can be applied to 
improve reliability of low-cost embedded systems based on embedded 
processors where hardware, software or time redundancy cannot be applied 
due to their excessive cost in terms of silicon area and execution time. A 
new classification and test priority scheme more fine-grained than in [240] 
was proposed. Both types of permanent and intermittent faults are detected 
by a small embedded test program with test execution time much less than 
a quantum time cycle. 

In [362], Sanchez et al. proposed an automatic methodology to transform 
a test set originally developed for manufacturing test in a test set suitable 
for on-line testing. The generated programs are suitable for non-concurrent 
periodic on-line testing as well as for shutdown or startup testing. While 
the new test set is likely to contain a larger number of programs, these pro-
grams are shorter and completely independent (i.e. they can be executed at 
different times and do not rely each on the results of the previous ones), 
and thus perfectly fit a non-concurrent on-line test scheme. The transfor-
mation of the test set is performed in two phases: first the original programs 
are simulated with a special instruction-set simulator that for each instruc-
tion generates a spore, i.e. a small program able to fully replicate the pro-
cessor behavior. Second, an evolutionary algorithm is used to collapse the 
set of spores into a test set. The proposed approach is able to guarantee the 
same fault coverage on all functional units. Experimental results were pro-
vided targeting the ALU and Control Units of an 8-bit 8051 processor 
core. The initial test set is compact in size but requires a long time to be 
executed and is usually designed to be run without regarding sharing con-
straints. The final on-line test set is larger in size, but composed of small 
and extremely fast programs that can be freely scheduled. Both test sets 
guarantee the same fault coverage on the target units. 

In [341], Psarakis et al. identified testability hotspots in processor pipe-
line logic and proposed a generic SBST methodology that enhances exist-
ing SBST programs [240], to target more effectively the pipeline logic. 
The methodology was applied on the miniMIPS and OpenRISC 1200 
processor cores. Results show fault coverage improvements of up to 12% 
on average for the entire processor, and fault coverage improvements of 
22% for the pipeline logic. 

independently of the gate-level implementation. The methodology was
a processor can lead to low test cost without sacrificing fault coverage

applied on two processors: Plasma/MIPS with simple 3-stage pipeline and 
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The contribution of the work presented by Kranitis et al. in [241] is two-
fold. First, a reliability analysis and a cost function was introduced in order 
to minimize the test cost incurred when selecting a periodic SBST strategy, 
and achieve high detection probability. Reliability analysis was based on a 
two-state Markov model for the probabilistic modelling of intermittent 
faults for optimal periodic testing is introduced. Then, an SBST strategy 
for on-line SBST of pipelined embedded processors was proposed that en-
hances SBST programs for manufacturing [240] and on-line testing [329]. 
The proposed strategy was demonstrated by applying it to a 5-stage fully 
pipelined RISC embedded processor, Athena. Experimental results pro-
vided showed 8.2% fault coverage improvement for the entire processor 
and fault coverage improvements of 26% for the pipeline logic. 

“Hybrid” SBST approaches 
Recent work in SBST includes [168,169,451]. A common characteristic 

among these recent SBST approaches is that randomized instruction test 
programs are followed by test programs that apply ATPG deterministic 
tests targeting hard-to-detect structural faults, thus constituting a “hybrid” 
SBST approach. 

random test program generation (RTPG) as a baseline with deterministic 
target test program generation (TTPG) as a supplement, in order to provide 
tests specifically targeting faults that are hard-to-test for RTPG. The pro-
posed TTPG method utilizes simulation results to develop learned models 
for the surrounding modules of the block under test. Simulation-based 
TTPG is performed similar to previous works; however, arithmetic and 
Boolean learning techniques are used instead of statistical regression to 
develop learned models for the surrounding logic of the MUT. These tech-
niques offer the advantage of being deterministic in nature, in contrast to 
regression that is a statistical method. Additionally, Boolean learning can 
also handle logic-intensive modules in which regression is not effective. 
Then, the learned models replace the surrounding modules around the 
block in the actual test generation process. Because the learned models are 
much simpler to handle, this method minimizes the cost of functional TPG. 
The methodology is applied on the controller and ALU of the OpenRISC 
1200 processor. When RTPG is applied in the “controller” module fault 
coverage saturates around 62.14%, while on the other side, TTPG gene-
rates 134 valid test patterns and detects 4967 faults including all faults that 
RTPG can detect, for an overall fault coverage of 69.39%. For the ALU 
module, after application of 100K RTPG test patterns, TTPG is applied 
and the combined fault coverage is 94.94%. 

In [451], Wen et al. introduced an SBST methodology that employs 
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In [168], Gurumurthy et al. introduced a novel technique to map pre-
computed test patterns, generated by commercial ATPG tools, into sequences 
of instructions, based on the ISA of the processor under test. The technique 
applies at the RT-level source code of the processor, at the module level. It 
uses bounded model checking in order to produce automatically a counter-
example which will contain an instruction sequence that generates the 
pre-computed test pattern. First, a bound is defined for the bounded model 
checker (BMC) for each step of the process, taking into consideration the 
pipeline depth, the stall/reset mechanism of the processor, the forwarding 
mechanism and the number of cycles of the instructions. Then, every test 
pattern for each module should be manually transformed into linear tempo-
ral logic (LTL) property. LTL property is negated and passed to the BMC. 
Additionally, the instruction set of the processor is passed to the BMC in 
order to constrain its input space. BMC checks partial correctness of the 
property and generates a counter-example in case the property fails within 
the bound. If a counter-example is not generated, pre-computed test pat-

The technique is applied to both controllability and observability stages 
and results to a combination LTL property of both stages. Although con-
trollability is fully controlled in this technique, in observability stage 
spurious counter-examples can be generated that do not ensure propaga-
tion of outputs to observable points, thus they have to be refined entirely 
manually. Experiments were performed on OpenRISC 1200. Initially, a 
random test program of 36,750 instructions was generated in order to fault 
grade the processor. The fault coverage saturated around 68% and the 
remaining hard-to-detect fault list was split based on modules and passed 
through a commercial ATPG tool in order to obtain the pre-computed 
patterns. Those pre-computed test patterns were applied to the presented 
technique. In a total of 22,633 test sequences, 6,765 were identified to 
be functionally infeasible uncontrollable sequences. On the remaining, se-
quences of instructions were generated for some of the patterns in ALU, 
Control and Operandmuxes modules of OpenRISC 1200 and example 
instruction sequences were given. 

