The Definitive Guide to
ARM® Cortex®-MO and

Cortex-MO+ Processors
Second Edition

Joseph Yiu

& AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
@ NEW YORK e OXFORD e PARIS ¢ SAN DIEGO
SAN FRANCISCO e SINGAPORE e SYDNEY e TOKYO

ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

ISBN: 978-0-12-803277-0

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing-in-Publication Data
A catalog record for this book is available from the Library of Congress

For information on all Newnes publications
visit our website at http://store.elsevier.com/

aa Working together
to grow libraries in

ELSEVIER Internatlonal developll'lg countries

www.elsevier.com ¢ www.bookaid.org

Publisher: Todd Green

Acquisition Editor: Tim Pitts

Editorial Project Manager: Charlotte Kent
Production Project Manager: Jason Mitchell
Designer: Mark Rogers

Typeset by TNQ Books and Journals
www.tng.co.in

Printed and bound in the United States of America

http://www.elsevier.com/permissions
http://store.elsevier.com/
http://www.tnq.co.in

This book is dedicated to the memory of my sister, Lucia Yiu
Adventurous, supportive, loads of fun and full of energy...

the whole family miss you.

Foreword

I started my professional career in 1982, working in a microprocessor software department,
and focused for years on the 8051 as this microcontroller architecture was—during the
1990s—the engine for all types of embedded applications. Over decades, I was part of a
booming embedded industry that created a wide spectrum of processor architectures. During
this time, the microcontroller market became extremely fragmented with numerous silicon
vendors and technologies. Some years ago, every embedded application was created from
scratch with no software reuse and ground-up training for engineers to cope with the project
challenges.

But over the years, microcontroller systems became increasingly complex and demanded even
higher performance to fulfil the wishes for more features and convenient operations. Often
these systems are also price sensitive and therefore increasingly microcontroller systems are
designed as single-chip designs based on high performance 32-bit processors, which are
dominant today. Meanwhile, cost pressure and challenging software development require
standardization, while, at the same time, a diverse I/O connectivity requires a range of devices.

To solve these challenges, the embedded industry has established the ARM® Cortex®-M
processor series as the de-facto standard microcontroller architecture. These processors are
licensed to more than 200 companies that produce devices ranging from standard
microcontrollers to domain-specific sensors to complete radio communication systems for
the Internet of Things.

To support a wide range of applications ARM launched multiple processors that implement
the Cortex-M architecture. At the low-end of the spectrum, the Cortex-MO and Cortex-MO+
is available for applications that were previously dominated by 8-bit microcontrollers. It is
no surprise that these processors are today widely used for low-cost devices.

With the availability of even more capable microcontrollers, software development for these
devices has become increasingly complex. Use of real-time operating systems is rapidly
becoming an industry best practice and the use of prebuilt middleware as well as software
reuse is gaining importance for productive software engineering. Combining software
building blocks often poses a problem for developers, but industry standards are a great way

Foreword

to reduce system development costs and speed up time-to-market. And the Cortex-M
processor architecture along with the CMSIS software programming standard is the basis
for this hardware and software standardization.

Joseph’s book, The Definitive Guide to ARM® Cortex®-MO0 and Cortex-MO+ Processors,
gives you the foundation for designing and creating applications for all devices that are
based on ARM Cortex-MO or Cortex-MO+ processors. I recommend this reading for
practical every embedded engineer as it gives you in-depth ground-up knowledge for your
day-to-day work.

Reinhard Keil
Director of MCU Tools, ARM

xxil

Preface

Embedded system technologies have changed a lot since 2011, when the first edition of this
book was published. In 2012, ARM® announced the Cortex®—M0—|— processor and, in 2014,
the Cortex-M7 processor was announced. Today, the Cortex-M processor is used in many

microcontrollers, as well as in a range of mixed signals and wireless communication chips.

In addition to processor design, embedded software development technologies have also
moved on. As the use of the ARM Cortex-M microcontrollers has become more common,
this has enabled microcontroller software developers to write more sophisticated
applications. At the same time, the quest for better battery life and energy efficiency
continues, along with improvements in development suites.

With all these changes, microcontroller users need to adapt to new technologies quickly and
thus the availability of technical literature is becoming more and more important. This

new edition is therefore full of new information and enhancement. In addition to the new
information related to the Cortex-MO+ processor, examples of using several popular
development suites are also covered. For example, the book has detailed examples of utilizing
low-power features in microcontrollers and illustrations of using RTOS in a simple application.

As the Internet of Things (IoT) is getting more attention and becoming more main-stream,
there are more people taking an interest in and starting to learn about embedded
programming. There are also more universities and colleges that are now moving on from
teaching about legacy 8-bit and 16-bit microcontrollers to starting to teach students about
32-bit embedded processors- like ARM Cortex-M processors. Therefore, many parts of this
book have been rewritten and many basic examples have been included to make this even
more suitable for beginners, students, hobbyists, etc.

There are of course audiences who demand in-depth information such as professional
embedded software developers, researchers, or even semiconductor product designers. To
cater for their needs, this book also covers a wide range of technical details and advanced
examples.

I hope that you will find this book helpful and enjoy using Cortex-M processors in your
next embedded projects.

Xxiii

Acknowledgment

Many people have assisted me during the time I have been writing this book and this
includes the assistance given when I wrote the first edition.

First of all, many thanks to the various readers who have provided feedback for the first
edition, enabling me to improve the contents of this second edition.

There are also a number of people in ARM, including Colin Jones and Edmund Player for
reviewing the contents. A number of companies have also provided me with a deal of
assistance, including ST Microelectronics, Freescale and IAR Systems.

Of course, without the successful first edition, the second edition would not be here.

I would therefore like to express my gratitude to the following people for their help in the
first edition: Amit Bhojraj, Bob (Robert) Boys, David Donley, Derek Morris, Dominic
Pajak, Drew Barbier, Jamie Brettle, Jeffrey S. Mueller, Jim Kemerling, Joe Yu, John Davies,
Jon Marsh, Kenneth Dwyer, Milorad Cvjetkovic, Nick Sampays, Reinhard Keil, Simon
Craske, William Farlow.

I would also like to thank the staff from Elsevier for their professional work in getting this
book published.

And finally, a big thank you to all of my friends for their encouragement and for forgiving
me for being slightly anti-social (I hear you ©), while I was working on this book.

Terms and Abbreviations

Abbreviations

Definitions

AAPCS
AHB
ALU
AMBA
APB
AP
ARM ARM
BE8
BPU
CMSIS
CMOS
CPU
DAP
DDR
DS-5
DWT
EABI/ABI
EWARM
EXC_RETURN
FPGA
GPIO
GPU
gCC
HAL
ICE
IDE
ISA
ISR

JTAG
LR
LSB
MCU
MDK/MDK-ARM
MSB

ARM architecture procedure call standard
Advanced high-performance bus
Arithmetic logic unit

Advanced microcontroller bus architecture
Advanced peripheral bus

Application programming interface

ARM Architecture Reference Manual

Byte invariant big endian mode

Break point unit

Cortex microcontroller software interface standard
Complementary metal oxide semiconductor
Central processing unit

Debug access port

Double data rate (memory)

Development Studio 5

Data watchpoint and trace unit (unit)
Embedded application binary interface
IAR embedded workbench for ARM
Exception return

Field programmable gate array

General purpose input/output

Graphic processing unit

GNU C compiler

Hardware abstraction layer

In-circuit emulator

Integrated development environment
Instruction set architecture

Interrupt service routine

Joint test action group (a standard of test and debug interface)

Link register

Least significant bit

Microcontroller unit

ARM® Keil™ Microcontroller Development Kit
Most significant bit

Xxvil

Continued

Terms and Abbreviations

—cont’d
Abbreviations Definitions
MTB Micro trace buffer
MSP Main stack pointer
NMI Non-maskable interrupt
NVIC Nested vectored interrupt controller
oS Operating system
PC Program counter
PCB Printed circuit board
PSP Process stack pointer
PSR/xPSR Program status register
RTC Real-time clock
RVDS ARM RealView Development Suite
RTOS Real-time operating system
RTX Keil Real-Time eXecutive kernel
SCS System control space
SCB System control block
SoC System-on-a-Chip
SP Stack pointer
SPI Serial peripheral interface
SWD Serial wire debug
TAP Test access port
TRM Technical Reference Manual
UART Universal asynchronous receiver transmitter
uLpP Ultra low power
usB Universal serial bus
WIC Wakeup interrupt controller

Xxviii

Conventions

Various typographical conventions have been used in this book, as follows:

Normal assembly program codes:
MOV RO, R1 ; Move data from Register R1 to Register RO
Assembly code in generalized syntax; items inside “< > must be replaced by real
register names:
MRS <reg>, <special_reg> ;
C program codes:
for (i=0;1<3;i++) { funcl(); !}
Pseudo code:
if(a>b){ ...

Values:

Sl e

4’hC, 0x123 are both hexadecimal values

#3 indicates item number 3 (e.g., IRQ #3 means IRQ number 3)

#immed_12 refers to 12-bit immediate data

Register bits—Typically used to illustrate a part of a value based on bit position.
For example, bit[15:12] means bit number 15 down to 12.

Register access types:

e

R is Read only

W is Write only

R/W is Read or Write accessible

R/Wc is Readable and cleared by a Write access

XXIX

References

The following documents are referenced in this book:

Document title

Document number

ARMvV6-M Architecture Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419¢c/index.html
Cortex-MO Devices Generic User Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html
Cortex-MO+ Devices Generic User Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/index.html
Cortex-MO rOp0 Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html
Cortex-M0+ rOp1 Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/index.html
Procedure Call Standard for ARM Architecture
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_
aapcs.pdf

AN237—Migrating from 8051 to Cortex Microcontroller
http://infocenter.arm.com/help/topic/com.arm.doc.dai0237a/index.html
AN321—ARM Cortex-M Programming Guide to Memory Barrier Instructions
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
Keil MDK-ARM Compiler Optimization - Getting the Best Optimized Code
for your Embedded Application
http://www.keil.com/appnotes/docs/apnt_202.asp

IAR Application Note—Mastering stack and heap for system reliability
http://www.iar.com/About/Blog/2012/4/Mastering-Stack-and-Heap-for-
System-Reliability/

AMBA® 3 AHB™-Lite Protocol Specification
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
AMBA APB™ Protocol Specification
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024c/index.html
CoreSight Technical Introduction
http://infocenter.arm.com/help/topic/com.arm.doc.epm039795/index.html
ARM Debug Interface v5
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0031c/index.html
CoreSightTM MTB-MO0+ Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.set.coresight/index.html
ARM Compiler armasm User Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/index.html

ARM DDI 0419C
ARM DUI 0497A
ARM DUI 0662B
ARM DDI 0432C
ARM DDI 0484C

ARM IHI 0042E

ARM DAI 0237A
ARM DAI 0321A

Keil Application
Note 202

ARM IHI 0033a
ARM [HI 0024C
ARM EPM 039795
ARM IHI 0031C
ARM DDI 0486B

ARM DUI 0473K

XXXI

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dai0237a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.iar.com/About/Blog/2012/4/Mastering-Stack-and-Heap-for-System-Reliability/
http://www.iar.com/About/Blog/2012/4/Mastering-Stack-and-Heap-for-System-Reliability/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm039795/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0031c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.coresight/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/index.html

Introduction

1.1 Welcome to the World of Embedded Processors
1.1.1 Where Are the Processors Used?

If you are new to microcontrollers or ARM® processors, first I would like to give you a
very warm welcome.

Processors are used in majority of electronic products. For example, your mobile phones,
televisions, washing machines, cars, bank card (smartcards), and even simple devices like
the remote control for your radio can have processors inside. In most cases, these
processors are placed inside in chips called microcontrollers. In modern microcontrollers,
the chip also contains the essential elements like memory systems and interface hardware
(often called peripherals). There are many different types of microcontrollers; they can be
available with different processors, memory sizes, and peripherals inside, and can be
available in different packages (Figure 1.1).

Large numbers of microcontrollers are designed for general purpose, which means they
can be used in wide range of applications. Sometimes processors are used in chips that are

NXP LPC1114

(Cortex-M0) Freescale Kinetis KLO3
X

(Cortex-MO+)

Kinetis KLC3 chip

NXP LPC1343
(Cortex-M3)

2 . R34 RoHS/No-PB
LED2[RIM b

B
r35 [&) |s! @

@il Lo oo
Figure 1.1
Microcontrollers are available in wide range of physical packages.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00001-1
Copyright © 2015 Elsevier Inc. All rights reserved. 1

http://dx.doi.org/10.1016/B978-0-12-803277-0.00001-1

2 Chapter 1

designed for specialized purposes and for particular products, and they are often referred
as Application-Specific Integrated Circuits (ASICs).

There are also chips designed to perform particular functions, but are offered for wide
range of products. In such case, these chips are called Application Specific Standard
Products (ASSPs).

In some chip product designs, the chip could be referred to as System-on-a-Chip (SoC).
The term SoC is somewhat vague and can ranged from very complex application
processor designs for mobile computing (e.g., A smart phone’s application processor chip
can contain a number of processors), to very low-power designs like smart sensors.

In most of these products, processors are used because the ability to control the system
using software to enable powerful features to be created. In some cases some of these
chips can contain multiple processors.

The ARM Cortex®-MO and Cortex-MO+ (pronounced as Cortex-MO “plus”) processors
are used in microcontrollers, ASICs and ASSPs, SoC, etc. In some cases, these
processors might also be used in subsystems as part of complex SoC devices. In the rest
of this book, we will be focusing on the microcontroller products. But the overall
programming knowledge and software development techniques are similar for all these
devices.

1.1.2 Processor, CPU, Core, Microprocessor, and All These Names

If you have been studying computer science or computer engineering in the 1980s, you
possibly recall that processors are often referred as Central Processing Units (CPUs).
Typically the term CPU is referred to the main processor chip used in a computer, and
usually in form of a physical chip product, which requires external memory chips. The
term CPU is still used frequently today, but the word “Central” might no longer be
relevant to a number of systems because many systems contain multiple processors. As a
result, we normally just refer the processing unit as a “processor.”

Some of the terminologies that are commonly used:

* Processor core/CPU core—typically refer to the processor inside a microcontroller
product or chip product, excluding the memory system, peripherals, and other system
support components (e.g., power management, clock generation circuits). In some
articles the word “core” might also refer to the part inside a processor that handles the
software execution, excluding the interrupt controller and debug support hardware.

* Microprocessor—a chip device containing processor(s), which is designed primarily to
handle computational tasks, and can also handle control tasks. The system designers
typically need to add memory and potentially additional peripheral hardwares to build a

Introduction 3

complete system with microprocessors. The terms “Microprocessor” and “CPU” can be
interchangeable in some contexts (if referring to a chip device).

Microcontroller—a chip device containing processor(s), which is designed to handle
control and computational tasks. This chip typically contains a memory system (e.g.,
flash memory for program ROM and Static Random Access Memory (SRAM), and a
number of peripherals).

1.1.3 Programming on Embedded Systems

For those of you who have been doing programming on a Personal Computer (PC), or
programming for Apps (Applications for mobile platforms), you may find that
programming on microcontroller devices is very different from what you have learnt

before. Typically, we called these systems built on microcontrollers as “Embedded
System,” which means they blended into the products, and are sort of hidden (apart from
the user interface).

Most embedded systems have the following characteristics compared to traditional
computing platforms:

Many embedded systems have very small memory footprint (e.g., 16 KB of program
memory based on flash memory technologies, and 8 KB of SRAM for data).

Many embedded systems have very simple user interface (e.g., a few buttons and just a
few LEDs, or a simple LCD display).

In most simple microcontroller-based systems there are no file systems, and if a
microcontroller application require a storage device like SD card interface, the software
developer need to add an SD card interface device driver (potentially supplied by the
microcontroller vendor), and need to add software for file system support (you can get
file system middleware from third parties).

Many of the embedded systems do not have any Operating System (OS). We sometimes
called these systems as “bare-metal.” In these systems there is only one application, and
potentially a number of interrupt-driven processes.

Some of these systems have OS developed specially for embedded systems, such as
Real-Time Operating System (RTOS). These OS have very small memory footprints
and need very low processing overhead. But at the same time, some of these OS might
only able to provide task scheduling and basic task management features.

You still need your personal computer (or MAC/workstation) to do the software
development. Since the embedded systems are very small and have limited capabilities,
the software development environments are running on your PC/MAC/workstation. You
will need tools to transfer the developed program code to the microcontrollers. In many
cases, the process is referred as flash memory programming because many
microcontrollers use flash memories for program storage. Many microcontroller software

4 Chapter 1

development environments come with built-in support for flash programming, but you
might also need an adaptor to hook up the microcontroller to the PC/MAC/workstation.

For many readers, this is a completely different world compared to the type of software
development they have been doing previously. But at the same time this can be fascinating.
You will be able to see and control the details of many low-level operations. For example,
when you execute a simple “printf(‘“Hello world!\n”); ™ statement in a C program, you will
be able to control how the message is sent to the user interface (e.g., LCD module),
whereas all these details are hidden in other high-level programming environments.

1.1.4 What Type of Skills Do | Need to Start Learning Microcontroller
Programming?

In this book, I assumed that you already know a bit of C programming. Some experiences
of using any microcontrollers will certainly help a lot.

Knowledge on electronic engineering areas like digital interface circuits can help you to
understand some of the examples in this book and enable you to start creating your own
electronics projects. It is possible to create your own microcontroller boards, but this often
requires more design experience. To make the learning process easier, for beginners, or
people who are not familiar with electronic engineering should consider starting off with
off-the-shelve microcontroller development boards. They are ready to use and this will
save a lot of time in debugging hardware issues.

1.2 Understanding Different Types of Processors
1.2.1 Why We Need Various Types of Processors

There are a lot of different types of processors in the world. Even in the ARM® processor
product ranges there are different processor series for different applications. For example,
if you need to design a server, you need to have processors that can deliver very high data
processing performance, and can run at fairly high speed clock speed to provide the
performance required. But if you are developing battery-powered gadgets such as wearable
devices, often the application do not necessarily need very high performance, but the
battery life is much more important so the processor and the rest of the system need to
have very low power and therefore different type of processors are required.

In many applications, just having high performance is not enough. For example, in a
processor for smart phone it is also necessary additional features in the processor such as
virtual memory support for feature rich OS.

Unfortunately for chip designers, they cannot break the rule of physics. The higher
performance needed, more things need to be done in parallel and so more transistors are

Introduction 5

Cost
Features

Computing
Servers

) Performance
Smart

Phones
Microcontrollers
Power

Figure 1.2
Trade-off in processor designs.

needed in the designs. And when the clock frequency goes up, the dynamic power again
increases. The same applies to adding more features. The increase of silicon size also
increases the production cost (Figure 1.2).

As a result of the tradeoffs, we need to have different types of processors for different
applications. Based on the technical requirements of the applications, chip designers need
to select the right processor for the project, and sometimes need to compromise between
various requirements to create designs that fit the targeted applications. Fortunately, there
are many different types of processors available on the market, in addition to different
performance points and sizes, some of them also have special feature to fit certain
markets. For example, ARM provides a wide range of processors that are designed to suite
most of the target applications very well by providing the right balance between
performances, features, and power.

1.2.2 Overview of the ARM Processor Families

Over the years, ARM had developed many processors (Figure 1.3). For many readers who
are not familiar with ARM processors, it can be slightly confusing. To understand this
better, let us step back a little bit and look at what were offered a few years back.

ARM has been designing processors for over 20 years. Most of the processors designed by
ARM are 32 bit, and in last few years ARM also have been developing processors that
support a mixed 32-bit and 64-bit architecture.

The ARM7TDMI® processor is the first key ARM processor that was widely deployed in
the market. It is very energy efficient, and provides high code density using an innovative
operation state that support 16-bit instruction set called Thumb®. As a result, it was used
in a number of second generation mobile phones and a number of microcontroller
products. Since then, ARM has continuously developed new processors, and hence the
ARMOY/9E processor family and ARM11 processor family are developed, when even
higher performance and more features.

6 Chapter 1

Cortex-A72
High-end
ARM Cortex Application
Performance, processors Cortex-A57 processors
functionality
Cortex-A17
Cortex-A15 Cortex-A12
-Al
Cortex-A9 Cortex-A53
-A
Cortex-A8 Cortex-A7
Cortex-A5 .
Cortex-R7 High |_)erformance
Real-time systems
ARM11 Cortex-R5
series
Cortex-R4
O Cortex-M7
ARMQE OCortex-M4

series Cortex-M3 .

() 0 Microcontroller
ARM7TDMI o Cortex-M0+ applications
Cortex-MO0
Cortex-M1
2003 2005 2009 2012 Future
Figure 1.3

Overview of the ARM processor family.

In around 2003, ARM realized that it needs to diversify the processor products to address
different technical requirements in different markets. As a result, three product profiles are
defined, and the Cortex® processor brand name is created for the naming of these new
processors:

Cortex-A processors—These are Application processors, which are designed to provide
high performance and include features to support advanced operation systems (e.g.,
Android, Linux, Windows, i0S). These processors typically have longer processor pipeline
and can run at relatively high clock frequency (e.g., over 1 GHz). In terms of features,
these processors have Memory Management Unit (MMU) to support virtual memory
addressing required by advanced OS, optional enhanced Java support, and a secure
program execution environment called TrustZone®.

The Cortex-A processors are typically used in mobile phone, mobile computing devices
(e.g., tablets), television, and some of the energy efficient servers.

While the Cortex-A processors have high performance, the processor is not designed to
provide rapid response time to hardware events (i.e., real-time requirements). As a result, a

Introduction 7

different profile of high-performance processors is needed, and they are the Cortex-R
processors.

Cortex-R processors—These are Real-Time, high performance processors that are very
good at data crunching, can run at fairly high clock speed (e.g., 500 MHz to 1 GHz range),
and at the same time can be very responsive to hardware events. They have cache
memories as well as Tightly Coupled Memories, which enable deterministic behavior for
interrupt handling. The Cortex-R processors are also designed with additional features to
enable much higher system reliability such as Error Correction Code (ECC) support for
memory systems and dual-core lock-step feature (i.e., redundant core logic for error
detection).

The Cortex-R processors can be found in hard disk drive controllers, wireless baseband
controllers/modem, specialized microcontrollers such as automotive and industrial
controllers.

While the Cortex-R processors can be very good at high-performance microcontroller
applications, they are quite complex designs and can consume fair amount of power.
Therefore, another group of processors are need for the very low-power embedded
products, and they are the Cortex-M processors.

Cortex-M Processors—The Cortex-M Processors are designed for main stream
microcontroller market where the processing requirement is less critical, but need to be
very low power. Most of the Cortex-M Processors are designed with a fairly short pipeline,
for example, two stage in the Cortex-M0+ processor and three stages in Cortex-MO,
Cortex-M3, and the Cortex-M4 Processors. The Cortex-M7 processor has a longer
pipeline (six stages) due to higher performance requirement, but still the pipeline is a lot
shorter than the designs of high-end application processors. As a result of the shorter
pipeline and low power optimizations in the design, the maximum clock frequencies for
these processors are slower than Cortex-R and Cortex-A processors, but this is rarely a
problem because even a 100 MHz Cortex-M-based microcontroller can do a lot of work.

The Cortex-M processors are designed to provide very quick and deterministic interrupt
responses. To achieve this, the processor’s execution control part is closely coupled with a
built-in interrupt controller called Nested Vectored Interrupt Controller (NVIC). The NVIC
provides powerful and yet easy-to-use interrupt’s management. In general, the Cortex-M
processors are very easy to use, with almost everything can be programmed in C.

Due to their low power, fairly high performance, and ease of use benefits, the Cortex-M
processors are selected by most major microcontroller vendors in their flagship
microcontroller products. The Cortex-M processors are also used in some of the sensors,
wireless communication chipsets, mixed signal ASICs/ASSPs, and even used as controller
in some of the subsystems in complex application processors/SoC products.

8 Chapter 1

In addition to the Cortex processor families, ARM also has processors specially designed
for security-sensitive products, which included temper-resistance features. These
processors are the SecurCore® series. For example, the SC000™, one of the SecurCore is
designed based on the Cortex-MO processor (same instruction set, and uses NVIC for
interrupt management). The SecurCore products can be found in SIM cards, banking/
payment systems, and even some electronic ID cards.

1.2.3 Blurring the Boundaries

In some ways, the term microcontroller can be a bit vague. Some of the microcontrollers
are based on application processors such as ARM926EJ-S, one of the processor in the
ARMOE processor family. In last few years, some of the microcontroller vendors starting
to produce microcontroller products based on the ARM Cortex-A processors

(e.g., Freescale Vybrid, Atmel SAMASD3), and ARM Cortex-R processors (e.g., Texas
Instruments TMS570, Spansion Traveo Family).

At the same time, the Cortex-M processors are also being used in many complex SoC
devices as power management controller, I/O subsystem controller, etc.

In the next generation of Cortex-R processor based on the ARMv8-R architecture, the
architecture definition also allows the processor to incorporate a MMU so that it can be
used with a full feature OS like Linux or Android, and at the same time handle real-time
tasks based on a virtualization mechanism.

1.2.4 ARM Cortex-M Processor Series

There are a number of processors in the Cortex-M processor family, as shown in Table 1.1.

If we look at the instruction set in a bit more details (Figure 1.4), we can see that the
Cortex-M0, Cortex-M0+-, and Cortex-M1 processors only support a small instruction set
(56 instructions). Most of these instructions are 16 bit, thus provide a very good code
density—which means it need a smaller program memory require for the same task
compared to many architecture.

The instruction set of the Cortex-MO and Cortex-MO+ processors are fairly simple. But if
an application task involves complex data processing, then potentially a long sequence of
instructions is needed to accomplish the operations in the Cortex-M0/MO+- processor
because of the simple instruction set. In those cases, it might be better to use the
Cortex-M3 processor because the Cortex-M3 processor supports a number of extra
instructions (mostly 32 bit) that supports the following:

* More memory addressing modes
* Larger immediate data in the 32-bit instructions

Introduction 9

Table 1.1: The Cortex®-M Processor family

Processor Descriptions

Cortex-M0 The smallest ARM® processor—only approximately 12000 logic gates at minimum
configuration. It is very low power and energy efficient.

Cortex-M0+ The most energy efficient ARM processor—it has a similar size as the Cortex-M0

processor, but with additional system level and debug features (all optional), and have
higher energy efficiency than the Cortex-MO processor design. It supports the same
instruction set as the Cortex-M0 processor.

Cortex-M1 It is a small processor design optimized for field programmable Gate Array (FPGA)
applications. It has the same instruction set and architecture as in the Cortex-MO0
processor, but has FPGA specific memory system features.

Cortex-M3 When compared to the Cortex-MO0 and Cortex-M0+ processors, the Cortex-M3 has a
much more powerful instruction set, and its memory system is designed to provide
higher processing throughput (e.g., use of Harvard bus architecture). It also has more
system level and debug features, but at a cost of larger silicon area (minimum gate
count is about 40000 gates) and slightly lower energy efficiency. In general, the energy
efficiency of the Cortex-M3 processor is still a lot better than many traditional 8-bit
and 16-bit microcontroller devices because the performance is substantially higher.
The Cortex-M3 processor is very popular in the 32-bit microcontroller market.

Cortex-M4 The Cortex-M4 processor contains all the features of the Cortex-M3 processor, but
with additional instructions to support DSP applications and have an option to
include a floating point unit (FPU). It has the same system level and debug features as
the Cortex-M3 processor.

Cortex-M7 It is a high performance processor designed to cover application spaces where the
existing Cortex-M3 and Cortex-M4 processors cannot reach. Its instruction set is a
superset of the Cortex-M4 processor, for example, supporting both single and double
precision floating point calculations. It also has many advanced features, which are
usually find in high-end processors such as caches and branch predictions.

*The exact gate count of a processor depends on many factors such as the semiconductor process library used, the chip
design tool used, the design optimization options, signal routing constraints, etc.

* Longer branch and conditional branch ranges
* Additional branch instructions

* Hardware divide instructions

e Multiply accumulate (MAC) instructions

* Bit field processing instructions

e Saturation adjustment instructions

As a result, the Cortex-M3 processor can handle complicate data processing quicker.

The code size might be similar to Cortex-MO or Cortex-MO0+ processor because although
fewer number of instructions are required to perform the same operations, and these
powerful instructions are mostly 32 bit instead of 16 bit. These 32-bit instructions also
enable the Cortex-M3 processor to utilize the registers in the register bank better.

In some applications, however, you might need to perform some DSP operations such as
filtering, signal transformations (e.g., Fast Fourier Transform), etc. In these applications,

10 Chapter 1

(v [vema J[vorw][vorr][vorm | [vmaawm][vminwm] Cortex-M7 FPU
T T o | T | o ity
Cortex-M4 FPU
(vass) [vao J[vaw J[vewe][ver J[vom][wov][wom [wow](ﬂ;‘g:n:':j:’r)"
([vma ([was [wmov][wwrs][wwmse][wmu | [wwee][wNmia][vmmis | [vivwa |
T | T || | T T | S | T |
(aoao] aao][aaooss | [aapos) (saposs | [sapos) uaposs | [uapos | (uwaopis | unapps |
oo) (o) cwme) (o) mm) [sm)(onme] [vsow) [owers | [uwom)
e e e o e e
T [e e o e e
e e e o o
(wwa J(wwmos] wer][wesr][weer | wesw | [wess | — — vanoos
) [) (o) [) []] []| e I
| e e
(wmov J[wmow J[wmovr J[mu J[mw][wms][wma] iz || ooz | oo
(o (o [e [om) om) mm ()| e e] (o)
o) (oo) (o)) (o) (e) (o J [wn)| o) (e
(wo] (asn)} (s] (Cox J(ers J (o])|(msm][we JE soc H s }[W]mm
(e J[wes J[wsw J[s J[src J[uem il oasx e LA
)) . e e e
(i o) (o) (o) o] (o) [own) [)| o) o))
o)) (o)]) [) [own] (o] e e
(o) o)) Lo [t (oo) (o) ()| e e
Co) o) s) (o) e) (omon) (oo] () (o)| [)
) o) ()|) (o] (o) (o]| e e
(sx78] (o | (sx] (wxm] (o5] (v J| [7s J(v J[wa J[we | (Coams) (o) [swms)
e R e T
16-bit instructions 32-bit instructions Cortex-M3 (ARMv7-M) Cortex-M4 (ARMV7E-M)

Figure 1.4
Instruction set of the Cortex®-M processor family.

you might want to use the Cortex-M4 processor because the Cortex-M4 processor added
another group of instructions targeted for these applications—these included Single
Instruction Multiple Data (SIMD) operations and saturated arithmetic instructions. The
internal data path of the processor is also redesigned to enable single cycle MAC
operations.

The Cortex-M4 processor also has an optional floating point unit that support IEEE-754
single precision floating point calculations. It does not mean that you cannot perform
floating point processing in the Cortex-MO0, Cortex-MO0+, or other processors without the
floating point unit. If you are using these processors for floating point operations, the

Introduction 11

compiler will insert runtime library functions to handle the floating point calculation using
software, which can take much longer to do and need additional code size overhead.

For applications that demand very high data-processing requirements, or if double
precision floating point calculation is needed, then the Cortex-M7 processor might be the
best choice. It is designed to provide very high data-processing performance, but use the
same programmer’s model and a superset of the instruction set as Cortex-M4 processor.

To decide which processor to use in a project, you need to understand the processing
requirements of the application. Some general guideline is shown in Table 1.2.

Please note that you might also need to consider the differences of the system-level
features and performance when selecting the right Cortex-M processor. An overview of the
comparison is shown in Table 1.3 and a comparison of the performance is shown in

Table 1.4. Please note that the Cortex-M processors are very configurable and the exact
features can be customized by the chip designers and vary among different devices.

In general, the ARM Cortex-M0 and Cortex-MO+ processors are both very suitable for
ultra-low power applications, and because the instruction set and programmer’s model are
relatively simple, and the architecture is very C-friendly, they are also very suitable for
beginners. For example, there is no need to learn a lot of tool chain-specific keywords or
data types to get the application to work on a Cortex-M microcontroller, unlike many 8-bit
or 16-bit architectures.

Table 1.2: The applications for various Cortex®-M Processors

Processor Applications
Cortex-M0, Cortex-M0+ General data processing and 1/O control tasks.
processors Ultra low power applications.

Upgrade/replacement for 8-bit/16-bit microcontrollers.
Low-cost ASICs, ASSPs

Cortex-M1 Field Programmable Gate Array(FPGA) applications with small to
medium data processing complexity. (For high-complexity data
processing there are FPGAs with built-in Cortex-A processors such as
Xilinx Zyng-7000 and some of the Altera Arria V SoCs and Cyclone V
SoCs).

Cortex-M3 Feature-rich/high-performance/low-power microcontrollers.
Light-weight DSP applications.

Cortex-M4 Feature-rich/high-performance/low-power microcontrollers.
DSP applications.
Applications with frequent single precision floating point operations.

Cortex-M7 Feature-rich/very high performance power microcontrollers.
DSP applications.
Applications with frequent single or double precision floating point
operations.

12 Chapter 1

Table 1.3: An overview of the system level and debug features
for various Cortex®-M Processors

Features Cortex-M0 Cortex-M0+ Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7

Number of 1-32 1-32 1,8,16,32 1-240 1—-240 1—-240

interrupts

Interrupt 4 4 4 8—256 8—256 8—256

priority levels

FPU - - - - Optional Optional (single
(single precision/single +
precision) double precision)

OS support Y Y Optional Y Y Y

Memory - Optional - Optional Optional Optional

Protection

unit

Cache - - - - - Optional

Debug Optional Optional Optional Optional Optional Yes

Instruction - Optional - Optional Optional Optional ETM

trace MTB ETM ETM

Other trace - - - Optional Optional Optional

Table 1.4: Performance of various Cortex®-M Processors with commonly used benchmarks

Features Cortex-MO Cortex-MO0-+ Cortex-M3 Cortex-M4 Cortex-M7
Dhrystone 2.1 (per MHz) 0.9 0.95 1.25 1.25 2.14
CoreMark 1.0 (per MHz) 2.33 2.46 3.34 3.40 5.01

1.2.5 Quick Glance on the ARM Cortex-MO and Cortex-MO+ Processor

The Cortex-MO and Cortex-MO+ Processors:

* Are 32-bit Reduced Instruction Set Computing (RISC) processor, based on an architec-
ture specification called ARMv6-M Architecture. The bus interface and internal data
paths are 32-bit width.

* Have 16 32-bit registers in the register bank (r0 to r15). However, some of these regis-
ters have special purposes (e.g., R15 is the Program Counter, R14 is a register called
Link Register, and R13 is the Stack Pointer).

* The instruction set is a subset of the Thumb Instruction Set Architecture. Most of the
instructions are 16 bit to provide very high code density.

* Support up to 4 GB of address space. The address space is architecturally divided into a
number of regions.

* Based on Von Neumann bus architecture (although arguably the Cortex-M0+ processor
have a hybrid bus architecture because of an optional separate bus interface for fast
peripheral register accesses, see section 4.3.2 Single Cycle I/O Interface in Chapter 4).

Introduction

* Designed for low-power applications, including architectural support for sleep modes
and have various low power features at the design/implementation level.

* Includes an interrupt controller called NVIC. The NVIC provides very flexible and
powerful interrupt management.

* The system bus interface is pipelined, based on a bus protocol called Advanced High-
performance Bus (AHB™) Lite. The bus interface supports transfers of 8-bit, 16-bit, and
32-bit data, and also allows wait states to be inserted. The Cortex-MO+ processor also
have an optional bus interface (Single Cycle I/O interface, see section 4.3.2) for high-
speed peripheral registers, which is separated from the main system bus.

* Support various features for the OS (Operating System) implementation such as a
system tick timer, shadowed stack pointer, and dedicated exceptions for OS operations.

* Includes various debug features to enable software developers to create applications
efficiently.

* Designed to be very easy to use. Almost everything can be programmed in C and in

most cases no need for special C language extension for data types or interrupt handling

support.
* Provide good performance in most general data processing and I/O control applications.

The Cortex-MO and Cortex-MO+ processors do not include any memory and have only
got one built-in timer which is primarily for OS operations. Therefore a chip designer
needs to add additional components in the chip design themselves.

1.2.6 From Cortex-MO Processor to Cortex-MO-+ Processor

The ARM Cortex-MO processor was released in 2009. It was a ground-breaking product

because it is the first product that demonstrated it is possible to cramp a 32-bit processor
into the silicon footprint similar to an 8-bit or 16-bit processors, while still able to make

the design usable and provide excellent energy efficiency and a decent performance for a
32-bit processor.

Although the Cortex-MO processor is a lot smaller than the Cortex-M3 processor (which
was released in 2005), it maintains a number of key advantages as in Cortex-M3
processor:

* Flexible interrupt management using a built-in interrupt controller called NVIC

* OS support features including a timer hardware called SysTick (System Tick timer) and
exception types dedicated to OS operations

* High code density

* Low power support such as sleep modes

* Integrated debug support

* Easy to use (almost everything programmable in plain C language)

14 Chapter 1

The Cortex-MO processor has been a very successful product, and was the fastest licensed
ARM processor in 2009." After the Cortex-MO processor is released, the designers in
ARM have received additional feedback from customers, microcontroller users and chip
designers, and ARM decided that there is an opportunity for an enhanced version for the
Cortex-MO processor, which was subsequently called the Cortex-M0+ processor.

The Cortex-MO+ processor supports all the features available in the Cortex-MO processor,
but additional features were added to make it more powerful (these are all configurable by
the chip designers):

* Unprivileged execution level and Memory Protection Unit (MPU)—this feature is
available in other ARM processors such as the Cortex-M3 processor. It allows an OS to
execute some of the application tasks with an unprivileged level so that the OS can
impose memory access restrictions. For example, the unprivileged software cannot
access critical system registers in the processors like NVIC registers, and memory
access permissions can be managed by the MPU. In this way, a system can be made
more robust because a misbehaving unprivileged task cannot corrupt critical data used
by the OS kernel and other tasks.

* Vector Table relocation—again, this is a feature already existing in the Cortex-M3
processor. By default, the vector table is defined as the start of the memory (address
0x00000000). The Vector Table Offset Register allows the vector table to be defined in
other memory locations such as a different program memory location or in SRAM. This
is very useful for microcontroller devices, which might have separated vector table for
boot process and user applications.