In [169], Gurumurthy et al. proposed a new technique that fully auto-
mates the process of functional test generation targeting specific faults. 
The technique supplements the observability part of the automated map-
ping technique of pre-computed test patterns, generated by commercial 
ATPG tools, into sequences of instructions proposed in [168] that required 
manual effort for the propagation of test responses. The proposed tech-
nique applies at the RT-level source code of the processor in module-level. 

instruction sequence containing test pattern is included in counter-example. 
terns are characterized as functionally infeasible, otherwise processor
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Again, in order to focus on hard-to-detect faults, a random test program of 
36,750 instructions was generated and the processor was fault-graded. The 
fault coverage saturated around 68% and the hard-to-detect fault list 
formed the base list of the proposed technique. The base list was sorted 
based on module-level and the overall technique was used for every module. 
Even though the mapping efficiency of most of the modules is above 90%, 
the overall mapping efficiency was 71% due to low efficiency of ALU and 
LSU modules. In a total of 17,319 test sequences, 9,708 were found to be 
not mappable within the bound, thus no counter-example was produced and 
were rejected. The remaining test sequences were successfully mapped and 
increased the fault coverage of the processor to 82%. 

Table 20.2 provides a summary of representative SBST methods for 

methodology and the year of publication is accompanied by information 
such as the test experiment performed (whole processor benchmark or spe-
cific processor component) and test statistics such as test program size, test 
execution time and fault coverage achieved. The methods listed in Table 
20.2 have been proposed for manufacturing testing and used single stuck-at 
fault coverage measurements for the processor benchmarks. 

High-level SBST methodology 

In this section, we will discuss in detail our perspective of SBST as a 
high-level, structural methodology for high-quality and low-cost processor 
self-testing. The key properties of a Register-Transfer (RT) level, component- 
based, SBST methodology for embedded processors are the following: 

• it should follow a divide-and-conquer approach using component-based 
test development; 

• test development should be based only on the ISA of the processor and 
its RT-level description, which is in almost all cases available, without 
the need of low gate-level fine-tuning. 

Although the main target always remains the high structural fault cover-
age, test development and application cost should be considered as a very 
important aspect. Therefore, a high-level SBST methodology must have 
two main objectives both aiming to low test cost: 
 

Experiments were performed on OpenRISC 1200 processor as in [168]. 
order to map module-level test responses into instruction sequences. 

manufacturing testing of processor cores. A brief description of each 

It uses Boolean difference, LTL and bounded model checking (BMC) in 
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Table 20.2. Summary of key SBST approaches for manufacturing testing. 

 Ref  (Year)  Methodology Test 
Program

Size 

Test  
Execution

Time 

 Benchmark 
Processor 

 FC 
(%) 

[373] (1998) Random instructions and 
systematic operands 

Large Long GL85 90.2 

[40] (1999) Hardware-based,  
instruction randomization 
and random operands 

Large Long DLX 94.8 

[326] (2002) Random instructions and 
software LFSR  
operands with constraints 

Large Long Pentium4 
Itanium 

70 
85 

[90] (2003) Semi-automated based on 
evolutionary theory and netlist

Medium Average 8051 90 

[75] (2001) Component based, random/
ATPG patterns based on  
netlist  

Medium Long Parwan 91.4 

[77] (2003) Component based, ATPG 
patterns based on netlist, 
automatic constrained  
extraction based on  
regression analysis  

Medium Average Xtensa 
(only ALU) 

95.2 

[216] (2004) Netlist and module based 
template generation 

Medium Average Parwan 
(only ALU) 

99.4 

[239] (2002) High-RTL, component 
based, deterministic  
operands for functional 
components 

Small Short Parwan 91.1 

[240] (2005) High-RTL, components test 
prioritization, deterministic 
operands for functional 
components, verification 
tests for control 

Small Short Plasma 
ASIP MIPS 

95.3 
92.6 

[341] (2006) Generic solutions for  
address-related and  
pipeline-related logic 

Small Short miniMIPS 
OpenRISC 

95.1 
90.0 

[451] (2005) Component based, random 
tests and ATPG patterns 
based on netlist, automatic 
constrained extraction based 
on learning techniques  

Medium Long OpenRISC 
(only ALU) 

94.9 

[169] (2006) Random tests and automated 
mapping of precomputed 
ATPG tests based on Boolean 
difference, LTL and BMC 

Medium Long OpenRISC 82 



20 Software-Based Self-Testing of Embedded Processors      465 

• generation of as small and as fast as possible self-test code routines 
(reduced test application time and cost); 

• as small as possible engineering effort and test development time 
(reduced test development time and cost). 

The first objective leads to smaller download times at the low frequency 
of the external tester as well as to smaller test execution times of the rou-
tines, thus reducing the total processor test time. The second objective 
reduces test development cost and time-to-market, leading to significant 
improvements in product cost-effectiveness and market success. 

An RT-level self-test development approach is well suited to the high 
RT-level flow of the design cycle. Since design, simulation, and synthesis 
are usually carried out at the high RT-level, test development can also be 
carried out at the same level providing high convenience and flexibility. In 
this case, processor cores can be easily integrated into a SoC environment, 
configured and re-targeted in a variety of silicon technologies without any 
specific need for fine-tuning the test development to specific synthesis op-

achieves similar high fault coverage results for different gate-level imple-
mentations of the RT-level processor core. 

High-level SBST development consists of three phases (Figure 20.3): 

• Information extraction (Phase A) 
• Component classification and test priority (Phase B) 
• Self-test code development (Phase C) 

pipelined processor model. The model consists of a sequence of unique 
pipeline stage models like the one given in Figure 20.4. For a specific ISA, 
a specified number of pipeline stages are stacked to compose the processor 
core. Each pipeline stage consists of datapath and control logic. Datapath 
combinational data/address logic implements the data/address operations 
and transfers defined by the ISA micro-operations. Data/address operations 
and transfers are implemented by data/address functional components. 
Control logic in each pipeline stage controls the data/address operations 
and transfers implemented by the functional components, by evaluating the 
execution conditions. Pipeline registers transfer operation results of func-
tional components and control logic to the next pipeline stage. 

 
 
 
 

Component classification and test priority phase (Phase B) uses a generic 

results show that the gate-level independent test strategy is very efficient and
timization parameters using a specific technology library. Experimental
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Fig. 20.3. High-level SBST methodology. 
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Fig. 20.4. Processor components per pipeline stage. 

Phase A: information extraction 

In Phase A (information extraction, Figure 20.3) the processor is parti-
tioned to a set M of processor components C using the processor RT-level 
description. 

During Phase A the following information is extracted using the ISA 
and the RT-level description of the processor under test: 

• the sets of component operations OC for each component C of set M (for 
some components this set may consist of several different operations, 
i.e. a multi-functional ALU, while for other components the set may 
consist of only one operation); 

• the sets of basic test instructions that excite these component operations 
(there may be several instructions exciting different operations in dif-
ferent processor components); 

• the sets of peripheral test instructions (or instruction sequences) for 
controlling or observing processor registers (these instructions supple-
ment the previous ones in order to perform test application and component 
response observation). 

Phase B: component classification and test priority  

In Phase B (component classification and test priority, Figure 20.3), the 
processor components are categorized in classes and ranking is performed 
among the processor components to determine the component test priority. 

Component classification 
The processor components are classified in the three main classes: 

Functional, Control and Hidden. 
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Functional components 
Functional components implement the data and address operations and 

transfers (data and address functional components, respectively) defined 
by the ISA micro-operations. A high-level SBST methodology acquires 
the information on the number and types of functional components from 
the RT-level description of the processor. 

Functional components can be classified as follows:  

• Computational components, which perform arithmetic/logic operations 
on data or address operands. Components classified in this sub-category 
include: adders, arithmetic logic units (ALUs), shifters, barrel shifters, 
multipliers, dividers, comparators, multipliers/accumulators (MACs), etc. 
An example of data computational component is the multiplier while 
the adders that perform the next address calculation or the branch add-
ress calculation are examples of address computational components. 

• Interconnect components, which serve the flow of data or address 
operands in a processor’s datapath. Components classified in this sub-
category include multiplexers. An example of data interconnect com-
ponents are the forwarding multiplexers at the inputs of an ALU at the 
execution stage that select data operands from following to the execution 
stage pipeline stages. An example of address interconnect component is 
the write address multiplexer at the write address input of a register file. 

• Storage components, which are processor data and address holding 
elements that feed the inputs of the data or address computational 
components and capture their output. Components classified in this 
sub-category include: general processor registers (register files), special 
purpose registers, pipeline registers, etc. Examples of data storage 
components are the special purpose registers for storing the 64-bit multi-
plication result, the general purpose registers of the register file, etc. 
Such data storage components are also known as architectural registers 
and are visible to the assembly language programmer. Pipeline registers 
that hold data information between pipeline stages are data storage 
components; however, they are not visible to the assembly language 
programmer. Examples of address storage components are the program 
counter (PC) and pipeline registers that hold address information between 
pipeline stages. 

Control components 
Control components control either the flow of instructions or data inside 

the processor core or from or to the external environment (memory, pe-
ripherals). These components include the processor’s main control unit 
that implements the instruction decoding and produces the control signals 
for subsequent pipeline stages, the local pipeline stage controllers and con-
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trol registers, the instruction and data memory controllers that implement 
instruction fetching, control logic for stalling the pipeline, control logic for 
data hazard detection and enabling forwarding mechanisms, etc. 

Hidden components 
Hidden components are usually employed in a processor’s implementa-

tion to improve its performance. The term hidden denotes the fact that such 
components are not visible to the assembly language programmer. Actu-
ally, hidden components are functional or control components. For exam-
ple, pipeline logic is not visible to the assembly language programmer and 
is considered as hidden logic. The pipeline hidden logic includes the fol-
lowing components: pipeline registers (storage functional components), 
pipeline multiplexers implementing forwarding/bypassing mechanisms (in-
terconnect functional components) and pipeline stage controllers (control 
components). Other logic considered as hidden include those components 
related to other performance increasing mechanisms like instruction level 
parallelism (ILP) and speculative mechanisms to improve processor per-
formance such as branch prediction schemes. 

Component test priority 
Components are ranked in descending order of test priority to determine 

the order in which test routines will be developed for each component. 
Since the basic aim of the high-level SBST approach is to reach high fault 
coverage at an as small as possible test development effort and cost, priori-
tization of processor components is particularly useful so that the test 
development process first deals with the most important components that 
are likely to have the largest contribution to the overall fault coverage. 

High priority components will be considered first while low priority 
components will be considered afterwards only if the achieved overall 
fault coverage result is not adequate. In many cases, test development for 
top priority components leads to sufficient fault coverage for not targeted 
components as well due to collateral coverage. This is particularly true in 
processors because the execution of a computation in a functional unit also 
excites many of the control subsystem components. The criteria that are 
used for component test prioritization for low-cost software-based self-
testing are discussed and analyzed in the subsequent paragraphs. 