* Single Cycle I/O interface—this is a separate bus interface specifically added to allow
frequently accessed 1/O registers to be read/write in a single cycle. Without this feature,
a load/store operation needs to go through the pipelined system bus, which needs two
clock cycles per access. This feature enables microcontrollers or embedded system to
have higher I/O performance, as well as higher energy efficiency in I/O intensive
operations.

Internally to the processor design, there are also some significant changes. Instead of using
a three-stage pipeline as in the Cortex-MO and Cortex-M3 processors, the Cortex-M0+
processor is designed with a two-stage pipeline. This reduces the number of flip-flops in
the processor, and hence reduces the dynamic power, and provides slightly higher
performance at the same time because the branch penalty is reduced by one clock cycle.

In the Cortex-MO+- processor pipeline, as shown in Figure 1.5, a small part of the
instruction decoding operations is carried out as soon as the instruction enters the

' Cortex-M0 Processor—Fastest Licensing ARM Processor (http://www.arm.com/about/newsroom/26419.php).

http://www.arm.com/about/newsroom/26419.php

Introduction 15

Pipeline Cortex-M0O+
stage Processor Pipeline Main
stage instruction
| decode
Program:Memory
Address =1 (I — [P Instruction Buffer »{:}»
Control
Pipeline Execution
Pre-decode Registers logic
Address
generation

| |

| |

Instruction #N | Fetch e |
| |

| Decbde Execute I

Instruction #N+1 | B A |
| T |

| Pre-decode Mgin decode |

Figure 1.5
Two-stage Pipeline in the ARM® Cortex®-MO0+ Processor.

processor bus interface. The rest of the instruction decoding is combined with the
execution stage.

Adding decode logic to the instruction fetch stage do have some impact to the timing of
the design. However, the balance between predecode and main decode logic was selected
carefully to minimize the impact to the achievable maximum clock frequency. In addition,
most of the low-power microcontrollers run at fairly low clock frequency in comparison to
the maximum processor speed. Therefore this is not a problem to most of the silicon
designs.

In some cases, the power consumption of the processor is reduced by 30% when
comparing between Cortex-MO processor and the Cortex-M0+ Processor. However, at the
system level, the difference would be much smaller because most of the power could be
consumed by the memory system.

In order to reduce system-level power, additional optimizations have been implemented to
reduce the program memory accesses:

First, by shortening the processor to a two-stage pipeline design, the branch shadow of the
processor is reduced. In a pipeline processor, when a branch instruction is executed, the

16 Chapter 1

Maximum branch shadow is 2
instructions (1 word) and minimum
is 0 instruction

—
BGE Label
ADD CMP (branch)
Branch shadow
Program flow Instructions fetched but not
executed due to branch
Figure 1.6

Power wastage reduction by reducing branch shadow. Image courtesy of ARM®.

instructions following the branch instruction would have been fetched by the processor.
These instructions fetched are called branch shadow (Figure 1.6), and they are discarded
by the processor and hence a long branch-shadow means wasting more energy.

Secondly, when a branch operation takes place and if the branch target instruction
occupies only the second half of a 32-bit memory space (as shown in Figure 1.7), the
instruction fetch is carried out as a 16-bit transfer. In this way, the program memory can
switch off half of the byte lanes to reduce power.

The amount of power reduction by these techniques depends on how often branch
operations are carried out in the application code.

Finally, in linear code execution, the program fetches are handled as 32-bit accesses. Since
most of the instructions are 16-bit, each instruction fetch can provide up to two
instructions. This means that the processor bus can be in idle state half of the time if there

0x00001006 | 0x00001008 0x0000100A | 0x0000100C 0x0000100D

Word boundry

Program flow

Figure 1.7
Power wastage reduction by fetching branch target with minimum transfer size.
Image courtesy of ARM®.

Introduction 17

s (R o @I o)
< > AHB
access

HRDATA

Fetch
CPU

N pipeline

Execute

Figure 1.8
Program fetch power reduction by fetching up to two instructions at a time.
Image courtesy of ARM®.

is no data access instruction executed (Figure 1.8). Chip designers can utilize this
characteristic to reduce the power consumption in the program memory (e.g., flash
memory).

Another important enhancement in the Cortex-MO0O+ processor is the adding of a feature
called Micro Trace Buffer (MTB). This unit enables low-cost instruction trace, which is
very useful during software development, for example, helping to investigate the reason
for a software failure. The details of the MTB are covered in Chapter 13 and appendix E.

The Cortex-MO—+ processor have additional enhancements when compared to the
Cortex-MO processor in terms of chip design aspects (most of these are invisible to
microcontroller users). For example, a hardware interface was added to allow the startup
sequence of the processor to be delayed, which is useful for many SoC designs with
multiple processors.

Today, many microcontroller vendors already started offering microcontroller products

based on the Cortex-MO+ processors.

1.2.7 Applications of the Cortex-MO and Cortex-MO+- Processor

The Cortex-MO and Cortex-M0+ processors are used in a wide range of products.
Microcontrollers

The most common usage is microcontrollers. Many Cortex-MO0 and Cortex-M0+
microcontrollers are low-cost devices and are designed for low-power applications. They
can be used in applications including computer peripherals and accessories, toys, white
goods, industrial and HVAC (heating, ventilating, and air conditioning) controls, home
automation, etc.

When comparing the microcontrollers based on the Cortex-MO0 and Cortex-M0+
processors to traditional 8-bit and 16-bit microcontroller products, the Cortex-M

18 Chapter 1

microcontrollers allow embedded products to be built with more features, more
sophisticated user interface, due to support of larger address space, powerful interrupt
control, and higher performance.

The better performance and small size also bring the benefit of higher energy efficiency.
For example, for the same processing task, you can finish the processing quicker and allow
the system to stay in sleep modes longer.

Another advantage of using ARM Cortex-M processors for microcontroller applications is
that they are very easy to use. Therefore it is very appealing to many microcontroller
vendors as product support and educating the users can be challenging for some other
processor architectures.

ASICs and ASSPs

Another important group of applications for the Cortex-M0 and Cortex-M0-+ processors
are ASICs and ASSPs. For example, there are a number of touch screen controllers,
sensors, wireless controllers, Power Management ICs (PMIC), and smart battery
controllers designed based on the Cortex-MO or Cortex-MO+ processors.

In these applications, the low gate count advantage of the Cortex-M0O and Cortex-MO+
processors allow high performance processing capability to be included in chip designs
that traditionally only allow 8-bit or simple 16-bit processors to be used.

System on Chips

For complex SoC, the designs are often divided into a main application processor system
and a number of subsystems for: I/O controls, communication protocol processing, and
system management. In some cases, the Cortex-MO and Cortex-MO+ processor can be
used in part of the subsystems to off-load some activities from the main application
processor, and to allow small amount of processing be carried out while the main
processor is in standby mode (e.g., in battery powered products). It might also be used as a
System Control Processor (SCP) for boot sequence management and power management.

1.3 What Is Inside a Microcontroller
1.3.1 Typical Elements Inside a Microcontroller

There can be many components inside a basic microcontroller. For example, a simplified
block diagram is shown in Figure 1.9:

In the diagram there are a lot of acronyms. They are explained in Table 1.5.

As shown in Figure 1.9, there can be a lot of components in a microcontroller (not to
mention other complex interfaces like Ethernet, USB, etc.). In some microcontrollers you

Introduction 19

Crystal RTC M
PLL X A) N
Processor Oscillator(s) “/ Timer (=) @
Voltage Manufacturing Power
{} ‘ regulator ‘ Test support ‘ Manﬁﬁnt A
/_I\
Main System Bus infrastructure ‘ System /\— “/ RS \m4 @
{} {} {} {} Control V
Bus
Mzi::ry SRAM Boot ROM Bridge Watchdog ¢ i we |

System analog
components

1l =

Peripheral Bus Infrastructure ‘

J L

J L J L J L J L . = Digital Peripherals

UART

Analogue / Mixed

GPIO SPI 12€ 128 DAE Signal Peripherals

i

u i 3 i u U Digital logic

1/0 Pads

i

ii iﬁ iE iE ii Memories

Figure 1.9
A simple microcontroller.

Table 1.5: Typical components in a microcontroller

Item Descriptions

ROM Read Only Memory—Nonvolatile memory storage for program code.

Flash A special type of ROM, which can be reprogrammed many times, typically for storing

memory program code.

SRAM Static Random Access Memory—for data storage (volatile)

PLL Phase Lock Loop—a device to generate programmable clock frequency based on a
reference clock.

RTC Real Time Clock—a low power timer for counting seconds (typically runs on a low power
oscillator), and in some cases also for minutes, hours and calendar functions.

GPIO General Purpose Input/Output—a peripheral with parallel data interface to control
external devices and to read back external signals status.

UART Universal Asynchronous Receiver/Transmitter—a peripheral to handle data transfers in a
simple serial data protocol.

12C Inter-Integrated Circuit—a peripheral to handle data transfers in a serial data protocol.
Unlike UART, a clock signal is required and can provide higher data rate.

SPI Serial Peripheral Interface—another serial communication interface for off-chip
peripherals.

12S Inter-IC Sound—a serial data communication interface specifically for audio information.

PWM Pulse Width Modulator—a peripheral to output waveform with programmable duty cycle.

ADC Analog to Digital Converter—a peripheral to convert analog signal-level information into
digital form.

DAC Digital to Analog Converter—a peripheral to convert data values into analog signal level.

Watchdog A programmable timer device for ensuring the processor is running program. When

timer enabled, the program running needs to update the watchdog timer within a certain time

gap. If the program crashed, the watchdog timed out and this can be used to trigger a
reset or a critical interrupt event.

20 Chapter 1

may also find Direct Memory Access (DMA) controller and hardware accelerators for
cryptography functions.

One important thing to understand is that different microcontrollers are designed with
different peripherals, different memory maps, and different system level details even when
they are using the same processor. For example, the peripherals in a Cortex®-MO0-based
microcontroller from chip vendor “A” can have completely different peripheral
programmer’s model (e.g., peripheral register definitions) from another Cortex-MO-based
microcontroller from chip vendor “B,” even though on paper they could have the same
peripheral features.

1.3.2 Characteristics of Processors for Microcontroller Applications

In general, different types of microcontrollers can have different technical requirements on
the processor. Obviously there are different performance requirements (that is why
different ARM® processors are developed), but there are a number of general requirements
that are common to many applications:

Low power—many microcontroller products are used in battery power applications. For
example, indoor cordless phones, remote controls, health monitoring devices, alarm
clocks, calculators, etc. Even for many other electronic products low power is becoming
an essential requirement. As a result, the processors used in many microcontroller products
need to be low power.

Fast interrupt response—In many applications it is required that the processor response
to hardware events very quickly. This is managed through the interrupt mechanism. When
an interrupt request (IRQ) is raised, for example, from a peripheral, the processor will
suspend the current task and execute an Interrupt Service Routine (ISR). Once the ISR is
completed, the processor can resume the interrupted task. The latency from the time the
hardware IRQ is raised to the time the ISR started executing is commonly known as
interrupt latency, typically measured in terms of number clock cycles. Ideally, the shorter
the interrupt latency the better, but a designer creating a system should also consider the
execution time required for the ISR to response to the request.

High code density—A processor with high code density means that for the same
processing task, the size required for the program code is smaller. This enables an
application to be squeezed into a microcontroller with a small program memory (typically
flash memory) to reduce cost and power consumption. However, the exact code size also
depends on the compilation tool being used and the compilation options. When the code
compilation is optimized for high performance, the code size can increase substantially
because of optimization techniques like loop unrolling.

Introduction 21

Debug—Debug features are very important during software development. For example,
the program execution could go wrong and the debug features enable the software
developers to understand what had happened that caused the failure.

OS support—Many applications require the use of embedded operating systems such as
Real Time OS. In order to enable these OS to run efficiently, it is highly desirable to have
built-in OS support in the processor.

Ease of use—An easy-to-use processor enables software developers to create applications
quickly. Ideally, the processor architecture need to work efficiently with code generated by
high-level programming environment, and the software developers do not need to use a lot
of architecture-specific C language extensions to create the applications, which can take
time for a software developer to learn.

High software portability and reusability—Another issue with architecture-specific C
language extensions is that they are not always portable. For example, whether it is
possible to port the application from a microcontroller from chip vendor “A” to a different
microcontroller from chip vendor “B” can potentially be an issue. It is also nice to be able
to reuse software source codes between different projects to save time.

Upgrade and downgrade path—In some cases, you might want to upgrade the
microcontroller to a different one when adding more features to creating a new products in
a product family. In this case, the ease of switching to a more power processor is beneficial.
The same approach can be used when creating a low cost variant of the product.

Tool chain support—This is highly desirable to have a wide range of development tools
available for the processor used in microcontroller products. This is because the
microcontrollers are used by large number of embedded software developers around the
world and they can have different preference on the tools.

Low cost—Although the microcontroller devices are getting cheaper and cheaper, product
designers keep looking for the lowest cost microcontroller product that can meet the
technical requirements. So the processor used need to be small (to reduce silicon area),
which can help reduce the chip cost.

For many microcontroller vendors, the ARM Cortex-M processors satisfied most of these
requirements. Therefore the ARM Cortex-M processors have been very successful in the
modern microcontroller market. In 2014, the ARM market share in the microcontroller
market is 26%” (data from ARM Q4 2014 Roadshow Slides), and more than 2.9 billions®
of Cortex-M-based devices are shipped in 2013.

2 Data from http://ir.arm.com/phoenix.zhtml?c=197211&p=irol-presentations.
3 Information from http://www.tomshardware.co.uk/m7-arm-cortex-mé4-iot,news-48918.html.

http://ir.arm.com/phoenix.zhtml?c%3D197211%26p%3Dirol-presentations
http://ir.arm.com/phoenix.zhtml?c%3D197211%26p%3Dirol-presentations
http://ir.arm.com/phoenix.zhtml?c%3D197211%26p%3Dirol-presentations
http://www.tomshardware.co.uk/m7-arm-cortex-m4-iot,news-48918.html

22 Chapter 1

1.3.3 Silicon Technologies

Beside the components we already covered, we should also be aware that the silicon chips
are basically formed by many transistors (from millions to many billions) on the chips.
These transistors are connected in various ways to form logic gates, memories, and analog
circuits.

The transistor designs are dependent on the semiconductor technologies. Most of the
microcontrollers are designed with CMOS (Complementary Metal Oxide Semiconductor),
although some other technologies like Bi-polar CMOS could be used. There many
different types of CMOS processes, for example, you might have heard of 90 nm low
power (LP) process, 65 nm processes, etc. These classifications are based on the channel
length of the transistor geometry. The smaller the geometry value, the smaller the
transistor is and the faster it can switch. Although in general moving to smaller transistor
can reduce dynamic power, it can also significantly increase the leakage power.

Other challenges of moving to smaller transistor technologies are that there might not be
matching flash memories technologies available, and some of the analog block might not
be suitable for such advanced semiconductor processes. As a result, it is common for
microcontrollers to be lagging behind high-end SoC designs in terms of deploying latest
semiconductor technologies.

1.4 There is Something About ARM® ...
1.4.1 Do ARM Make Chips?

This is possibly one of the most common questions from beginners—where can I buy an
ARM microcontroller?

Sorry folks, ARM does not manufacture or sell chip plroducts.4 In some occasions, ARM
do design test chips for R&D (for testing of latest low-power technologies) or for system-
level verification purposes. But ARM does not sell these chips as product.

ARM make money using a business model called Intellectual Properties (IP) licensing.
When a chip vendor wanted to create a chip, they need to license the processor design,
and pay a license fee to ARM. Then their chip designers can access to designs of the
ARM processors they have licensed, and integrate that into their chip designs. In most
cases, when the chip vendor starts selling the chip products, they need to pay ARM a
royal fee.

4 Apart from the canteen in ARM headquarter in Cambridge, which usually sell fish and chips on Friday
lunch time.

Introduction 23

1.4.2 What Else Does ARM Make?

In addition to the processor, ARM also provide various IP including the following:

* Bus infrastructure components based on AMBA® (Advanced Microcontroller Bus
Architecture) technology.

» Memory controller including DDR, static memory controllers (i.e., ARM CoreLink ™"
product range.

e Peripherals such as UART, SPI, GPIO, Timers, and system components such as DMA
controller.

+ Graphic processors (e.g., Mali" GPU products), display processor, and video engine.

+ Debug components for complex SoC (CoreSight™ product range).

* Physical IP (Intellectual Properties) including cell libraries for many semiconductor
processes, memories and I/O pads (Artisan® product range).

* Software development tools including compilers, debugger, debug, and trace adopters.

e Development boards for ARM-based microcontroller (under Keil® brand) and FPGA
boards.

Some of the microcontrollers contain multiple ARM IP products such as processor, bus
infrastructure components, peripherals, memory controllers, and physical IP.

1.4.3 Why Do Not Chip Vendors Do Their Own Processor Designs?

The investment to develop a processor is quite large. This is particularly true for complex
processors, which requires huge amount of effort in verification. And for a microcontroller
product range to be successful, a microcontroller vendor will need to have multiple
processors to support different performance requirements in different applications.

In addition to the cost to create the processors, the microcontroller also need to have
development tools such as C compilers, debuggers, and middlewares like RTOS. Typically,
a chip design company will need to outsource part of these works because it is difficult to
build up multiple development teams to cover everything.

By using ARM processors, the microcontroller vendors can save a large fortune in the
development cost, and can rely on the ARM ecosystem to gain access to the development
tools from various providers. And since many software developers know about ARM
processors, they can gain customer base easily.

And when a microcontroller vendor needs to expand the product range by moving to a
higher performance microcontroller, they can license a higher performance processor from
ARM, and there is no need for them to do the R&D to create a new processor product for
the new market.

24 Chapter 1

There is a disadvantage of course: while a company can gain access to high-quality ARM
processors by licensing them, other companies can also license the same ARM processors
and built competitive products. So these companies need to work hard to make sure that
their products have high-quality peripherals, low-power designs, and comprehensive
software solutions in order to compete.

1.4.4 What is Special About the ARM Ecosystem?

What makes the ARM architecture special compared to proprietary architectures? Aside
from the processor technology, the ecosystem surrounding ARM product development
plays a very important role.

As well as working directly with the microcontroller vendors that offer ARM processor-
based devices, ARM works closely with vendors in the ecosystem that provide support for
those devices. These include vendors providing compilers, middleware, operating systems,
development tools vendors, training and design services companies, distributors, academic
researchers, and so on.

The ARM ecosystem allows a lot more choices. Apart from choice of microcontroller
devices from different vendors, you also have more choices on software tools. For
example, you can get development tools from Keil®, IAR Systems, TASKING,

Atollic, Rowley Associates, GNU C compiler, etc. As a result, software developers have
much better freedom in project development. Examples of using some of these compiler
products are covered in Chapters 14—18.

ARM also invests in various open-source projects to help open-source communities to
develop software on ARM platforms. The combined effort of all these parties not only
makes the ARM products better, it also results in a lot more choices of hardware and
software solutions.

The ARM ecosystem also enables better knowledge sharing, which helps developers
to build products on ARM microcontrollers quicker, and more effectively. Aside from
many Internet resources available, you can also find expert advices on Web-based
technical forums from ARM (some links are shown at the end of this chapter),

ARM microcontroller vendors and others. Regular ARM microcontroller training
courses are also organized by microcontroller vendors, distributors, or other training
service providers. The open nature of the ARM ecosystem also enables healthy
competitions. As a result users are getting high-quality products at competitive prices
(Figure 1.10).

Introduction 25

| academics |

\. y

/

| Open source |

/ AN

,//' \\\

\ —————— ARM — middleware |

. vendors

~

| Distributors |

o [Silicon | o
N\ partners | LN
[EDAtool | = y. set:\iilgsn & | Choices
vendors | ; \ training) @ More choices of microcontrollers
\ [N / ® More choice on development tools
— S ® More development boards
B B ® More open source project support
v N S N ® More OS support
g A 'Software &' ® More middleware and software solutions
| Researchers, |

Knowledge sharing
® Resources on the Internet

® Large user community
@ Technical forums
® Seminars and webinars (many free)

| communities | . ® Strong supports
\ Yy “ Development “ A\ yZ
>~ | tools vendors | >
:\\\ /
Users
ARM ecosystem
Figure 1.10

The ARM® ecosystem.

1.5 Resources on Using ARM® Processors and ARM Microcontrollers
1.5.1 On the ARM Web Pages

The main ARM Web page (www.arm.com) provides easy access to general product
information. Detail documentation can be found in a section of ARM Web page called
Info Center (http://infocenter.arm.com/). This page contains various specifications,
application notes, knowledge articles, etc. Table 1.6 lists some of the reference documents
about the details of the Cortex®-MO0 and Cortex-M0+ processors.

The Info Center also has a number of application notes that can be useful for
microcontroller software developers (Table 1.7).

For readers who are interested in the details of integrating Cortex-M processors into SoC
designs or FPGA, the document listed in Table 1.8 might be useful.

One important part of the ARM Web site is the ARM Connected Community (http://
community.arm.com). The ARM Connected Community Web page (Figure 1.11) provides
wide range of resources, and is also contributed by a global network of companies aligned
to provide a complete solution, from design to manufacture and end use, for products
based on the ARM architecture. There is also user forums, and places for individuals to
post their articles and blogs about their views on ARM technologies.

http://www.arm.com
http://infocenter.arm.com/
http://community.arm.com
http://community.arm.com

26 Chapter 1

Table 1.6: Reference ARM® document on the Cortex®-MO0 and Cortex-MO- processors

Document Reference

ARMV6-M architecture reference manual 1
This is the specification of the architecture on which Cortex-M0 and Cortex-M0+ processors

are based. It contains detailed information about the instruction set, architecture-defined
behaviors, etc. This document can be accessed via the ARM Web site after a simple

registration process.

Cortex-MO0 devices Generic user Guide 2
This is a user guide written for software developers using the Cortex-MO processor. It provides
information on the programmer’s model, details on using core peripherals such as NVIC, and
general information about the instruction set.

Cortex-M0+ devices Generic user Guide 3
This is a user guide written for software developers using the Cortex-M0+ processor. It

provides information on the programmer’s model, details on using core peripherals such as
NVIC, and general information about the instruction set.

Cortex-MO technical reference manual 4
This is a specification of the Cortex-MO processor product. It contains implementation-

specific information such as instruction timing and some of the interface information (target

for silicon designers).

Cortex-MO+ technical reference manual 5
This is a specification of the Cortex-M0+ processor product. It contains implementation-

specific information such as instruction timing and some of the interface information (target

for silicon designers).

Procedure call Standard for the ARM architecture 6
This document specifies how software code should work in procedure calls. This information

is often needed for software projects with mixed assembly and C languages.

Table 1.7: ARM® Application Notes that can be useful for microcontroller software developers

Document Reference
AN237—Migrating from 8051 to Cortex microcontrollers 7
AN321—ARM Cortex-M programming Guide to memory Barrier instructions 8

Joining the ARM Connected Community is easy; details are on the ARM Web site
http://community.arm.com.

1.5.2 Resources from Microcontroller Vendors

The documentation and resources from the microcontroller vendors is essential in
embedded software development. Typically you can find the following:

* Reference manuals for the microcontroller chips. They provide the programmer’s model
of the peripherals, memory maps, and other information needed for software
development.

http://community.arm.com

Introduction 27

Table 1.8: ARM® document that can be useful for System-on-a-Chip (SoC) or Field

Programmable Gate Array (FPGA) designers

Document Reference
AMBA® 3 AHB-Lite protocol specification 11
This is the specification for the AHB (Advanced High-performance Bus) Lite protocol, an on-

chip bus protocol used on the bus interfaces of the Cortex®-M processors. AMBA (advanced
Microcontroller bus architecture) is a collection of on-chip bus protocols developed by ARM

and is used by many IC design companies.

AMBA 3 APB protocol specification 12
This is the specification for the APB (advanced Peripheral bus) Lite protocol, an on-chip bus
protocol used for connecting peripherals to the internal bus system, and to connect debug
components to the Cortex-M processors. APB is part of the AMBA specification.

CoreSight™ technical introduction 13

An introductory guide for silicon/FPGA designers who want to understand the basics of the
CoreSight debug architecture. The debug system for the Cortex-M processors is based on the
CoreSight debug architecture.

'll.ARM Connected Community

Welcome, Guest | Login / Register

content people places links (~]

WELCOME TO OUR COMMUNITY
WHAT YOU CAN DO HERE
r) Daitn
Put your community through its paces by trying out i
Welcome to our some of the things you can do here:
Community

FEATURED MEMBERS

m Zach Shelby

J‘ Adam Reynolds

| GET ASK A
REGISTER Reinhard Keil
Whether you are an STARTED QUESTION £ Reinhard Kei
established developer, an Gergely Imreh
ARM partner or just getting 1
started on ARM we know Join the community to Quick guides to how Connect with ARM,

you'll find lots in the
community to keep you
coming back to stay
informed, learn, ask and
answer questions.

COMMUNITY AREAS

[E5) ARM Processors
[E2 ARM Mali Graphics
2l ARM and Keil Tools
&2 SoC Implementation
[# Embedded

Smart and Connected
[2| Android Community

B PR

(=] Ask a Question

[News

[Find an ARM Partner
(= Community Help

FEATURED ARMFLIX VIDEOS

contribute things work

FEATURED CONTENT

colleagues and partners

Some of our picks of content you might like to check out:

2 Are You New To The ARM Connected Community? - & PEL RS H FiEE

[« Last Call for TechCon Speakers, Maker Faire, AAE and Motor Control

Android developers, what IDE do you use?

[=] mbed Smart Lighting Demo with code examples

|=J Booting Linux on the ARMv8-A model provided with DS-5 Ultimate Edition

[] My First Maker Faire: Engineers and Kids at Play

[=] Chance to win ARM Accredited Engineer exam voucher at DAC

TRENDING CONTENT

Design Patterns for an Internet of Things

=< 18 hours ago

Figure 1.11

The ARM® connected community home page.

by Michael Koster G

NEWEST MEMBERS

jure
L

iklin6

dkimlogi

scottj

m awatine

. schmitta

View all newest members

COMMUNITY HELP

New to the

Connected Community
Community? Help
Start here to

learn how to

get the most

A Af i fme

28 Chapter 1

* Data sheets of the microcontrollers. They contain the information on package, pin
layout, operation conditions (e.g., temperature), voltage and current characteristics, and
other information you may need when designing the PCB.

* Application notes. These contain examples of using the peripherals or features on the
microcontrollers, or information on handling specific task (e.g., flash programming).

You might also find additional resources on development kits, and additional firmware
libraries.

1.5.3 Resources from Tool Vendors

Very often the software development tools vendors also provide lots of useful information.
In addition to tool chain manuals (e.g., compiler, linker), you can also find application
notes. For example, on the Keil® Web site (http://www keil.com/appnotes/list/arm.htm),
you can find various tutorials of using Keil MDK-ARM with Cortex-M development Kkits,
as well as some application notes that cover some general programming information.

1.5.4 Other Resources

On social media web sites like YouTube (e.g., https://www.youtube.com/user/ ARMflix),
you can also find various tutorials on using Cortex-M-based products such as an
introduction to microcontroller products and software tools.

There are plenty of software vendors that provide software products like RTOS for
Cortex-M processors. Often these companies also provide useful documentation on their
Web sites that shows how to use their products as well as general design guidelines.

Do not forget the distributor that provides you with the microcontroller chips can also be a
useful source of information.

http://www.keil.com/appnotes/list/arm.htm
https://www.youtube.com/user/ARMflix

Technical Overview

2.1 What are the Cortex®-MO and Cortex-MO+ Processors?

The ARM® Cortex-MO processor and Cortex-MO-+ processors are both 32-bit processors.
Their internal registers in the register banks, data paths, and the bus interfaces are all 32
bit. Both of them have a single main system bus interface, therefore they are considered as
Von Neumann bus architecture.

The Cortex-MO+ processor has an optional single cycle I/O interface that is primarily for
faster peripheral I/O register accesses. Therefore, it is possible to say the Cortex-M0-+
processor has limited Harvard bus architecture capability as instruction access and I/O
register accesses could be carried out at the same time, but it is important to understand
that although there can be two bus interfaces, the memory space is shared (unified) and
therefore the extra bus interface does not bring additional addressable memory space.

The key characteristics of the Cortex-M0 and Cortex-M0O+ processors are as follows:

Processor pipeline

e The Cortex-MO processor has a three-stage pipeline (fetch, decode, and execute)

* The Cortex-M0+ processor has a two-stage pipeline (fetch + predecode, decode +
execute)

Instruction set

* The instruction set is based on Thumb® Instruction Set Architecture (ISA). Only a
subset of the Thumb ISA is used (56 of them). Most of the instructions are 16 bit in
size, only a few of them are 32 bit.

* In general, the Cortex-M processors are classified as Reduced Instruction Set
Computing although they have instructions of different sizes.

e Support optional single cycle 32 bit x 32 bit multiply, or a smaller multicycle multi-
plier for designs that need small silicon area.

Memory addressing

e 32-bit addressing supporting up to 4 GB of memory space

* The system bus interface is based on an on-chip bus protocol called AHB-Lite,
supporting 8-bit, 16-bit, and 32-bit data transfers

* The AHB-Lite protocol is pipelined, support high operation frequency for the system.
Peripherals can be connected to a simpler bus based on APB protocol (Advanced
Peripheral Bus) via an AHB to APB bus bridge.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00002-3
Copyright © 2015 Elsevier Inc. All rights reserved. 29

http://dx.doi.org/10.1016/B978-0-12-803277-0.00002-3

30 Chapter 2

Interrupt Handling

The processors include a built-in interrupt controller called the Nested Vectored Interrupt
Controller (NVIC). This unit handles interrupt prioritization and masking functions. It
supports up to 32 interrupt requests from various peripherals (chip design dependent), an
additional Non-Maskable Interrupt (NMI) input, and also support a number of system
exceptions.

Each of the interrupts can be set to one of the four programmable priority levels. NMI
has a fixed priority level.

Operating Systems (OS) support

Two system exception types (SVCall and PendSV) are included to support OS operations.
An optional 24-bit hardware timer called SysTick (System Tick Timer) is also included
for periodic OS time keeping.

The Cortex-M0O-+ processor support privileged and unprivileged execution level
(optional to chip designers). This allows OS to run some of the application tasks with
unprivileged execution level and impose memory access restrictions to these tasks.

The Cortex-MO+ processor has an optional Memory Protection Unit (MPU) to allow
OS to define memory access permission for application tasks during run time.

Low Power support

Architecturally two sleep modes are defined as normal sleep and deep sleep. The exact
behaviors in these sleep modes are device specific (depends on which chip you are
using). Chip designers can also add device specific power saving mode control registers
to expand the number of sleep modes or to allow the sleep mode behavior for each part
of the chip to be defined.

Sleep mode can be entered using WFI (Wait for Interrupt) or WFE (Wait for Event)
instructions, or using a feature called Sleep-on-Exit to allow the processor to enter sleep
automatically.

Additional hardware level supports to enable chip designers to create better power
reductions based on the sleep mode features, for example, the Wake-up Interrupt
Controller (WIC).

Debug

The debug system is based on the ARM CoreSight™ Debug Architecture. It is a scalable
debug architecture that can support simple-single processor designs to complex multi-
processor designs.

A debug interface that can either be based on JTAG protocol (4 or five pins), or Serial
Wire Debug protocol (2 pins). The debug interface allows software developers to access
debug features of the processors.

Support up to four hardware breakpoints, two data watchpoints, and unlimited software
breakpoint using BKPT (breakpoint) instruction.

Support basic program execution profiling using a feature called Program Counter (PC)
Sampling via the debug connection.

Technical Overview 31

e The Cortex-M0+ Processor has an optional feature called Micro Trace Buffer (MTB),
this provide instruction trace.

The Cortex-M Processors are configurable designs. They are delivered to chip designers in
form of Verilog source code files with a number of parameters that chip designers can
select. In this way, chip designers can omit some of the features that are unnecessary for
their projects to save power and reduce silicon area. As a result, you can find
microcontrollers based on the Cortex-MO and Cortex-MO+ processor with different number
of supported interrupts, and Cortex-M0O+ processor with and without the optional MPU.

During the design process (Figure 2.1), the processor is integrated with the rest of the
system and converted to a design composed of logic gates and then transistors layout using
chip design tools. The timing characteristics like maximum clock frequency are defined at
these stages based on the semiconductor process selected for the project and various
design constraints. In addition, the exact maximum speed and power consumption of the
Cortex-MO or Cortex-MO+ processor on different products can also be different from

each other.

module mux (
input wire A,

input wire B, —
input wire Sel,

output wire Y

)

assign Y = (Sel) ? B : A;
endmodule

Verilog code Logic gate netlist Transistor layout

Figure 2.1
Simplified chip design flow.

2.2 Block Diagrams

A simplified block diagram of the Cortex®-MO0 processor is shown in Figure 2.2.

The processor core contains the register banks, ALU, data path, and control logic. It is a
three-stage pipeline design with fetch stage, decode stage, and execution stage. The
register bank has sixteen 32-bit registers. A few of the registers in the register bank have
special usages (e.g., PC). The rest are available for general data processing.

The NVIC accepts up to 32 interrupt request signals and a NMI input. It contains the
functionality required for comparing priority between interrupt requests and current
priority level so that nested interrupts can be handled automatically. If an interrupt is
accepted, the NVIC communicates with the processor so that the processor can execute the
correct interrupt handler.

32 Chapter 2

Power management interface

I

|-
"1 Wakeup JTAG/
> Interrupt Serial-Wire | . Connection
» Controller Debug - " to debugger
(WIC) Interface
~ = .
Interrupt > I:J/estted — L }
requests and > Int(;frf:;t Processor Debug i
NMI ‘
» Controller | | core | subsystem 3
» (NVIC) §
Internal Bus System

Processor AHB LITE
System bus interface
(Intlzg);lrei;lon Cortex-M0 unit
Processor { } Bus Interface
| |
Memory and
Peripherals
Figure 2.2

A simplified block diagram of the Cortex®-MO0 Processor.

The WIC is an optional unit. In low-power applications, the microcontroller can enter
standby state with most parts of the processor powered down. Under this situation, the
WIC can perform the function of interrupt masking while the NVIC and the processor
core are inactive. When an interrupt request is detected, the WIC informs the power
management to power up the system so that the NVIC and the processor core can then
handle the rest of the interrupt processing.

The debug subsystem contains various functional blocks to handle debug control, program
breakpoints, and data watchpoints. When a debug event occurs, it can put the processor
core in a halted state so that embedded developers can examine the status of the processor
at that point.

The internal bus system, data path in the processor core, and the AHB-Lite bus interface
are all 32-bit wide. AHB-Lite is an on-chip bus protocol used in many ARM® processors.
This bus protocol is part of the AMBA® (Advanced Microcontroller Bus Architecture)
specification, which is a bus architecture developed by ARM and widely used in the IC
design industry.

Technical Overview 33

The JTAG or Serial Wire interface units provide access to the bus system and debugging
functionalities. The JTAG protocol is a popular 4-pin (5-pin if including a reset signal)
communication protocol commonly used for IC and PCB testing. The Serial Wire protocol
is a newer communication protocol that only requires two wires, but it can handle the same
debug functionalities as JTAG. As illustrated in the block diagrams (Figures 2.2 and 2.3),
the debug interface module is separated from the processor design. This is required in the
CoreSight" Debug Architecture where multiple processors can share the same debug
connections. There are a number of additional signals for multiprocessor debug support not
shown in the diagrams.

The Cortex-MO+ processor is very similar (as shown in Figure 2.3) to Cortex-M0
processor. The only addition is the adding of the optional MPU, single cycle I/O interface
bus and the interface for the MTB. The processor core internal design is also changed to a
two-stage pipeline arrangement.

Power
management Single Cycle
interface 1/ interface AHB SRAM

Wakeup Micro T | JTAG/
P Interrupt ioro | race i Serial-Wire Connection
Buffer (MTB) ! -t -
- Controller i Debug to debugger
(WIC) . | Interface
LI W Trace |
Interface TT
~~
Interrupt > ':‘/Zitti‘: L |
requests and > Interrunt Processor core Debug 3
NMI - P subsystem |
Controller | | L ;
p (NVIC) ; ‘ 1
T B
Internal Bus System

Processor AHB LITE Single Cycle
System bus interface 1/0 interface
(Integration Cortex-M0+ unit unit
layer) P 7S
rocessor

Memory and Fast peripherals
Peripherals
Figure 2.3

A simplified block diagram of the Cortex®-MO+ processor.

34 Chapter 2

The MPU is a programmable device used to define access permission of the memory map.
In some of the applications where an OS is used, application tasks can be executed with
an unprivileged execution level with restrict memory access defined by the MPU, which is
programmed by the OS.

The single cycle I/O interface provides another bus interface with faster access compared to
the AHB-Lite system bus (pipelined operation). The MTB is used to provide instruction trace.

In both Cortex-MO0 and Cortex-MO0+ processors, a number of components in the
processors are optional. For example, the debug support, MPU and the WIC are all
optional. Some other components like the NVIC are configurable: allowing chip designers
to define the features available, for example, the number of interrupt requests (IRQ).

2.3 Typical Systems

As you can see from the block diagrams, the Cortex®-MO and Cortex-MO-+ processors do
not contain memories and peripherals. Chip designers need to add these components to the
designs. As a result, different Cortex-M processor-based microcontrollers can have
different memory sizes, address map, peripherals, interrupt assignment, etc.

In a simple microcontroller design based on a Cortex-M processor, the design would
consist of the following:

* A memory for program code storage, usually a Read-Only-Memory (ROM) component,
or reprogrammable memory technologies such as flash memory.

* A read—write memory for data (including variables, stack, etc.), usually based on Static
Random Access Memory (SRAM).

e Various types of peripherals.

* Bus infrastructure components for joining the processor to all the memories and
peripherals.

In some cases, there can also be a separate ROM device with boot code to boot up the
microcontroller before the program in the user flash is executed. This is typically called
boot ROM or boot loader.

For a simple design with Cortex-MO processor, the design could look like the one shown
in Figure 2.4.

A typical design based on the Cortex-MO processor might partition the bus system into
two parts, which are as follows:

* System bus connected to the memories including ROM, flash memory (for user program
storage), the SRAM, a few number of peripherals, and a bus bridge to the peripheral
bus system.

Technical Overview 35

Interrupts
—F(IRQS’ NMI) Processor
Digital logic
| System bus (AHB Lite) Memories
| Flash High Speed Bus Digital Peripherals
Boot ROM | as SRAM Peripherals Bridge
; Memory (.. GPIO) Analogue / Mixed
‘ A Signal Peripherals
IRQs Peripheral bus (APB)
| | | |
UART SPI Timers DAC ADC Other
peripherals
PE— A | A A
IRQs Y v A4 A4 A4
C 1/0 pads)

Figure 2.4
A simple system with the Cortex®-M0 Processor.

* The peripherals are connected to the peripheral bus, which might have a different oper-
ating frequency compared to the system bus.

It is quite common for some of the peripherals to be connected to a separated peripheral
bus, which is linked to the main system bus via a bus bridge. This bus protocol for the
peripheral bus is typically based on APB, which is a bus protocol defined in the AMBA®.

The uses of a separated APB peripheral bus are as follows:

* Allows lower hardware cost because the APB protocol (non-pipelined operations) is
simpler than AHB-Lite (pipelined operations)

* Allows the peripheral bus to run at a different clock frequency than the main system bus

* Avoids large combinational logic in the bus infrastructure for the main system bus,
which could become the bottle neck in terms of getting to get high operating frequency.
Many peripherals might present in a microcontroller designs and the bus fabric for pe-
ripherals can become quite large.

Another group of important connections are the interrupts—A number of peripherals can
generate interrupt requests, including the General Purpose Input/Output (GPIO) modules.
In most microcontroller designs, external devices connected to certain GPIO pins can
generate interrupt request to the processor via some additional conditioning and
synchronization logic.

36 Chapter 2

Single Cycle 1/0

High Speed interface bus
Peripherals |
(e.g. GPIO)
A |
IRQ: nterrupts Processor Trace Dicital logi
Y (IRQs, NMI) interface igital logic
-
| System bus (AHB Lite) Memories
MTB Bus Digital Peripherals
Boot ROM FAEED Bridge
Memory Analogue / Mixed
} SRAM Signal Peripherals
IRQs Peripheral bus (APB)
| |
UART SPI Timers DAC ADC Other
peripherals
« 1 A A A A A
\ A A \J Y \
C 1/0 pads)
Figure 2.5

A simple system with the Cortex®-MO0+ Processor.

For a system based on the Cortex-M0+ processor, the system design can be very similar,
like the one shown in Figure 2.5.

In this design, the high-speed peripherals are moved to the single cycle I/O interface bus
for faster I/O performance, and the MTB is added between the AHB-Lite system bus and
the SRAM for support instruction trace capture.

Potentially the processor might not be the only component in the system that can generate
bus transactions. In many microcontroller products, there is also a component called Direct
Memory Access (DMA) controller. Once programmed, the DMA controller can carry out
memory accesses on requests from peripherals without processor intervention (Figure 2.6)

The DMA controller can perform data transfers between memory and peripherals, or
between memories (e.g., to accelerate memory copy). This is commonly needed for
microcontrollers with high bandwidth communication interface like Ethernet or USB.
However, it can also benefit some low-power applications, for example, by avoiding
waking up the processor from sleep mode to collect small amount of data from
peripherals.

Technical Overview 37

Single Cycle 1/0

High Speed interface bus
Peripherals |
(e.g. GPIO) Configuration
A Dl Registers
Interrupts Processor Trace Controller o .
y (IRQs, NMI) interface Digital logic
System bus (AHB Lite)l Memories
1 MTB Bus Digital Peripherals
i Flash ;
Boot ROM | Bridge
i Memory Analogue / Mixed
SRAM Signal Peripherals
Peripheral bus (APB)
| |
UART SPI Timers DAC ADC Other
peripherals
« A ‘ A A
v Y v \ 4
C 1/0 pads)
Figure 2.6

2.4 What Is ARMv6-M Architecture?

A system with the Cortex®-MO0+ Processor and a DMA Controller.

Both the Cortex®-MO processor and Cortex-MO+ processor are based on the ARMv6-M
architecture. In ARM® processors, the term architecture can refer to the following two

areas:

e Architecture: ISA (Instruction Set Architecture), programmer’s model (what the soft-
ware sees) and debug methodology (what the debugger sees). The ARMv6-M is one of
the architectures available.

* Microarchitecture: implementation-specific details such as interface signals, instruction
execution timing, pipeline stages. Microarchitecture is processor design-specific. For
example, the Cortex-MO processor has a three-stage pipeline microarchitecture.

Various versions of the ARM Architecture exist for different ARM processors released
over the years. For example, the Cortex-M3 and Cortex-M4 processors are both

implementations of ARMv7-M Architecture. An ISA can be implemented with various
implementations of microarchitecture, for example, different number of pipeline stages,
different type of bus interface protocol, etc.

38 Chapter 2

The details of the ARMv6-M architecture are documented in the ARMv6-M Architecture
Reference Manual (also known as ARMv6-M ARM). This document covers the
following:

* Instruction set details
* Programmer’s model
* Exception model

* Memory model

* Debug architecture

This document can be obtained from ARM after a simple registration process. However,
for general programming, it is not necessary to have the full architecture reference manual.
ARM provides alternate documents for software developers called Cortex-M0/M0-+/M3/
M4/M7 Devices Generic User Guides. This can be found in the ARM Web site:

http://infocenter.arm.com.

— Cortex-M series processors
— Cortex-M0/M0+/M3/M4/M7
— Revision number
— Cortex-M0/M0+/M3/M4/M7 Devices Generic User Guide

Some of the microarchitecture information such as instruction execution timing
information can be found in the Technical Reference Manuals of the Cortex-M processors,
which can be found on the ARM Web site. Other microarchitecture information like the
processor interface details are documented in other Cortex-M product documentation
which is normally accessible only by silicon chip designers.

Theoretically, a software developer does not necessarily need to know anything about the
microarchitecture to develop software for the Cortex-M products. But in some cases,
knowing some of the microarchitecture details could help. This is particularly true for
optimizing software or even C compilers for best performance.

2.5 Software Portability Between Cortex®-M Processors

The Cortex-MO, Cortex-M0O+, and Cortex-M1 Processors are based on the ARMv6-M
Architecture, whereas the Cortex-M3, Cortex-M4, and the Cortex-M7 Processors are based
on the ARMv7-M Architecture. As shown in Figure 1.4, they have different instruction set
support.

The Cortex-MO0 and Cortex-MO+ Processors have the exact same instruction set and
similar programmer’s model (Cortex-MO+ Processor have optional support for

http://infocenter.arm.com

Technical Overview 39

FPGA optimized

Cortex-M1 Upward Upward
compatible compatible
FPGA ASIC Upward
prototyping migration compatible Cortex-M3 Cortex-M4 Cortex-M7
Easy Easy
software software
Cortex-M0+ porting porting
Cortex-M0
High performance, feature High performance, low power Excellent performance, full
rich and ultra low power microcontrollers with DSP feature microcontrollers with
Ultra low power and microcontrollers capability and single DSP capability and single/
low cost precision floating point double precision floating point
microcontrollers,
mixed signal SoC
ARMvV6-M ARMvV7-M ARMV7E-M ARMV7E-M
Architecture Architecture Architecture Architecture
Figure 2.7

Compatibility between different Cortex®-M Processors.

unprivileged execution level and MPU, whereas Cortex-MO processor does not). However,
they have different physical characteristics like instruction timing and have different
system features.

The Cortex-M3 and Cortex-M4 Processors are based on the ARMv7-M architecture and its
Thumb®-2 instruction set is a superset of the instruction set used in ARMv6-M. The
programmer’s model is also similar to ARMv6-M. As a result, in most cases software
developed for the Cortex-MO and Cortex-M0+ can run on the Cortex-M3 and Cortex-M4
Processors without changes, assuming the system has same memory maps and peripherals.
The Cortex-M7 processor supports all instructions available in the Cortex-M4 processor,
and optionally supports double precision floating point instructions.

The similarity between the Cortex-M processors provides various benefits. First, it
provides better software portability. In most cases, C programs can be transferred between
these processors without changes. And binary images from Cortex-MO or Cortex-M1
processors can run on a Cortex-M3 processor due to its upward compatibility

(Figure 2.7).

The second benefit is that the similarities between Cortex-M processors allow development
tool chains to support multiple processors easily. Apart from similarities on instruction set
and programmer’s model, the debug architecture is also similar.

The consistency of instruction set and programmer’s model also make it easier for
embedded programmers to migrate between different products and projects without facing
a sharp learning curve.

40 Chapter 2

2.6 The Advantages of the ARM® Cortex®-M0
and Cortex-MO+ Processor

2.6.1 Low Power and Energy Efficiency

One of the key targets of the Cortex-MO and Cortex-M0+ processors is low power. The
result is that the Cortex-MO processor consumes only 12.5 pW/MHz with 90 nm
semiconductor process, or 66 f{W/MHz with 180 nm semiconductor process. For the
Cortex-MO+ processor, the energy efficiency is even better—only 9.8 yW/MHz with

90 nm semiconductor process, or 50 uW/MHz with 180 nm semiconductor process. This is
very low-power consumption for a 32-bit processor. How was this target achieved?

In order to lower the power consumption, ARM had put a lot of effort into various areas to
ensure the Cortex-MO and Cortex-MO+ processors could reach their low-power target.
These areas included the following:

* Small gate count

* High efficiency

* Low-power features (e.g., sleep modes)
* Logic cell enhancement

Let us take a look at these areas one by one.

Small Gate Count

The Cortex-M0/MO+ processor’s small gate count characteristic directly reduces the active
current and leakage current of the processor. During the development of these processors,
various design techniques, and optimizations were used to make the circuit size as small
as possible. Each part of the design was carefully developed and reviewed to ensure the
circuit size is small (it is just a bit like writing an application program in assembly to
achieve the best optimization). This allows the gate count to be 12k gates at minimum
configuration. In practice, the gate count would be higher when including more features.
This is about the same size or smaller than typical 16-bit microprocessors, while having
more than double the system performance.

High efficiency

By having a highly efficient architecture, embedded system designers can develop their
products so that they can operate at a lower clock frequency while still being able to
provide the required performance, reducing the active electric current of the products. This
advantage can be used in conjunction with the sleep mode features in the Cortex-M0/M0+
processor so that an embedded system can stay in low-power mode more often to reduce
the average power consumption without losing performance.

Technical Overview 41

Sleep Modes and Low-Power Features

The Cortex-M processors have a number of low-power features to allow designers to
create very low-power applications. First, the processors have two architectural-defined
sleep modes “Sleep” and “Deep sleep.” In normal designs, the number of sleep modes can
be further expanded using device-specific power control registers.

The sleep modes can be entered using special instructions—*“WFE” and “WFL” or via
“Sleep-on-Exit” feature, which causes the processor to run only when an interrupt service
require servicing.

Various hardware level features also allow chip designers to fully utilize their low-power
capability of the design. For example, the Cortex-M processors support a unique feature
called the WIC, which allows most parts of the processor system to be powered down
while still allowing interrupt events to be detected, and allow the systems to resume
operation almost instantaneously when required. This greatly reduces the leakage current
(static power consumption) of the system during sleep.

In addition, the design of the Cortex-MO processor is also carefully developed so that some
parts of the processor like the debug system can be switched off when it is not required.

Logic Cell Enhancements

In recent years there have been enhancements in logic cell designs. Apart from pushing
logic gate designs to smaller transistor size, the Physical IP (Intellectual Property) division
in ARM has also been working hard to find innovative ways to reduce power consumption
in embedded systems. One of the major developments is the introduction of Ultra Low
Leakage (ULL) logic cell library. The first ULL cell library is developed with 0.18 um
process. Apart from reducing the leakage current, the new cell library also supports special
state retention cells that can hold state information while the rest of the system is powered
down. ARM also works with leading EDA tools vendors to allow chip vendors to make
use of these new technologies in their chip designs.

2.6.2 High Code Density

Since most of the instructions are only 16-bit in size, the Cortex-M processors have very
high code density. This enables an application to be squeezed into a microcontroller with a
smaller flash memory. By doing that a designer can use a cheaper microcontroller for the
application, and in some cases reduce the power consumption because the flash memory
required is smaller.

The smaller flash memory size requirement can also bring additional benefit such as lower
electromagnetic interference due to lower power, and smaller silicon package.

42 Chapter 2

2.6.3 Low Interrupt Latency and Deterministic Behavior

In many microcontroller applications, low interrupt latency is an essential requirement. The
interrupt latency of the Cortex-MO processor is only 16 clock cycles and the Cortex-M0+
processor has an interrupt latency of 15 cycles. These latency figures include the stacking
of a certain number of registers to the stack, so the Interrupt Service Routines (ISRs) can
start working immediately without additional software overhead to save register states.

The NVIC also automatically handle the prioritization and locating of the ISR starting
addresses via a vector table, so there is no software overhead for identifying which IRQ to
serve, or to branch to the correct ISR. When combining with good program execution
efficiency, the overall interrupt responsiveness is much better than many 8-bit and 16-bit
microcontrollers.

Another key characteristic in this aspect is the deterministic behavior; when an interrupt
arrive, the interrupt latency remain constant and is independent of what instruction the
processor is executing. The only factor that affects interrupt latency is the memory wait states.

2.6.4 Ease of Use

When compared to other processors, including many 32-bit processors, the ARM Cortex
microcontrollers are much easier to use. Most of the software code for the ARM Cortex
microcontrollers can be written in C, allowing shorter software development time as well as
improving software portability. Even if a software developer decided to use assembly code,
the instruction set is fairly easy to understand. Furthermore, since the programmer’s model
is very similar to ARM7TDMI", for those people who are familiar with ARM processors
already, it will not take long for them to become familiar with the Cortex microcontrollers.

To make software development easier, ARM also defines a set of API (Application
Programming Interface) as part of the CMSIS-CORE (Cortex Microcontroller Software
Interface Standard) software framework. These APIs defines a consistent way to access the
processor peripherals including NVIC. The CMSIS projects also included a free DSP
library for all the Cortex-M Processors, a set of APIs for RTOS, and additional solutions
to make software development easier.

To make it even better, the Cortex-M-based microcontrollers and the CMSIS-CORE

software framework are supported by wide range of easy-to-use development suites.

2.6.5 System-Level Features and OS Support Features

The Cortex-M Processors are designed to support wide range of applications. As a result,
there is a range of system-level features including low-power support and flexible interrupt
management with NVIC. Some of the system-level features are at hardware level and

Technical Overview 43

invisible to software developers. For example, one of these important system-level features
is the optional single cycle I/O interface bus on the Cortex-M0O+ processor. This provides
higher performance in I/O operations as well as enabling better energy efficiency in I/O
intensive applications.

Many of the system features are shared between multiple Cortex-M processors. For
example, the Cortex-MO-+ processor allows the vector table to be relocated to allow better
flexibility in the memory map of the microcontroller devices. This feature is also available
in the Cortex-M3 and Cortex-M4 Processors.

In addition, the Cortex-M Processors are designed to support various types of embedded
OS efficiently. A number of features are included to support OS such as a system tick
timer called SysTick, and banked stack pointer for efficient process stack management.
These OS features are available in all the Cortex-M Processors.

2.6.6 Comprehensive Debug Features

A number of features are also available to make software development and troubleshooting
easier. In addition to standard debug features like halting, single stepping, reset,
breakpoints, and watchpoints, the Cortex-M Processors also allow the debugger to access
to the memory space even when the processor is running. In addition, the Serial Debug
protocol support enable all these debug features to be available with just two pins. For
those who prefer traditional JTAG protocol, such option is also available.

The Cortex-MO+ processor also support the optional MTB which provides instruction
trace feature. This is very powerful and is not available in many traditional 8-bit and
16-bit microcontrollers.

The debug systems on the Cortex-M Processors are also very scalable, making these
processors suitable for many multiprocessor designs.

2.6.7 Configurability, Flexibility, and Scalability

The Cortex-M Processors are very flexible. A number of configuration options are
available to the chip designers so that they can implement the chips with only the features
they need. For example, for system that does not require the MPU, the chip designer can
omit the MPU from the design by setting a parameter.

Although the instruction set supported by the Cortex-MO and the Cortex-MO0+ processors is
quite a simple instruction set, it is very efficient for most general data processing and can
handle majority of the microcontroller applications very well. The system-level features also
enable these processors to be used in wide range of applications, including many applications
that requires very deterministic responses and very flexible memory system designs.

44 Chapter 2

The Cortex-MO and Cortex-MO+ processors are also very scalable; they can be used in
very small simple microcontroller designs to as a part of a much larger multiprocessor
system. The bus architecture (based on AMBA® AHB-Lite) support complex bus systems
with additional bus interconnect components, and the debug architecture also allows
multiple processors to be debugged using a single debug interface. There are also debug
synchronization interface to allow debug events to be shared between multiple processors,
and enable the debugger to control multiple processors at the same time.

2.6.8 Software Portability and Reusability

One of the key advantages of using the Cortex-M processors is that almost everything can
be written in C/C++ or other high-level programming languages. As a result, the software
can be very portable because there is no need to use much assembly code or tool chain-
specific keywords, which are not portable.

With the help of the CMSIS projects, the software portability is even higher than
traditional microcontrollers. You can port an application from one Cortex-M-based
microcontroller to another fairly easily. And many middleware developed for the Cortex-M
Processors can be used on wide range of microcontrollers.

You can even port a number of source code files from PC (Personal Computer)
environment and compile it with an ARM microcontroller development suite, add device
driver code and get things running.

Such portability also means that you can reuse many of your program codes easily
(reusable) and provides higher Return of Investment.

2.6.9 Wide Range of Product Choices

In 2014, there are more than 3000 microcontroller devices based on the ARM Cortex-M
Processors. For the microcontrollers based on Cortex-M0 and Cortex-M0+- processors,

they are available from Freescale, NXP, Nuvoton, ST Microelectronics, Infineon, Silicon
Labs, Atmel, Nordic Semiconductor, Cypress Semiconductor, Sonix Semiconductor, etc.

There are also specialized ASSPs based on the Cortex-M0/MO+ Processors including wireless
communication chips (e.g., Zipbee, Bluetooth products), sensors, touch screen sensors, etc.

In addition to the chip products based on the Cortex-M processors, there are also wide
range of the following:

* Compiler tool chains available for ARM (e.g., ARM/Keil®, mbed".org, IAR Systems,
Green Hill Systems, Atollic Truestudio, Rowley Associates Crosswork for ARM,
Raisonance ride7, Mentor Graphics Sourcery CodeBench, Tasking VX-Toolset, mikroC

Technical Overview 45

Pro for ARM, ImageCraft ICCV8 for ARM Cortex, Cosmic ARM/Cortex-M Cross
Development tools, Atmel Studio, Cypress PSoC Creator, Infineon DAVE, gcc, Coocox).

* Debug tools (e.g., Segger, Lauterbach, iSystem, and many of the companies that
provide compiler tool chains).

* Wide range of embedded OS.

* Java platforms (Oracle Java ME, IS2T MicroEJ).

e Middleware (e.g., communication protocol stack, GUI library).

* Hardware development boards.

As a result, it is easy to find product development solutions based on ARM Cortex-M
architecture.

2.6.10 Wide Ecosystem Support

A broad ecosystem is one of the key factors of ARM’s success. In addition to working
closely with various silicon partners, ARM also works closely with EDA companies,
software solution providers, open source communities, and so on. For example, ARM has
been investing in improving gcc (GNU Compiler Collection) for ARM Cortex processors,
so that various companies can create high quality and successful microcontroller tool
chains with gcc.

ARM is also working with a number of academic organizations including a number of
universities to help these organizations teaching microcontrollers and processor architecture
subjects. For example, in February 2014, ARM University Program and Partners launched
“Lab-in-a-Box” for Participating Universities Worldwide. There are also various companies
that provide technical trainings, design services, consultancy services, etc.

Since the technical details of the ARM Cortex-M Processors are very open and easy to
access, you can find various design solutions (e.g., example codes, tutorials, books) for
microcontroller based on ARM Cortex-M Processors easily.

2.7 Applications of the Cortex®-MO and Cortex-MO+ Processors

2.7.1 Microcontrollers

The most obvious applications of the Cortex-M0 and Cortex-M0+ Processors are
microcontrollers. Today, there are already a wide range of microcontroller products based
on these two processors. For those who have used microcontroller products for a while,
you would know that there are different types of microcontroller products, and the
Cortex-MO and Cortex-MO+ processors are particularly suitable for the following markets:

Ultra low-power microcontrollers—Since the Cortex-MO and Cortex-M0+ processors
are optimized for low-power applications (e.g., small area, supports various low-power

46 Chapter 2

sleep modes, support for low-power chip design technologies, high code density, etc.),
they are very successful in the ultra low-power microcontroller market segment.

Low cost microcontroller products—In many applications, however, cost is the key
focus. Since the Cortex-M0 and Cortex-M0+ processors are very small, and provide
very good code density, microcontroller devices based on these two processors can have
very small silicon areas, hence the production cost is reduced.

Mixed signal microcontrollers—In some specialized microcontrollers that comes with
various types of analog circuits, the gate count of the processor need to be very small
due to the larger transistor geometry. In such applications, the Cortex-M0 and Cortex-
MO+ processors are very attractive because they have very low gate count figures.
Wireless communication microcontrollers—In some wireless applications where the
data rate is fairly low, an ultra low-power processor is highly desirable because a lower
power processor can help reducing the electromagnetic interference and hence provides
better wireless communication performance. Also, many of these products are used in
cost-sensitive applications and therefore small silicon size helps too.

2.7.2 Sensors

There are many types of sensors modern electronics systems. For example, a mobile
phone can have touch screen sensors, temperature sensors, accelerometers, gyroscopes,
sensors inside the batteries, etc. In order to save power, a lot of these sensors need to
operate and alert the main processor only when certain events occurred, and as a result,
many of these sensors need to have built-in data processing capabilities and are therefore
are called Smart Sensors, which contains a processor system and can handle data
processing on its own.

The adding of a processor system brings additional advantages to many of these sensors. For
example, self test, self calibrations, temperature compensation, and various adaptive filtering
operations can now be carried out in software. The sensors can also utilize many of the
low-power strategies for microcontrollers like sleep modes to further enhance battery life.

The low-power nature of the Cortex-M0 and Cortex-M0O+ processors makes them well
suitable for these usages. The sleep mode support of the processors can also be utilized
when designing low-power support in these sensors.

For example, the Cortex-MO and Cortex-MO+ processors are used in a number of touch
screen controllers, accelerometers, and so on. While the data processing performance of
the Cortex-MO and Cortex-M0O+ processors is not as high as the Cortex-M3 and
Cortex-M4 processors, many sensors do not need high data processing bandwidth (due to
low sampling rate) so that a small processor like the Cortex-MO or Cortex-M0O+ processor
is sufficient.

Technical Overview 47

2.7.3 Sensor Hubs

In some devices, like some of the mobile phone and tablets, a sensor hub device is used to
handle processing of data from various sensors and sometimes combine the data to provide
additional information. Some of these sensor hubs can be based on the Cortex-M0/Cortex-
MO+ processors (e.g., Kionix’s KX23H).

2.7.4 Power Management IC

In many mobile phones and tablets, you might see that there is an IC called PMIC (Power
Management IC). This chip controls the power supply to the main application processor,
manages battery charging, and might also handle some audio functions. The Cortex-M
processors are used on a number of PMIC products.

In complex SoC designs, the chips can require a number of voltage supplies. When the
SoC is being use in different situations, the power management software inside the OS
switches between different power profiles based on the current work load. During the
switching, the multiple supply voltages and the clock systems need to be adjusted
accordingly with appropriate stepping sequences. The use of a processor in PMIC enables
these switching sequences to be controlled by software, allowing high flexibility and the
design can be adapted to product requirements.

2.7.5 ASSPs, ASICs

There is a wide range of ASSPs and ASICs designed using the Cortex-M Processors,
including wireless communication IC (e.g., Nordic Semiconductor nRF51 series), smart
meter controller (e.g., Toshiba TMPMO061), MEMS (e.g., LIS331EB accelerometer from
ST Microelectronics), power controllers (e.g., Active-semi PAC™" series).

2.7.6 Subsystems in System on Chips

The Cortex-M processors are often used inside many complex SoC for the following:

* Power management
* Boot sequence control
* I/O processing offloading and peripheral monitoring

Using a Cortex-M for I/O processing subsystems allows the main application processor(s)
to stay in sleep modes as much as possible to reduce power. This also allows faster
response time to I/O events because context switching in application processors can take
sometime.

48 Chapter 2

2.8 Why Using a 32-Bit Processor for Microcontroller Applications?

2.8.1 Performance

One of the most significant benefits of the Cortex®-MO0 and Cortex-MO+ processors over
other traditional 8-bit and 16-bit processors is its energy efficiency. The size of the Cortex-
MO processor is about the same as typical 16-bit processors and slightly bigger than some
of the 8-bit processors (Note: total silicon size can still be lower because of the higher
code density in Thumb® instruction set). However, it has much better performance than
typical 16-bit and 8-bit architectures. As a result, you can put the processor system
(including memory) into sleep mode for more portion of the time to reduce power to a
minimum, while still be able to get the processing task done with a similar silicon and
active power foot print.

Typically benchmark programs are used to determine the performance of processors.
However, performance of a processor is often debatable for several reasons:

* Benchmark codes might not reflect the processing requirements of real-world
applications.

* All C-language-based benchmarks depend on the quality of the C compiler being used.

* Some benchmark results can be greatly affected by the compiler optimizations.

* Typical benchmarks cannot cover every aspects of processor requirements in real-world
applications (e.g., interrupt processing).

Nevertheless, we can still use some of the benchmark result to get an estimation of the
relative performance.

Today, the CoreMark® is one of the more reliable benchmark for microcontroller
performance measurements. CoreMark is developed by Embedded Microprocessor
Benchmark Consortium (EEMBC), it is open access and many CoreMark scores are
posted on the EEMBC Website (www.eembc.org/coremark/). The CoreMark results for the
Cortex-MO and Cortex-MO+ processors are shown in Table 2.1.

For reference, the Dhrystone 2.1 performances of the Cortex-M0 and Cortex-M0+
Processors are shown in Table 2.2.

The official figures are generated with inline and multifile compilation disabled, as
recommended in the original Dhrystone benchmark. The results with maximum
optimizations are also quotes as some microcontroller vendors quote the Dhrystone results
based on maximum optimization.

Typically the microcontrollers based on Cortex-MO0 and Cortex-MO+ processors have
maximum frequency range of less than 100 MHz, with many of them at round 50 MHz.
Technically, the clock frequency can go much higher depending on the silicon process, but

http://www.eembc.org/coremark/

Technical Overview 49

Table 2.1: CoreMark per MHz results on Embedded Microprocessor Benchmark Consortium
(EEMBC) web site

Processor CoreMark/MHz
Cortex®-MO0+ processor 2.49
Cortex-MO processor 2.33

Atmel AT89CS51RE2 (8051-based design with 6 oscillator 0.11 (oscillator cycle)
cycle per CPU cycle)

Atmel ATmega644 0.54
Altera NIOS I 1.60
Microchip dsPIC33 (2 oscillator cycles per CPU cycle) 1.89 (machine cycle)/0.9 (oscillator clock)
Microchip PIC24 (2 oscillator cycles per CPU cycle) 1.88 (machine cycle)/0.9 (oscillator clock)
Microchip PIC18 0.04
Renesas RL78/G14 0.89
TI MSP430 1.11

Data from EEMBC Web site—www.eembc.org/coremark.

Table 2.2: Dhrystone per MHz results

Official figure Maximum optimization
Cortex®-M0 0.87 DMIPS/MHz 1.27 DMIPS/MHz
Cortex-M0O+ 0.95 DMIPS/MHz 1.36 DMIPS/MHz

Data from ARM® Web site—www.arm.com.

very often the speed of the flash memory limited to the maximum throughput. It is possible
to build faster microcontrollers with Cortex-M0 and Cortex-MO+ processors by adding flash
access accelerators or cache to compensate for the flash memory speed limitations. But for
applications that need high performance, it is more likely to use Cortex-M3, Cortex-M4, or
Cortex-M7 processors as the richer instruction set can help enhancing performance.

2.8.2 Code Density

It is a common misunderstanding that 32-bit processor has much larger code size than
8-bit and 16-bit processors. Some people thought that 8-bit processor has 8-bit
instructions, 16-bit processors have 16-bit instructions, etc. This is incorrect (Figure 2.8).
In reality, many instructions in 8-bit microcontrollers are 16-bit, 24-bits, or other sizes
larger than 8-bit, for example, the PIC18 instruction size is 16-bit.

Even for the antiquated 8051 architecture, although some instructions are 1-byte long,
many others are 2 or 3 bytes long. The same generally applies to 16-bit architectures, for
example, some MSP430 instructions take 6 bytes (or even 8 bytes for the MSP430X).

http://www.eembc.org/coremark
http://www.arm.com

50 Chapter 2

Number of
bytes in a Instruction size
instruction A
8 1 Max
— (MSP430X)
6 4
Max
il (MSP430)
4 4
Max
i Max
2 N
q Min Min
Min
8051 PIC18 PIC24 MSP430 / ARM
MSP430X

Figure 2.8
Instruction size of commonly used microcontrollers.

Most of the instructions in Cortex-MO and Cortex-MO+- processors are 16 bit, and only a
few instructions are 32 bit. Being a load-store architecture (data need to be loaded from
memory before being processed, and need to write back to memory after the processing is
done), the Cortex-M processor might take more number of instructions, but the overall
code size can still be lower due to overall instruction efficiency.

For example, ARM processors support stack operations (PUSH/POP) of multiple registers
in a single instruction. This feature is not available in most other architectures. Also, the
various address modes also made accessing of local variables, for both signed and unsigned
data, very easy (e.g., sign extension for signed data can be done on the fly during a data
load). Finally, in 8-bit microcontrollers, integers are still 16-bit and hence each integer data
operation requires a sequence of instructions, thus results in much larger code size.

The code density factor has a significant impact to the power consumption because a
significant area of the microcontroller chip is occupied by the flash memory (Figure 2.9).
For a given application, by moving from an 8-bit processor to ARM Cortex-M processor
you could select a chip with much smaller flash memory, possibly by a factor of half the
flash size. As a result, you could use a chip with smaller silicon size, possibly a smaller
chip package, lower power, and having higher performance at the same time.

Since the processor is only a small part of the silicon chip, at the system level, you can
find that the ARM Cortex-M-based microcontrollers have similar range of active power
compare to other 8-bit and 16-bit microcontrollers. And when including the code density
and performance factors, it is common to see that the energy efficiency of ARM Cortex-
M-based microcontrollers is significantly better than many 8-bit and 16-bit microcontroller
products. For example, an interrupt-driven application scenario is shown in Figure 2.10,
demonstrating Cortex-M-based microcontrollers can have much lower average power.

Technical Overview 51

8-bit MCU : consume more
power due to larger
memory requirement

ARM MCU : smaller memory
requirement, lower power

SRAM .
Migrate to Peripherals SRAM
7o ARM MCU
pad 8-bit
CPU Flash memory)
Bus
@ | Cortex-M Flash
m | processor memory
Peripherals
1/0 pad
Larger die area due to High code density allows
larger code size smaller flash to be used
Figure 2.9

High code density in ARM® Cortex®-M processors enables lower power and smaller designs.

Microcontroller current on different architectures executing the same interrupt task

Electric
Current Interrupt events Interrupt events
Interrupt events / \
J A
| A »
\ T Time
Average current for Average current for Average current for
8-bit microcontroller 16-bit microcontrollers Cortex-M microcontrollers
Figure 2.10
At chip level, the energy efficiency of Cortex®-M-based microcontrollers can be significantly
better.

When running other applications that are not interrupt driven, the clock frequency for the
Cortex-MO processor can be reduced significantly compared to 8-bit/16-bit processors to
lower the power consumption, as illustrated in Figure 2.11. In this diagram, it is assumed
that the Cortex-M0/MO+ microcontroller has slightly higher peak current than 16-bit and
8-bit microcontrollers. In reality, many of the Cortex-M0/Cortex-M0+ microcontrollers
have lower peak current than many legacy 8-bit and 16-bit microcontrollers.

Although there are various other 32-bit microcontrollers available with higher
performance than the Cortex-M0 and Cortex-MO+ processors, their processor sizes are
often significantly larger than the Cortex-M0/MO+ processor. As a result, the average
power consumptions of these microcontrollers are higher than the Cortex-MO- and
Cortex-M0-+-based products.

52 Chapter 2

Performance
A Cortex-MO/MO+

16-bit
processor
8-bit
__ypprocessor
Required _—
performance P
—
/// >
Microcontroller Frequency
power
consumption Cortex-M0/MO+

16-bit processor

¥ 8-bit processor .
—————————————————— -¢—— Average current for 8-bit processor

,,, <« Average current for 16-bit processor

/ ,,,,,,,,,,,,,,, Average current for Cortex-M0/MO+

FrequencyV
Figure 2.11
Cortex®-M-based microcontrollers can provide lower power consumption by running at lower
clock frequencies, even if the electric current could be slightly larger.

2.8.3 Other Benefits of ARM Architectures

Often in 8-bit and 16-bit architectures there are a range of limitations. Apart from the
obvious data size limitation, address size can also be an issue. For example, many of these
architectures cannot handle more than 64 KB memory size, or when over 64 KB memory
space is needed, memory banking is needed which results in significant software overhead.
Memory banking also increases difficulties in software development. On the other hand,
ARM-based microcontrollers use 32-bit addressing, enabling a much larger address space
(up to 4 GB, but a small portion of the spaces are assigned to the processor’s internal
peripherals) and therefore allow easier software development in large projects.

Unlike many 8-bit architecture, the stack of the ARM processors is placed in the main
memory address space. Many 8-bit architecture like 8051 requires the stack memory to be
placed in specific memory range which have very limited size, which create a severe
limitation to the software.

Another limitation of 8-bit microcontroller architectures is the limited instruction sets and
fixed register usages for certain instructions. For example, 8051 heavily relies on the

Technical Overview 53

accumulator register and data pointer registers to handle data processing and memory
transfers. This increases the code size because it needs to keep transferring data into the
accumulator and taking it out before and after operations. For instance, when processing
integer (16-bt) multiplications on an 8051, a lot of data transfer is required to move data
in and out of ACC (Accumulator) register and B register. In Cortex-M processors, the
register usages have fewer restrictions.

For applications that require multitasking, the OS support in ARM Cortex-M processor
series is also much superior. For example, the banked stack pointers in ARM Cortex-M
processors enable efficient context switching and smaller stack size usages.

2.8.4 Software Reusability

For proprietary architectures, quite often program code requires a range of compiler-
specific language extensions, which make it difficult to learn and reuse program code. This
is not the same in the ARM Cortex-M programming. Since almost everything can be
programmed in C/C++ on ARM Cortex-M processors, and there is little dependency on
tool chain-specific features, this enables much better software reuse and made learning of
programming easier.

Introduction to Embedded Software
Development

3.1 Welcome to Embedded System Programming

If you have never program a microcontroller before, do not worry, it is not that hard. In
fact, the ARM® Cortex®-M processors are very easy to use. While there can be fair
amount of details about the processor architecture covered in this book, you do not need to
know every topics or be an expert to create applications. As long as you have a basic
understanding of the C programming language, you will very soon be able to develop
simple applications on the Cortex-M0 and Cortex-M0+ processors.

If you have been using other microcontrollers, you will find that programming with
Cortex-M-based microcontrollers is very straight forward. Almost everything can be
programmed in C/C++ because most registers (e.g., peripherals) are memory mapped,
and even interrupt handlers can be programmed fully in C/C++-. Also, in most normal
applications there is no need to use compiler-specific language extensions, as required
some other processor architectures.

If you only have experience of developing programs for personal computers, you might
find the software development for microcontrollers very different. Many embedded
systems do not have any operating systems (sometimes these systems are referred as bare
metal targets) and do not have the same user interface as a personal computer.

3.2 Some Basic Concepts

If this is the first time you use a microcontroller, read on. For readers who are already
experienced in microcontroller programming, you can skip this part and move to
Section 3.3.

First we need to introduce some basic concepts:
3.2.1 Reset

A microcontroller needs to be reset to get to a known state before program execution.
Reset is typically generated by hardware signal from external sources, for example, you

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00003-5
Copyright © 2015 Elsevier Inc. All rights reserved. 55

http://dx.doi.org/10.1016/B978-0-12-803277-0.00003-5

56 Chapter 3

From power

supply - .
+ve
module T
Pull up Voo
resistor
Reset from ﬁ i ol
debug adaptor icrocontroller
(optional) Push
Button
(Reset)

\
0.1uF sS
From power J

supply o o .
module V€
Figure 3.1
Example reset connection in low-cost microcontroller board (assumed that the reset pin is
active low).

might find a reset button on the development board (Figure 3.1). Most microcontroller
devices have an input pin for reset.

On ARM®-based microcontrollers, the reset can also be triggered by a debugger connected
to the microcontroller boards. This allows software developers to reset the microcontroller
via the IDE (Integrated Development Environment). Some debugger adaptors can generate
a reset using a dedicated pin on their debug connectors, and on ARM Cortex-M
Processors, the debugger can also trigger by a reset request via the debug connection.

After the reset is released, internally the microcontroller hardware might still need to wait a
little bit (e.g., wait until internal clock oscillator to become stabilized) before the processor
can start executing programs. The delay is usually very short and unnoticeable by users.

3.2.2 Clocks

Almost all processors and digital circuits need clock signals to operate. Microcontrollers
typically support external crystal for reference clock generation. Some microcontrollers
also have internal oscillators (however, the output frequency of some of the
implementations like R-C oscillators can be fairly inaccurate).

Many modern microcontrollers allow software to control which clock source to be used,
and have programmable Phase Lock Loops (PLL) and clock dividers to generate various
operation frequencies required. As a result, you might have a microcontroller circuit with
an external crystal of just 12MHz, with the processor system running at a much higher
clock speed (e.g., well over 100 MHz), and some of the peripherals running at a divided
clock speed.

Introduction to Embedded Software Development 57

In order to save power, many microcontrollers also allow software to turn on/off individual
oscillators and PLL, and also turn off the clock signal to each of the peripherals to save
power.

3.2.3 Voltage Level

All microcontrollers need power to run, so you will find power supply pins on a
microcontroller. Most modern microcontrollers need a very low voltage like 3 V. Some of
them can even operate with supply voltage of less than 1.5 V.