Test priority criterion 1: component size 
Component size is an intuitive criterion that should be first considered 

for low-cost test development. It gives the following simple but very 
important advice: component self-test code development should give higher 
priority to processor components that have the largest contribution to the 
overall processor fault coverage (or equivalently gate count). 
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The following observations are valid for the majority of processor 
implementations: 

• The register file of the processor is one of the largest components. This 
is particularly true in RISC processors with a classic load/store archi-
tecture and a large number of general-purpose registers. Large register 
files offer many advantages enabling compilers to increase performance 
by reducing memory transactions. 

• The parallel multiplier or multiplier-accumulator is usually one of the 
largest components (particularly true in RISC processors and DSPs). 

• The functional components of the processor that perform all arithmetic 
and logic operations of the processor are much larger than the corres-
ponding control logic which controls their operation. This size difference 

instances of functional components of the same type, the processor area 
is dominated by the size of the functional components. 

• The hidden components of the processor (mainly these related to the 
data and address information flow in the pipeline logic) may occupy a 
significant portion of the processor’s area. Since these components are 
not visible to the assembly language programmer, they are more dif-
ficult to test than the visible components. Specific and generic solutions 
for the effective testing of hidden components should complement the 
high-level SBST methodology. 

Test priority criterion 2: component accessibility 
The second criterion to be considered for prioritization of processor 

components for low-cost test development, is the component’s accessibi-
lity (controllability and observability) by processor instructions. The con-
trollability of a processor component is related to how easily an instruction 
sequence can apply a test pattern to the component inputs while the  
observability is related to how easy an instruction sequence propagates 
component output values to the primary outputs of the processor. Usually, 
the controllability and observability of processor components is directly 
mapped to the controllability and observability of the registers that drive or 
are driven by the components inputs and outputs. 

The data functional components usually provide easy and full accessi-
bility since their adjacent registers are fully accessible registers (i.e. 
general purpose registers of register file or special purpose registers like 
accumulator). 

towards the 32-bits or 64-bits domains. Additionally, in DSPs with multiple 
increases when processor word sizes move from 8-bits and 16-bits 



20 Software-Based Self-Testing of Embedded Processors      471 

[341]. The controllability issues with address functional components are as 
follows: fault excitation of address storage functional components (i.e. 
program counter) requires the application of test vectors that set all address 
bits to both 0 and 1. However, for example, setting the two least significant 
bits of PC to 1 during normal mode of operation is not feasible due to 
alignment restrictions. On the other hand, poor observability of the address 
storage functional components like the address part of pipeline registers is 
due to the fact that their faults cannot be directly propagated to data mem-
ory. The testability problems of the address-related logic are not only a 
concern for pipelined processors but also for non-pipelined processors as 
well. The problem is accentuated in pipelined implementations, because 
multiple instances of address information flow through the pipeline stages. 
Careful and cumbersome testability analysis is required to extract faults 
that cannot be detected during normal mode of operation on address-
related logic due to memory mapping constraints. 

The sequential nature of control components imposes several accessibi-
lity difficulties while control components that implement interface func-
tions with memory (instruction fetch, memory handshaking, etc.) impose 
serious additional controllability problems. 

Hidden components are functional or control components which are not 
directly visible to the assembly language programmer. Thus, hidden com-
ponent accessibility depends on whether the hidden component is func-

fact that such logic is not directly visible to the assembly language pro-
grammer, forwarding multiplexers are data functional components with 

the forwarding multiplexers and thus guarantee complete fault coverage. 
As a concluding remark, for a low-cost high-level SBST methodology, 

the data functional components (including the hidden ones) of the proces-
sor should have the highest test priority for test development since their 
size dominates the processor area and they are easily accessible (the data 
functional components are more accessible than their address counter-
parts). When total processor fault coverage is not sufficient, test develop-
ment should proceed to the other processor components with lower test 
priority (address functional components and control components). 

Testability of address functional components (i.e. program counter (PC), 
address part of pipeline registers, branch target adders, etc.) is very poor 

tional (data or address) or control. Testability of data functional hidden 
components can be very high. Consider for example the case of forwarding/
bypassing logic implemented by forwarding multiplexers. Despite the 

effectively by deterministic test routines that apply regular test patterns to 
full accessibility (controllability and observability) that can be targeted 
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Phase C: Self-test code development 

In Phase C (self-test code development, Figure 20.3), self-test routines are 
developed for each processor component C and the most critical-to-test 
components (components C that ranked with higher test priority) are tar-
geted first. A suitable test strategy is followed for each component C. After 
each iteration, processor-level fault simulation is performed only to eva-
luate the total fault coverage and estimate the collateral coverage. The 
iterative process is repeated on remaining modules until desirable processor-
level fault coverage is achieved. The self-test program consists of several 
component-based self-test routines. 

In the following paragraphs, we show that self-test code development 
for functional components is fundamentally different from self-test code 
development for control components. It should be reminded that hidden 
components are functional or control with the attribute that are not directly 
visible to the assembly language programmer. Self-test code development 
for hidden components follows a functional or control component test 
strategy accordingly. 

Self-test code development for functional components 
If C is a functional component, we follow a deterministic self-test code 

development approach. The methodology applies all possible component 
operations OC with deterministic operands. Application of component 
operations OC is performed by selecting the basic test instruction which 
requires the shortest instruction sequences ( peripheral test instructions) to 
apply specific operands to component inputs and propagate the outputs to 
processor primary outputs. 