If you are going to create your own microcontroller development board, or prototyping
circuits, you need to check the datasheet of the microcontroller you are using and the
voltage levels of the components the microcontroller connected to. For example, some
external interface like a relay switch might require 5 V signaling, which would not work
with a 3-V-output signal from a microcontroller with 3 V.

If you are creating your own development board, you should also make sure that the
voltage supply is regulated. Many mains to DC adaptors have unregulated voltage output
which means the voltage level can go up and down all the time, which is not suitable for
microcontroller circuits unless a voltage regulator is added.

3.2.4 Inputs and Outputs

Unlike personal computers, most embedded systems have no display, no keyboard, and
mouse. The available inputs and outputs can be limited to simple electronic interfaces like
digital and analog inputs and outputs (I/Os), UARTSs, 12C, SPI, etc. Many microcontrollers
also offer USB, Ethernet, CAN, graphics LCD, and SD card interfaces. These interfaces
are handled by peripherals in the microcontrollers.

On ARM-based microcontrollers, peripherals are controlled by memory-mapped registers
(examples of accessing peripherals are covered in Section 3.3.2 in this chapter). Some of
these peripherals are more sophisticated than peripherals available on 8-bit and 16-bit

microcontrollers and there might have more registers to program during peripheral setup.

Typically, the initialization process for peripherals may consist of the following:

1. Programming the clock control circuitry to enable the clock signal connected to the
peripheral and the corresponding I/O pins, if necessary. In many low-power
microcontrollers, the clock signals reaching different parts of the chip can be
individually turned on or off for power saving. Typically, by default most of the clock
signals are turned off and need to be enabled before the peripherals are programmed.
In some cases, you also need to enable the clock signals for the part of the bus system.

58 Chapter 3

2. Programming of I/O configurations. Most microcontrollers multiplex its I/O pins for
multiple usages. In order for a peripheral interface to work correctly, the I/O pin assign-
ments (e.g., configuration registers for multiplexers) might need to be programmed. In
addition, some microcontrollers also offer configurable electrical characteristics for the
I/O pins. This can result in additional steps in I/O configurations.

3. Peripheral configuration. Most interface peripherals contain a number of programmable
registers to control their operations and therefore a programming sequence is usually
needed in order to allow the peripheral to work correctly.

4. Interrupt configuration. If a peripheral operation requires interrupt processing, addi-
tional steps are required for the interrupt controller (e.g., the NVIC in the Cortex®-M
processors).

Most microcontroller vendors provide peripheral/device driver libraries to simplify
software development. Even though device driver libraries are available, there might still
be fair amount of low-level programming work depending on the applications. For
example, if a user interface is needed, you might need to develop your own user interface
functions to design a user friendly stand-alone embedded system. (Note: There are also
commercial middleware available for creating GUIs.) However, the device driver libraries
provided by the microcontroller vendors certainly make the development of embedded
applications much easier.

For the development of most deeply embedded systems, it is not necessary to have a rich
user interface. However, basic interfaces like LEDs, DIP switches, and push buttons can
deliver only a limited amount of information. In order to help debugging software, a
simple text input/output console can be very useful. This can be handled by a simple RS-
232 connection through a UART interface on the microcontroller to a UART interface on a
personal computer (or via a USB adaptor). This arrangement allows us to transfer and
display text messages from the microcontroller applications and to enter user inputs using
a terminal application (See Figure 3.2). Details of creating such message communication
are covered in Chapter 17 (for mbed development platform) and Chapter 18 (for other
development platforms).

3.2.5 Introduction to Embedded Software Program Flows

There are many different ways to structure the flow of the application processing. Here we
will cover a few fundamental concepts. Please note that unlike programming on a personal
computer; most embedded applications do not have an end of the program flow.

Polling

For simple applications, polling (sometimes also called super loop, see Figure 3.3) is easy
to set up and works fairly well for simple tasks.

Introduction to Embedded Software Development 59

Terminal / console
application

Development board

Microcontroller with i

ARM Cortex-MO0 / [g

RS-232 serial
cable Personal
computer

Level shifter

Figure 3.2
Using UART interface for user input and output.

Initialization

Peripheral A requires
processing?

Process A

Peripheral B requires
processing?

Process B

Peripheral C requires
processing?

Process C

Figure 3.3
Polling method for simple application processing.

However, when the application gets complicated and demands higher processing
performance, polling is not suitable. For example, if one of the processes takes long time,
other peripherals will not get any service for some time. Another disadvantage of using the
polling method is that the processor has to run the polling program all the time even if it
requires no processing; thus reducing energy efficiency.

60 Chapter 3

Interrupt Driven

In applications that require lower power, processing can be carried out in interrupt service
routines so that the processor can enter sleep mode when no processing is required.
Interrupts are usually generated by external sources or by on-chip peripherals to wake up
the processor.

In interrupt-driven (Figure 3.4) applications, the interrupts from different devices can be
set at different priorities. In this way, a high-priority interrupt request can get serviced
even when a lower priority interrupt service is running, which will be temporarily stopped.
As a result, the latency for higher priority interrupt is reduced.

@ Interrupt Service Routine A

/4 Process A
Initialization g
>
Interrupt Service Routine B
/" Interrupt
Enter sl d > >
nter sleep mode Process B
A
: Interrupt Service Routine C
4 -
Process C

Figure 3.4
Interrupt-driven application.

Combination of Polling and Interrupt Driven

In many cases, applications can use a combination of polling and interrupt methods. By
using software variables, information can be transferred between interrupt service routines
and the application processes (Figure 3.5).

By dividing a peripheral processing task into an interrupt service routine and a process
running in the main program, we can reduce the duration of interrupt services so that even
lower priority interrupt services can get a better chance of getting serviced. At the same
time, the system can still enter sleep mode when no processing task is required. In

Figure 3.5, the application is partitioned into processes A, B, and C, but in some cases, an

Introduction to Embedded Software Development 61

Initialization
1
-t -
‘f Interrupt
. . Software Service
Peripheral A requires variables Routine A
processing? Y ; o el
e —
N ot 4
| SE— Process A <& —
Peripheral B requires / Interr_upt
processing? Software ; Service
variables; | Routine B
Process B - /, 1\—/
. . ” /,’ \
Peripheral C requires P
processing? Softwa r/e Interr_upt
e Service
variables/ Routine C
Process C L Sl
Any more processing Lo
required? Y
N
Interrupt
Enter sleep mode

Figure 3.5
Combination of polling and interrupt-driven application.

application task might not be able to be partitioned into individual parts easily, which
would need to be written as a large process. Even so, that does not stop the peripheral
interrupts from being processed.

Handling Concurrent Processes

In some cases, an application process could take a significant amount of time to complete
and therefore it is undesirable to handle it in a big loop as shown in Figure 3.5. If process
A takes too long to complete, processes B and C will not be able to respond to peripheral
requests fast enough, resulting in system failure. Common solutions are as follows:

1. Breaking down a long processing task to a sequence of states. Each time the process is
processed, only one state is executed.
2. Using a Real-Time Operating System (RTOS) to manage multiple tasks.

62 Chapter 3

[
|

Process A \ J

Restore state
information

+state =1 + state = 2 + state = 3 + state =4

Process Process Process Process
A1 A2 A3 A4
Y Y v v
‘ state =2 ‘ ‘ state =3 ‘ ‘ state =4 ‘ ‘ state = 1 ‘
v v v v
\ 4

Process B, C, etc

Figure 3.6
Partitioning a process into multiple parts in application loop.

For method 1 (Figure 3.6), a process is divided into a number of parts and software
variables, which are used to track the state of the process. Each time the process is
executed, the state information is updated so that next time the process is executed again,
the processing can resume correctly.

Since the execution path of the process is shortened, other processes in the main loop can
be reached quicker inside the big loop. Although the total processing time required for the
processing remains unchanged (or increased slightly due to overhead of state saving and
restoring), the system is more responsive. However, when the application tasks get more
complex, partitioning the application task manually can become impractical.

For more complex applications, an RTOS can be used (Figure 3.7). An RTOS allows
multiple application processes to be executed by dividing processor execution time into time
slots, and allocate the time slots to each task. To use an RTOS, a timer is needed to generate
periodic interrupt requests. When each time slot ends, the timer generates an interrupt that
triggers the RTOS task scheduler, which determines if context switching should be carried
out. If context switching should be carried out, the task scheduler suspends the current
executing task and then switched to the next task that is ready to be executed.

Introduction to Embedded Software Development 63

Start

i

(O]
initialization

|

OS task
scheduler

Process A

Process B

Process C

Figure 3.7
Using an real-time operating system to handle multiple concurrent application processes.

Using an RTOS improves the responsiveness of a system by ensuring that all tasks will be
reached within a certain amount of time. Examples of using an RTOS are covered in
Chapter 20.

3.2.6 Programming Language Choices

In most projects, the Cortex-M processors can be programmed using C/C++ language,
assembly language, or a mix of both. The Cortex-M processors are designed to be C
friendly, so you do not need to learn assembly language to use the microcontrollers based
on the Cortex-M processors. Today, you can also use other high level languages such as
Java and Matlab/Simulink.

For beginners, C/C++ language is usually the best choice as it is easier to learn and most
modern C compilers are very good at generating efficient code for the Cortex
microcontrollers. Table 3.1 summarizes the comparisons of using C language and
Assembly language.

You can mix C and assembly code together in a project. This allows most parts of the
program to be written in C, and some parts that cannot be handled in C can be written in
Assembly.

More details in this area are covered in Chapter 21.

64 Chapter 3

Table 3.1: Comparison between C programming and assembly language programming

Language Pros and cons

C/C++ Pros:
* easy to learn
* portable
* easy handling of complex data structures
Cons:
* limited/no direct access to core register and stack
* no direct control over instruction sequence generate
* no direct control over stack usage
Assembly Pros:
* allows direct control to each instruction step and all memory operations
* allows direct access to instructions that cannot be generated with C
Cons:
* takes longer time to learn
» difficult to manage data structure
* less portable (syntax of assembly language in different tool chains can be different)

3.3 Introduction to ARM® Cortex®-M Programming

3.3.1 C Programming—Data Types

The C language supports a number of “standard” data types. However, the implementation
of data type can be processor architecture dependent and C compiler dependent. In ARM

processors including the Cortex®-MO0 and Cortex-MO+ processors, the following data type
implementations are supported by all C compilers (Table 3.2).

Table 3.2: Size of data types in Cortex”-M processors

C and C99 (stdint.h) data type =~ Number of bits Range (Signed) Range (Unsigned)

char, int8_t, uint8_t 8 —128 to 127 0 to 255

short, int16_t, uint16_t 16 —32768 to 32767 0 to 65535

int, int32_t, uint32_t 32 —2147483648 to 2147483647 0 to 4294967295

long 32 —2147483648 to 2147483647 0 to 4294967295

long long, int64_t, uint64_t 64 —(2763) to (2763—1) 0 to (2764—1)

float 32 —3.4028234 x 10°® to 3.4028234 x 10

double 64 —1.7976931348623157 x 10°% to
1.7976931348623157 x 10°%°

long double 64 —1.7976931348623157 x 10°°® to
1.7976931348623157 x 10°%°

pointers 32 0x0 to OxFFFFFFFF

enum 8/16/32 Smallest possible data type, except when overridden
by compiler option

bool (C++ only), _Bool (C only) 8 True or false

wchar_t 16 0 to 65535

Introduction to Embedded Software Development 65

Table 3.3: Data size definition in ARM® processors

Terms Size
Byte 8-bit
Half word 16-bit
Word 32-bit
Double word 64-bit

When porting applications from other processor architectures to ARM processors, if the
data types have different sizes, it might be necessary to modify the C program code in
order to ensure the program operates correctly. More details on porting software from 8-bit
and 16-bit architecture are covered in Chapter 22.

In Cortex-MO and Cortex-M0O+ programming, the data variables stored in memory need to
be stored at an address location which is a multiple of its size. More details on this area
are covered in Chapter 7 (Section 7.9.1 Data alignment).

In ARM programming, we also refer data size as word, half word, and byte (Table 3.3).

These terms are commonly found in ARM documentation, such as in the instruction set
details.

3.3.2 Accessing Peripherals in C

In ARM Cortex-M microcontrollers, peripheral registers are memory mapped and can be
accessed by data pointers. In most cases, you can use the device drivers provided by the
microcontroller vendors to simplify the software development task and make it easier to
port software between different microcontrollers. If it is necessary to access the peripheral
registers directly, the following methods can be used.

In simple cases of accessing a few registers, you can define each peripheral register as a
pointer:

Example registers definition for a UART using pointers and accessing the registers

Jfdefine UART_BASE 0x40003000 // Base of ARM Primecell PLO11
jidefine UART_DATA (*((volatile unsigned long *)(UART_BASE + 0x00)

))
J#define UART_RSR (*((volatile unsigned Tong *)(UART_BASE + 0x04)))
Jfdefine UART_FLAG (*((volatile unsigned long *)(UART_BASE + 0x18)))
Jfdefine UART_LPR (*((volatile unsigned long *)(UART_BASE + 0x20)))
j#define UART_IBRD (*((volatile unsigned long *)(UART_BASE + 0x24)))
Jfdefine UART_FBRD (*((volatile unsigned long *)(UART_BASE + 0x28)))
Jfdefine UART_LCR_H (*((volatile unsigned long *)(UART_BASE + 0x2C)))
J##define UART_CR (*((volatile unsigned Tong *)(UART_BASE + 0x30)))
Jfdefine UART_IFLS (*((volatile unsigned long *)(UART_BASE + 0x34)))

Continued

66 Chapter 3

fidefine UART_MSC (*((volatile unsigned long *)(UART_BASE + 0x38)))
jfdefine UART_RIS (*((volatile unsigned long *)(UART_BASE + 0x3C)))
jidefine UART_MIS (*((volatile unsigned Tong *)(UART_BASE + 0x40)))
jidefine UART_ICR (*((volatile unsigned long *)(UART_BASE + 0x44)))
fidefine UART_DMACR (*((volatile unsigned long *)(UART_BASE + 0x48)))

[* - UART Initialization ---- */
void uartinit(void) // Simple initialization for ARM Primecell PLO11
{

UART_IBRD = 40; // ibrd : 25MHz/38400/16 = 40

UART_FBRD = 11; // fbrd : 25MHZz/38400 - 16*ibrd = 11.04
UART_LCR_H = 0x60; // Line control : 8Nl

UART_CR = 0x301; // cr : Enable TX and RX, UART enable
UART_RSR = 0xA; // Clear buffer overrun if any

}

[* - Transmit a character ---- */

int sendchar(int ch)

{

while (UART_FLAG & 0x20); // Busy, wait
UART_DATA = ch; // write character
return ch;

}
[* - Receive a character ---- */
int getkey(void)

{

while ((UART_FLAG & 0x40)==0); // No data, wait
return UART_DATA; // read character

}

This solution is fine for simple applications. However, when there are multiple units of the
same peripherals available in the system, it will require defining registers for each of these
peripherals which can make code maintenance difficult. In addition, defining each register
as a separated pointer might result in larger program size as each register access requires a
32-bit address constant to be stored in the program flash memory.

To simplify the code, we can define the peripheral register set as a data structure, and
define the peripheral as memory pointer to this data structure.

Example registers definition for a UART using data structure and accessing the registers
using pointer of structure

typedef struct { // Base on ARM Primecell PLO11

volatile unsigned Tong DATA; // 0x00

volatile unsigned long RSR; // 0x04
unsigned long RESERVEDO[47];// 0x08 — 0x14

volatile unsigned Tong FLAG; // 0x18

unsigned Tong RESERVEDI; // 0x1C

Introduction to Embedded Software Development 67

volatile unsigned long LPR; // 0x20
volatile unsigned long IBRD; // 0x24
volatile unsigned long FBRD; // 0x28
volatile unsigned long LCR_H; // 0x2C
volatile unsigned long CR; // 0x30
volatile unsigned long IFLS; // 0x34
volatile unsigned long MSC; // 0x38
volatile unsigned Tong RIS; // 0x3C
volatile unsigned long MIS; // 0x40
volatile unsigned long ICR; // 0x44
volatile unsigned long DMACR; // 0x48

} UART_TypeDef;

Jidefine UartO ((UART_TypeDef *) 0x40003000)
Jfdefine Uartl ((UART_TypeDef *) 0x40004000)
Jfdefine Uart?2 ((UART_TypeDef *) 0x40005000)

AEEEEEE UART Initialization ~---- */

void uartinit(void) // Simple initialization for Primecell PLO11
{

Uart0->IBRD 40; //ibrd : 25MHz/38400/16 = 40

Uart0->FBRD = 11; //fbrd : 25MHz/38400 - 16*ibrd = 11.04
Uart0->LCR_H = 0x60; // Line control : 8Nl

Uart0->CR = 0x301; // cr : Enable TX and RX, UART enable
Uart0->RSR = 0xA; // Clear buffer overrun if any

}

[* - Transmit a character ---- */

int sendchar(int ch)
{
while (UartO0->FLAG & 0x20); // Busy, wait
Uart0->DATA = ch; // write character
return ch;
}
/* ----- Receive a character ---- */
int getkey(void)
{
while ((UartO->FLAG & 0x40)==0); // No data, wait
return Uart0->DATA; // read character
}

In this example, the IBRD (Integer Baud Rate Divider) register for UART #0 is accessed
by the symbol Uart0->IBRD, and the same register for UART #1 is accessed by Uart1-
>IBRD.

With this arrangement, the same register data structure for the peripheral can be shared
between multiple instantiations, making code maintenance easier. In addition, the
compiled code could be smaller due to the reduced requirement of immediate data storage.

68 Chapter 3

With further modification, a function developed for the peripherals can be shared between
multiple units by passing the base pointer to the function:

Example registers definition for a UART and driver code which support multiple UART using
pointer passing

typedef struct { // Base on ARM Primecell PLO11

volatile unsigned Tong DATA; // 0x00
Volatile unsigned Tong RSR; // 0x04
unsigned long RESERVEDO[47];// 0x08 — 0x14
volatile unsigned Tong FLAG; // 0x18
unsigned long RESERVEDI; // 0x1C
volatile unsigned long LPR; // 0x20
volatile unsigned Tong IBRD; /] 0x24
volatile unsigned Tong FBRD; // 0x28
volatile unsigned long LCR_H; // 0x2C
volatile unsigned Tong CR; // 0x30
volatile unsigned long IFLS; // 0x34
volatile unsigned long MSC; // 0x38
volatile unsigned long RIS; // 0x3C
volatile unsigned Tong MIS; // 0x40
volatile unsigned long ICR; // 0x44
volatile unsigned Tong DMACR; // 0x48

} UART_TypeDef;

fidefine UartO ((UART_TypeDef *) 0x40003000)
ffdefine Uartl ((UART_TypeDef *) 0x40004000)
fidefine Uart?2 ((UART_TypeDef *) 0x40005000)

[* - UART Initialization ---- */

void uartinit(UART _Typedef *uartptr) //

it

uartptr->IBRD = 40; // ibrd : 25MHz/38400/16 = 40
uartptr->FBRD = 11; // fbrd : 25MHz/38400 - 16*ibrd = 11.04
uartptr->LCR_H = 0x60; // Line control : 8Nl

uartptr->CR = 0x301; // cr : Enable TX and RX, UART enable
uartptr->RSR OxA; // Clear buffer overrun if any

[* - Transmit a character ---- */

int sendchar(UART_Typedef *uartptr, int ch)
{

while (uartptr->FLAG & 0x20); // Busy, wait
uartptr->DATA = ch; // write character
return ch;

}

VA Receive a character ---- */

int getkey(UART_Typedef *uartptr)

{

while ((uartptr ->FLAG & 0x40)==0); // No data, wait
return uartptr ->DATA; // read character

}

Introduction to Embedded Software Development 69

In most cases, peripheral registers are defined as 32-bit words. This is because most
peripherals are connected to peripheral bus (using APB protocol, see Section 2.3 in
Chapter 2) that handles all transfers as 32-bit. Some peripherals might be connected to the
processor’s system bus (with AHB protocol that supports various transfer sizes, also see
Section 2.3 in Chapter 2). In such cases, the registers might be accessed in other transfer
sizes. Please refer to the user manual of the microcontroller to determine the supported
transfer size for each peripheral.

Note that when defining memory pointers for peripheral accesses, the “volatile” keyword
should be used in the register definitions. This ensures the compiler to generate the access
correctly.

3.3.3 What Is Inside a Program Image?

In addition to the program code you created, there are a range of software components
inside a program image:

* Vector table

* Reset handler/startup code
e C startup code

* Application code

* C runtime library functions
e Other data

In this section, we are going to introduce briefly what these components are.
Vector Table

In ARM Cortex-M processors, the vector table contains the starting addresses of each
exception and interrupt. For Cortex-MO and Cortex-MO+- processors, after reset, the vector
table is defined at the start of the memory space (address 0x00000000). The first word in
the vector table also defines the starting value of the Main Stack Pointer, which will be
introduced in the next chapter (Section 4.2 Programmer’s Model). The vector table is
device-specific (depends on what exceptions are supported), and is typically merged into
the startup code.

Reset Handler/Startup Code

The reset handler is optional. If reset handler is omitted, the C startup code is executed
directly instead. The reset handler contains program code that is executed as soon as the
processor exits from reset. In some cases, it contains some hardware initialization. In
typical projects using CMSIS-CORE (a software framework for Cortex-M processors,
which will be covered in a later part of this Chapter), the reset handler executes the
“Systemlnit()” function which sets up the clocks and PLL, before branching to the C
startup code.

70 Chapter 3

The startup code is typically provided by the microcontroller vendors, and often also
bundled inside tool chains. They can be in form of either assembly code or C code.

C Startup Code

If you are programming in C/C++, or many other high level languages, the processor will
need to execute some program code to set up the program execution environment (e.g.,
setup initial data values in SRAM, such as global variables). It also zero initializes part of
the data memory for variables that are uninitialized at load time. For applications which
use C functions like malloc(), the C startup code also needs to initialize the data variables
controlling the heap memory. After this initialization, the C startup code branches to the
beginning of the “main()” program.

The C startup code is inserted by the tool chain automatically and is tool chain specific,
and might not be present if you are writing a program purely in assembly. For ARM
compilers, the C startup code is labeled as “__main,” while the startup code generated by
GNU C compilers is normally labeled as “_start.”

Application Code

Typically application code starts at the beginning of main(). It contains the instructions
generated from your application program code carry out the tasks you specified. Apart
from the instruction sequence, there are also various types of data:

» Initial values of variables. Local variables in functions or subroutines need to be initial-
ized and these initial values are set up during program execution.

* Constants in program code. Constant data are used in application codes in many ways:
data values, addresses of peripheral registers, constant strings, etc. These data are often
called literal data. These data are sometimes grouped together within the program
images as a number of data blocks called literal pools.

* Some applications can also contain additional constant data like lookup tables, graphics
image data (e.g., bit map) that are merged into the program images.

C Library Code

C library code is injected into the program image by the linker when certain C/C++
functions are used. In addition, C library code can also be included due to data processing
tasks such as floating point operations and divide. The Cortex-M0O and Cortex-M0+
processors do not have a divide instruction and the divide operations typically need to be
carried out by a C library divide function.

Some development tools offer various versions of C libraries for different purposes. For
example, in Keil® MDK or ARM Development Studio” 5 (DS-5) there is an option to use
a special version of C library called Microlib. The Microlib is targeted for microcontrollers,

Introduction to Embedded Software Development 71

and is very small, but does not offer all features of the standard C library. In embedded
applications that do not require high data processing capability and have tight program
memory requirement, the Microlib is a good way to reduce code size.

Depending on the application, C library code might not be present in simple C
applications (no C library function calls) or pure assembly language projects.

Apart from the vector table which must be placed at the beginning of the memory
map, there are no other constraints on the placement of the rest of the elements inside
a program image. In some cases, if the layout of the items in the program memory is
important, the layout of the program image can be controlled by a linker script.

Other Data

The program image also contains additional data such as the initial values for global or
static variables.

3.3.4 Data in SRAM

The SRAM in the processor system are used in a number of ways:

Data—Data stored in the bottom of RAM usually contains global and static

variables. (Note: Local variables can be stored in registers in the processor, or can be
spilled onto the stack to reduce RAM usage. Local variables belong to a function that
is not in use do not take up memory space)

Stack—The role of stack memory includes temporary data storage (normal stack PUSH
and POP operations), memory space for local variables, parameter passing in function
calls, register saving during an exception sequence, etc. The Thumb® instruction set is
very efficient in handling data accesses that use a Stack Pointer-related (SP) addressing
mode and allows such data in the stack memory to be accessed with very low instruc-
tion overhead.

Heap—The heap memory is optional. It is used by C functions that dynamically reserve
memory space, like “alloc(),” “malloc(),” and other function calls that uses these func-
tions. In order to allow these functions to allocate memory correctly, the C startup code
needs to initialize the heap memory and its control variables.

ARM processors also allow program code to be copied into memory and executed from
there. But in most microcontroller applications, the program codes are executed directly
from nonvolatile memories like flash memories.

There are various approaches in terms of how these data are placed in the SRAM. This is
often tool chain specific. In simple applications without any OS, the memory layout in
SRAM could be like the illustration as shown in Figure 3.8. In ARM architecture, the

72 Chapter 3

T

Memory Address Stack
(grow downwards)+
Heap *

(grow upwards)

Data

0x20000000

Example RAM usage in systems without OS

Figure 3.8
Example RAM usage in single task systems (without OS).

stack pointer is initialized to the top of the stack memory space, and decrement as data are
placed in the stack by stack PUSH operations, and increment as the data are removed
using POP operations.

For microcontroller systems with an embedded OS (e.g., pClinux) or RTOS (e.g., Keil
RTX), the stacks for each task are separate. Many OS allow software developers to define
stack size for each task/thread. Some OS might divide the RAM into a number of
segments and each segment is assigned to a task, each containing individual data, stack,
and heap regions (Figure 3.9).

| 05 & IRQ stack | Memory for OS
[OS heap] and Exception /
| OS data | Interrupt handlers
Memory Address || 05 & IRQ stack | Memory Address
Task X stack
‘ Task X stack ‘ Task X heap Memory for
‘ Task Y stack ‘ . Task X
‘ Task Z stack ‘
Task Y stack
Task Y heap Memory for
Heap (sr;::(g)between ‘ RV ahE ‘ Task Y
Data (shared between } -_Ir_:t ; T:::k } Memory for
0x20000000 tasks) 0x20000000 || Task Z data | Task Z
Example RAM usage in a simple embedded OS Alternate RAM usage in multiple
task system with an embedded OS
Figure 3.9

Example RAM usage in multiple task systems (with an OS).

Introduction to Embedded Software Development 73

In most systems with RTOS, the data layout in the left hand side of Figure 3.9 would be
used, where global and static variables and the heap memory are shared.

3.3.5 What Happens When a Microcontroller Starts?

Most modern microcontrollers have on-chip flash memory to hold the compiled program.
The flash memory hold the program in binary machine code format and therefore
programs written in C must be compiled before programmed to the flash memory. Some
of these microcontrollers might also have a separate boot ROM which contains a small
boot loader program that gets executed when the microcontroller starts before executing
the user program in the flash memory. In most cases, only the program code in the flash
memory can be changed and the program code in boot loader is fixed by the manufacturer.

After the flash memory (or other types of program memory) is programmed, the program
is then accessible by the processor. After the processor is reset, it carries out the reset
sequence (Figure 3.10).

Reset

sequence (Boot |
| Loader |

(optional,
depends on the
microcontroller

design)

System
initialization
(optional)

Figure 3.10
What happen when a microcontroller starts—reset handler.

In the reset sequence, the processor obtains the initial stack pointer value and reset vector
(starting address for execution) from the vector table, and then executes the reset handler
in the startup code. Optionally, the reset handler can also handle some hardware
initialization.

For applications developed in C, the C startup code is executed before entering the main

application code (Figure 3.11). The C startup code initializes variables and memory used
by the application, and is inserted to the program image by the C development suite.

After the C startup code is executed, the application is started (Figure 3.12). The
application program often contains the following:

* Initialization of hardware (e.g., peripherals).
* The processing part of the application
* Interrupt service routines

74 Chapter 3

C startup
code

Figure 3.11
What happen when a microcontroller starts—C startup code.

Application (main)

Hardware .
PP Processing
initialization

Runtime Intel_'rupt
. . Serivce
libraries

Routines

Figure 3.12
What happens when a microcontroller starts—application code.

In addition, the application might also use C library functions. In such case, the C
compiler/linker will include the required library functions into the compiled program
image.

The hardware initialization might involve a number of peripherals, some system control
registers as well as interrupt control registers inside the Cortex-M0/MO+ processors. The
initialization of the system clock control and the PLL might also take place if this was not
carried out in the reset handler. After the peripherals are initialized, the program execution
can then proceed to the application processing part.

3.4 Software Development Flow

There are many development tool chains available for ARM® microcontrollers. Majority
of them support C/C++ and assembly language. In most cases, the program generation
flow can be summarized in a diagram as shown in Figure 3.13.

Introduction to Embedded Software Development 75

C source
code Object files
.c
-cpp . -0 Instruction Set Testing by
» > —
C Compiler Simulator simulation

Assembly Exfecutable /
source code \ image
elf
.S .0 Llnker .out
A bl — | \,
— m Assembler — o Flash

programmer

—>
Testing using

Object files Debugger \\H real hardware
HHHHHHHHHHHHHH

Run time library functions, I|b scat
precompiled libraries
Linker script /

Scatter-loading file

Cortex-M based
Microcontroller

ARAARAAAAAAAAARA
HHHHHHHHHHHHHHHH

EEEEUEEEERELELE
Figure 3.13
Typical program generation flow.

In most simple applications, the programs can be completely written in the C language.
The C compiler compiles the C program code into object files, and then generates the
executable program image file using the linker. For the case of GNU C compilers, the
compile and linking stages are often merged into one single step.

Projects that require assembly programming use the assembler to generate object code
from assembly source code. The object files can then be linked together with other object
files in the project to produce an executable image.

Beside from the program code, the object files and the executable image may also contain
various debug information.

Depending on the development tools, it is possible to specify the memory layout for the
linker using command line options. However, in projects using GNU C compilers, a linker
script is normally required to specify the memory layout. A linker script is also required
for other development tools when the memory layout gets complicated. In ARM
development tools, the linker scripts are often called scatter-loading files. If you are using
Keil® Microcontroller Development Kit (MDK), the scatter-loading file can be generated
automatically from the memory layout window. You can use your own scatter-loading file
if you prefer.

After the executable image is generated, we can test it by downloading it to the flash
memory or internal RAM of the microcontroller and test it. The whole process can be quite

76 Chapter 3

easy; most development suites come with a user friendly IDE. When working together with
an in-circuit debugger (sometimes referred to as an In-Circuit Emulator (ICE), debug probe,
or USB-JTAG adaptor), you can create a project, build your application, and download your
embedded application to the microcontroller in a few steps (Figure 3.14).

Select device Add program .
Create a and specify code & (C:)om[r):ri Upg:rte
project project Device Driver prog your
options Library generation flow) application

JTAG / Serial-wire Download Debug
e connection § to flash your

application

ULINK2, an example of
USB in-circuit debugger

(require in-circuit debugger)

Microcontrcgller with
ARM Cortex-M

processor Development board

Figure 3.14
An example of development flow.

In many cases an in-circuit debugger is needed to connect the debug host (personal
computer) to the target board. The Keil® ULINK2 (Figure 3.15) is one of these products
available and can be used with Keil Microcontroller Development Kit.

Figure 3.15
ULINK 2 USB-JTAG adaptor.

Introduction to Embedded Software Development 77

The flash programming function can be carried out by the debugger software in the
development suite, or in some cases by a flash programming utility downloadable
from microcontroller vendor Web site. The program can then be tested by running on
the microcontroller, and by connecting the debugger to the microcontroller, the
program execution can be controlled and the operations can be observed. All these
can be carried out via the debug interface of the Cortex®-M processor (see

Figure 3.16).

Cortex-M based
Microcontroller

ALl g i HAAAAAAAAAAAAAAA

utility from MCU

vendors

In-Circuit
Y TR debugger / USB-
Development Suite JTAG adaptor
Flash

SRAM

Com =]

USB —|

Cortex-M
Processor

programming
algorithm

Debugger
Peripherals

HHHHHAHRHAREAAAA

HAAAAAAANARAAAAA

N o s F/:/
D] A compey Onstrd i i v v !
;
;
.
h
.
.
:
.
H
;
;
;
;
Manufacturing J
s) Tester :

Figure 3.16
Various usages of the debug interface on the Cortex®-M processors.

LI

IRLEEEEEEEEEEEEL

For simple program codes, we can also test the program using a simulator. This allows us
to have full visibility to the program execution sequence, and allows testing without actual
hardware. Some development suites provide simulators that can also simulate peripheral
behavior. For example, Keil MDK provides device simulation for many microcontrollers

based on the ARM Cortex-M processors.

Apart from the fact that different C Compilers perform differently, different
development suites also provide different C language extension features, as well as
different syntax and directives in assembly programming. Chapters 5, 6, and 21 of this
book provide assembly syntax information for ARM development tools (including
ARM Development Studio 5 and Keil MDK) and GNU compiler. In addition, different
development suites also provide different features in debug, utilities and different

support for debug hardware.

78 Chapter 3

3.5 Cortex® Microcontroller Software Interface Standard
3.5.1 Introduction of CMSIS

As the complexity of embedded systems increase, the compatibility and reusability of
software code becomes more important. Having reusable software often helps to reduce
development time for subsequent projects and hence allows faster time-to-market.
Software compatibility helps the use of third-parties software components. For example,
an embedded system project might involve the following software components:

* Software developed by in-house software developers.

* Software reused from other projects.

* Device driver libraries from microcontroller vendors.

* Embedded OS/RTOS

* Other third-party software products like a communication protocol stack and codec
(compressor/decompressor).

With all these software components being used in one project, compatibility of these
components is becoming critical for many large-scale software projects. Also, system
developers also want to be able to reuse the software they have developed in future
projects, even they could be using different processors.

In order to allow a high level of compatibility between these software products and
improve software portability and reusability, ARM® worked with various microcontroller
vendors and software solution providers to develop the CMSIS-CORE, a common
software framework covering most Cortex-M processors and Cortex-M microcontroller
products.

The CMSIS-CORE is implemented as part of device driver library available from
microcontroller vendors. It provides a standardized software interface to the processor
features like interrupt control and system control functions (Figure 3.17). Many of these
processor feature access functions, which are available across all Cortex-M processors
allowing easy software porting between these microcontrollers based on these processors.

The CMSIS-CORE is standardized across multiple microcontroller vendors, and also
supported by multiple C compiler vendors. For example, it can be used with Keil® MDK,
ARM Development Studio 5 (DS-5), IAR Embedded Workbench, TASKING compiler,
and various GNU-based C compiler suites such as Atollic TrueStudio.

The CMSIS-CORE is the first part of the CMSIS project, and has evolved continuously to
cover additional processors and integrated various improvements and additional tool chain
support. Over the years, the CMSIS has expanded into multiple projects (Table 3.4).

The interactions between various CMSIS projects are shown in Figure 3.18.

Introduction to Embedded Software Development 79

Software

[Application code j [Third parties software] Embedded OS

Peripheral Access Functions

Microcontroller Device Driver Libraries

Peripherals Cortex-M processor

Microcontroller

Figure 3.17

CMSIS-CORE provides standardized access functions for processor features.

Table 3.4: List of existing CMSIS projects

CMSIS project

Descriptions

CMSIS-CORE

CMSIS-DSP
CMSIS-RTOS

CMSIS-PACK

CMSIS-Driver
CMSIS-SVD

CMSIS-DAP

Software framework including Application Programming Interface (API) for processor
features, register definitions. Providing the same look and feel for device driver libraries.
A free DSP software library available for all Cortex®-M processors.

An API specification for interface between application codes and RTOS products. This
enables middleware to be developed to work with multiple RTOS.

A software package mechanism to enable software vendors (including microcontroller
vendors that deliver device driver libraries) to deliver software packages, which can be
integrated into development suite easily.

A device driver API for middleware to access commonly used device driver functions.
System View Descriptions (SVD) is a standard for XML-based files, which describes the
peripheral registers inside a microcontroller device. The CMSIS-SVD files are created by
microcontroller vendors, and debuggers supporting CMSIS-SVD can then import these
files and able to visualize the peripheral registers.

A reference design for USB to debug connection adaptor. This enables a standard
interface for debuggers in development suites to communicate with the USB debug
adaptors, so that microcontroller vendors can create low-cost debug adaptors that
work with multiple tool chains.

80 Chapter 3

Application code

—

Middleware

(ARM / 3 party)l

CMSIS-Driver CMSIS-DSP CMSIS-RTOS
API specification DSP library API specification

Device specific

HAL (Hardware RealTime OS
Abstraction Layer) (ARM / 3 party)
(Silicon vendor)

CMSIS-CORE
Core Access Functions, Intrinsic functions, Peripherals and Interrupt
Definitions

NVIC
Processor Debug/Trace
Core Interface

SysTick
RTOS Kernel
Timer

Nested Vectored
Interrupt
Controller

Figure 3.18
Interactions between different CMSIS projects.

3.5.2 What Are Standardized in CMSIS-CORE?

The CMSIS-CORE standardized the following areas for embedded software:

* Standardized access functions/Application Programming Interface (API) for accessing
processor’s internal peripherals (e.g., NVIC, System Control Block (SCB) and System
Tick timer (SysTick)) such as interrupt control and SysTick initialization. These
functions will be covered in various chapters of this book and in the Appendix
C—CMSIS-CORE Quick Reference.

* Standardized register definitions for processor’s internal peripherals. For best software
portability, we should use the standardized access functions. However, in some cases
we need to directly access these registers. In such cases, the standardized register
definitions help the software to be more portable.

* Standardized functions for accessing special instructions in Cortex-M microcontrollers.
Some instructions on the Cortex-M processors cannot be generated by normal C code.
If they are needed, they can be generated by these functions provided. Otherwise, users

Introduction to Embedded Software Development 81

will have to use intrinsic functions provided by the C compiler or embedded/inline
assembly language which are tool chain specific and less portable.

» Standardized names for system exceptions handlers. System exceptions are often
required by an embedded OS. By having standardized system exception handler names,
supporting different device driver libraries in an embedded OS is much easier.

* Standardized name for the system initialization function. The common system initializa-
tion function “void SystemInit(void)” makes it easier for software developers to set up
their system with minimum effort.