The key for selecting the most appropriate deterministic operands lies 
beneath the architecture of most critical-to-test processor components. 
Such components have an inherent regularity, which can lead to very effi-
cient test algorithms for any gate-level implementation. This inherent regu-
larity is not exploited either by pseudorandom test development or by 
ATPG-based test development approaches. Many processor components, 
in particular the vast majority of functional components like computational 
(arithmetic and logic operation modules), interconnect (multiplexers) and 
storage components (registers, register files) have a very regular or semi-
regular structure. Regular structure appears in several forms like in the 
form of arrays of identical cells (linear or rectangular), tree-like structures 
of multiplexers, memory element arrays, etc. Such components can be 
efficiently tested with small and regular test sets that are gate-level inde-
pendent, i.e. provide high fault coverage for any different gate-level 
implementation. 
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A component test library has been developed, including test algorithms 
that generate small deterministic tests and provide very high fault coverage 
for most types and architectures of functional processor components. The 
nature of these deterministic tests is fundamentally different from ATPG-
generated test patterns since a gate-level ATPG tool is not capable to iden-
tify regular structures and generate patterns optimized for compact-code 
software-based test application. Based on these small deterministic tests, 
test routines are developed that, additionally to the small number of tests, 
take advantage of test vectors’ regularity and algorithmic nature resulting 
in efficient compact loops [328]. These loop-based compact test routines 
require a very small number of bytes while the small number of tests  

describe a test algorithm in assembly pseudocode, for almost all generic 
functional components, are tailored each time to the instruction set and 
assembly language of the processor’s under test. 

In the remainder of this section we briefly describe how regular struc-
tures in datapath functional components that implement the most usual 
arithmetic, logic, interconnect or storage operations, can be efficiently 
tested with short deterministic tests without the need of gate-level details. 

Arithmetic components testing 
For components that implement arithmetic operations, we have devel-

oped deterministic tests for every type of arithmetic operations like addi-
tion, subtraction, multiplication, and division for various word lengths. 
Deterministic tests are also available for several architecture and algorithm 
alternatives. For example, for the addition operation precomputed tests 
exist for ripple-carry adder (RCA), carry-look-ahead (CLA), etc. architec-
tures. Likewise, for the multiplication operation precomputed tests exist 
for carry-save array, booth-encoded, Wallace tree summation, etc. archi-

Logic array testing 
Testing a logic array that implements multi-bit Boolean logic operations 

like and, or, nor, xor, not is performed by applying simple well known 
necessary patterns while propagating the test response to well observable 
registers and primary outputs. 

Interconnect/multiplexer testing 
An n-to-1 multiplexer is usually decomposed and implemented by 

smaller multiplexers in a tree structure. For example, an 8-to-1 multiplexer 
can be classically implemented as a tree of seven 2-to-1 multiplexers. The 
implementation of an n-to-1 multiplexer tree is not unique and in an RT-
level design, logic synthesis tools can generate different implementations 
depending on the technology mapping algorithms and technology libraries. 

results in low test routine execution time. The test library routines that 

tectures [151,327]. 
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We have developed deterministic tests for the case of n-to-1, m-bit wide 
multiplexers [240]. This implementation independent deterministic test set 
is linear, the minimum number of 2n test vectors is required, and provides 
100% single stuck-at fault coverage. The deterministic tests provide 100% 
single stuck-at fault coverage for multiplexer-based logic structures (i.e. 
shifter units). 

Register testing 

multiplexers that implement general purpose registers, special purpose reg-
isters and pipeline registers. This implementation independent determinis-
tic test set is constant and provides 100% single stuck-at fault coverage for 
the flip-flops and write enable multiplexers. 

Register file testing 
The register file component can be considered as a hierarchical design 

with sub-components. These sub-components are the write address de-
coder, the register array, and the two large read ports. We have developed 
deterministic tests [240] for the two large multiplexer trees (usually 32 
input, 32-bit wide multiplexers for processor architectures with 32 regis-
ters with each register 32-bit wide) that implement the two register file 
read ports. The register array is tested by deterministic tests developed for 
registers discussed above. This implementation independent deterministic 
test set results in near complete (>99.5%) single stuck-at fault coverage for 
the entire register file. 

Address components testing 
The excitation of the faults of address computational and storage func-

tional components (i.e. PC+4 adder, branch target adders, PC, etc.) re-
quires the application of a rich set of address values that potentially must 
cover the entire memory space of the processor. The only way to achieve 
this, is to execute instructions and to access (read or write) data that are 
stored in several different regions of the memory space of the processor. 

In [341] a generic solution was proposed for the excitation (controllabi-
lity) of address related faults by partitioning of the SBST code to segments 
that are virtually stored and executed from different memory regions along 
with implementation of specific mapping logic (at the behavioral RT-level 
for fault simulation and/or FPGA-based loadboard attached to the memory 
interface of the processor). Propagating address functional component 
faults towards the data bus can be accomplished by the use of link instruc-
tions in the processor ISA. When a jump-and-link or branch on condition 
and link instruction is executed, the value of the PC is stored in a return 
address (RA) register. Using a store instruction, the value of the RA regis-
ter can be propagated to the data bus and therefore to the data memory. 

We have developed deterministic tests for the flip-flops and write enable 
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Self-test code development for control components 
If C is a control component, a verification-based self-test code develop-

ment approach is adopted with self-test development still performed at 
high-level. 

Often, verification-based functional tests cannot guarantee acceptable 
fault coverage while the manual effort required to derive simple instruction 
sequences that verify control subsystem functionality is substantially 
higher when compared to the effort required for processor functional com-
ponents, where reusing the test library minimizes costly manual effort. 
Satisfaction of high-level RT-level verification metrics supported by  
industry standard simulation tools like RT-level statement, branch, condi-
tion, and expression coverage helps to improve verification manual effort. 
Besides the overhead in test development cost, testing control components 
imposes a substantial overhead in the test program size and test application 
time as well. Such overheads characterize functional testing approaches, 
since it is very difficult for such components to be tackled by small and 
fast deterministic routines. Thus, verification-based functional testing 
techniques are adopted for the control components with the test cost/fault 
coverage trade-off in mind. 

Let’s briefly discuss an example of verification-based self-test code de-
velopment for pipeline control components. The basic concept is to apply 
test instruction sequences that exercise the functionality and increase the 
activity of the pipeline components: cause hazards of different types, and 
activate all forwarding paths multiple times with different data. In [341], 
a systematic method is proposed that processes existing SBST routines 
(routines for functional components guarantee the diversity of operands) 
and creates multiple instantiations of a given routine (code variants) so as 

In many cases, verification-based functional self-test programs based on 
templates and instruction biases are generated automatically by Architec-
tural Verification Suites (AVS) developed for processor verification. The 
test engineer can reuse appropriate parts of the verification routines, for 
the testing of control components with no additional manual effort in-
volved or in the worst case substantially alleviating any manual self-test 
routine development effort. However, corner cases are usually targeted by 
proper handwritten instruction sequences. In case that verification-based 
test programs are reused, it should be taken care that test responses are 
propagated to memory since as opposed to verification, in SBST the inter-
nal state of the processor is not directly observable, thus making propaga-
tion imperative. 

to activate the pipeline control logic. 
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Case studies – experimental results 

Several experiments have been performed on a diverse set of different 
processors benchmarks with varying complexity. Some of these processor 
core models are publicly available benchmarks while one of them was de-
veloped in-house to overcome architectural and functional limitations of 
the publicly available benchmarks. Table 20.3 lists the processor bench-
marks used, the usefulness of each processor benchmark and some remarks 
on the architecture and implementation of each benchmark. 

In order to evaluate the fault coverage, a test evaluation framework was 
developed and used for every processor core benchmark, based on indus-
trial tools for synthesis, functional and fault simulation. It should be noted 
that the fault coverage reports that follow are smaller than the actual fault 

Table 20.3. Processor core benchmarks used. 

coverage, since many of the undetected faults are structurally testable  

Processor 
Name  

Architecture 
Implementation 

Complexity Usefulness of  
Experiment 

Plasma Simple RISC processor, 
Princeton architecture,  
3-stage simple pipeline, no 
data forwarding, public 
available.  

Simple First application of the 
methodology to a RISC 
processor. Many 
different synthesized 
versions used. 

ASIP RISC processor, Harvard  
architecture, 5-stage  
pipeline. Public available 
limited version. 

Average Application of the  
methodology on a RISC  
processor generated auto-
matically by an ASIP 
suite. 

Athena RISC processor, Harvard 
architecture, 5-stage full 
pipeline, component  
hierarchy maintained 
thoughout synthesis,  
in-house. 

Average Application of the  
methodology on a  
fully-pipelined processor 
with optimized coding 
style. 

miniMIPS RISC processor, Princeton 
architecture, system  
co-processor, 5-stage full 
pipeline, public available. 

Average Application of the  
methodology on a  
fully-pipelined public 
processor. 

OR1200 “Real world” RISC  
processor (used in industrial 
SoCs), configurable  
Harvard architecture,  
5-stage full pipeline, public 
available. 

High Application of the  
methodology to a  
successful, industrial  
embedded processor. 
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and functionally untestable.4 There are various reasons for the existence of 
functionally untestable faults in processor architectures. Some of them are 

techniques used. Testing of such functionally untestable fault is considered 
overtesting that results to yield loss. However, there is no commercial tool 
that can identify such faults. 

Test strategy 

For all the processor core benchmarks used we applied the high-level 
SBST methodology discussed in previous paragraphs. All highest priority 
functional components were targeted using Deterministic self-test code 
development by simply tailoring the test library algorithms that apply pre-

benchmark assembly language. The self-test program was composed tar-
geting the computational functional components (parallel multipliers, 
ALUs, shifters, etc.), the interconnecting functional components (pipeline 
forwarding multiplexers) and the storage functional components (register 
files, and pipeline registers). The self-test program was enhanced by self-
test routines targeting control components including the pipelined control 
unit, the local pipeline stage controllers and the hazard detection unit. All 
control components were targeted using a coverage-driven verification-
based self-test code development approach aiming at maximizing functional 
coverage metrics by taking advantage of existing software verification 
platforms where available. For example, Athena Processor Verification 
Suite (APVS) which was developed at the design phase of Athena CPU, 
automatically generated verification-based functional test code. Through 

 

                                                      
4 Faults that cannot be detected at normal mode of operation while are identi-

fied as undetected by the fault simulator. 

due to microarchitectural and ISA constraints and other due to design 

reusability of verification-generated self-test code, any manual verification-
based self-test code development effort was substantially alleviated. Like- 
wise, OR1200 Processor Verification Suite (OPVS) which we developed
for OpenRISC 1200 design verification, generated automatically verification-
based self-test programs based on templates and instruction biases. Further-
more, a small number of corner cases are targeted by proper handwritten
instruction sequences. In the following paragraphs, we will briefly discuss
each processor benchmark used. Test statistics for the five processor bench-
marks including different gate-level implementations are summarized in
Table 20.4. 

computed gate-level independent deterministic tests, to the processor 
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Table 20.4. Test statistics for the processor benchmarks. 

Processor Core Gate Count FC (%) Size (Words) Time (Clock Cycles) 
Plasma (Synthesis A) 26,080 95.3 853 5,797 
Plasma (Synthesis B) 27,824 95.3 853 5,797 
Plasma (Synthesis C) 30,896 94.5 853 5,797 
ASIP 37,400  92.6  1,728  10,061 
Athena 26,122  96.3  3,014  11,637 
miniMIPS 32,817  95.1  1,565  7,162 
OpenRISC 1200 44,476 86.4 2,947 108,429 
OpenRISC 1200 (Hybrid) 44,476 91.6 15,693 210,167 

Plasma 

Plasma was the first publicly available 32-bit RISC processor core bench-
mark we used to evaluate the high RT-level methodology on processor 
cores. Plasma supports interrupts and all MIPS I user mode instructions 
except unaligned load and store operations (which are patented) and  
exceptions. The synthesizable CPU core is implemented in VHDL with a 
simple 3-stage pipeline [338]. The CPU has been enhanced by adding a 
parallel multiplier. The fast multiplier module was generated using a pub-
lic available module generator and has the following characteristics: Booth 
recoding, Wallace trees for partial product summation and fast carry look-
ahead addition at the final stage. The Plasma processor VHDL model was 
synthesized in two different technology libraries with different synthesis 
parameters. Synthesis A (26,080 gates) was optimized for area, in a 0.35 
µm technology library and the design runs at a clock frequency of 57 MHz. 