* A standardized software variable called “SystemCoreClock”! to determine the processor
clock frequency.

e The CMSIS-CORE also provides a common platform for device driver libraries—each
device driver library has the same look and feel, making it easier for beginners to learn
and make it easier for software porting.

The CMSIS is developed to ensure compatibility for the basic operations. Microcontroller
vendors can add additional functions in their driver drivers to enhance their software
solution so that CMSIS does not restrict the functionality and the capability of the
embedded products.

3.5.3 Organization of the CMSIS-CORE

A CMSIS compliant device driver contains the following:

e Core Peripheral Access Layer—Name definitions, address definitions, and helper functions
to access core registers and core internal peripherals like the NVIC and SysTick timer.

* Device Peripheral Access Layer (MCU specific)—Register name definitions, address
definitions, and device driver code to access peripherals.

* Access Functions for Peripherals (MCU specific)—Optional helper functions for periph-
erals. Note that another CMSIS project called CMSIS-Driver is ongoing to create a
common peripheral API to enable application code and middleware to be developed for
multiple microcontroller platforms.

The role of these layers is illustrated in Figure 3.19.

3.5.4 Using CMSIS-CORE

The CMSIS-CORE is an integrated part of the device driver package provided by the
microcontroller vendors. If you are using the device driver libraries for software
development, you are already using the CMSIS-CORE. If you are not using device driver
libraries from microcontroller vendors, you can still use CMSIS-CORE by downloading

' In CMSIS v1.00-v1.20 it was called “SystemFreq.”

82 Chapter 3

User
Real-Time Middleware
RTOS Kernel Components
Core Peripheral Functions BRNicE Pgrlpheral
CMSIS- Functions
Core

Peripheral Registers and Interrupt/Exception Vector Definitions

NV
Processor R?ggT('Ck | VNetStedd Debug/Trace
ernel ectore
MCU Core Tine e Interface
Controller

Figure 3.19
CMSIS structure.

the CMSIS package from ARM Web site (www.arm.com/cmsis), unpack the files, and add
the required files for your project.

For C program code, normally you only need to include just one header file provided in
the device driver library from your microcontroller vendor. This header file then pulls in
all the required header files for CMSIS-CORE features as well as peripheral drivers.

You also need to include the CMSIS compliant startup code, which can be either in C or
assembly code. CMSIS-CORE provides various templates of startup code customized for
different tool chains.

Figure 3.20 shows a simple project setup using the CMSIS-CORE package. The names of
some of the files depends on the actual microcontroller device name (indicated as
<device> in Figure 3.20). When you use the header file provided in the device driver
library, it automatically includes the other required header files for you (Table 3.5).

Figure 3.21 shows a simple example of using CMSIS compliant driver in a simple project.

Typically information and examples of using CMSIS compliant device driver library can be
found in the libraries package from your microcontroller vendor. There are also some simple
examples of using the CMSIS in the CMSIS package on the ARM Web site (www.arm.com/
cmsis). Details of latest CMSIS projects can be found in http://www.keil.com/CMSIS/.

http://www.arm.com/cmsis
http://www.arm.com/cmsis
http://www.arm.com/cmsis
http://www.keil.com/CMSIS/

Introduction to Embedded Software Development 83

CMSIS compliant device driver library

Project Multiple startup files g A
| _— for different tool ﬁmg§

" Startup code chains p
o (ncluding he ; /) COMPLIANT
: vector table) Software Interface Standard

L core_cmO0.h / Core peripheral access

L Application code core_cmOplus.h layer

®
<device>.h

#include <device>.h q .
Header for special registers

core_cmFunc.h :
- access functions

int main(void)

Header for special instruction

core_cmlnstr.h ;
- access functions

Interrupt number and
system_<device>.h peripheral registers

system_<device>.c <« definitions

|
)
|

L N system_<device>.c System functions including

s Peripheral driver . initialization
—]] files »

—— Other header files

7
|

Device peripheral access
o layer and additional access
functions

L_| Peripheral driver
- code

Figure 3.20
Using device driver software package with CMSIS-CORE in a project.

3.5.5 Benefits of CMSIS

For most users, CMSIS bring the following key advantages:

Software portability and reusability—Porting of applications from one Cortex-
M-based microcontroller to another one is much easier. For example, most of the inter-
rupt control functions are available across all Cortex-M processors (only a few func-
tions for Cortex-M3/M4 processor are not available for Cortex-M0/MO0+ due to extra
functionality of the Cortex-M3/M4 processors, see Chapter 22, Section 22.5). This
makes it much straight forward to reuse the same application codes for a different
project. You can migrate a Cortex-M3 project to Cortex-M0/M0+ device for lower cost,
or move a Cortex-M0/MO+ project to Cortex-M3 device if higher performance is
required.

Easy to learning programming of new devices—Learning to use a new Cortex-
M-based microcontroller is made easier. Once you have used one Cortex-M-based mi-
crocontroller, you can start using another quickly because all CMSIS compliant device
driver libraries have the same core functions and similar look and feel.

84 Chapter 3

Table 3.5: Files in an example project with CMSIS-CORE

Files

Descriptions

<device>.h

core_cmO0.h/
core_cmOplus.h

core_cmFunc.h

core_cmlnstr.h
Startup code

system_<device>.h
system_<device>.c

Other files

A file provided by the microcontroller vendor that includes other header files,
provides definitions for a number of constants required by CMSIS, definitions of
device-specific exception types, peripheral register definitions, and peripheral address
definitions.

The file core_cm0.h contains the definitions of the registers for processor
peripherals like NVIC, System Tick Timer and System Control Block (SCB). It also
provides the core access functions like interrupt control and system control.

Provides core register access functions.

Provide intrinsic functions.

Multiple versions of the startup code can be found in CMSIS-CORE because it is
tools specific. The startup code contains a vector table, dummy definitions for a
number of system exceptions handler, and from version 1.30 of the CMSIS, the reset
handler also execute the system initialization function “void Systemlnit(void)” before
branches to the C startup code.

This is a header file for functions implemented in system_<device>.c

This file contains the implementation of the system initialization function “void
Systemlnit(void),” the definition of the variable “SystemCoreClock” (processor clock
speed) and a function called “void SystemCoreClockUpdate(void)” that is used after
clock frequency changes to update “SystemCoreClock.” The “SystemCoreClock”
variable and the “SystemCoreClockUpdate” are available from CMSIS version 1.3.
There are also additional files for peripheral control code and other helper
functions. These files provide the device peripheral access layer of the CMSIS.

#include “vendor device.h”

void main(void) {

NVIC_SetPriority (UART1_IRQn, 0x0); }‘/ NVIC setup by core access

NVIC_EnableIRQ(UART1_IRQn) ;

}

void UART1_IRQHandler {

}

void SysTick_Handler (void) {

}

functions

\\ Interrupt numbers defined in
- .
- <vendor_device>.h

‘\ Peripheral interrupt names are

D device specific, defined in
device specific startup code

System exception handler
names are common to all
Cortex-M microcontrollers
Figure 3.21
Example application based on CMSIS-CORE.

Introduction to Embedded Software Development 85

Embedded
Application Embedded OS / Application 0s/
middleware :
middleware
—J —J —J
Driver Library from Driver library from Driver Library from
Microcontroller OS / middleware Microcontroller vendors with
vendors vendor CMSIS
I T M = T - - I T
Peripherals Processor Peripherals Processor
core core

Without CMSIS, an embedded OS or
middleware needs to include processor
core access functions, and might need to
include a few peripheral drivers.

With CMSIS, an embedded OS or
middleware can use standardized core
access functions from a driver library

Figure 3.22
CMSIS-CORE avoids overlapping of driver code.

Software component compatibility—The CMSIS also lowers the risk of in-
compatibility when integrating third-party software components. Since middleware and
an embedded RTOS will be based on the same core peripheral register definitions, and
core access functions in CMSIS files, this reduces the chance of conflicting code. This
can happen when multiple software components carry their own core access functions
and register definitions. Without CMSIS-CORE, you might possibly find that different
third-party software contain unique driver functions. This could lead to register name
clashes, confusion due to multiple functions with similar names, and a waste of code
space due to duplicated functions (Figure 3.22).

Future proof—CMSIS makes your software code future proof. Future Cortex-M pro-
cessors and Cortex-M-based microcontrollers will also have CMSIS support, so you can
reuse your application code in future products.

Quality—The CMSIS core access functions have a small memory foot print. It is also
tested by multiple parties and this helps reduce your software testing time. The CMSIS
is MISRA (Motor Industry Software Reliability Association) compliant.

For companies developing an embedded OS or middleware products, the advantage of
CMSIS is significant. Since CMSIS supports multiple compiler suites and is supported by
multiple microcontroller vendors, the embedded OS or middleware developed with CMSIS
can work on multiple complier products and can be used on multiple microcontroller
families. Using CMSIS also means that these companies do not have to develop their own
portable device drivers, which saves development time and verification efforts.

3.6 Other Information on Software Development

Most C compilers provide work-arounds to allow assembly code to be used within C
program code. For example, ARM® Compiler provide an Embedded Assembler and Inline

86 Chapter 3

Assembler so that assembly functions can be included in C program code easily. However,
the assembly syntax for using an Embedded Assembler and Inline Assembler are tool
chain specific (not portable). (Note: In ARM Compiler, Inline Assembler for Thumb®
instruction is supported from version 5 017)

Some C compilers, including ARM C compilers in Development Studio 5 (DS-5) and
Keil® MDK, also provide intrinsic functions to allow special instructions to be inserted
because these instructions cannot be generated using normal C code. Intrinsic functions
are normally tool dependent. However, a tool independent version of similar functions for
Cortex®-M processors is also available via the CMSIS-CORE. This will be covered later
in this Chapter 21, Section 21.9 Accessing special instructions.

You can mix C, C++, and assembly code together in a project. This allows most parts of
the program to be written in C/C++-, and some parts that cannot be handled in C can be
written in assembly. To handle this, the interface between functions must be handled in a
consistent manner to allow input parameters and returned results to be transferred
correctly. In ARM software development, the interface between functions is specified by a
specification document called the ARM Architecture Procedure Call Standard (AAPCS,
reference 6). The AAPCS is part of the Embedded Application Binary Interface (EABI).
When using Embedded Assembler, you should follow the guidelines set by the AAPCS.
The AAPCS document and the EABI document can be downloaded from the ARM Web
site.

More details in this area are covered in Chapter 21.

2 Release notes: http://infocenter.arm.com/help/topic/com.arm.doc.arn0005¢/index html.

http://infocenter.arm.com/help/topic/com.arm.doc.arn0005c/index.html

Architecture

4.1 Overview of ARMv6-M Architecture
4.1.1 What Architecture Means

The ARM® Cortex®-M0 and Cortex-MO+ Processors are both based on the ARMv6-M
architecture. As covered in Section 2.4, the term architecture can refer to the following
two areas:

* Architecture: defines how the program execution should behave and how the debuggers
interact with the processor

* Microarchitecture: the exact implementation details of the processor, for example, how
many pipeline stages, instruction cycles, what type of bus interface used, etc.

Not everything in the ARMv6-M architecture definition is fixed, for example:

* Some of the features defined in the architecture can be optional. For example, the
Memory Protection Unit (MPU) is optional and the number of interrupt sources
supported in a device can be configured by chip designers.

* Some areas of the architecture can be implementation defined. For example, the number
of clock cycle for an instruction to execute is processor design specific. Similarly, a
number of identification (ID) registers can be architecturally defined to be needed, but
the exact value is processor specific.

* Some of the features on the processor are not essentially architectural features. For
example, the single cycle I/O interface on the Cortex-MO-+ processor is not a part of the
ARMvV6-M Architecture specification, but can be very valuable to various applications.

As aresult, you can have the Cortex-MO and Cortex-M0+ processors both based on the
ARMYV6-M architecture, with different pipeline implementations, and with different feature
set. However, when executing a certain program code sequence, you will get the same data
processing results, although the timing (i.e., number of clock cycle required) can be different.

4.1.2 Background of the ARMv6-M Architecture

The first ARM processor based on the ARMv6-M architecture is actually a processor called
the Cortex-M1 processor. This processor is designed for FPGA applications. The Cortex-M0
processor and then the Cortex-MO+ Processor were developed afterward. There is a little bit
of interesting history about this.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00004-7
Copyright © 2015 Elsevier Inc. All rights reserved. 87

http://dx.doi.org/10.1016/B978-0-12-803277-0.00004-7

88 Chapter 4

After the success of the Cortex-M3 processor in microcontroller applications, ARM had
been looking into expanding into FPGA applications. After some investigations, the ARM
processor engineering team found that while the Cortex-M3 processor can work fine in
FPGA, it is not well optimized for FPGA hardware and therefore the maximum clock
frequency is a bit slow. Also, the Cortex-M3 processor has multiple bus interface (based
on AHB-Lite protocol) which need to be connected to memory blocks, making it slightly
more work for FPGA designers to integrate the processor into their FPGA projects.

When looking into the details of the design requirements, many FPGA applications only
need a simple processor for control, and complex data processing could be done in FPGA
hardware. On the other hand, the exception handling and system features of the Cortex-M3
processor is very attractive for many FPGA system designers, so ARM decided that there is a
need to have a new processor architecture and a new processor based on these requirements.

As a result, the ARMv6-M architecture and the Cortex-M1 processor were formed. The
programmer’s model of the Cortex-M1 processor and the exception model is based on the
Cortex-M3 processor, while the instruction set is based on the Thumb instruction set found
in ARMv6 architecture, plus additional system instructions required for the Cortex-M
processor (e.g., special register accesses), as shown in Figure 4.1.

After the Cortex-M1 processor was developed, a number of ARM customers were very
interested to create microcontroller products based on the ARMv6-M architecture.
According to my colleagues the idea was formed when some of the microcontroller vendor’s
management team was chatting with ARM product marketing team in an English pub in an
evening—There are a wide range of microcontroller and ASSP/ASIC applications that
requires a simple processor with a small instruction set, while still need to have very capable
interrupt handling capability. While the Cortex-M1 processor is optimized for FPGA

Architecture
V5 / v5E

Architecture

v4 [vaT Architecture v7

ARMV7-A
E.g. Cortex-A9

Architecture v6

ARMV7-R
E.g. Cortex-R4

ARMv6-M
Cortex-M1,
Cortex-MO,
Cortex-M0+

ARMv7-M
E.g. Cortex-M3

——
— i

Examples ARM7TDMI, ARMO926EJ-S, igmiigg'
920T, 922T 946E, 966E ARM1156T-2
Figure 4.1

Evolution of the ARMv6-M architecture.

Architecture 89

designs, it was not optimized for low-power applications so that it is not suitable for these
applications. As a result, ARM decided to design a new processor based on the ARMv6-M
architecture, and optimized it for low-power designs and low-cost microcontrollers.

The outcome was the Cortex-MO processor, and it had become the quickest licensed
processor product in ARM history. At a minimum gate count of just 12K gates, it was a
ground-breaking product at the time as it enabled many ultra-low power designs to
integrate a high performance (related to 8-bit and 16-bit processors) processor, together
with sensors, wireless communication chipset, smart analog components, etc.

Over the year, the ARMv6-M architecture expanded further to add additional system
features including MPU support (which was not available for Cortex-MO0 and Cortex-M1
processors). In addition to the Cortex-M1, Cortex-MO0, and Cortex-M0O+ processors, the
ARMV6-M architecture is also used in SC000, one of the SecurCore® processor products
developed for SmartCards and other security products.

4.2 Programmer’s Model
4.2.1 Operation Modes and States

The ARMv6-M architecture has two operation modes and two states. In addition, it can have
privileged and unprivileged access levels. These are shown in Figure 4.2. The privileged
access level can access to all resources in the processor, while unprivileged access level
means some memory regions can be inaccessible, and a few operations cannot be used.
Unprivileged access level is not available in the Cortex®-M0 processor, and is optional
(device-specific) in the Cortex-M0O+ processor.

e Thumb State N

Exception [Handler Mode
request Executing exception .
handler Exception Debug State
request Debug

(The processor stop

activities oy f
v executing instruction)

Thread Mode
Executing normal
code in Privileged
access level

Start — |

Exception
return

Debug operation - Only

A L possible when debugger is
/ Thread Mode connected.

i Executing normal
: code in Unprivileged |
: access level

Software
switch

\ Optional in the Cortex-M0+
processor, and not available in
Normal operation — the processor is Cortex-MO processor
running Thumb/Thumb-2 instructions
Figure 4.2

Processor modes and state in ARMv6-M architecture.

90 Chapter 4

When the processor is running a program, it is in the Thumb state. In this state, it can be
either in the Thread mode or the Handler mode. In the ARMv6-M architecture, the
programmer’s model of Thread mode and Handler mode are almost completely the same.
The only difference is that Thread mode can use a shadowed stack pointer (Figure 4.8) by
configuring a special register called CONTROL. Details of stack pointer selection will be
covered later in this chapter (Section 4.4).

Architecturally, Thread Mode can be configured as:

e Privileged, or
* Unprivileged (with restriction to certain memory spaces, and cannot access to certain
core internal registers). This is defined as an optional feature in the architecture.

In the Cortex-MO+ processor, a program running in privileged state can switch itself into
unprivileged access level (if unprivileged level is implemented) by programming the
CONTROL register, but cannot switch itself back to privileged state. To get back to
privileged state, it must go through an exception sequence. This mechanism prevents an
untrusted application task from gaining privileged accesses without going through Operating
System (OS) services.

In the Cortex-MO processor, the processor always executes in privileged state.
Unprivileged Thread mode is not available.

The Debug state is active when the processor is halted, for example, by a debugger via a
debug connection. This is used for debugging operation only. This state allows the
debugger to access or change the processor register values. The debugger can access
system memory locations in both Thumb state or Debug state.

When the processor is powered up, it starts with running code in Thumb state and Thread
mode, with privileged access level by default.

4.2.2 Registers and Special Registers

In order to perform data processing and controls, a number of registers are required inside
the processor core. If data from memory is to be processed, it has to be loaded from the
memory to a register in the register bank, processed inside the processor, and then written
back to the memory if needed, or kept in the register bank for another operation. This is
commonly called “load-store architecture.” By having a sufficient number of registers in
the register bank, this mechanism is easy to use, and is C-friendly. It is easy for C
compilers to compile a C program into machine code with good performance.

The Cortex-MO and Cortex-MO+ processor provides a register bank of 16 32-bit registers
(most are general purposed, R13—R15 has special purposes), and a number of special
registers (Figure 4.3).

Architecture 91

/ Register bank \
General Purpose Register)
General Purpose Register / Special Registers \
General Purpose Register
G Fusss Regsiar ' Program Status Registers
General Purpose Register et it s
General Purpose Register } APSR \ EPSR \ IPSR \
General Purpose Register Application Execution Interrupt
General Purpose Register) PSR PSR PSR
General Purpose Register)
General Purpose Register Interrupt Mask Register
General Purpose Register High Registers
General Purpose Register Stack definition
R12 General Purpose Register
Stack Pointer (SP) N 4
R14 Link Register (LR)
Program Counter (PC) —
Main Stack Pointer

Processs Stack Pointer /

Figure 4.3
Registers in the Cortex®-M0 and Cortex-M0-+ processors.

(&

The detailed descriptions for these registers are as follows:
RO—R12

Registers RO—R12 are for general uses. Due to the limited space in the 16-bit Thumb®
instructions, many of the Thumb instructions can only access RO—R7, which are also
called the low registers. While some instructions, like MOV (move), can be used on all
registers. When using these registers with ARM® development tools such as the ARM
assembler, you can use either upper case (e.g., RO) or lower case (e.g., 10) to specify the
register to be used. The initial values of RO—R12 at reset are undefined.

R13, Stack Pointer

R13 is the Stack Pointer. It is used for accessing the stack memory via PUSH and POP
operations. There are physically two different stack pointers in Cortex-MO and Cortex-
MO-+ Processors.

e The Main Stack Pointer (MSP, or SP_main in ARM documentation) is the default Stack
Pointer after reset, and is used when running exception handlers.

* The Process Stack Pointer (PSP, or SP_process in ARM documentation) can only be
used in Thread mode (when not handling exceptions).

The stack pointer selection is determined by the CONTROL register, one of the special
registers which will be introduced later (CONTROL—Special Register).

92 Chapter 4

When using ARM development tools, you can access the stack pointer using either “R13”
or “SP.” Both upper case and lower case (e.g., “r13” or “sp”) can be used. Only one of the
stack pointers is visible at a given time. However, you can access to the MSP or PSP
directly when using the special register access instructions MRS and MSR. In such cases,
the register names “MSP” or “PSP” should be used.

The lowest 2 bits of the stack pointers are always zero and writes to these 2 bits are ignored.
In ARM processors, PUSH and POP are always 32-bit accesses because the registers are
32-bit, and the transfers in stack operations must be aligned to a 32-bit word boundary. The
initial value of MSP is loaded from the first 32-bit word of the vector table from the program
memory during the start-up sequence. The initial value of PSP is undefined.

It is not necessary to use the PSP. In many applications, the system can completely rely on
the MSP. The PSP is normally used in designs with an OS, where the stack memory for
OS Kernel and the thread-level application codes must be separated.

R14, Link Register

R14 is the Link Register (LR). The LR is used for storing the return address of a subroutine
or function call. When BL or BLX is executed, the return address is stored in LR. At the end
of the subroutine or function, the return address stored in LR is loaded into the program
counter (PC) so that the execution of the calling program can be resumed. In the case where
an exception occurs, the LR also provides a special code value which is used by the
exception return mechanism. When using ARM development tools, you can access to the
LR using either “R14” or “LR.” Both upper and lower case (e.g., “r14” or “Ir”’) can be used.

Although the return address in the Cortex-M0O/MO+ processor is always an even address
(bit[0] is zero because smallest instruction are 16-bit and must be half-word aligned), bit
zero of LR is readable and writeable. In the ARMv6-M architecture, some instructions
require bit zero of a function address set to 1 to indicate Thumb state.

R15, Program Counter

R15 is the PC. It is readable and writeable. A read returns the current instruction address
plus four (this is caused by the pipeline nature of the design). Writing to R15 will cause a
branch to take place (but unlike a function call, the LR does not get updated).

In the ARM assembler, you can access the PC using either “R15” or “PC,” in either upper
or lower case (e.g., “r15” or “pc”). Instruction addresses in the Cortex-M0/M0+ processor
must be aligned to half-word address, which means the actual bit zero of the PC should be
zero all the time. However, when attempting to carry out a branch using the branch
instructions (BX or BLX), the LSB of the PC should be set tol." This is to indicate that

! Not required when a move (MOV) or add (ADD) instruction is used to modify the PC.

Architecture 93

the branch target is a Thumb program region. Otherwise, it can imply an attempt to switch
the processor to ARM state (depending on the instruction used), which is not supported
and will cause a fault exception.

xPSR, Combined Program Status Register

The combined Program Status Register (PSR) provides information about program
execution and the ALU flags. It consists of the following three PSRs (Figure 4.4):

e Application PSR (APSR),
e Interrupt PSR (IPSR), and
¢ Execution PSR (EPSR)

bit bit

31 28 2 16| 8| 0
APSR N|z|C|V Reserved

31 24 16 8 5 0
IPSR Reserved ISR Number

31 24 16| 8| 0
EPSR Reserved T Reserved

Figure 4.4

Application PSR (APSR), Interrupt PSR (IPSR), and Execution PSR (EPSR).

The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow
flag), and V (overflow flag). These bits are at the top 4 bits of the APSR. The common use
of these flags is to control conditional branches.

The IPSR contains the current executing ISR (Interrupt Service Routine) number. Each
exception on the Cortex-M0/MO+- processor has a unique associated ISR number (exception
type). This is useful for identifying the current interrupt type during debugging and allows an
exception handler that is shared by several exceptions to know which exception it is serving.

The EPSR on the Cortex-M0/M0+ processor contains the T bit which indicates that the
processor is in the Thumb state. On the Cortex-M0/MO+- processor, this bit is normally set
to 1 because the Cortex-M processors only support Thumb state. If this bit is cleared, a
HardFault exception will be generated in the next instruction execution.

These three registers can be accessed as one register called xPSR. For example, when an
interrupt takes place, the xPSR is one of the registers that is stored on to the stack memory
automatically and restored automatically after returning from an exception. During the
stack store and restore, the xPSR is treated as one register (Figure 4.5).

94 Chapter 4

bit bit
31 28 24 16| g 5 0
xPSR ‘ N ‘ z ‘ C|V |Reserved| T Reserved ISR Number
Figure 4.5
xPSR.

Direct access to the PSRs is only possible through special register access instructions.
However, the value of the APSR can affect conditional branches and the carry flag in the
APSR can also be used in some data processing instructions.

PRIMASK—Interrupt Mask Special Register

The PRIMASK register is a 1-bit wide interrupt mask register. When set, it blocks all
interrupts apart from the Non-Maskable Interrupt (NMI) and the HardFault exception.
Effectively it raises the current interrupt priority level to O which is the highest value for a
programmable exception (Figure 4.6).

bit bit
31 10

PRIMASK Reserved ‘ ‘

PRIMASK —T

Figure 4.6
PRIMASK.

The PRIMASK register can be accessed using special register access instructions (MSR,
MRS) as well as using an instruction called CPS. This is commonly used for handling
time critical routines.

CONTROL—Special Register

As mentioned earlier, there are two stack pointers in the Cortex-M0 and Cortex-M0+
processors. The stack pointer selection is determined by the processor mode as well as the
configuration of the CONTROL register (bit 1—SPSEL). The Thread mode of the
Cortex-M0+ processor can either be privileged or unprivileged, and this is also controlled
by CONTROL (bit 0—nPRIV) (Figure 4.7).

bit bit
31 10

CONTROL ‘ Reserved ‘ ‘

SPSEL (Stack definition) —T
nPRIV (not Privileged) / Reserved

Figure 4.7
CONTROL.

Architecture 95

After reset, the MSP is used, but can be switched to the PSP in Thread mode (when not
running an exception handler) by setting bit[1] in the CONTROL register. During running
of an exception handler (when the processor is in handler mode), only the MSP is used,
and the CONTROL register reads as zero. The bit[1] of CONTROL register can only be
changed in Thread mode, or via the exception entrance and return mechanism

(Figure 4.8).

/ Thumb State \

Exception Handler Mode Exception
request Executing exception handler return
CONTROL[1] =0
MSP selected

Thread Mode

Executing normal code

NTROL[1] = =
Start — L e CONTROL[1]=0 CONTROL[1] = 1
MSP selected PSP selected
Figure 4.8

Stack pointer selection.

Bit[0] of the CONTROL register is for selecting between Privileged and Unprivileged
states during Thread mode. Some of the Cortex-M0+ devices and all Cortex-MO
processor-based devices do not support unprivileged state and therefore this bit is always
zero (Figure 4.9).

e Thumb State N

Exception Handler Mode
request Executing exception handler

Exception
return

Always Privileged

Thread Mode

Executing normal code

Start CONTROL[0] = 0 CONTROLIO0] = 1
Privileged Unprivileged
Figure 4.9

Privileged state selection.

96 Chapter 4

Access of Registers and Special Registers

In C/C++ programming or any other high level languages, the registers in the register
bank (RO—R12) can be utilized by the compiler automatically. In most cases, you do not
need to worry about which registers being used, unless you are interfacing assembly code
and C/C++ code (such mixed language development will be cover in Chapter 21).

The other special registers need to be accessed using some special instructions (MRS and
MSR). The CMSIS-CORE provides a number of APIs for such usages. However, please note
that some of these special registers cannot be accessed or changed by software (Table 4.1).

Table 4.1: Access limitations to special registers

Privileged Unprivileged
APSR R/W R/W
EPSR No access (T bit read as zero) No access (T bit read as zero)
IPSR Read only Read only
PRIMASK R/W Read only
CONTROL R/W Read only

4.2.3 Behaviors of the APSR

Data processing instructions can affect destination registers as well as the APSR which is
commonly known as ALU status flags in other processor architectures. The APSR is
essential for controlling conditional branches. In addition, one of the APSR flags, the C
(Carry) bit, can also be used in add and subtract operations.

There are four APSR flags in the Cortex-MO ad Cortex-M0+ processors (Table 4.2).

Table 4.2: ALU flags on the Cortex®-MO0 and Cortex-M0+ processors

Flag Descriptions

N (bit 31) Set to bit[31] of the result of the executed instruction. When it is “1,” the result has a
negative value (when interpreted as a signed integer). When it is “0,” the result has a
positive value or equal zero.

Z (bit 30) Set to “1” if the result of the executed instruction is zero. It can also be set to “1” after a
compare instruction is executed if the two values are the same.

C (bit 29) Carry flag of the result. For unsigned addition, this bit is set to “1” if an unsigned
overflow occurred. For unsigned subtract operations, this bit is the inverse of the borrow
output status.

V (bit 28) Overflow of the result. For signed addition or subtraction, this bit is set to “1” if a signed
overflow occurred.

A few examples of the ALU flag results are as given in Table 4.3.

Architecture 97

Table 4.3: ALU flags operation examples

Operation Results, flags

0x70000000 + 0x70000000 Result = 0xE0000000, N=1,Z=0,C=0,V=1
0x90000000 + 0x90000000 Result = 0x20000000, N=0,Z=0,C=1,V=1
0x80000000 + 0x80000000 Result = 000000000, N=0,Z=1,C=1,V =1
0x00001234 - 0x00001000 Result = 000000234, N=0,Z=0,C=1,V=0
0x00000004 — 0x00000005 Result = OXFFFFFFFF, N =1,Z=0,C=0,V=0
OXFFFFFFFF — OXFFFFFFFC Result = 0x00000003, N=0,Z=0,C=1,V=0
0x80000005 — 0x80000004 Result = 0x00000001, N=0,Z=0,C=1,V=0
0x70000000 — 0xF0000000 Result = 0x80000000, N=1,Z=0,C=0,V=1
0xA0000000 — 0xA0000000 Result = 0x00000000, N=0,Z=1,C=1,V=0

In the Cortex-MO and Cortex-M0+ processors, almost all of the data processing instructions
modify the APSR; however, some of these instructions do not update the V flag or the C flag.
For example, the MULS (multiply) instruction only changes the N flag and the Z flag.

The ALU flags can be used for handling data that is larger than 32-bits. For example, we
can perform a 64-bit addition by splitting the operation into two 32-bit additions. The
pseudo form of the operation can be written as follows:

// Calculating Z = X + Y, where X, Y and Z are all 64-bit
/[31:0] = X[31:01 + Y[31:07; // Calculate Tower word addition,
// carry flag get updated
7[63:321=X[63:32]+Y[63:32]1+Carry; //Calculate upper word addition.
An example of carry out such 64-bit add operation in assembly code can be found in
Chapter 6 (Section 6.5.1).

The other common usage of APSR flag is to control branching. More on this will be covered
in Chapter 5 (Section 5.4.8), where the details of the condition branch instruction will be
covered.

4.3 Memory System

4.3.1 Overview

All ARM® Cortex®-M processors have a 4 GB of memory address space. The memory
space is architecturally defined into a number of regions, with each region having a
recommended usage to help software porting between different devices (Figure 4.10).

The Cortex-MO and Cortex-MO0+ processors contain a number of built-in components like
the NVIC (the interrupt controller) and a number of debug components. These are located in
fixed memory locations within the system region of the memory map. As a result, all the
devices based on the Cortex-M processors have the same programming model for interrupt
control and debug. This makes it convenient for software porting as well as helping debug

98 Chapter 4

OXEOOFFFFF OXEOOOEFFF
OxFFFFFFFF
Private peripherals including Private
built-in interrupt controller System Peripheral Bus System Control
(NVIC) and debug (PPB) Space (SCS)
components
P 0xE0000000 Private Peripheral Bus
OxDFFFFFFF 0xE0000000 0xE000E000
Mainly used for external External Device 1GB
peripherals.
0xA0000000
Ox9FFFFFFF
Mainly used for external External RAM 1GB
memory.
0x60000000
0x5F FFFFFF
Mainly used for peripherals. Peripherals 0.5GB
0x40000000
Mainly used for data memory Ox3FFFFFFF SRAM 0.5GB
(e.g. static RAM.) 0x20000000 ’
Mainly used for program Ox1FFEFFFF
code. Also used for default CODE 0.5GB
exception vector table 0x00000000

Figure 4.10
Memory map.

tool vendors to develop debug solutions for the Cortex-M0-based microcontroller or System-
on-Chip (SoC) products.

The memory space is shared between instruction memory, data memory, peripherals
processor’s built-in peripherals (e.g., the interrupt controller), and processor’s debug
components. However, the debug components are not visible to the software running on
the processor (from architecture point of view this is implementation defined, and existing
Cortex-MO and Cortex-MO+ processors are designed to make the debug components to be
visible only from debugger). This is different from Cortex-M3, Cortex-M4, and Cortex-M7
processors, where privileged codes can access the debug components.

In most cases, the memories connected to the Cortex-M processors are 32-bits, but it is also
possible to connect memory of different data widths to a Cortex-M processor with suitable
memory interface hardware. The memory system in Cortex-M processors supports memory
transfers of different sizes such as byte (8-bit), half word (16-bit), and word (32-bit). The
Cortex-MO and Cortex-MO+ processor designs can be configured to support either little
endian or big endian memory systems, but cannot switch from one to another in an
implemented design.

Since the memory system and peripherals connected to the Cortex-MO or Cortex-M0+
processors are developed by microcontroller vendors or SoC designers, different memory
sizes and memory types can be found in different Cortex-M0/M0+-based products.

Architecture 99

4.3.2 Single Cycle 1/O Interface

The Cortex-M0O—+ Processor has an optional feature, which allows chip designer to add a
separated bus interface (in addition to the main system bus), which allows certain
peripheral registers to be accessed in a single clock cycle. This enables the microcontroller
product to provide better performance in I/O operations, as well as improve energy
efficiency in I/O intensive applications.

When this feature is implemented, the address space connect to the single cycle I/O
interface appears as a part of the main memory space, so from software point of view the
peripheral registers in the single cycle I/O bus works in the same way as registers on the
AHB-Lite system bus. However, this interface can only be used for data accesses and does
not support instruction accesses (Figure 4.11).

Address : .
decoder o define Single Cycle I/0O interface

fast /O memory Data Transfers in memory

space. space allocated for fast /O
are handled on this bus.
Processor Fast
Peripherals
System Bus
Data Transfers not belong System bus
to fatst |/tO Sllzatcia“d (Pipelined operation,
instruction fetches. AHB Lite protocol)

AHB interconnect

Yy Y VY

ROM RAM Peripherals

Figure 4.11
Optional single Cycle 1/O Interface on the Cortex®-MO+ Processor.

The single cycle I/O interface is intended for connecting small number of peripherals, which
need faster access speed (e.g., GPIO). Peripherals like UART and timers are normally
connected via the AHB-Lite system bus because the associated operations typically do not
have short-latency requirement and do not occur frequently.

4.3.3 Memory Protection Unit

Another optional feature in the Cortex-MO+ processor is the MPU (MPU). This is a
programmable unit and is to be used with the privileged—unprivileged states of the

100 Chapter 4

processor. The MPU provides up to eight programmable regions, and each region can be
defined with different starting addresses, sizes, and memory access permissions.

In a multitasking system, an OS can run some of the application tasks in unprivileged state
and the OS can program the optional MPU each time it switches between tasks, so each of
the unprivileged application tasks run in their own permitted memory space and can only
access to memory locations allocated to them.

The configuration registers of the MPU is privileged access only so that an unprivileged
task cannot change the access permission to bypass the MPU.

More information about the MPU is covered in Chapter 12.

4.4 Stack Memory Operations

Stack memory is a memory usage mechanism that allows the system memory to be used as
temporary data storage that behaves as a first-in-last-out buffer. One of the essential elements
of stack memory operation is a register called the Stack Pointer. The stack pointer indicates
where the current stack memory location is, and is adjusted automatically each time a stack
operation is carried out.

In the Cortex®-M processors, the Stack Pointer is register R13 in the register bank.
Physically there are two stack pointers in the Cortex-M processors, but only one of them
is used at a time, depending on the current value of the CONTROL register and the state
of the processor (see Figure 4.8).

In common terms, storing data to the stack is called pushing (using the PUSH instruction)
and restoring data from the stack is called popping (using the POP instruction). Depending
on processor architecture, some processors perform storing of new data to stack memory
using incremental address indexing and some use decrement address indexing. In the
Cortex-M processors, the stack operation is based on a “full-descending” stack model.
This means the stack pointer always points to the last filled data in the stack memory, and
the stack pointer predecrements for each new data store (PUSH) (Figure 4.12).

PUSH and POP are commonly used at the beginning and at the end of a function or
subroutine. At the beginning of a function, the current contents of the registers used by the
calling program are stored onto the stack memory using PUSH operations, and at the end of
the function, the data on the stack memory is restored to the registers using POP operations.
Typically, each register PUSH operation should have a corresponding register POP operation;
otherwise the stack pointer will not be able to restore registers to their original values. This
can result in unpredictable behaviors, for example, function return to incorrect addresses.

The minimum data size to be transferred for each push and pop operations is one word
(32-bit) and multiple registers can be pushed or popped in one instruction. The stack

Architecture 101

PUSH operation POP operation
Data Processing
Stack PUSH operation to back (Original register Stack POP operation to restore
up register contents contents destroyed) register contents

Stack pointer

I I
I I
Address T Memory Memory | | incremented
I I
L] I | : b L]
SP [] I | P I sP—{]
CTTT T sP—e{[1234 | D[1238] Tt
_____ | | o
I I
1234 //2 \ ! ! \
i : : Memo
Register Stack pointer v 1234
contents decremented Register
contents restored
Figure 4.12

Stack PUSH and POP in the Cortex®-M processors.

memory accesses in the Cortex-M processors are designed to be always word aligned
(address values must be a multiple of 4, for example, 0x0, 0x4, 0x8,...) as this gives the
best efficiency for minimum design complexity. For this reason, bit [1:0] of both stack
pointers in the Cortex-M processors are hardwired to zeros and read as zeros.

In programming, the stack pointer can be accessed as either R13 or SP in the program codes.
Depending on the processor state and the CONTROL register value, the stack pointer
accessed can either be the MSP or the PSP. In many simple applications, only one stack
pointer is needed and by default the MSP is used. The PSP is usually only required when an
OS is used in the embedded application.

In a typical embedded application with an OS, the OS kernel uses the MSP and the
application processes use the PSP. This allows the stack for the kernel to be separate from
stack memory for the application processes. This allows the OS to carry out context
switching quickly (switching from execution of one application process to another). Also,
since exception handlers only use main stack, each of the stack spaces allocated to
application tasks do not need to reserve space needed for exception handler, thus allow
better memory usage efficiency.

Even though the OS kernel only uses the MSP as its stack pointer, it can still access the
value in PSP by using special register access instructions (MRS and MSR) (Table 4.4).

Since the stack grows downward (full-descending), it is common for the initial value of
the stack pointer to be set to the upper boundary of SRAM. For example, if the SRAM
memory range is from 0x20000000 to 0x20007FFF, we can start the stack pointer at

102 Chapter 4

Table 4.4: Stack pointer usage definition

Processor state

CONTROL[1] = 0 (default setting)

CONTROL[1] = 1 (OS has started)

Thread mode
Handler mode

Use MSP (R13 is MSP)
Use MSP (R13 is MSP)

Use PSP (R13 is PSP)
Use MSP (R13 is MSP)

0x20008000. In this case, the first stack PUSH will take place at address 0x20007FFC, the
top word of the SRAM (see Figure 4.13).

Memory
Address

SP initial value —p 0x20008000

. 0x20007FFC
First memory A
location used

for stack g——————~_

S

Figure 4.13

[]| ox20000000

SRAM

Example of stack pointer initial value.

The initial value of MSP is stored at the beginning of the program memory. Here we will
find the exception vector table, which is introduced in the next section. The initial value of
PSP is undefined, and therefore the PSP must be initialized by software before using it.

In many software development environments, the stack pointer can be set up again during
the C start-up code (before entering “main()”). This two-stage stack initialization sequence
enables a system to boot up the system with the stack pointing to a small internal SRAM
inside the chip, and then change the stack definition to a larger external memory space
after the external memory controller has been initialized.

4.5 Exceptions and Interrupts

Exceptions are events that cause changes to program control: when an exception occurred,
instead of continuing program execution, the processor suspends the current executing task
and executes a part of the program code called the exception handler. After the exception
handler is completed, it will then resume the normal program execution.

There are various types of exceptions, and interrupts are a subset of exceptions.
The Cortex®-MO and Cortex-MO+ processors supports up to 32 external interrupts
(commonly referred as IRQ), and an additional special interrupt called the NMI

Architecture 103

(Non-Maskable Interrupt). The exception handlers for interrupt events are commonly
known as ISRs (Interrupt Service Routines). Interrupts are usually generated by on-chip
peripherals, or by external input through I/O ports. The exact number of available
interrupts on the Cortex-M0/MO+ processor depends on the microcontroller product you
use. In systems with more peripherals, it is possible for multiple interrupt sources to share
one interrupt connection.

In addition to the NMI and IRQs, there are a number of system exceptions in the Cortex-M0/
MO+ processors primarily for OS use and fault handling, which are as given in Table 4.5.

Table 4.5: Exception types

Exception

Exception type number Description

Reset 1 Power on reset or system reset.

NMI 2 Non-Maskable interrupt—nhighest priority exception that cannot
be disabled. For safety critical events.

HardFault 3 For fault handling—activated when a system error is detected.

SVCall 11 Supervisor call—activated when SVC instruction is executed.
Primarily for OS applications.

PendSV 14 Pendable service (system) call—activate by writing to an

interrupt control and status register. Primarily for OS
applications.

SysTick 15 System Tick timer exception — typically used by an OS for a
regular system tick exception. The system tick timer (SysTick) is
an optional® timer unit inside the Cortex®-M processor.

IRQO to IRQ31 b 16—47 Interrupts—can be from external sources or from on-chip
peripherals.

SysTick is optional in ARMv6-M architecture, and mandatory in ARMv7-M architecture.
PARMV6-M architecture limited the design to 32 IRQs. ARMv7-M architecture allows up to 480, but the Cortex-M3,
Cortex-M4 and Cortex-M7 processors limited this to 240.

Each exception has an exception number. This number is reflected in various registers
including the IPSR, and is used to define the exception vector addresses. Note that
exception number is separated from interrupt numbers used in device driver libraries. In
most device driver libraries, system exceptions are defined using negative numbers, and
interrupts are defined as positive numbers from O to 31.

Reset is a special type of exception. When the Cortex-M0/MO+ processor exits from a
reset, it executes the reset handler in thread mode (no need to return from handler to
thread). Also, the exception number of 1 is not visible in the IPSR.

Apart from NMI, HardFault and reset, all other exceptions have a programmable priority
level. The priority level for NMI and HardFault are fixed and both have a higher priority
than the rest of the exceptions. More details will be covered in Chapter 8 of this book.

104 Chapter 4

4.6 Nested Vectored Interrupt Controller

In order to prioritize the interrupt requests and handle other exceptions, the Cortex®-M
processors have a built-in interrupt controller called the NVIC. The interrupt management
function is controlled by a number of programmable registers in the NVIC. These registers
are memory mapped, with the addresses located within the System Control Space (SCS) as
illustrated in Figure 4.10.

The NVIC supports a number of features:

* Flexible interrupt management
* Nested interrupt support

* Vectored exception entry

* Interrupt masking

4.6.1 Flexible Interrupt Management

In the Cortex-M processors, each external interrupt can be enabled, disabled, and can have
its pending status set or clear by software. It can also accept exception requests at signal
level (interrupt request from a peripheral remain asserted until the ISR clears the interrupt
request), as well as an exception request pulse (minimum 1 clock cycle). This allows the
interrupt controller to be used with any interrupt source.

4.6.2 Nested Interrupt Support

In the Cortex-M processors, each exception has a priority level. The priority level can be
fixed or programmable (all interrupts has programmable priority levels). When an exception
occurs such as an external interrupt, the NVIC will compare the priority of this exception to
the current level. If the new exception has a higher priority, the current running task will be
suspended. Some of the registers will be stored on to the stack memory and the processor
will start executing the exception handler of the new exception. This process is called
“preemption.” When the higher priority exception handler is completes, it is terminated with
an exception return operation and the processor automatically restores the registers from the
stack and resumes the task that was running previously. This mechanism allows nesting of
exception services without any software overhead.

4.6.3 Vectored Exception Entry

When an exception occurs, the processor will need to locate the starting point of the
corresponding exception handler. Traditionally, in ARM® processors such as the ARM7TDMI,
this is done by software. The Cortex-M processors automatically locate the starting point of
the exception handler from a vector table in the memory. As a result, the delay from the
occurrence of the exception to the execution of the exception handlers is reduced.

Architecture 105

4.6.4 Interrupt Masking

The NVIC in the Cortex-M processors provides an interrupt masking feature via the
PRIMASK special register. This can disable all exceptions except HardFault and NMI.
This masking is useful for operations that should not be interrupted such as time critical
control tasks or real time multimedia codecs. (Note: Processors based on ARMv7-M have
additional interrupt masking registers, see Section 22.5 in Chapter 22.)

These NVIC features help makes the Cortex-M processors easier to use, provides better
response times and reduces program code size by managing the exceptions in the NVIC
hardware.

4.7 System Control Block

Apart from the NVIC, the SCS also contains a number of other registers for system
management. This is called the System Control Block. It contains registers for sleep mode
features, system exception configurations as well as a register containing the processor
identification code (which can be used by in circuit debuggers for detection of the
processor type).

4.8 Debug System

Although being currently the smallest processors in the ARM® processor family, the
Cortex®-MO and Cortex-MO+ processors support a range of debug features. The processor
core provides halt mode debug, stepping, register accesses, and memory accesses for
debugger, and additional debug blocks provide debug features like the Breakpoint Unit
(BPU) and Data Watchpoint (DWT) units. The BPU supports up to four hardware
breakpoints, and the DWT supports up to two watchpoints.

In order to allow a debugger to control the aforementioned debug components and carry
out debug operations, the Cortex-M processors provide a debug interface unit. This debug
interface unit can either use the JTAG protocol or the Serial Wire Debug (SWD) protocol
(Figure 4.14). In some Cortex-M-based products, the microcontroller vendors can also
choose to use a debug interface unit which supports both JTAG and SWD protocol.
However, typical Cortex-MO and Cortex-MO0+ implementations are likely to support only
one protocol with SWD probably being preferred due to fewer pins required.

The SWD protocol is a new standard developed by ARM® and can reduce the number
debug connection pins to just two signals. It can handle all the same debug features as
JTAG without any loss of performance. The SWD interface shares the same connector as
JTAG: the Serial clock signal is shared with JTAG TCK signal, and the Serial Wire data is
shared with the JTAG TMS signal. There are many debug emulators for ARM

106 Chapter 4

JTAG connection Serial-Wire connection
y nTRST . not used
% Y/ Serial-Wire clock
;’—TDII ", ,"/ not used
AI /\ Serial-Wire data
KEIL —TP0 o 7 N notused |
Microcontroller

Development Kit

HARAARAARAARAARHA

00T
S £ =
usB X O D =
S ARM =
— Cortex-MO, E=
=——| Cortex-M0+ ES
Flat cabl = =
D KEIL™ ULINK at caple = =
An ARM”™ Company ‘Designed with Rea-Time Library. IDC % :;?

-Circui connector
In-Circuit Debugger EEEEEEEEREREEET)
Figure 4.14

Debug interface connections can be JTAG or the Serial Wire debug protocol.

microcontrollers including ULINK?2 (from Keil®), and JLink (from SEGGER) that support
the SWD protocol.

4.9 Program Image and Start-up Sequence

To understand the start-up sequence of the Cortex®-M processors, we need to have a quick
overview on the program image first. Normally, the program image for the Cortex-MO0/
MO+ processor is located from address 0x00000000.

The beginning of the program image contains the vector table. It contains the starting
addresses (vectors) of exceptions. Each vector is located in address of “Exception_Number
x 4. For example, external IRQ #0 is exception type #16, therefore the address of the
vector for IRQ#0 is in 16x4 = 0x40. These vectors have LSB set to 1 to indicate that the
exceptions handlers are to be executed with Thumb instructions. The size of the vector
table depends on how many interrupts are implemented.

The vector table also defines the initial value of the MSP. This is stored in the first word of
the vector table, as shown in Figure 4.15.

When the processor exits from reset, it will first read the first two word addresses in the
vector table, as shown in Figure 4.16. The first word is the initial MSP value, and the
second word is the reset vector which determines the starting of the program execution
address (reset handler).

For example, if we have boot code starting from address 0x000000C0, we need to put this
address value in the reset vector location with the LSB set to one to indicate that it is

Architecture 107

Program
memory
Interrupt vectors
0x00000040
SysTick vector 0x0000003C
PendSV vector 0x00000038
reserved
SVC vector 0x0000002C
Program
Program otk reserved
image
Hard fault vector | 0x0000000C
NMI vector 0x00000008
Vector table Reset vector 0x00000004
0x00000000 Initial MSP value | 0x00000000
Figure 4.15
Vector table in a program image.
Read address Read address ﬁﬁgi:tiiriss Subsequent
0x00000000 0x00000004 y . 5€q
Reset reset vector instruction fetches
Fetch initial Fetch reset 1st instruction | P !
R g | | !
value for MSP vector fetch P R
Time
Figure 4.16

Reset sequence.

Thumb code. Therefore, the value in address 0x00000004 is set to 0x000000C1, as shown
in Figure 4.17. After the reset vector is fetched by the processor, it will start executing
program code from the address found there. This behavior is different from traditional
ARM® processors (e.g., ARM7TDMI), where the processor executes the program starting
from address 0x00000000, and the vectors in the vector table are instructions as opposed
to address values in the Cortex-M processors.

The reset sequence also initializes the MSP. Assume we have SRAM located from
0x20000000 to 0x20007FFF, and we want to put the main stack at the top of the SRAM, we
can set this up by putting 0x20008000 in address 0x00000000 (also shown in Figure 4.17).

Since the Cortex-M processor will first decrement the stack pointer before pushing the
data on to the stack, the first stacked item will be located in 0x200007FFC, which is just
at the top of the SRAM. While the second stacked item will be in 0x20007FF8, below the
first stacked item.

108 Chapter 4

0x20008000 <
0x20007FFC 1st stacked item Stack
0x20007FF8 2nd stacked item
memor
0x20007FF4 Y j;fvc:vfarfd";
0x20000000 SRAM
Program code
Boot code

0x000000C0 A Program

| Reset execution

| Other vectors :

| vector 3
0x00000004 0x000000C1 Initial MSP
0x00000000 0x20008000 value

Figure 4.17

Example of MSP and PC initialization.

This behavior is different from traditional ARM processors and many other
microcontroller architectures where the stack pointer has to be initialized by software code
rather than a value in a fixed address.

If the PSP is to be used, it must be initialized by software code before writing to the
CONTROL register to switch the stack pointer. The reset sequence only initializes the
MSP and not the PSP.

Different software development tools have different ways of specifying the initial stack
pointer value and the values for the reset and exception vectors. Most of the development
tools come with code examples demonstrating how this can be done with their
development flow. In most compilation tools, the vector table can be defined completely
using C codes.

Instruction Set

5.1 What Is Instruction Set

All processors carry out their require operations by executing sequences of instructions.
Each instruction defines a simple operation, for example, simple ALU operation, data
access to the memory system, program branch operation, etc.

For the processor, it takes instructions in form of binary code and decodes them in internal
hardware (instruction decoder), then passes on the information about the decoded
instruction to the execution stage. In simple processor designs, for minimum the following
types of instructions are required:

* Data processing (arithmetic operations like “add”/“subtract,” logic operations like
4‘AND”/6‘OR”)

* Memory access instructions (read memory, write memory)

e Program flow control instructions (branches, conditional branches, function calls)

In addition, the ARM® Cortex®-MO and Cortex-M0+ processors also have instructions for

* Exception and OS support

* Accesses to special registers
* Sleep operations

e Memory barriers

The instruction set supported by the ARM Cortex-M Processors is called Thumb®, with
the Cortex-MO and Cortex-MO+ Processors supporting only a subset of the defined
instructions (56 of them). Most of these instructions are 16 bit in size with only six of
them are 32 bit.

Table 5.1 shows the base 16-bit Thumb instructions supported in the Cortex-M0/MO+
Processors.

The Cortex-M0/MO+ processors also support a number of 32-bit Thumb instructions from
Thumb-2 technology (Table 5.2).

* MRS and MSR special register access instructions

* ISB, DSB, and DMB memory synchronization instructions

e BL instruction (BL was supported in traditional Thumb instruction set but the bit field
definition was extended in Thumb-2)

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00005-9
Copyright © 2015 Elsevier Inc. All rights reserved. 1 09

http://dx.doi.org/10.1016/B978-0-12-803277-0.00005-9

110 Chapter 5

Table 5.1: 16-bit Thumb® instructions supported on the Cortex®-M0
and Cortex-M0+- processor

16-bit Thumb instructions supported on Cortex-M0/MO0+ processors

ADC ADD ADR AND ASR B BIC BLX BKPT BX
CMN CMP CPS EOR LDM LDR LDRH LDRSH LDRB LDRSB
LSL LSR MOV MVN MUL NOP ORR POP PUSH REV
REV16 REVSH ROR RSB SBC SEV ST™M STR STRH STRB
SUB SvC SXTB SXTH TST UXTB UXTH WFE WFI YIELD

Table 5.2: 32-bit Thumb® instructions supported on the Cortex®-M0
and Cortex-MO- processor

32-bit Thumb instructions supported on Cortex-M0/MO0+ processors
BL DSB DMB ISB MRS MSR

With such a small instruction set, the Cortex-MO and Cortex-M0+ processors are not
designed for heavy duty number crunching tasks. The Cortex-M3, Cortex-M4, and
Cortex-M7 processors are better for those applications as they have a much richer
instruction set. The Cortex-MO and Cortex-M0+ Processors are designed for handling
general data processing and I/O control tasks, and ultra low power and low-cost systems
where the silicon size need to be tiny.

One of the key characteristics of the instruction set for the Cortex-M Processors is

upward compatibility. As shown in Figures 1.4 and 2.7, the instruction set supported by the
Cortex-MO and Cortex-M0+ Processors is supported by Cortex-M3, Cortex-M4,

and Cortex-M7 processors. So the program code developed for Cortex-M0 and Cortex-MO0+
processors can often run on the Cortex-M3, Cortex-M4, and Cortex-M7 processors without
changes.

Moving an application from a higher performance processor to a smaller processor can be
done easily too. If a software developer needs to port an application from the Cortex-M3
to the Cortex-MO+ processor, often he/she only needs to replace the device driver in the
project and recompile the application. The programmer’s models of these processors are
very similar to each other, so often there is no need to change the C source code.

5.2 Background of ARM® and Thumb® Instruction Set

The early ARM processors use a 32-bit instruction set called the ARM instructions. The
32-bit ARM instruction set is powerful and provides good performance, but at the same
time, often requires larger program memory when compared to 8-bit and 16-bit processors.

Instruction Set 111

This was and still is an issue as memory is expensive and could consume a considerable
amount of power.

In 1995, ARM introduced the ARM7TDMI(R) processor, adding a new 16-bit instruction
set called the Thumb instruction set. The ARM7TDMI supports both ARM instructions
and Thumb instructions, and a state switching mechanism is used to allow the processor to
decide which instruction decode scheme should be used (Figure 5.1). The Thumb
instruction set provides a subset of the ARM instructions. By itself it can perform most of
the normal functions, but interrupt entry sequence and boot code must still be in ARM
state. Nevertheless, most processing can be carried out using Thumb instructions and
interrupt handlers could also switch themselves to use Thumb state, so the ARM7TDMI
processor provides excellent code density when compared to other 32-bit RISC
architectures.

Instruction decode
format selection

>0
Incoming . ARM. Execution
. instruction >
Instructions decoder stage
_ | Thumb remap >l 1
to ARM
T bit (0 = ARM,
1 =Thumb)
Figure 5.1

ARM7TDMI design supports both ARM® and Thumb® instruction set.

Thumb code provides a code size reduction of approximately 30% compared to the
equivalent ARM code. However, it has some impact to the performance and can reduce
the performance by 20%. On the other hand, in many applications, the reduction of
program memory size, the low-power nature of the ARM7TDMI processor made it
extremely popular with portable electronic devices like mobile phones and
microcontrollers.

In 2003, ARM introduced Thumb-2 Technology. This technology provides a number of
32-bit Thumb instructions as well as the original 16-bit Thumb instructions. The new
32-bit Thumb instructions can carry out most operations that previously could only be
done with the ARM instruction set. As a result, program code compiled for Thumb-2 is
typically 74% of the size of the same code compiled for ARM, while maintaining similar
performance.

The Cortex®-M3 processor is the first ARM processor that supports only Thumb-2
instructions (no ARM instruction support). It can deliver up to 1.25 DMIPS per MHz

112 Chapter 5

(measured with Dhrystone 2.1) and many microcontroller vendors are already shipping
microcontroller products based on the Cortex-M3 processor. By implementing only just
one instruction set, the software development is made simpler and at the same time
improves the energy efficiency as only one instruction decoder is required (see Figure 5.2).

. Thumb-2 .
Incoming . . Execution
. instruction
Instructions stage
decoder
Figure 5.2

Cortex®-M Processors do not have to remap instructions from Thumb® to ARM®.

On the high-end processor side, there are also continuous developments of new instruction
set features. For example, some of the ARM application processors (e.g., Cortex-A
Processor family) introduced NEON™ Advanced SIMD instructions to help multimedia
data processing (Figure 5.3).

A64 (AArch64)
Instruction Set for

ARM instructions 64-bit systems
(32-bit) NEON |
‘F”T\fgfﬁ\r”} advanced ‘ Crypto
ARM | advanced SIMD |
instructions 1777§|M|)7777\ -]
" _Babit [Floatng |
- [
instructions [Floating ‘1 |_point (VFP) | Key ARMv7-A features
i poink (V) | —
ARM ,,,,,I,,, [””””“ i DSP, SIMD
instructions [osp ‘} | DSP, SIMD | | I

(32-bit) L |

ARM - -
instructions + + + + +
(32-bit)

Thumb E— A32 +T32 (AArch32)
instructions instruet Thumb thumb 2. Instruction Sets
16-bit) nstructions instructions (16-bit + 32-bit)
! (1661t (16-bit) [NEON | NEON
ARMVAT i advanced advanced Crypto
E——— SIMD
e.g. ARM7TDMI [
(eg) ARMVSTE ARMVG | ot |
e.g. e.g. ;:,,:::::::‘
(e.g. ARM926) (e.g. ARM1136) ‘
}L,,D,SffT,D,,‘ Key ARMv7-A features
ARMv7
(e.g. Cortex-A9) ARMVE-A
(e.g. Cortex-A57)
Figure 5.3

Latest development of the instruction set in ARM® processors supports 64-bit architecture.

The details of the instruction set are defined in the Architecture Reference Manuals. For the
ARMVv6-M architecture used in the Cortex-MO and Cortex-MO-+ Processors, in order to
reduce the circuit size to a minimum, only the 16-bit Thumb instructions and a minimum
subset of 32-bit Thumb instructions are supported. These 32-bit Thumb instructions are
essential because the ARMv6-M architecture use a number of features in ARMv7-M

Instruction Set 113

architecture, which requires these instructions. For example, the accesses to the special
registers require the MSR and MRS instructions. In addition, the Thumb-2 version of BL
(Branch and Link instruction) is also included to provide a larger branch range.

5.3 Assembly Basics

In this chapter the instruction set of the Cortex®-M0/MO+ Processors is introduced. In
most situations, application codes can be written entirely in C language and therefore it is
not necessary to know the details of the instruction set. However, it is still useful to know
what instructions are available and their usages; for example, this information might be
needed during debugging.

The complete details of each instruction are documented in the ARMv6-M Architecture
Reference Manual (reference 1). In here the basic syntax and usage are introduced. First of
all, in order to help understanding the assembly instructions covered in this chapter, some
of the basics information about assembly syntax is introduced here.

5.3.1 Quick Glance at Assembly Syntax

Most of the assembly examples in this book are written for the ARM® assembler
(armasm). Assembly tools from different vendors (e.g., GNU tool chain) have different
assembly syntax. In most cases, the mnemonics of the assembly instructions are the same,
but compile directives, definitions (defines), labeling, and comment syntax can be different.

For ARM assembly (applies to ARM Development Studio 5 and Keil® Microcontroller
Development Kit), the following instruction formatting is used:

label
mnemonic operandl, operandZ,... ; Comments

The “label” is used as a reference to an address location. It is optional; some instructions
might have a label in front of them, so that the address of the instruction can be obtained
using the label, for example, allowing the instruction address to be used as a branch target.
Labels can also be used to reference data addresses. For example, you can put a label for a
lookup table inside the program.

After the “label” you can find the “mnemonic,” which is the name (mnemonic) of the
instruction, followed by a number of operands:

» For data processing instructions written for the ARM assembler, the first operand is the
destination of the operation.

* For a memory read instruction (except multiple load instructions), the first operand is
the register which data is loaded into.

114 Chapter 5

* For a memory write instruction (except multiple store instructions), the first operand is
the register that holds the data to be written to memory.

Please note instructions that handle multiple loads and stores have a different syntax which
will be covered in Section 5.4.2.

The number of operands for each instruction depends on the instruction type. Some
instructions do not need any operand and some might need just one operand.

Note that some mnemonics can use with different types of operands, which can result in
different instruction encodings. For example, the MOV (move) instruction can be used to
transfer data between two registers, or can be used to put an immediate constant value into
a register.

The number of operands in an instruction depends on what type of instruction it is, and
the syntax format can also be different. For example, immediate data are usually prefixed
with “#:

MOVS RO, #0x12 ; Set RO = 0x12 (hexadecimal)
MOVS R1, #A ; Set Rl ASCII character A

@,

The text after each semicolon ““;” is a comment. Comments do not affect the program
operation, but should make programs easier for humans to understand.

With GNU tool chain (i.e., gas, the GNU assembler), the common assembly syntax is:

label:
mnemonic operandl, operand?,... /* Comments */

The opcode and operands are the same as the ARM assembler syntax, but the syntax
for label and comments are different. For the same instructions as above, the GNU
version is:

MOVS RO, #0x12 /* Set RO = 0x12 (hexadecimal) */
MOVS R, #A /* Set R1 = ASCII character A */

An alternate way to insert comments in GNU assembler is to make use of the inline
comment character “@”’. For example,

MOVS RO, #0x12 @ Set RO
MOVS RL, #A @ Set RI1

0x12 (hexadecimal)
ASCIT character A

One of the commonly required features in assembly code is constant definitions. By using
constant definitions, the program code can be more readable and can make code
maintenance much easier. In ARM assembly, an example of defining a constant is:

NVIC_IRQ_SETEN EQU OxEOO0E100
NVIC_IRQO_ENABLE EQU Ox1

Instruction Set 115

LDR RO,=NVIC_IRQ_SETEN

; Put OxEOOOE100 into RO

LDR here is a pseudo instruction that will be converted

; to a PC relative literal data Toad by the assembler
MOVS R1, #NVIC_IRQO_ENABLE

; Put immediate data (0x1) into

; register RI1
STR R1, [RO]

; Store 0x1 to OxEOOOE100, this enable external

; interrupt IRQ#0

Similarly, the same code can be written with GNU tool chain assembler syntax:

.equ NVIC_IRQ_SETEN, OxEO00E100
.equ NVIC_IRQO_ENABLE, 0Oxl1

LDR RO,=NVIC_IRQ_SETEN /* Put OxEOOOE100 into RO
LDR here is a pseudo instruction that will be
converted to a PC relative load by the assembler */
MOVS ~ R1, {#NVIC_IRQO_ENABLE /* Put immediate data (0x1) into
register R1 */
STR R1, [RO] /* Store O0x1 to OxEOOOE100, this enable
external interrupt IRQ#0 */

Another typical feature in most assembly tools is allowing data to be inserted inside
program. For example, we can define data in a certain location in the program memory
and access it with memory read instructions. In ARM assembler, an example is:

LDR R3,=MY_NUMBER ; Get the memory location of MY_NUMBER
LDR R4, [R3] ; Read the value 0x12345678 into R4

LDR RO,=HELLO_TEXT ; Get the starting address of HELLO_TEXT
BL PrintText ; Call a function called PrintText to
; display string

ALIGN 4
MY_NUMBER DCD 0x12345678
HELLO_TEXT DCB "Hello\n", 0 ; Null terminated string

In the above example, “DCD” is used to insert a word-sized data, and “DCB” is used to
insert byte-size data into the program. When inserting word-size data in program, we
should use the “ALIGN” directive before the data. The number after the ALIGN directive
determines the alignment size, in this case, the value is 4, which forces the following data
to be aligned to a word boundary. Unaligned accesses are not supported in the Cortex-MO
and Cortex-M0+ processors. By ensuring the data following (MY_NUMBER) is word
aligned, the program will be able to access the data correctly, avoiding any potential
alignment faults.

116 Chapter 5

Again, this example can be rewritten into GNU tool chain assembler syntax:

LDR R3,=MY_NUMBER
LDR R4, [R3]

/* Get the memory location of MY_NUMBER */

/* Read the value 0x12345678 into R4 */

LDR RO,=HELLO_TEXT /* Get the starting address of

BL PrintText
.align 4
MY_NUMBER:

.word 0x12345678

HELLO_TEXT:

.asciz "Hello\n"

HELLO_TEXT */

/* Call a function called PrintText to

display string */

/* Null terminated string */

A number of different directives are available in both ARM assembler and GNU assembler
for inserting data into a program. Table 5.3 shows a few commonly used examples.

Table 5.3: Commonly used directives for inserting data into a program

Type of data to insert

ARM® assembler (e.g., Keil®
MDK-ARM)

GNU assembler

Byte

Half word

Word

Double word
Floating point
(Single precision)
Floating point

(Double precision)
String

Instruction

DCB

e.g., DCB 0x12

DCW

e.g., DCW 0x1234
DCD

e.g., DCD 0x01234567
DCQ

e.g.,, DCQ 0x12345678FF0055AA
DCFS

e.g., DCFS 1E3

DCFD

e.g., DCFD 3.14159
DCB

e.g., DCB “Hello\n”, 0

DCI
e.g., DCI OxBEOO ; Breakpoint
(BKPT 0)

.byte

e.g., .byte 0x012

.hword/.2byte

e.g., .hword 0x01234
.word/.4byte

e.g., .word 0x01234567
.quad/.octa

e.g., .quad 0x12345678FF0055AA
float

e.g., .float 1E3

.double

e.g., .double 3f14159

.ascii/.asciz (with NULL termination)
e.g., .ascii “Hello\n”

.byte 0/*add NULL character */
e.g., .asciz “Hello\n”

.inst/.inst.w

e.g., .inst Oxbe0O

/*Breakpoint (BKPT 0) */

There are a number of other useful directives that are often used in assembly language
programming. For example, some of the following ARM assembler directives (Table 5.4)
are commonly used and some of these are used in the examples in this book.

Instruction Set

Table 5.4: Commonly used directives

Directive
(GNU assembler equivalent)

ARM® assembler

THUMB

(.syntax unified

.thumb)

CODE16

(.code 16)
AREA<section_name>{,<attr>}H{,attr}...
(.section <section_name>)

SPACE <num of bytes>

(-zero <num of bytes>)

FILL <num of bytes>{, <value>{, <value_sizes>}}
(fill < num of bytes>{, <value>{, <value_sizes>}})

ALIGN {<expr>{,<offset>{,<pad>{,<padsize>}}}}
(-align <alignment>{,<fill>{,<max}}})

EXPORT <symbol>

(.global <symbol>)

IMPORT <symbol>

LTORG (.pool)

Specify assembly code as Thumb® instruction in
Unified Assembly Language (UAL) format.

Specify assembly code as Thumb instruction in legacy
pre-UAL syntax.

Instructs the assembler to assemble a new code or
data section. Sections are independent, named,
indivisible chunks of code or data that are
manipulated by the linker.

Reserves a block of memory and fills it with zeros

Reserves a block of memory and fills it with the
specified value. The size of the value can be byte, half
word, or word, specified by value_sizes (1/2/4).
Aligns the current location to a specified boundary by
padding with zeros or NOP instructions. For example,
ALIGN 8 ; make sure the next instruction or

; data is aligned to 8 byte boundary
Declare a symbol that can be used by the linker to
resolve symbol references in separate object or library
files.
Declare a symbol reference in separate object or
library files that is to be resolved by linker.
Instructs the assembler to assemble the current literal
pool immediately. Literal pool contains data such as
constant values for LDR pseudo instruction.

Additional information about directives in ARM assembler can be found in the “ARM
Compiler armasm User Guide,” [Reference 16, Chapter 13, Directives Referencel].

5.3.2 Use of a Suffix

In assembler for ARM processors, some instructions can be followed by suffixes. For
Cortex-MO and Cortex-MO-+ Processors, the available suffixes are shown in Table 5.5.

For the Cortex-MO and Cortex-M0+- processors, most of the data processing instructions
always update the Application Program Status Register (APSR) (flags), only a few of the
data operations do not update the APSR. For example, when moving a data from one

register to another, it is possible to use:

MOVS RO, RI

; Move RI into RO and update APSR

! http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/dom 1361290000455 html.

117

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/dom1361290000455.html

118 Chapter 5

Table 5.5: Suffixes for Cortex®-M0/MO-+ assembly program codes

Suffix Descriptions
S Update APSR (flags); for example,
ADDS RO, R1 ; this ADD operation will update APSR
EQ, NE, CS, CC, MI, PL, VS, Conditional execution. EQ = Equal, NE = Not Equal, LT = Less
VG, HI, LS, GE, LT, GT, LE Than, GT = Greater Than, etc. On the Cortex-MO0 processor these

conditions can only be applied to conditional branches. For example,
BEQ label ; Branch to label if equal

Or
MOV RO, Rl ; Move Rl into RO

The second group of suffixes in Table 5.5 is for conditional execution of instructions. In
the Cortex-MO and Cortex-MO-+ Processors the only instruction that can be conditionally
executed is a conditional branch. By updating the APSR using data operations, or using
instructions like test (TST) or compare (CMP), the program flow can be controlled with
conditional branches. More details of the conditional branch instruction will be covered in
later part of this chapter (Section 5.4.8).

5.3.3 Unified Assembler Language (UAL)

The syntax for assembly code has changed over the years. Today, assembly codes are
written in Unified Assembler Language (UAL) syntax (Hence the “.syntax unified”
directive in GNU assembler). A number of years ago, the pre-UAL assembly code
syntax used were less explicit and the omissions of “S” suffixes in many data
processing instructions were allowed. As the ARM architecture evolved, 32-bit Thumb®
instructions are introduced with the Thumb-2 Technology and the ambiguity of the
legacy syntax became a problem because many Thumb instructions have the option of
updating the APSR or not updating the APSR. The UAL syntax was developed to solve
this issue, as well as allowing consistent syntax for both Thumb and ARM assembly
codes.

For users who have been using ARM7TDMI in the past, the most noticeable differences
between UAL and pre-UAL syntax are as follows:

* Some data operation instructions use three operands even when the destination register
is the same as one of the source registers. While in the past (pre-UAL) syntax might
only use two operands for the same instructions.

* The “S” suffix becomes more explicit. In the past, when an assembly program file is
assembled into Thumb code, most data operations are implied as instructions that
update the APSR, as a result, the “S” suffix was not essential. With the UAL syntax,

Instruction Set 119

instructions that update the APSR should have the “S” suffix to clearly indicate the ex-
pected operation. This prevents program code failing when being ported from one archi-
tecture to another.

For example, a pre-UAL ADD instruction for 16-bit Thumb code is
ADD RO, Rl ; RO = RO + R1, update APSR

With UAL syntax, this should be written as
ADDS RO, RO, Rl ; RO = RO + R1, update APSR

But in most cases (dependent on tool chain being used), you can still write the instruction
with a pre-UAL style (only two operands), but the use of “S” suffix has become a
requirement:

ADDS RO, R1 ; RO = RO + R1, update APSR

The pre-UAL syntax is currently still accepted by some development tools. However, use of
UAL is recommended in new projects. For assembly development with ARM Development
Studio 5 (DS-5") or Keil Microcontroller Development Kit (MDK-ARM™), you can
specify using UAL syntax with “THUMB” directives, and pre-UAL syntax with “CODE16”
directives. The choice of Assembler syntax depends on which tool you use. Please refer to
the documentation of your development suite to determine the suitable syntax.

5.4 Instruction List

The instructions in the Cortex®-MO and Cortex-MO-+ Processors can be divided into
various groups based on functionality:

* Moving data within the processor

* Memory Accesses

* Stack Memory Accesses

* Arithmetic operations

* Logic operations

* Shift and Rotate operations

* Extend and reverse ordering operations
e Program flow control (Branch, conditional branch, and function calls)
e Memory barrier instructions

* Exception-related instructions

e Other functions

In this section, the instructions will be discussed in more detail. The syntax illustrated here
uses symbols of “Rd,” “Rm,” etc. In real program code these need to be substituted with
register names RO, R1, R2, etc.

120 Chapter 5

5.4.1 Moving Data within the Processor

Transferring data is one of the most common tasks in a processor. In Thumb® code the
instruction mnemonic for moving data is MOV. There are several types of MOV
instructions, based on the operand type and opcode suffix.

Instruction

MOV

Function
Syntax (UAL)
Syntax (pre-UAL)

Note

Move register into register

MOV <Rd>, <Rm>

MOV <Rd>, <Rm>

CPY <Rd>, <Rm>

Rm and Rn can be high or low registers.

CPY is a pre-UAL synonym for MOV (register).

If we want to copy a register value to another, and update the APSR at the same time, we

could use MOVS/ADDS.

Instruction

MOVS/ADDS

Function
Syntax (UAL)

Syntax (pre-UAL)
Note

Move register into register

MOVS <Rd>, <Rm>

ADDS <Rd>, <Rm>, #0

MOVS <Rd>, <Rm>

Rm and Rn are both low registers.

APSR.Z, APSR.N, and APSR.C (for ADDS) update.

We can also load an immediate data into a register using the MOV instruction.

Instruction

MOV

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Move immediate data (sign extended) into register
MOVS <Rd>, #immed8

MOV <Rd>, #immed8

Immediate data range 0 to +255.

APSR.Z and APSR.N update.

If we want to load an immediate data into a register which is out of the 8-bit value range,
we need to store the data into a program memory space, and then use a memory access
instruction to read the data into the register. This can be written using a pseudo instruction
LDR, which is converted into a real instruction by the assembler. This will be covered

later in this chapter (Section 5.5).

The MOV instructions can cause a branch to happen if the destination register is R15 (Program
Counter (PC)). However, generally the B and BX instructions are used for this purpose.

Instruction Set 121

Another type of data transfer in the Cortex-M Processors is Special Registers accesses. In
order to access the Special Registers (CONTROL, PRIMASK, xPSR, etc.), the MRS and
MSR instructions are needed. These two instructions cannot be generated in C language.
However, they can be created using inline assembler or Embedded Assembler,” or other C
compiler specific feature like the named register variables feature in ARM® DS-5 or Keil®
MDK. CMSIS-CORE also provides APIs for accessing special registers.

Instruction MRS

Function Move Special Register into register
Syntax MRS <Rd>, <SpecialReg>
Note Example:

MRS RO, CONTROL ; Read CONTROL register into RO
MRS R9, PRIMASK ; Read PRIMASK register into R9

MRS R3, XPSR ; Read xPSR register into R3
Instruction MSR
Function Move register into Special Register
Syntax MSR <SpecialReg>, <Rd>
Note Example:

MSR CONTROL, RO ; Write RO into CONTROL register
MSR PRIMASK, R9 ; Write R9 into PRIMASK register

The following table (Table 5.6) shows the complete list of special register symbols that are
available on the Cortex-M0/MO-+ Processors when MSR and MRS instructions are used.

Table 5.6: Special register symbols for MRS and MSR instructions

Symbol Register Access type

APSR Application Program Status Register (PSR) Read/Write

EPSR Execution PSR No accesses (read as zero)
IPSR Interrupt PSR Read only

IAPSR Composition of IPSR and APSR Read only

EAPSR Composition of EPSR and APSR Read only (EPSR read as zero)
IEPSR Composition of IPSR and EPSR Read only (EPSR read as zero)
XPSR Composition of APSR, EPSR, and IPSR Read only (EPSR read as zero)
MSP Main Stack Pointer Read/Write

PSP Process Stack Pointer Read/Write

PRIMASK Primary Exception Mask register Read/Write

CONTROL CONTROL register Read/Write

Please also refer to Table 4.1 for access restrictions during unprivileged state.