Synthesis C (30,896 gates) was optimized for delay, in a 0.35 m techno-
logy library and the design runs at a clock frequency of 74 MHz. 

The developed self-test program consists of 853 words and is executed 
for 5,797 clock cycles. Table 20.4 shows that very similar fault coverage 
results (≈95%) were obtained when the processor core was synthesized in 
different technology libraries with different optimization scripts, optimiz-
ing either for area or performance. This set of experiments on Plasma CPU 
was performed to show that test development for the targeted components 
which is performed at high RT-level, results in high structural fault cover-
age that does not depend in the gate-level synthesis implementation. 
Therefore, the self-test program is gate-level independent, i.e. independent 
of the logic synthesis parameters and technology library used. 

µm tech-Synthesis B (27,824 gates) was also optimized for area, in a 0.50 

µ
nology library and the design runs at a clock frequency of 42 MHz. Finally, 
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ASIP 

instruction set processor (ASIP) design environment of [28] for evaluating 
the proposed methodology in a totally different processor implementation 
of the MIPS-I ISA, i.e. as generated automatically by an ASIP design envi-
ronment. A 52 instruction subset was implemented while co-processor and 
interrupt instructions were not implemented in this experiment. It should 
be noted that in the current educational release version of the ASIP design 
environment of [28], data hazard detection and register bypassing are not 
implemented. The automatically generated RT-level VHDL model of the 
processor has been synthesized, optimized for area, targeting a 0.35 µm 
technology library and the design runs at a clock frequency of 44 MHz 
with a total gate count of 37,400 gates. 

The self-test program developed consists of 1,728 words that execute in 
10,061 clock cycles. Almost complete coverage was achieved for the 
computational functional components (ALU, Multiplier, and Shifter), the 
storage functional components (register file, HI-LO registers) and 
the interconnect functional components (pipeline forwarding multiplexers). 
Fault coverage at processor level was 92.6%. 

Athena 

Athena is processor core developed at the University of Athens, to fulfill 
the requirements of a fully functional pipelined processor benchmark with 
academic and research applications. Athena is a 32-bit embedded RISC 
processor core with 32 GPRs that implements a 5-stage pipeline with haz-
ard detection and forwarding mechanisms along with exception handling 
mechanisms. Athena implements the full MIPS-I ISA with the sole excep-
tion of the unaligned load and store operations that are patented. The 
processor core is enhanced with a high-performance Booth encoded, 
Wallace-tree parallel multiplier (same multiplier implementation as in the 
Plasma CPU).  

The RT-level coding style partitioned the processor core into hierarchi-
cal blocks maintained throughout the synthesis process while avoiding 
glue-logic at the top level. Hierarchical RT-level coding style and bottom-
up compile allowed for critical components to be constrained and compiled 
separately. For example, finite state machine (FSM) logic and datapath 
time critical components were isolated and optimized for synthesis to meet 
specific area and timing constraint requirements. Furthermore, partitioning 
the processor into modules maintained throughout synthesis process,  
allowed development and evaluation of SBST routines at the component 

A 5-stage pipeline processor was designed using the application specific 
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level targeting pipeline logic. The RT-level processor model was synthe-
sized targeting a 0.18 µm technology library. Synthesis was optimized for 
area and the netlist gate-count was 26,122 gates with 1,515 FFs. The de-
sign runs at a clock frequency of 82 MHz. 

The self-test program developed consists of 3,014 words that execute in 
11,637 clock cycles. Almost complete coverage was achieved for the com-
putational functional components (ALU, Multiplier, and Shifter), the storage 
functional components (register file, HI-LO registers) and the interconnect 
functional components (pipeline forwarding multiplexers). Fault coverage 
at processor level was 96.3%. 

miniMIPS 

miniMIPS is a public available 32-bit RISC processor model, implement-

detection and incorporates a system co-processor which handles excep-
tions and interrupts [289].  

The RT-level processor model was synthesized targeting a 0.18 µm 
technology library. The gate-count was 32,817 gates and the design runs at 
a clock frequency of 100 MHz. The self-test program developed consists 
of 1,565 words that execute in 7,162 clock cycles. Fault coverage of 95.1% 
was achieved at processor level. 

At this point it should be noted that all three processor core benchmarks 

same MIPS I ISA; however, their microarchitecture differs considerably. 

All these four sets of experiments on four different implementations of 
the same ISA, were performed to show that test development which is per-
formed at high RT-level based on the ISA of the processor, can result in 
high structural fault coverage that does not depend in the specific imple-
mentation of the ISA. 

OpenRISC 1200  

OpenRISC 1200 is a public available processor core [317] which has been 
employed in numerous industrial applications. Its complexity is the higher 
in the complexity scale among the processor benchmarks used for the experi-
mental results. The currently available version is a 5-stage pipelined 32-bit 
RISC processor core with Harvard architecture. It is configurable and a 
configuration supporting 56 instructions and a multiply–accumulate (MAC) 

ing the MIPS I ISA with a classic 5-stage pipeline that supports hazard 

considered so far (Plasma, miniMIPS, and Athena) implement almost the 

The microarchitecture complexity of miniMIPS is comparable to the Athena
CPU, which is much more complex than Plasma CPU. 
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unit was synthesized targeting a 0.18 µm technology library. The netlist 
gate-count was 44,476 gates with 2,021 state-holding elements. 

The self-test program developed according to the high RT-level meth-
odology consists of 2,947 words that execute in 108,429 clock cycles. 
Fault coverage of 86.4% was achieved at processor level. 