2 Embedded Assembler is supported on ARM® Development Studio 5 (DS-5) and Keil® Microcontroller
Development Kit for ARM (MDK).

122 Chapter 5

5.4.2 Memory Accesses

The Cortex-MO0 and Cortex-MO+ processors support a number of memory access
instructions, which support various data transfer sizes and addressing modes. The

supported data transfer sizes are Word, Half Word, and Byte. In addition, there are

separate instructions to support signed and unsigned data. The following table

(Table 5.7) summarizes the memory address instruction mnemonics for single load and store
operations.

Table 5.7: Memory access instructions for various transfer sizes

Signed/
Transfer size Unsigned load Signed load Unsigned store
Word LDR LDR STR
Half word LDRH LDRSH STRH
Byte LDRB LDRSB STRB

The instructions listed in Table 5.7 support multiple addressing modes. When the
instruction is used with different operands, different instruction encodings are generated by
the assembler.

Important

It is important to make sure the memory address accessed is aligned. For example, a word size
access can only be carried out on address locations when address bits[1:0] are set to zero,
and a half-word size access can only be carried out on address locations when address bit[0]
is set to zero. Unaligned transfers are not supported on the ARMv6-M Architecture (include
Cortex®-M0 and Cortex-M0+ processors). Any attempt at unaligned memory access result in
a HardFault exception. Byte size transfers are always aligned on the Cortex-M processors.
Additional information available in Section 7.9.1 in Chapter 7.

For memory read operations, the instruction to carry out single accesses is LDR (load):

Instruction LDR/LDRH/LDRB
Function Read single memory data into register
Syntax LDR <Rt>, [<Rn>, <Rm>]; Word read

LDRH <Rt>, [<Rn>, <Rm>]; Half-Word read
LDRB <Rt>, [<Rn>, <Rm>] ; Byte read

Note Rt = memory[Rn 4+ Rm]
Rt, Rn, and Rm are low registers

Instruction Set 123

The Cortex-M processors also support immediate offset addressing modes:

Instruction LDR/LDRH/LDRB

Function Read single memory data into register

Syntax LDR <Rt>, [<Rn>, #immedS5] ; Word read
LDRH <Rt>, [<Rn>, #immed5] ; Half-Word read
LDRB <Rt>, [<Rn>, #immed5] ; Byte read

Note Rt = memory[Rn + ZeroExtend (#immed5 << 2)] ; Word

Rt = memory[Rn + ZeroExtend(#immed5 << 1)] ; Half word
Rt = memory[Rn + ZeroExtend(#immed5)] ; Byte
Rt and Rn are low registers

The Cortex-M Processors support a useful PC-relative load instruction allowing efficient
literal data accesses. This instruction can be generated when we use the LDR pseudo
instruction for putting an immediate data value into a register. This data is stored in literal
data blocks alongside the instructions—called literal pools.

Instruction LDR

Function Read single memory data word into register

Syntax LDR <Rt>, [PC, #immed8] ; Word read

Note Rt = memory[WordAligned(PC+4) + ZeroExtend(#immed8 << 2)]

Rt is a low register, and targeted address must be a word-aligned
address. The reason for adding 4 is due to the pipelined nature of the
processor.
Example:
LDR R0,=0x12345678 ; A pseudo instruction that use literal load
; to put an immediate data into a register
LDR RO, [PC, #0x40] ; Load a data in current program address
; with offset of 0x40 into RO
LDR RO, label ; Load a data in current program
; referenced by label into RO

Due to the pipeline nature of the Cortex-M processors, in some instructions (e.g., “MOV
RO, PC”) you will find that the effective PC value when executing an instruction is the
address of the instruction +4. However, this literal data access instruction first mask the
two LSB of program address to 0 before the calculation, this ensures that the generate data
access is aligned to 32-bit address boundary. The address offset which is encoded into
immediate value must also be a multiple of 4 (the immediate data value is shifted left by 2
bits to allow larger offset range).

There is also an Stack Pointer (SP)-related load instruction which supports a wider offset
range. This instruction is very useful for accessing local variables in C functions because
very often the local variables are stored on the stack.

124 Chapter 5

Instruction

LDR

Function
Syntax
Note

Read single memory data word into register

LDR <Rt>, [SP, #immed8] ; Word read

Rt = memory[SP + ZeroExtend(#immed8 << 2)]
Rt is a low register

The Cortex-M0/MO+ Processor can also sign extend the read data automatically using the
LDRSB and LDRSH instructions. This is useful when a signed 8-bit/16-bit data type is
used, which is common in C programs.

Instruction LDRSH/LDRSB

Function Read single signed memory data into register

Syntax LDRSH <Rt>, [<Rn>, <Rm>] ; Half-Word read
LDRSB <Rt>, [<Rn>, <Rm>] ; Byte read

Note Rt = SignExtend(memory[Rn + Rm])

Rt, Rn, and Rm are low registers

For single data memory writes, the instruction is STR (store):

Instruction STR/STRH/STRB

Function Write single register data into memory

Syntax STR <Rt>, [<Rn>, <Rm>] ; Word write
STRH <Rt>, [<Rn>, <Rm>] ; Half-Word write
STRB <Rt>, [<Rn>, <Rm>] ; Byte write

Note memory[Rn + Rm] =Rt

Rt, Rn, and Rm are low registers

Like the load operation, the store operation supports an immediate offset addressing mode:

Instruction STR/STRH/STRB

Function Write single memory data into memory

Syntax STR <Rt>, [<Rn>, #immed5] ; Word write
STRH <Rt>, [<Rn>, #immed5] ; Half-Word write
STRB <Rt>, [<Rn>, #immed5] ; Byte write

Note

memory[Rn + ZeroExtend(#immed5 << 2)] = Rt ; Word
memory[Rn 4 ZeroExtend(#immed5 << 1)] = Rt ; Half word
memory[Rn + ZeroExtend(#immed5)] = Rt ; Byte

Rt and Rn are low registers

An SP-relative store instruction which supports a wider offset range is also available. This
instruction is useful for accessing local variables that are stored on the stack.

Instruction

STR

Function
Syntax
Note

Write single memory data word into memory
STR <Rt>, [SP, #immed8] ; Word write
memory[SP + ZeroExtend(#immed8 << 2)] = Rt
Rt is a low register

Instruction Set 125

One of the important features in ARM processors is the ability to load or store multiple
registers with one instruction. There is also an option to update the base address register
to the next location. For load/store multiple instructions, the transfer size is always in

Word size.
Instruction LDM (Load Multiple)
Function Read multiple memory data word into registers, base address register update
by memory read
Syntax LDM <Rn>, {<Ra>, <Rb> ,....} ; Load multiple registers from memory
Note Ra = memory[Rn],
Rb = memory[Rn+4],
Rn, Ra, Rb ... are low registers. Rn is on the list of registers to be updated
by memory read. For example,
LDM R2,{R1, R2, R5 - R7} ; Read R1,R2,R5,R6, and R7 from memory
LDMIA (Load Multiple Increment After)/LDMFD—Base address register
Instruction update to subsequence address
Function Read multiple memory data word into registers and update base register
Syntax LDMIA <Rn>!, {<Ra>, <Rb> ,....} ; Load multiple registers from memory
; and increment base register after completion
Note Ra = memory[Rn],
Rb = memory[Rn+4],
and then update Rn to last read address plus 4.
Rn, Ra, Rb ... are low registers. For example,
LDMIA RO!, {R1, R2, R5 - R7} ; Read multiple registers, RO update to address
after last read operation.
LDMFD is another name for the same instruction, which was used for restoring
data from a Full Descending stack, in traditional ARM systems that use
software managed stack.
Instruction STMIA (Store Multiple Increment After)/STMEA
Function Write multiple register data into memory and update base register
Syntax STMIA <Rn>!, {<Ra>, <Rb> ,....} ; Store multiple registers to memory
; and increment base register after completion
Note memory[Rn] = Ra,

memory[Rn+4] = Rb,

and then update Rn to last store address plus 4.

Rn, Ra, Rb ... are low registers. For example,

STMIA RO!, {R1, R2, R5 - R7} ; Store R1, R2, R5, R6, and R7 to memory
; and update RO to address after where R7 stored

126 Chapter 5

—Cont’d
Instruction STMIA (Store Multiple Increment After)/STMEA

STMEA is another name for the same instruction, which was used for storing
data to an Empty Ascending stack, in traditional ARM systems that use
software-managed stack.

It is recommended to avoid a register being used as <Rn> as well as in the
register list (deprecated in the architecture). If <Rn> is in the register list, it
must be the first register in the register list.

5.4.3 Stack Memory Accesses

There are two memory access instructions that are dedicated to stack memory accesses.
The PUSH instruction is used to decrement the current SP and store data to the stack. The
POP instruction is used to read the data from the stack and increment the current SP. Both
PUSH and POP instructions allow multiple registers to be stored or restored. However,
only low registers, Link Register (LR) (for PUSH operation) and PC (for POP operation)
are supported.

Instruction PUSH

Function Write single or multiple registers (low register and Link Register (LR)) into memory
and update base register (Stack Pointer (SP))
Syntax PUSH {<Ra>, <Rb> ,....} ; Store multiple registers to memory and
; decrement SP to the lowest pushed data address
PUSH {<Ra>, <Rb>,, LR} ; Store multiple registers and LR to
; memory and decrement SP to the lowest pushed data address
Note new_SP = SP - 4 x number of registers to PUSH

memory[new_SP] = Ra,
memory[new_SP+4] = Rb,

and then update SP to new_SP. For example,

PUSH {R1, R2, RS - R7, LR} ; Store R1, R2, RS, R6, R7, and
LR to stack.

(The order of the register content is based on register’s number,
i.e., Lower register is push to the lower address in the stack)

Instruction POP

Function Read single or multiple registers (low register and Program Counter (PC)) from
memory and update base register (Stack Pointer (SP))
Syntax POP {<Ra>, <Rb>,....} ; Load multiple registers from memory
; and increment SP to the last emptied stack address plus 4
POP {<Ra>, <Rb>,, PC}; load multiple registers and PC from

; memory and increment SP to the last emptied stack
; address plus 4

Instruction Set 127

—Cont’d
Instruction POP

Note Ra = memory[SP],
Rb = memory[SP+4],

and then update SP to last restored address plus 4. For example,
POP {R1, R2, R5 - R7} ; Restore R1, R2, RS, R6, R7 from stack

By allowing the LR and PC to be used with the PUSH and the POP instructions, a
function call can combine the register restore and function-return operations into one
single instruction. For example,

my_function

PUSH {R4, R5, R7, LR} ; Save R4, R5, R7 and LR (return address)
; function body
POP {R4, R5, R7, PC} ; Restore R4, R5, R7 and return

When multiple registers are pushed to the stack using a PUSH instruction, the stacked data
are arranged with the lowest register data placed at the lowest stack address. For example,

with the above example, the stack contents in the above function after PUSH {R4, RS, R7,
LR} are shown in Figure 5.4.

(used)

Memory Address (used)
LR
R7
R5
Address pointed ——» R4

by SP after PUSH (empty)

(empty)

Figure 5.4
Stack data layout after PUSH {R4, R5, R7, LR}.

5.4.4 Arithmetic Operations

The Cortex-MO and Cortex-M0+ Processors support a number of Arithmetic operations.
The most basic ones are add, subtract, twos complement, and multiply. For most of these
instructions, the operation can be carried out between two registers, or between one
register and an immediate constant.

Instruction ADD

Function Add two registers

Syntax (UAL) ADDS <Rd>, <Rn>, <Rm>
Syntax (pre-UAL) ADD <Rd>, <Rn>, <Rm>
Note Rd = Rn + Rm, APSR update.

Rd, Rn, Rm are low registers.

128 Chapter 5

Instruction ADD
Function Add an immediate constant into a register
Syntax (UAL) ADDS <Rd>, <Rn>, #immed3

ADDS <Rd>, #immed8

Syntax (pre-UAL) ADD <Rd>, <Rn>, #immed3
ADD <Rd>, #immed8

Note Rd = Rn + ZeroExtend(#immed3), APSR update, or
Rd = Rd + ZeroExtend(#immed8), APSR update.
Rd, Rn, Rm are low registers.

Instruction ADD

Function Add two registers without updating APSR
Syntax (UAL) ADD <Rd>, <Rm>

Syntax (pre-UAL) ADD <Rd>, <Rm>

Note Rd = Rd 4+ Rm.

Rd, Rm can be high or low registers.

Instruction ADD

Function Add stack pointer to a register without
updating APSR

Syntax (UAL) ADD <Rd>, SP, <Rd>

Syntax(pre-UAL) ADD <Rd>, SP

Note Rd = Rd + SP.

Rd can be high or low register.

Instruction ADD

Function Add a register to stack pointer without
updating APSR

Syntax (UAL) ADD SP, <Rm>

Syntax (pre-UAL) ADD SP, <Rm>

Note SP =SP + Rm.

Rm can be high or low register.

Instruction ADD

Function Add stack pointer to a register without
updating APSR

Syntax (UAL) ADD <Rd>, SP, #immed8

Syntax (pre-UAL) ADD <Rd>, SP, #immed8

Note Rd = SP + ZeroExtend(#immed8 << 2).

Rd is a low register.

Instruction Set 129

Instruction ADD

Function Add an immediate constant to stack pointer
Syntax(UAL) ADD SP, SP, #immed7

Syntax (pre-UAL) ADD SP, #immed7

Note SP = SP + ZeroExtend(#immed7 << 2).

This instruction is useful for C functions to
adjust the SP for local variables.

Instruction ADR (ADD)

Function Add an immediate constant with Program Counter (PC) to a register
without updating APSR

Syntax (UAL) ADR <Rd>, <label> (pseudo instruction - Section 5.5)
ADD <Rd>, PC, #immed8 (alternate syntax)

Syntax (pre-UAL) ADR <Rd>, <label> (pseudo instruction - Section 5.5)
ADD <Rd>, PC, #immed8 (alternate syntax)

Note Rd = (PC[31:2] << 2) + ZeroExtend(#immed8 << 2).

This instruction is useful for locating a data address within the
program memory near to the current instruction. The result address
must be word aligned.

Rd is a low register.

Instruction ADC

Function Add with Carry and update APSR
Syntax (UAL) ADCS <Rd>, <Rm>

Syntax (pre-UAL) ADC <Rd>, <Rm>

Note Rd = Rd + Rm + Carry

Rd and Rm are low registers.

Instruction SUB

Function Subtract two registers

Syntax (UAL) SUBS <Rd>, <Rn>, <Rm>
Syntax (pre-UAL) SUB <Rd>, <Rn>, <Rm>
Note Rd = Rn - Rm, APSR update.

Rd, Rn, Rm are low registers.

Instruction SuB
Function Subtract a register with an immediate constant
Syntax (UAL) SUBS <Rd>, <Rn>, #immed3

SUBS <Rd>, #immed8
Syntax(pre-UAL) SUB <Rd>, <Rn>, #immed3
SUB <Rd>, #immed8

130 Chapter 5

—Cont’d

Instruction SuB

Note Rd = Rn - ZeroExtend(#immed3), APSR update, or
Rd = Rd - ZeroExtend(#immed8), APSR update.
Rd, Rn are low registers.

Instruction SUB

Function Subtract SP by an immediate constant

Syntax (UAL) SUB SP, SP, #immed7

Syntax (pre-UAL) SUB SP, #immed7

Note SP = SP - ZeroExtend(#immed7 << 2).
This instruction is useful for C functions to
adjust the SP for local variables.

Instruction SBC

Function Subtract with carry (borrow)

Syntax (UAL) SBCS <Rd>, <Rd>, <Rm>

Syntax (pre-UAL) SBC <Rd>, <Rm>

Note Rd = Rd - Rm - Borrow, APSR update.

Rd and Rm are low registers.

Instruction RSB

Function Reverse Subtract (negative)

Syntax (UAL) RSBS <Rd>, <Rn>, #0

Syntax (pre-UAL) NEG <Rd>, <Rn>

Note Rd = 0 - Rm, APSR update.

Rd and Rm are low registers.

Instruction MUL

Function Multiply

Syntax (UAL) MULS <Rd>, <Rm>, <Rd>

Syntax (pre-UAL) MUL <Rd>, <Rm>

Note Rd = Rd * Rm, APSR.N and APSR.Z update.

Rd and Rm are low registers.

There are also a few compare instructions that compare (using subtract) values and update
flags (APSR), but the result of the compare is not stored.

Instruction CMP

Function Compare

Syntax (UAL) CMP <Rn>, <Rm>

Syntax (pre-UAL) CMP <Rn>, <Rm>

Note Calculate Rn - Rm, APSR update but

subtract result is not stored.

Instruction Set

131

Instruction

CMP

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Compare

CMP <Rn>, #immed8

CMP <Rn>, #immed8

Calculate Rd - ZeroExtended(#immed8), APSR update
but subtract result is not stored. Rn is a low registers.

CMN

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Compare negative

CMN <Rn>, <Rm>

CMN <Rn>, <Rm>

Calculate Rn - NEG(Rm), APSR update but
subtract result is not stored. Effectively the
operation is an ADD.

5.4.5 Logic Operations

Another set of essential operations in most processors are logic operations. For logical
operations, the Cortex-MO and Cortex-M0O+ Processors have a number of instructions
available including basic features like AND, OR, etc. In addition, it has a number of
instructions for compare and testing.

Instruction

AND

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Logical AND

ANDS <Rd>, <Rd>, <Rm>

AND <Rd>, <Rm>

Rd = AND(Rd, Rm), APSR.N and APSR.Z update.
Rd and Rm are low registers.

ORR

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Logical OR

ORRS <Rd>, <Rd>, <Rm>

ORR <Rd>, <Rm>

Rd = OR(Rd, Rm), APSR.N and APSR.Z update.
Rd and Rm are low registers.

EOR

Function
Syntax (UAL)

Logical Exclusive OR
EORS <Rd>, <Rd>, <Rm>

132 Chapter 5

—Cont’d

Instruction

EOR

Syntax (pre-UAL)
Note

Instruction

EOR <Rd>, <Rm>
Rd = XOR(Rd, Rm), APSR.N and APSR.Z update.
Rd and Rm are low registers.

BIC

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Logical Bitwise Clear

BICS <Rd>, <Rd>, <Rm>

BIC <Rd>, <Rm>

Rd = AND(Rd, NOT(Rm)), APSR.N and APSR.Z update.
Rd and Rm are low registers.

MVN

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Logical Bitwise NOT

MVNS <Rd>, <Rm>

MVN <Rd>, <Rm>

Rd = NOT(Rm), APSR.N and APSR.Z update.
Rd and Rm are low registers.

TST

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Test (bitwise AND)

TST <Rn>, <Rm>

TST <Rn>, <Rm>

Calculate AND(Rn, Rm), APSR.N and APSR.Z
update but the AND result is not stored.

Rd and Rm are low registers.

5.4.6 Shift and Rotate Operations

The Cortex-MO and Cortex-M0+ Processors also support shift and rotate instructions. It
supports both arithmetic shift operations (data is a signed integer value where MSB needs
to be reserved) as well as logical shift. Operations of Arithmetic Shift Right are illustrated
in Figure 5.5.

Arithmetic Shift Right (ASR)

R

> Register

A
O

Figure 5.5
Arithmetic Shift Right.

Instruction Set

133

Instruction

ASR

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Arithmetic Shift Right

ASRS <Rd>, <Rd>, <Rm>

ASR <Rd>, <Rm>

Rd = Rd >> Rm, last bit shift out is copied to
APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

ASR

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Arithmetic Shift Right

ASRS <Rd>, <Rm>, #immed5

ASR <Rd>, <Rm>, #immed5

Rd = Rm >> immed5, last bit shifted out is copied
to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

When ASR is used, the MSB of the result is unchanged, and the Carry flag is updated

using the last bit shifted out.

For logical shift operations, the instructions are LSL (Figure 5.6) and LSR

(Figure 5.7).

Instruction

LSL

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Logical Shift Left (LSL)

Logical Shift Right (LSR)

Logical Shift Left

LSLS <Rd>, <Rd>, <Rm>

LSL <Rd>, <Rm>

Rd = Rd << Rm, last bit shifted out is copied to
APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

C |= Register «— O

Figure 5.6
Logical Shift Left.

\
(@)

0 —» Register

Figure 5.7
Logical Shift Right.

134 Chapter 5

Instruction

LSL

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Logical Shift Left

LSLS <Rd>, <Rm>, #immedS5

LSL <Rd>, <Rm>, #immed5

Rd = Rm << #immed5, last bit shifted out is copied to
APSR.C, APSR.N and APSR.Z are also updated.

Rd and Rm are low registers.

LSR

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Instruction

Logical Shift Right

LSRS <Rd>, <Rd>, <Rm>

LSR <Rd>, <Rm>

Rd = Rd >> Rm, last bit shifted out is copied to
APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

LSR

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Logical Shift Right

LSRS <Rd>, <Rm>, #immed5

LSR <Rd>, <Rm>, #immed5

Rd = Rm >> #immed5, last bit shifted out is copied
to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

There is only one rotate instruction, Rotate Right (ROR, Figure 5.8).

Rotate Right (ROR)

Instruction

\
O

» Register

Figure 5.8
Rotate Right.

ROR

Function

Syntax (UAL)
Syntax (pre-UAL)
Note

Rotate Right

RORS <Rd>, <Rd>, <Rm>

ROR <Rd>, <Rm>

Rd = Rd rotate right by Rm bits, last bit shifted out is
copied to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

If a rotate left operation is needed, this can be done using an ROR with a different offset:

Rotate_Left(Data, offset) == Rotate_Right(Data, (32-offset))

Instruction Set

135

5.4.7 Extend and Reverse Ordering Operations

The Cortex-MO and Cortex-M0+ Processors support a number of instructions that can
perform data reordering or extraction. These include

* REV (Byte Reverse in Word, Figure 5.9),
* REVI16 (Byte Reverse Packed Half Word, Figure 5.10), and
 REVSH (Byte Reverse Signed Half Word, Figure 5.11).

Bit Bit Bit Bit
[31:24] [23:16] [15:8] [7:0]

Figure 5.9
REV operation.

Bit Bit Bit Bit

[31:24] [23:16] [15:8] [7:0]

\ < : <

I O o B o
Figure 5.10

REV16 operation.

Bit Bit Bit Bit
[31:24] [23:16] [15:8] [7:0]

sign extend ><

Figure 5.11
REVSH operation.

Instruction REV (Byte-Reverse Word)

Function Byte Order Reverse
Syntax REV <Rd>, <Rm>
Note Rd = {Rm[7:0], Rm[15:8], Rm[23:16], Rm[31:24]}

Rd and Rm are low registers.

136 Chapter 5

Instruction ~ REV16 (Byte-Reverse Packed Half Word)

Function Byte Order Reverse within half word
Syntax REV16 <Rd>, <Rm>
Note Rd = {Rm[23:16], Rm[31:24], Rm[7:0] , Rm[15:8]}

Rd and Rm are low registers.

Instruction ~ REVSH (Byte-Reverse Signed Half Word)

Function Byte order reverse within lower half word, then sign extend result
Syntax REVSH <Rd>, <Rm>
Note Rd = SignExtend({Rm[7:0] , Rm[15:8]})

Rd and Rm are low registers.

These reverse instructions are usually used for converting data between little endian and

big endian systems.

The SXTB, SXTH, UXT, and UXTH instructions are used for extending a byte or half
word data into a word. They are usually used for data type conversions.

Instruction

SXTB (Signed Extended Byte)

Function
Syntax
Note

Instruction

SignExtend lowest byte in a word of data
SXTB <Rd>, <Rm>

Rd = SignExtend(Rm[7:0])

Rd and Rm are low registers.

SXTH (Signed Extended Half Word)

Function
Syntax
Note

Instruction

SignExtend lower half word in a word of data
SXTH <Rd>, <Rm>

Rd = SignExtend(Rm[15:0])

Rd and Rm are low registers.

UXTB (Unsigned Extended Byte)

Function
Syntax
Note

Instruction

Extend lowest byte in a word of data
UXTB <Rd>, <Rm>

Rd = ZeroExtend(Rm[7:0])

Rd and Rm are low registers.

UXTH (Unsigned Extended Half Word)

Function
Syntax
Note

Extend lower half word in a word of data
UXTH <Rd>, <Rm>

Rd = ZeroExtend(Rm[15:0])

Rd and Rm are low registers.

Instruction Set 137

With SXTB or SXTH, the data is extended using bit[7] or bit[15] of the input data. While
for UXTB and UXTH, the data is extended using zeros. For example, if RO is
0x55AA8765, and the result of these extended instructions are

SXTB R1, RO ; Rl = 0x00000065
SXTH R1, RO ; Rl = OxFFFF8765
UXTB R1, RO ; R1I = 0x00000065
UXTH R1, RO ; Rl = 0x00008765

5.4.8 Program Flow Control

There are five branch instructions in the Cortex-MO and Cortex-MO+ processors. They are
essential for program flow control like looping and conditional execution, and allow
program code to be partitioned into functions and subroutines.

Instruction B (Branch)

Function Branch to an address (unconditional)
Syntax B <label>
Note Branch range is £2046 bytes of current

program cou nter

Instruction B<cond> (Conditional Branch)

Function Depending of APSR, branch to an address
Syntax B<cond> <label>
Note Branch range is £254 bytes of current program counter.

For example,
CMP RO, 0x1 ; Compare RO with 0x1
BEQ process1 ; Branch to process1 if RO equal 1

The <cond> is one of the 14 possible condition suffixes (Table 5.8).

For example, a simple loop that runs three times could be:

MOVS RO, #3 ; Loop counter starting value is 3
loop ; "Toop" is an address Tabel
SUBS RO, #1 ; Decrement by 1 and update flag
BGT loop ; branch to loop if RO is Greater Than (GT) 1

The loop will execute three times. The third time, RO is 1 before the SUBS instruction.
After the SUBS instruction, the zero flag is set, so the condition for the branch failed and
the program continues execution after the BGT instruction.

138 Chapter 5

Table 5.8: Condition suffixes for conditional branches

Suffix Branch condition Flags (APSR)
EQ Equal Z flag is set
NE Not equal Z flag is cleared
CS/HS Carry set/unsigned higher or same C flag is set
CC/LO Carry clear/unsigned lower C flag is cleared
Mi Minus/negative N flag is set (minus)
PL Plus/positive or zero N flag is cleared
VS Overflow V flag is set
vC No overflow V flag is cleared
HI Unsigned higher C flag is set and Z is cleared
LS Unsigned lower or same C flag is cleared or Z is set
GE Signed greater than or equal N flag is set and V flag is set, or
N flag is cleared and V flag is cleared (N == V)
LT Signed less than N flag is set and V flag is cleared, or
N flag is cleared and V flag is set (N I=V)
GT Signed greater then Z flag is cleared, and either both N flag and V flag are set,
or both N flag and V flag are cleared (Z == 0 and N ==V)
LE Signed less than or equal Z flag is set, or either N flag set with V flag cleared, or N

flag cleared and V flag set (Z==1 or N !=V)

Instruction BL (Branch and Link)

Function Branch to an address and store return address to Link
Register. Usually use for function calls, and can be used for
long range branch that is beyond the branch range of
branch instruction (B <label>).

Syntax BL <label>

Note Branch range is =16 MB of current program counter.

For example,
BL functionA ; call a function called functionA

Instruction BX (Branch and Exchange)

Function Branch to an address specified by a register, and change
processor state depending on bit[0] of the register.

Syntax BX <Rm>

Note Since the Cortex®-M processors only supports Thumb®

code, bit[0] of the register content (Rm) must be set to 1,
otherwise it means that it is trying to switch to ARM® state
and this will generate a fault exception.

BL is commonly used for calling a subroutine or function. When it is executed, the
address of the next instruction will be stored to the LR, with the LSB set to 1. When the
subroutine or function completes the required task, it can then return to the calling
program by executing a “BX LR” instruction (Figure 5.12).

Instruction Set 139

LR set to address of
next instruction, and

BL func1 ; call Function1 LSB setto 1

\f——) func1 ; Function 1

main

- BX LR ; Return

MOV R4, RO : next instruction Load return

address in LR
into PC

Figure 5.12
Function call and return using BL and BX instructions.

BX can also be used to branch to an address that have an offset that is more than the
normal branch instruction. Since the target is specified by a 32-bit register, it can branch to
any address in the memory map.

Instruction BLX (Branch and Link with Exchange)

Function Branch to an address specified by a register, save return
address to Link Register and change processor state
depending of bit[0] of the register.

Syntax BLX <Rm>

Note Since Cortex®-M processors only support Thumb® code, the
bit[0] of the register content (Rm) must be set to 1,
otherwise it means that it is trying to switch to ARM® state
and this will create a fault exception.

BLX is used when a function call is required but the address of the function is held inside
a register (e.g., when working with function pointers).

5.4.9 Memory Barrier Instructions

Memory barrier instructions are often needed when the memory system is complex. In
some cases, for some of the higher performance processors if the memory barrier
instruction is not used, race conditions could occur and cause system failures. For
example, in some ARM processors that support simultaneous bus transfers (as a processor
can have multiple memory interfaces), the transfer sequence of these transfers might
overlap. If the software code relies on strict ordering of memory access sequences, it could
result in software errors in corner cases. The memory barrier instructions allow the
processor to stop executing next instruction, or stop starting a new transfer, until the
current memory access has completed.

Due to the simplistic nature of the processor’s pipeline design, the Cortex-M0 and Cortex-
MO+ processors do not allow starting of the next instruction until the previous one

140 Chapter 5

finished, and does not have a write buffer in the system bus interface. As a result, the
memory barrier instruction is rarely needed as everything is completing in the same order
as in the program code. However, memory barriers may be necessary on other ARM
processors which have more complex memory systems. If the software needs to be
portable to other ARM processor, then the uses of memory barrier instructions could be
essential. Therefore the memory barrier instructions are supported on the Cortex-M0O and
Cortex-MO+ processors to provide better compatibility within the Cortex-M processors
and other ARM processor families.

There are three memory barrier instructions support on the Cortex-M Processors:

- DMB
* DSB
» ISB
Instruction DMB
Function Data Memory Barrier
Syntax DMB
Note Ensures that all memory accesses are completed

before new memory access is committed.

Instruction DSB

Function Data Synchronization Barrier

Syntax DSB

Note Ensures that all memory accesses are

completed before next instruction is executed

Instruction ISB

Function Instruction Synchronization Barrier
Syntax ISB
Note Flushes the pipeline and ensure that all previous instructions

are completed before executing new instructions

Architecturally, there are various cases where these instructions are needed. Although in
practice omitting the memory barrier instruction might not cause any issue on the Cortex-
MO or Cortex-MO+ processors, it could be an issue when the same software is used on
another ARM processor. For example, after changing the CONTROL register with an
MSR instruction, architecturally an ISB should be used after writing to the CONTROL
register to ensure subsequence instructions use the updated settings, for example, the
correct SP selection defined by CONTROL. With the Cortex-M0O and Cortex-M0-+
Processor omitting the ISB instruction in this case would not have any noticeable different
in this case.

Instruction Set 141

Another example is memory remap control. In some microcontrollers, the memory map
can be changed by a hardware register. After writing to the memory map switching
register, you need to use the DSB instruction to ensure the write has been completed and
memory configuration has been updated, before carrying out the next step. Otherwise, if
the memory switching is delayed, possibly due to a write buffer in the system bus
interface (e.g., the Cortex-M3 and Cortex-M4 processors have a write buffer in the system
bus interface to allow higher performance), and the processor starts to access the switched
memory region immediately, the access could be using the old memory mapping, or the
transfer could get corrupted by the memory map switching.

Another case where memory barrier instruction is needed is when the program contains
self-modifying code. For example, if an application changes its own program code, the
instruction execution following should use the updated program code. However, if the
processor is pipelined or has a fetch buffer, an old copy of the modified instruction could
be already fetched by the processor. In this case, the program should use a DSB operation,
to ensure the write to the memory is completed, and then use an ISB instruction to ensure
the instruction fetch buffer is updated with the new instructions.

More details about memory barriers can be found in the ARMv6-M Architecture
Reference manual (reference 1) and ARM application note AN321—ARM Cortex-M
Programming Guide to Memory Barrier Instructions (reference 8).

5.4.10 Exception-Related Instructions

The Cortex-MO and Cortex-MO+ processors provide an instruction called SVC
(SuperVisor Call). This instruction causes the SVC exception to take place immediately if
the exception priority level of SVC is higher than current level.

Instruction SVC

Function Supervisor call
Syntax SVC #<immed8>
SVC <immed8>
Note Trigger the SVC exception. For example,

SVC #3 ; SVC instruction, with parameter equal 3
Alternative syntax without the “#” is also allowed. For example,
SVC 3 ; This is the same as SVC#3

An 8-bit immediate data is used with SVC instruction. This parameter does not affect the
SVC exception directly but it can be extracted by the SVC handler and be used as an input
parameter to the SVC function. Typically the SVC can be used to provide access to
system service or API (Application Programming Interface), and this parameter can be
used to indicate which system service is required.

142 Chapter 5

If the SVC instruction is used in an exception handler that has the same or high priority
than SVC, this will cause a fault exception. As a result, the SVC cannot be used in the
HardFault handler, NMI handler, or the SVC handler itself.

Another instruction related to exception is the CPS. This instruction allows the
interrupt masking register PRIMASK to be set or clear with a single instruction.
Note: The PRIMASK special register can also be changed using the MSR
instruction.

Instruction CPS

Function Change processor state: enable or disable interrupt

Syntax CPSIE | ; Enable Interrupt(Clearing PRIMASK)
CPSID | ; Disable Interrupt (Setting PRIMASK)

Note PRIMASK only blocks external interrupts, SVC,

PendSV, SysTick. But it does not block NMI and
HardFault handler.

The switching of PRIMASK to disable and enable interrupt is commonly used for timing
critical code.

5.4.11 Sleep Mode Feature-Related Instructions

The Cortex-MO and Cortex-MO+ processors can enter sleep mode by executing the
WEFI (Wait For Interrupt) and WFE (Wait For Event) instructions. Note that for the
Cortex-M1 processor, as the design is implemented in an FPGA design, which does not
have sleep mode, these two instructions execute as NOP and will not cause the
processor to stop.

Instruction WFI

Function Wait For Interrupt
Syntax WFI
Note Stops program execution until an interrupt arrived,

or if the processor entered a debug state.

WEE is just like WFI, except that it can also be awoken by events. An event can be
an interrupt, execution of SEV instruction (see next page), or entering of debug state.
A previous occurred event also affects a WFE instruction: Inside the Cortex-MO and
Cortex-MO+ Processor, there is an event register that records if an event has occurred
(exceptions, external event or execution of SEV instruction). If the event register is
not set when the WFE is executed, the WFE instruction execution will cause the
processor to enter sleep mode. If the event register was set when WFE is executed, it
will cause the event register to be cleared and the processor proceeds to the next
instruction.

Instruction Set 143

Instruction WFE

Function Wait For Event
Syntax WFE
Note If the internal event register is set, it clears the

internal event register and continues execution.
Otherwise stop program execution until an event
(e.g., an interrupt) arrive, or if the processor
enters debug state.

WFE can also be woken up by an external event input signal, which is normally used in
multiprocessing environment.

The SEV (Send Event) instruction is normally used in multiprocessor systems to wake up
other processors which are in sleep mode by means of the WFE instruction. For single
processor systems, where the processor does not have a multiprocessor communication
interface, or the multiprocessor communication interface is not used, the SEV can only
affect the local event register inside the processor itself.

Instruction SEV

Function Send event to all processors in multiprocessing
environment (including itself)

Syntax SEV

Note Set local event register and send out an event pulse to

other microprocessor in a multiple processor system.

5.4.12 Other Instructions

The Cortex-MO and Cortex-MO0+ processors support an NOP instruction. This instruction
can be used for adjusting instruction alignment, or to introduce delay.

Instruction NOP

Function No Operation
Syntax NOP
Note The NOP instruction takes 1 cycle minimum on the

Cortex®-M0/MO+ processor. In general delay timing
produced by NOP instruction is not guaranteed, and
can vary between different systems (e.g., memory wait
states, processor type). If the timing delay needs to
be accurate, a hardware timer should be used.

The breakpoint instruction (BKPT) is used to provide a break point function during debug.
Usually this instruction is inserted by a debugger, replacing the original instruction. When
the break point is hit, the processor would be halted, and the user can then carry out the
debug tasks through the debugger.

144 Chapter 5

Please note that the Cortex-MO and Cortex-M0+- processors also have a hardware break
point unit. This is limited to four break points. Since many microcontrollers use flash
memory which can be reprogrammed a number of times, using of software break point
instruction allows more break points to be set at no extra hardware cost. The breakpoint
instruction has an 8-bit immediate data field. This immediate value does not affect the
breakpoint operation directly, but the debugger can extract this value and use it for debug
operation.

Instruction BKPT

Function Break point

Syntax BKPT #<immed8>
BKPT <immed8>

Note BKPT instruction can have an 8-bit immediate data. This can
be used by the debugger as an identifier for the BKPT. For
example,

BKPT #0 ; Break point, with immediate field equal zero
Alternative syntax without the “#” is also allowed. For example,
BKPT 0 ; This is the same as BKPT #0

The YIELD instruction is a hint instruction targeted for embedded operating systems. This
is not implemented in the current releases of the Cortex-M0 and Cortex-M0O+ processors,
and executes as NOP.

When used in multithread systems, YIELD can indicate that the current thread is delayed
(e.g., waiting for hardware) and can be swapped out. In this case, the processor does not
have to spend too much time on an idle task, and can switch to other tasks earlier to get
better system throughput. On the existing Cortex-MO and Cortex-M0+ processors, this
instruction is executed as an NOP (no operation) because it does not have special support
for multithreading. This instruction is included for better software compatibility with other
ARM processors.

Instruction YIELD

Function Indicate task is stalled
Syntax YIELD
Note Execute as NOP on the Cortex-MO processor

5.5 Pseudo Instructions

Apart from the instructions listed in the previous section, a few pseudo instructions are
also available. The pseudo instructions are provided by the assembler tools, which convert
them into one or more real instructions.

Instruction Set 145

The most commonly used pseudo instruction is the LDR. This allows a 32-bit immediate
data to be loaded into a register.