Although the test program size is comparable to previous processor 
benchmarks, the number of cycles is increased. This is due to the fact 
that OpenRISC 1200 ISA includes multi-cycle instructions (i.e. multiply–
accumulate instruction). Furthermore, OR1200’s much higher complexity 
requires an increased number of verification-based test sequences for 
targeting processor’s control logic.  

If the derived fault coverage attained is not considered adequate, a 
hybrid SBST approach that includes: first high RT-level test program gen-
eration, then constrained-ATPG test program generation similar to [75] for 
the hard-to-detect faults and finally random test program generation 
(RTPG), it can lead to fault coverage of 91.6%, at an increased test pro-
gram size (15,693 words) and test execution time (210,167 cycles).  

Conclusions and perspective 

Software-based self-testing has been recently proposed as a very promising 
alternative to classic hardware-based self-testing, for actual at-speed test-
ing of microprocessors, embedded processors and processor-based systems. 
Many academic research groups and, recently, major processor companies, 
have proposed interesting approaches in the framework of software-based, 
instruction-based or cache-resident manufacturing self-testing of proces-
sors. In this chapter, we have described the key concepts of this emerging 
testing philosophy, reviewed several approaches recently presented in the 
literature in this topic and have elaborated on our high-level software-
based self-testing methodology. The methodology has been successfully 
applied to several embedded processors and a detailed elaboration on the 
experimental setup and results has been given. 

Software-based self-testing has a strong potential to eventually evolve 
into a mature and widely adopted self-test approach, because of its non-
intrusive nature and its applicability at different stages of the chip life 
cycle (prototyping, production/manufacturing, in the field). 

Intense research efforts and investments are necessary for the near future 
so that software-based self-testing is adopted in the emerging processor 
architectures (including chip multiprocessor architectures) and automation 
of existing or new methodologies comes true. 
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An outlook of the future directions in processor design is provided in this 
chapter. Shortly, there will be 

• More processors 
• More application-tailored processors 
• More parallelism in different forms 

If we think of the technology development as predicted in the ITRS 
roadmap [208], it is clear that more and more processors will be crammed 
onto a single chip. The prediction of the roadmap is that we will see  
hundreds or even thousands of processors integrated within the next 
ten … f ifteen years, e.g., 424 processing elements per chip in 2017. The 
trend can be confirmed by looking at some contemporary ambitious high-
end projects in multi-core and multi-processor development. For example, 
Rapport, Inc. is shipping a chip with 256 processing elements on board and 
is developing a 1024-core processor, however these are only 8-bit elements 
[281]. Even in workstation processor complexity, Sun has announced an 
8-core processor [109], and Intel and AMD have both announced quad-

control processor is a well-known development for high-end embedded 
systems, already in mass production [165]. 

So, there will be more processors in an integrated embedded system. 
But what kind of processors? My bet is that we will see more specialized 
processors for different specific tasks. The “one size fits all” approach 
simply cannot provide cost and power efficient enough solutions for the 
embedded sector. Thus, we will see various special-purpose off-the-self 
cores emerging. At the leading edge of applications, customizable cores 
and processor generators will be used to unleash the processing power 
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its cores. The CELL architecture with eight data processing cores and one 
core ones [218]. Each of these processors also uses multi-threading on 
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provided by new technologies. As time will pass, some of the application-
specific cores will move to the standard part depository, some will die, and 
new emerging applications will be accelerated by tailored solutions. This 
does not mean that there would not be space for general-purpose proces-
sors in future SoCs, definitely their services will still be needed in parallel 
with the emerging application-specific cores. 

In future System-on-Chip we will see unparalleled parallelism. Data-
Level Parallelism (DLP) such as in split-data multimedia instructions, and 
Instruction-Level Parallelism (ILP) as in superscalar and VLIW processing, 
will be complemented with Thread-Level Parallelism (TLP) and Process-
Level Parallelism (PLP). The former was introduced already in Chapter 2. 
By the latter I mean Chip-Multi-Processing (CMP) type parallel processing 
of loosely (if at all) interrelated processes in a massively parallel computa-
tion system. 

In the search for higher efficiency in the use of processor resources, dif-
ferent forms of multi-threading will find foothold in the embedded pro-
cessing era. Within single processors simultaneous multi-threading (SMT) 
provides the highest efficiency. It is noticeable that SMT is merely a small 
extension from a multi-issue (superscalar or VLIW/EPIC) processor archi-
tecture. In true multi-processor environments, it is natural to use coarser 
granularity and thus to run different threads on different processors and 
only switch to a new thread at a cache miss or other discontinuity point. As 
pointed out in Chapter 3, running several parallel threads speculatively in 
parallel is waste of energy and thus intolerable in many of the embedded 
applications. Instead, basing the multi-threading on independent parallel 
threads (thus approaching PLP in the case of a multi-processor system) 
provides the energy efficiency needed. 

A debate going on in the SoC designer community is whether homoge-
neous or heterogeneous multi-processor systems will prevail. In fact, there 
is room for both. I foresee that general-purpose computing is more amenable 
to homogeneous processors, while highly optimized embedded SoCs will 
be mostly constructed out of heterogeneous processors – some of them 
even tailored to the specific application of the SoC. 

In conclusion, the future of processor design includes multiple “multi-” 
aspects – multi-issue, multi-threading, multi-core, multi-processor, and 
even multi-million transistor circuits, multi-discipline multi-site multi-
national design teams, and fabrication in multi-billion euro/dollar fabs. 

One interesting and very different type of direction for embedded pro-
cessor design will be the low-end market. As trends such as electronics 
printed on paper, plastic or textile will be realized in increasing complexi-
ties, simple and extremely inexpensive processors in such bulk applica-
tions will be needed. The cost requirements will be orders of magnitude 
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lower than in consumer electronics which is already considered a cost-
sensitive segment. 

Further in future there will be gigantic challenges in implementing 
processor-like structures in nanoelectronics such as carbon nanotubes or 
biologically reproduced nanomaterials. Such challenges will require a major 
paradigm shift that is already far beyond the scope of this book. 
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