Pseudo Instruction

LDR

Function
Syntax
Note

Pseudo Instruction

Load a 32-bit immediate data into a low register Rd
LDR <Rd>, =immed32
This is translated to a Program Counter-related load
from literal pool. For example,
LDR RO, =0x12345678 Set RO to hexadecimal value
0x12345678
LDR R1, =10 ; Set R1 to decimal value 10
LDR R2, =‘A’ ; Set R2 to character ‘A’

LDR

Function
Syntax
Note

Pseudo Instruction

Load a data in specified address (label) into a low register
LDR <Rd>, label
The address of label must be word aligned, and should be
closed to current program counter. For example, you can put
a data in program ROM using DCD, and then access this
data using LDR.
LDR RO, CONST_NUM ; Load CONST_NUM (0x17) in RO
ALIGN 4 ; make sure next data is word
aligned
CONST_NUM DCD 0x17 ; Put a data in program code

ADR

Function

Syntax
Note

Load a Program Counter (PC)-relative address into a

register (usually using ADD) without updating APSR

ADR <Rd>, <label>

The assembler should use a single instruction to

generate the required address value. For example,
ADD <Rd>, PC, #immed8

This execute as Rd = (PC[31:2]<<2) +

ZeroExtend(#immed8 << 2).

<Rd> must be a low register.

The <label> need to a word-aligned address and due

to the limited immediate value range, the <label>

need to be close to current PC.

Other pseudo instructions depend on the tool chain being used. For more information,
please refer to the tools documentation for details.

Instruction Usage Examples

6.1 Overview

In the last chapter we have looked at the instruction set of the ARM® Cortex®-MO and
Cortex-MO0+ processors. In this chapter we will see how these instructions are used to
carry out various basic operations.

Note for beginners

The examples in this chapter are aiming to help understanding of the instruction set. However,
since most embedded programmers write their programs in C/C++ or other high-level lan-
guages, normally in real-world software development projects there is no need to write code in
assembly as illustrated in these examples.

The following examples are written based on ARM assembly syntax. For GNU assembler
the syntax is different in a number of ways, as highlighted in the last chapter.

6.2 Program Control
6.2.1 If-then-else

One the most important functions of the instruction set is to handle conditional branches.
For example, if we need to carry out the task:
if (counter > 10) then
counter = 0

else
counter = counter + 1

Assume the RO is used as “counter” variable, the above operation can be implemented as:

CMP RO, #10 ; compare to 10

BLE dincr_counter ; if less or equal, then branch

MOVS RO, #0 ; counter = 0

B counter_done ; branch to counter_done
incr_counter

ADDS RO, RO, #1 ; counter = counter +1

counter_done

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00006-0
Copyright © 2015 Elsevier Inc. All rights reserved. 147

http://dx.doi.org/10.1016/B978-0-12-803277-0.00006-0

148 Chapter 6

The program code first carries out a compare, and then executes a conditional branch. The
program then carried out required task and finish at program address labeled as

“counter_done.”

6.2.2 Loop

Another important program control operation is looping. For example,

Total = 0;
for (i=0;i<5;i=1+1)
Total = Total + 1i;

Assume “Total” is RO, “i” is R1, the program can be implemented as:
MOVS RO, #0 ; Total = 0
MOVS R1, #0 ;01 =0

Toop

ADDS RO, RO, R1 ; Total = Total + i
ADDS R1, R1, #1 ; i =1 +1
CMP R1, 45 ; compare i to 5
BLT Toop ; if Tess than then branch to Toop

6.2.3 More on the Branch Instructions

There are various branch instructions, as shown in Table 6.1.

The BL instruction (Branch and Link) is usually used for calling functions. It can also be
used for normal branch operations when a longer branch range is required. If the branch
target offset is more than 16 MB, we can use BX instruction instead. This is illustrated in
example in Table 6.2.

6.2.4 Typical Usages of Branch Conditions

A number of conditions are available for the conditional branches. They allow result of
signed and unsigned data operations, or compare operations to be used for branch

control. For example, if we need to carry out a conditional branch after a compare
operation “CMP RO, R1”, we can use one of the following conditional branch instructions
in Table 6.3.

For detection for value overflow in add or subtract operations, we can use conditional
branch instructions in Table 6.4.

For detection of whether an operation result is a positive value or negative value (signed
data), the “PL” and “MI” suffixes can be used for the conditional branch as shown in
Table 6.5.

Instruction Usage Examples 149

Table 6.1: Various branch instructions

Branch type

Examples

Normal branch—branch always carry out.

Conditional branch—branch depends on the current
status of APSR and the condition specified in the
instruction

Branch and link—branch always carries out and updates
the Link Register (LR, R14) with the instruction address
following the executed BL instruction.

Branch and exchange state—Branch to address stored in
a register. The LSB of the register should be set to 1 to
indicate Thumb® state. (Cortex®-M0 and Cortex-M0+
processors do not support ARM® instructions so Thumb
state must be used.)

Branch and link with exchange state—Branch to address
stored in a register, with the Link Register (LR/R14)
updated to the instruction address following the executed
BLX instruction. The LSB of the register should be set to 1
to indicate Thumb state. (Cortex-M0 and Cortex-M0-+
processors do not support ARM instructions so Thumb
state must be used.)

B label

(Branch to address marked as “label”)
BEQ label

(Branch if Z flag is set, which is result
from an equal comparison or ALU
operation with result of zero.)

BL label

(Branch to address “label,” and Link
Register updated to the instruction after
this BL instruction.)

BX LR

(Branch to address stored in the Link
register. This instruction is often used for
function return.)

BLX R4

(Branch to address stored in the R4 and
LR is updated to the instruction following
the BLX instruction. This instruction is
often used for calling functions addressed
by function pointers.)

Table 6.2: Different branch instructions for different branch ranges

Branch range Available instruction

Under +/-254 bytes B label
B<cond> label

Under +/-2 KB B label

Under +/-16 MB BL label

Over +/-16 MB

LDR RO, =label; Load the address value of label in RO
BX RO; Branch to address pointed to by RO, or
BLX RO; Branch to address pointed to by RO and update LR

Table 6.3: Conditional branch instructions for value comparison operations

Required branch control Unsigned data Signed data
If (RO equal R1) then branch BEQ label BEQ label
If (RO not equal R1) then branch BNE label BNE label
If (RO > R1) then branch BHI label BGT label
If (RO >= R1) then branch BCS label/BHS label BGE label
If (RO < R1) then branch BCC label/BLO label BLT label
If (RO <= R1) then branch BLS label BLE label

150 Chapter 6

Table 6.4: Conditional branch instructions for overflow detections

Required branch control Unsigned data Signed data
If (overflow(RO + R1)) then branch BCS label BVS label
If (no_overflow(RO + R1)) then branch BCC label BVC label
If (overflow(RO - R1)) then branch BCC label BVS label
If (no_overflow(RO - R1)) then branch BCS label BVC label

Table 6.5: Conditional branch instructions for positive or negative value

detection
Required branch control Unsigned data Signed data
If (result >= 0) then branch Not applicable BPL label
If (result < 0) then branch Not applicable BMI label

Apart from using the CMP (compare) instruction, conditional branches can also be
controlled by results of arithmetic operations and logical operations, or instructions like
CMN (compare negative) and TST (test). For example, a simple loop that executes five
times can be written as:

MOVS RO, {5 ; Loop counter
loop
SUBS RO, RO, #1 ; Decrement loop counter
BNE Toop ; if result is not 0 then branch to loop

A polling loop that wait until a status register bit 3 to be set can be written as:

LDR RO, =Status ; Load address of status register in RO

MOVS R2, #0x8 ; Bit 3 is set
loop
LDR R1, [RO] ; Read the status register
TST R1, R2 ; Compute “R1 AND 0x8”
BEQ Toop ; if result is 0 then try again

6.2.5 Function Calls and Function Returns

When carrying out function call (or subroutine call), we need to save the return address,
which is the address of the instruction following the call instruction, so that we can
resume the execution of the current instruction sequence. There are two instructions that
can be used for function call (Table 6.6).

After executing the BL/BLX instructions, the return address is stored in the Link Register
(LR/R14) for function return when the function completed. In the simple cases, the
function executed will be terminated using “BX LR”, as shown in Figure 6.1.

Instruction Usage Examples 151

Table 6.6: Instructions for function or subroutine calls

Instruction example Scenarios

BL function Target function address is fixed and the offset
is within +/-16 MB

LDR RO, =function; (other Target function address can be changed

registers could also be used) during run time. No branch offset limitation.

BLX RO

Function/subroutine call
PC changed to “FunctionA”,
and LR changed to address
of the instruction after BL

FunctionA
BL FunctionA

477
BXLR

Return J

PC changed to value stored
in LR to resume execution
of instructions after BL

Figure 6.1
Simple function call and function return.

If the value of LR could be changed during “FunctionA,” we will need to save the return
address to prevent it from being lost. This happens when BL or BLX instruction is
executed within “Functiona,” for example, when a nested function call is required. For
illustration, Figure 6.2 below shows when “FunctionA” calls another function called
“FunctionB.” (Note: this minimalistic example does not conform to double word stack
alignment requirement in AAPCS, reference 6.)

In the Cortex-MO and Cortex-MO+ processors, you can push multiple low registers (RO to
R7) and the return address in LR on to the stack with just one instruction. Similarly, you
can carry out the pop operation to low registers and the PC (Program Counter) in one
instruction. This allows you to combine register values restore and return with a single
instruction. For example, if the registers R4 to R6 are being modified in “FunctionA” and
needed to be saved to the stack, we can write “FunctionA” as in Figure 6.3.

6.2.6 Branch Table

In C programming, sometime we use the “switch” statement to allow a program to branch
to multiple possible address locations based on an input. In assembly programming, we
can handle the same operation by creating a table of branch destination addresses, issue a

152 Chapter 6

Save return

i . address for
Function/subroutine call FunctionA to

PC changed to “FunctionA”, stack.
and LR changed to address
of the instruction after BL

FunctionA
BL FunctionA PUSH {LR}

BL FunctionB

POP {PC}

Return

PC changed to value stored
in stack to resume
execution of instructions
after BL FunctionA

Figure 6.2

Function/subroutine call

PC changed to “FunctionB”, and LR
changed to instruction address after “BL
FunctionB”. If LR was not saved the return
address for FunctionA would be lost.

FunctionB
BX LR
Return
PC changes to value stored in

LR to resume execution of
instructions after BL FunctionB

Nested function call and function return.

Save return

i i address for
Function/subroutine call FunctionA and

PC changed to “FunctionA”, registers to stack.

and LR changed to address
of instruction after BL

FunctionA
BL FunctionA PUSH {R4-R6, LR}

Function/subroutine call

PC changed to “FunctionB”, and LR
change to address of instruction after “BL
FunctionB”. If LR was not saved the return
address for FunctionA would be lost.

FunctionB

BL FunctionB J
A\JBX LR

POP {R4-R6, PC}

Return

Registers are restored and
PC changed to value stored
in stack to resume
execution of instructions
after BL FunctionA

Figure 6.3

Return

PC changed to value stored in
LR to resume execution of
instructions after BL FunctionB

Using push and pop of multiple registers in functions.

Instruction Usage Examples 153

load (LDR) to the table with offset computed from the input, and then use BX to carry out
the branch. In the following example, we have a selection input of 0—3 in RO, which
allow the program to branch to Dest0 to Dest3. If the input value is larger than 3, it will
cause a branch to the default case.

CMP RO, 43 ; Compare input to maximum valid choice
BHI default_case ; Branch to default case if higher than 3
MOVS R2, {4 ; Multiply branch table offset by 4
MULS RO, R2, RO ; (size of each entry)
LDR R1,=BranchTable ; Get base address of branch table
LDR R2,[R1,R0O] ; Get the actual branch destination
BX R2 ; Branch to destination
ALIGN 4 ; Alignment control. The table has

; to be word aligned to prevent unaligned read

BranchTable ; table of each destination addresses

DCD DestO
DCD Destl
DCD Dest?
DCD Dest3

default_case
; Instructions for default case

Dest0
Instructions for case ‘0’

Destl
Instructions for case ‘1’

Dest?
; Instructions for case ‘2’

Dest3

Instructions for case ‘3’

Additional examples on complex branch conditional handling are covered in Chapter 21
(Section 21.9.2 Complex branch handling).

6.3 Data Accesses

Data accesses are vital to embedded applications. The Cortex®-M processors provide a
number of load (memory read) and store (memory write) instructions with various address
modes. In here we will go through a number of typical application examples on how these
instructions can be used.

6.3.1 Simple Data Accesses

Normally the memory locations (physical address) of software variables are defined by the
linker and are not known until linking stage. However, we can write the software code to

access to the variables as long as we know the symbol of the variables. For example, if we
need to calculate the sum of an integer array “Dataln” with 10 elements (32 bit each), and

154 Chapter 6

put the result in another variable called “sum” (also 32 bit), we can use the following
assembly code:

LDR r0,=Dataln ; Get the address of variable ’Dataln’

MOVS r1, #10 ; loop counter
MOVS r2, {0 ; Result - starting from 0
add_Tloop
LDM rO!,{r3} ; Load result and increment address
ADDS r2, r3 ; add to result
SUBS rl1, #1 ; increment Toop counter
BNE add_loop
LDR r0,=Sum ; Get the address of variable ’Sum’
STR r2,[r0] ; Save result to Sum

In the above example, we use the LDM instruction rather than a normal LDR instruction.
This allows us to read the memory and increment the address to the next array element
with a single instruction.

When using assembly to access data, we need to pay attention to a few things:

* Use correct instruction for corresponding data size. Different instructions are available
for different data sizes.

* Make sure that the access is aligned. If an access is unaligned, it will trigger a fault
exception. This can happen if an instruction of incorrect data size is being used to
access a data.

e Various addressing modes are available and can simplify your assembly codes. For
example, when programming/accessing a peripheral, you can set a register to its base
address value and then use immediate offset addressing mode for accessing each
registers. In this way you do not have to set up the register address every time a
different register is accessed.

6.3.2 Example of Using Memory Access Instruction

In order to demonstrate how different memory access instructions can be used, several
simple examples of memory copying functions are shown in this section. The most basic
approach is copy the data byte by byte, thus allowing any number of bytes to be copied
and do not have memory alignment issue.

LDR r0, =0x00000000 ; Source address
LDR rl1, =0x20000000 ; Destination address

LDR r2, =100 ; number of bytes to copy
copy_loop

LDRB r3, [r0] ; read 1 byte

ADDS r0 r0 #1 ; increment source pointer

STRB r3, [rl] ;writel byte

Instruction Usage Examples 155

ADDS rl1, rl, #1 ; increment destination pointer
SUBS r2, r2, #1 ; decrement loop counter
BNE copy_Tloop ; lToop until all data copied

The program code uses a number of add and subtract instructions in the loop, which
reduce the performance. We could modify the code to reduce the program size using a
register offset address mode:

LDR r0, =0x00000000 ; Source address
LDR rl1, =0x20000000 ; Destination address

LDR r2, =100 ; number of bytes to copy, also
copy_loop ; acts as loop counter

SUBS r2, r2, #1 ; decrement offset and loop counter

LDRB r4, [r0, r2] ; read 1 byte

STRB r4, [rl, r2] ;writel byte

BNE copy_Tloop ; Toop until all data copied

By using the loop counter as memory offset, we have reduced the code size and improve
execution speed. The only side effect is that the copying operation will be started from the
end of the memory block and finished at the start of the memory block.

For copying large amount of data, we can use multiple load and store instructions to
increase the performance. Since the load store multiple instructions can only be used with
word accesses, we usually use them in memory copying functions only when we know
that the size of memory being copied is large and the data are word aligned.

LDR r0, =0x00000000 ; Source address
LDR rl1, =0x20000000 ; Destination address

LDR r2, =128 ; number of bytes to copy, also
copy_loop ; acts as loop counter
LDMIA rO!, {rd-r7} ; Read 4 words and increment r0
STMIA r1!, {r4-r7} ; Store 4 words and increment rl
LDMIA rO!, {rd-r7} ; Read 4 words and increment r0
STMIAr1l!, {r4-r7} ; Store 4 words and increment rl
LDMIA rO!, {rd-r7} ; Read 4 words and increment r0
STMIA r1l, {r4-r7} ; Store 4 words and increment rl
LDMIA rO!, {rd-r7} ; Read 4 words and increment r0
STMIA r1!, {r4-r7} ; Store 4 words and increment rl
SUBS r2, r2, {64 ; Each time 64 bytes are copied
BNE copy_loop ; Toop until all data copied

In the above code, each loop iteration copies 64 bytes. This greatly increases the
performance of data transfer.

Another type of useful memory access instructions is the load and store instructions with
stack pointer (SP)-related addressing. This is commonly used for local variables, as C
compilers often store simple local variables on the stack memory. For example, let’s say

156 Chapter 6

we need to create two local variables in a function called “functionl,” the code can be
written as:

functionl
SUB SP, SP, #0x8 ; Reserve 2 words of stack
; (8 bytes) for local variables
; Data processing in function
MOVS r0O, #f0x12 ; set a dummy value
STR r0, [sp, #01 ; Store 0x12 in 1st local variable
STR rO, [sp, #4]1 ; Store 0x12 in 2nd local variable
LDR rl1, [sp, #0] ; Read from 1st local variable
LDR r2, [sp, #41 ; Read from 2nd local variable
ADD SP, SP, #f0x8 ; Restore SP to original position
BX LX

In the beginning of the function, a SP adjustment is carried out so that the data reserved
will not be overwritten by further stack push operations (Figure 6.4). During the execution
of the function, SP-related addressing with immediate offset allows the local variables to
be accessed efficiently. The value of SP can also be copied to another register if further
stack operations are required, or if the some of the local variables are in byte or half-word
size (in the ARMv6-M architecture, SP-related addressing mode only supports word size
data). In such cases load/store instructions accessing the local variables would use the
copied version of SP.

Memory
Address
A

SP value at

i ‘ beginning of

! 3 - function1
Data space ‘ ‘
reserved for local SP value at after
variables ‘ ‘ < adjustment

Stack space for
further stack
push

Figure 6.4
A function can reserve stack spaces for local variables (e.g., two words are reserved in this
diagram).

Instruction Usage Examples 157

At the end of the function, the local variables can be discarded and we restore the SP
value to the position as when the function started using an ADD instruction.

6.4 Data Type Conversion

The Cortex®-M processors support a number of instructions for converting data between
different data types.

6.4.1 Conversion of Data Size

On compilers for ARM® architecture, different data types have different sizes. A number
of commonly used data types and its corresponding sizes on ARM compilers are shown in
the following table (Table 6.7).

Table 6.7: Size of commonly used data types in C language for
ARM® architecture

C data type Number of bits

“char”, “unsigned char” 8

“enum” 8/16/32 (Smallest is chosen)
“short”, “unsigned short” 16

“int”, “unsigned int” 32

“long”, “unsigned long” 32

When converting a data value from one type to another type with a larger size, we need to
sign extend or zero extend it. A number of instructions are available to handle this
conversion (Table 6.8).

Table 6.8: Instructions for signed extend and zero extend of data values

Conversion operation Instruction

Converting an 8-bit signed data to 32-bit or 16-bit signed data SXTB (signed extend byte)
Converting an 16-bit signed data to 32-bit signed data SXTH (signed extend half word)
Converting an 8-bit unsigned data to 32-bit or 16-bit data UXTB (zero extend byte)
Converting an 16-bit unsigned data to 32-bit data UXTH (zero extend half word)

If the data is in the memory, we can read the data and carry out the zero-extend or signed-
extend operation in a single instruction (Table 6.9).

There is no need for additional store instructions to handle signed data because truncation
of data values from 32 bit to 16 bit or 8 bit is done on the fly.

158 Chapter 6

Table 6.9: Memory read instructions with signed extend and zero extend of data values

Conversion operation Instruction

Read an 8-bit signed data from memory and convert it to a 16-bit or 32-bit signed value LDRSB

Read an 16-bit signed data from memory and convert it to a 32-bit signed value LDRSH
Read an 8-bit unsigned data from memory and convert it to a 16-bit or 32-bit value LDRB
Read an 16-bit unsigned data from memory and convert it to a 32-bit value LDRH

6.4.2 Endian Conversion

The memory system of a Cortex-M processors can either be in little endian configuration, or
big endian configuration. The configuration is defined in hardware and cannot be changed by
programming. Occasionally we might need to convert data between little endian and big
endian format. There are several instructions to handle this, as listed in Table 6.10.

Table 6.10: Instructions for conversions between big endian and little endian data

Conversion operation Instruction
Convert a little endian 32-bit value to big endian, or vice versa REV
Convert a little endian 16-bit unsigned value to big endian, or vice versa REV16
Convert a little endian 16-bit signed value to big endian, or vice versa REVSH

6.5 Data Processing

Most of the data processing operations can be carried out in very simple instruction
sequence. However, there are situations that more steps are required. In here we will look
at a number of examples.

6.5.1 64-Bit/128-Bit Add

Adding two 64-bit values together is fairly straightforward. Assume that you have two
64-bit values (X and Y) stored in four registers, you can add them together using ADDS
followed up ADCS instruction, as shown below:

LDR r0, =OxFFFFFFFF ; X_Low (X = 0x3333FFFFFFFFFFFF)

LDR r1, =0x3333FFFF ; X_High

LDR r2, =0x00000001 ; Y_Low (Y =0x3333000000000001)

LDR r3, =0x33330000 ; Y_High

ADDS r0, r0, r2 ; lower 32-bit
ADCS rl, rl, r3 ; upper 32-bit

In this example, the result is in R1, RO, which is 0x66670000 and 0x00000000. The
operation can be extended to 96 bit, 128 bit, or more by increasing number of ADCS
instructions in the sequence (Figure 6.5).

Instruction Usage Examples 159

\ X word #3 \ \ X word #2 \ \ X word #1 \ \ X word #0 \
\ Y word #3 \ \ Y word #2 \ \ Y word #1 \ \ Y word #0 \

VoYY
cmes T caoos™ cmes T Aops

Result Result Result Result
word #3 word #2 word #1 word #0
Figure 6.5

Adding of two 128-bit numbers.

6.5.2 64-Bit/128-Bit Sub

The operation of 64-bit subtract is very similar to the one of 64-bit add. Assume that you
have got two 64-bit values (X and Y) in four registers, you can subtract them (X — Y)
using SUBS followed up SBCS instruction, as follows:

LDR r0, =0x00000001 ; X_Low(X=0x0000000100000001)
LDR rl1, =0x00000001 ; X_High
LDR r2, =0x00000003 ; Y_Low(Y =0x0000000000000003)
LDR r3, =0x00000000 ; Y_High
SUBS r0, r0, r2 ; lower 32-bit
SBCS rl, rl, r3 ; upper 32-bit

In this example, the result is in R1, RO, which is 0x00000000 and OxFFFFFFFE. The
operation can be extended to 96 bit, 128 bit, or more by increasing number of SBCS
instructions in the sequence as shown in Figure 6.6.

6.5.3 Integer Divide

Unlike the Cortex®-M3/M4 processor, the Cortex-MO and Cortex-M0+ processors do not
have integer divide instructions. For users who program their applications in C language,
the C compilers automatically inserts the required C library function that handles integer
divide when needed. For some other users who prefer to write their application entirely in
assembly language, they can create an assembly function like the following example
(Figure 6.7), which handles unsigned integer divide:

The divide function contains a loop that iterates 32 times and compute 1 bit of the result
each time. Instead of using an integer loop counter, the loop control is done by a value N

160 Chapter 6

\ X word #3 \ \ X word #2 \ \ X word #1 \ \ X word #0
| Yword#3 | | Yword#2 | | Yword#1 | | Yword#0

borrow borrow

Result Result Result Result
word #3 word #2 word #1 word #0
Figure 6.6

Subtracting two 128-bit values.

N = 0x80000000 | Set loop control
Quotient =0 Initialize result
Tmp vanaple for
calculation

o | Shift Dividend left by
" 1, MSB shift into Tmp

N

Decrement loop

counter *
N=N>1 44— Tmp=Tmp-
Divisor
N =

Y

Quotient =
Quotient + N

Remainder = Tmp

Figure 6.7
Simple unsigned integer divide function.

Instruction Usage Examples 161

which has 1 bit set (one hot), and shift right by 1 bit each time the loop is executed. The
corresponding assembly code can be written as:

simple_divide
Inputs
RO = dividend
; Rl = divider
; Outputs
RO = quotient
; R1 = remainder
PUSH {R2-R4} ; Save registers to stack
MOV R2, RO ; Save dividend to R2 as RO will be changed
MOVS R3, #0x1 ; loop control
LSLS R3, R3, #31 ; N = 0x80000000
MOVS RO, #0 ; initial Quotient
MOVS R4, #0 ; initial Tmp
simple_divide_loop
LSLS R2, R2, #1 ; Shift dividend left by 1 bit, MSB go into carry
ADCS R4, R4, R4 ; Shift Tmp left by 1 bit, carry move into LSB
CMP R4, R1
BCC simple_divide_Tlessthan
ADDS RO, RO, R3 ; Increment quotient
SUBS R4, R4, RI
simple_divide_lessthan
LSRS R3, R3, #1 ; N=N>>1

BNE simple_divide_1loop

MOV R1, R4 ; Put remainder in R1, Quotient is already in RO
POP {R2-R4}; Restore used register

BX LR ; Return

This simple example does not handle signed data and there is no special handling for
divide-by-zero case. If handling of signed data division is needed, you can create wrapper
to convert the dividend and divisor into unsigned data first, and then run the unsigned
divide, and convert the result back to signed value afterward.

6.5.4 Unsigned Integer Square Root

Another mathematical calculation that is occasionally needed in embedded system is
square root. Since square root can only deal with positive numbers (unless complex
number are used), the following example only handles unsigned integers. For the
following implementation (Figure 6.8), the result is rounded to the next lower integer.

The corresponding assembly code can be written as:

simple_sqrt
Input : RO
; Output : RO (square root result)
PUSH {R1-R3} ; Save registers to stack

162 Chapter 6

MOVS R1, {0x1 ; Set Toop control register
LSLS R1, R1, #15 ; R1 = 0x00008000
MOVS R2, #0 ; Initialize result

simple_sqrt_loop
ADDS R2, R2, Rl ; M= M+ N)

MOVS R3, R2 ; Copy (M + N) to R3
MULS R3, R3, R3 ; R3 =M+ N) "2
CMP R3, RO

BLS simple_sqrt_lessequal

SUBS R2, RZ, Rl ; M= (M- N)
simple_sqrt_lessequal
LSRS RI, RI, #1 ; N =N >>1

BNE simple_sqrt_loop

MOV RO, R2 ; Copy to RO and return
POP {R1-R3}

BX LR ; Return

Loop control
and bit mask

N = 0x8000

Initial result

Result too big,
restore previous
result

Try a smaller bit
mask

Check if all bits been
tested

y

Figure 6.8
Simple unsigned integer square root function.

6.5.5 Bit and Bit Field Computations

Bit data processing is very common in microcontroller applications. From the previous
divide example code we have already seen some basic bit computation on the Cortex-M0/
MO+ processor. In here we will cover a few more examples of bit and bit field processing.

To extract a bit from a value stored in a register, we first need to determine how the result
would be used. If the result is to be used for controlling conditional branch, the best solution

Instruction Usage Examples 163

is to use shift or rotate instruction to copy the required bit in Carry flag in the APSR, and
then carry out the conditional branch using a BCC or BCS instruction. For example,

LSRS RO, RO, #<n+1> ; Shift bit “n” into carry flag in APSR
BCS <{Tabel> ; branch if carry is set

If the result is going to be used for other processing, then we could extract the bit by a
logic shift operations. For example, if we need to extract bit 4 in the register RO, this can
be carried out by:

LSLS RO, RO, {#27 ; Remove un-needed top bits
LSRS RO, RO, #31 ; Move required bit into bit 0

This extraction method can be generalized to support extraction of bit fields. For example,
if we need to extract a bit field in a data with “W” bits wide, starting with bit position “P”
(LSB of the bit field), we can extract the bit field using:

LSLS RO, RO, #(32-W-P) ; Remove un-needed top bits
LSRS RO, RO, #(32-W) ; Align required bits to bit 0

For example, if we need to extract an 8-bit width bit field from bit 4 to bit 11, we can use:

LSLS RO, RO, #(32-8-4) ; Remove un-needed top bits
LSRS RO, RO, #(32-8) ; Align required bits to bit 0

The operation is illustrated in Figure 6.9.

Required bit field

31 11 4 0
\j ‘
1

LSLS RO, RO,#(32-8-4)
left 20 bits

L
31 24 " 4 0
removed
<« | | | 20bisof0shiftedin

S

LSRS RO, RO #(32-8)

JL

Right 24 bits ;o
removed
BN 24 bits of O shiftedin ||
Figure 6.9

Bit field extract operation.

164 Chapter 6

In a similar way, we can clear bit field in a register by a few shift and rotate instructions:
RORS RO, RO, 4 ; Shift unneeded bit to bit 0
LSRS RO, RO, #8 ; Align required bits to bit 0
RORS RO, RO, #(32-8-4) ; store value to original position

The operation is illustrated in Figure 6.10.

Bit field to be cleared

31 11 4 0

LL

Rotate right by 4 bits
(RORS RO, RO,#4)

Bit field to be
clear rotated
to LSB

Bit field
Bit field shifted 23 @ removed
out and 31 24 2019 0
replaced by 0
|

RORS RO, R0,#20

Rotate value to @

restore original 31 12 11 4 0
position
— o
Figure 6.10

Bit field clear operation.

For masking of other bit patterns, we can use BICS (Bit Clear) instruction. For example,

LDR R1, =Bit_Mask ; Bit to clear
BICS RO, RO, RI1 ; Clear bits that are not required

The “Bit_Mask” is a value reflecting the bit pattern you want to clear. The BICS
instruction does not have any limitation of the bit pattern to be cleared, but it might
require slightly larger program size as the program might need to store the value of
“Bit_Mask” pattern as a word size constant.

Memory System

7.1 Memory Systems in Microcontrollers

All processor systems need memories. In typical microcontrollers we need Non-Volatile
Memory (NVM) for program storage, such as flash memories or mask ROM, as well as
memory space such as SRAM (Static Random Access Memory) in which we can easily
write and read back. SRAM is typically used for data variables, stack memory, as well as
heap memory for dynamic memory allocation (e.g., when using alloc() function in C
language).

In most microcontrollers, you can find these memories integrated in the microcontroller
chip. This makes these microcontrollers much easier to use (requires fewer external
connections and reduces costs for the final embedded products). However, the on-chip
flash and SRAM memory sizes are limited. Many low cost microcontrollers have around
128 KB (or less) of flash memory and around 32 KB (or less) of SRAM size.

A number of microcontrollers also have a boot loader ROM which enables the
microcontroller to execute a small program provided by the Micro-Controller Unit (MCU)
vendor before starting the user applications stored in the flash memory. The boot loader
ROM might provide various boot options and flash programming utility, as well as setting
up factory calibration data for internal clock source calibration, or calibration data for
internal voltage references. Some of the microcontroller designs do not allow the boot
loader to be modified or erased by the software developers.

If the project requires more memories in the system, the system designer would need to
select a microcontroller product which supports external memory interface. Please note
that many microcontroller products are not designed to support off-chip memory systems.
Even with microcontrollers that support external memories, each memory access to the
off-chip memory system can take multiple clock cycles, and therefore the system
performance is likely to be lower than placing all data in the on-chip memory systems.

Traditional microcontrollers require separate NVM and SRAM because NVM-like flash
memories require a complex programming sequence to update, therefore is not suitable for
data storage (e.g., data variables, stack, which need to be updated very frequently).

Recently, some microcontroller products start to use FRAM (Ferroelectric RAM) or
MRAM (Magnetoresistive RAM). These technologies enable a single memory block to be

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00007-2
Copyright © 2015 Elsevier Inc. All rights reserved. 1 65

http://dx.doi.org/10.1016/B978-0-12-803277-0.00007-2

166 Chapter 7

used for both program code and data storage, and have the advantage that the memory
system can be powered down completely and then resume operations without losing the
data in the RAM (traditional approach requires the SRAM to be put into a state retention
mode which still incurs leakage current). While existing Cortex®-M processor-based
microcontroller products do not use these memory technologies, this can be done (and
have been demonstrated experimentallyl) as the Cortex-M processors do not restrict the
types of memory technologies used for the implementation.

One important aspect of NVM memories in microcontrollers is that many NVM technologies
are relatively slow compared to SRAM access speed. As a result, the bus interface for the
flash memories or FRAM memories needs to insert wait states to the bus system when the
processor bus is running faster than the maximum access speed of the memory. For example,
typically on-chip flash memory has access speed ranged from 25 to 50 MHz (some high-
speed flash memory technologies can run at over 100 MHz, but they are rarely used for ultra
low power microcontroller devices as their power consumption is relatively high).

7.2 Bus Systems in the Cortex”-MO and Cortex-MO+ Processors

The Cortex-MO and Cortex-MO+ processors have a 32-bit system bus interface with 32-bit
address lines (4 GB address space). The system bus is based on a bus protocol called
AHB-Lite (Advanced High-performance Bus), which is a protocol defined in the AMBA®
(Advanced Microcontroller Bus Architecture) standard. The AMBA standard is developed
by ARM® and is widely used in semiconductor industry.

The system bus interface is a generic design that can be connected to different types of
memories with suitable memory interface logic. The bus interface can support read/write
transfers with 32-, 16-, and 8-bit data, and support wait states and slave responses (can be
OKAY or ERROR). Technically the memory devices connected to the processor can be any
size and can be different width. For example, the memory devices can be 8-bit, 16-bit, or
64-bit memory, but would require additional hardware to bridge between different bus sizes.
Typically 32-bit on-chip memories are used to keep the design’s complexity at minimum.

While the AHB-Lite protocol provides high-performance accesses to the memory system,
very often a secondary bus segment can also be found for slower devices including
peripherals, as shown in Figure 7.1. In ARM microcontrollers, the peripheral bus system is
normally based on the APB (Advanced Peripheral Bus) protocol. The APB is connected to
the AHB-Lite via a bus bridge and may run at a different clock speed compared to the
AHB system bus. The data path on the APB is also 32-bit, but the address lines are often
less than 32-bit as the peripheral address space is relatively small.

' http://www.electronicsweekly.com/news/design/embedded-systems/isscc-cortex-m0-sleeps-on-nothing-and-
wakes-in-400ns-2013-02/.

http://www.electronicsweekly.com/news/design/embedded-systems/isscc-cortex-m0-sleeps-on-nothing-and-wakes-in-400ns-2013-02/
http://www.electronicsweekly.com/news/design/embedded-systems/isscc-cortex-m0-sleeps-on-nothing-and-wakes-in-400ns-2013-02/

Memory System 167

Microcontroller

32-bit System bus (AHB Lite)

T JC JCc C

Program Memory
(e.g. Flash)

Cortex-MO

Data Memory
(e.g. SRAM)

External memory
interface

Bus Bridge

\ 32-bit Peripheral bus (APB) ‘

oC JC JF JF

Peripheral
(e.g. 1/0)

External bus
(optional)

Peripheral
(e.g. Timer)

Peripheral
(e.g. UART)

Peripheral
(e.g. Watchdog timer)

Figure 7.1
Separation of system and peripheral bus in a simple 32-bit microcontroller.

Due to the separation of main system bus and peripheral bus, and in some cases with
separated clock frequency controls, an application might need to initialize some clock
control hardware in the microcontroller before accessing some of the peripherals. In some
cases, there can also be multiple peripheral bus segments in a microcontroller running at
different clock frequencies. Beside from allowing some part of the system running in a
slower speed, the separation of bus segments also provide possibilities of power reduction
by allowing clock signal to a peripheral system to be stopped completely.

Depending on the microcontroller designs, some high-speed peripherals might be
connected to the AHB-Lite system bus instead of the APB. This is because the AHB-Lite
protocol requires less number of clock cycles for each transfer when compared to the
APB. The bus protocol behavior affects the system operation and programmer’s view on
the memory system in a number of ways. This will be covered in Section 7.9.

7.3 Memory Map
7.3.1 Overview

The 4 GB memory space of the Cortex®-MO and Cortex-MO+ processors is architecturally
divided into a number of regions (Figure 7.2). Each region has its recommended usage,
and the memory access behavior could be dependent on which memory region you are
accessing to. This memory region definition helps software porting between different
ARM® Cortex microcontrollers as they all have the similar arrangements.

168 Chapter 7

Memory map of the

Memory map Private Peripheral Bus

OxFFFFFFFF OxEOOFFFFF
ROM Table
Reserved 0xEOOFF000
0xE0100000 O0XEOOFEFFF
Debug Control
OXEOOFFFFF Internal Private Peripheral OxE000EDOO
Reserved
0xE0000000 Bus NVIC
OXDFFFFFFF XEO00F000 (Nested Vectored
System Control Space Interrupt Controller) | oxE000E100
0xC0000000) (SCs) 0xE000E000 Reserved 0xE000E020
——————— External device ------- . -
O0xBFFFFFFF SysTick Timer 0xEO000E010
Reserved
0xE00030 Reserved 0xE000E000
0xA0000000 BP
Ox9FFFFFFF (Breakpoint unit) 0xE0002000
DWT (Data
0x80000000 RAM Watchpoint unit) 0xE0001000
O0x7FFFFFFF
Reserved
0xE0000000
0x60000000
0x5FFFFFFF
Peripheral
0x40000000
Ox3FFFFFFF
SRAM
0x20000000
0x1FFFFFFF
Code
0x00000000
Figure 7.2

Architecturally defined memory map of the Cortex®-M0/MO0+ processor.

Although having an architectural defined memory map, the actual usage of the memory map
is very flexible. There are only a few limitations, for example: a few memory regions which
are allocated for peripherals do not allow program code execution, and there are a number
of internal components that have fixed memory addresses to ensure software portability.

Next we will have a look into the usage of each region.

7.3.2 Code Region (0x00000000—0x1FFFFFFF)

The size of the code region is 512 MB. It is primarily used to store program code,
including the initial exception vector table at address 0x00000000 which is a part of the
program image. This region can also be used for data memory (connection to RAM).

7.3.3 SRAM Region (0x20000000—0x3FFFFFFF)

The SRAM region is the located in the next 512 MB of the memory map. It is primarily
used to store data, including stack. It can also be used to store program codes. For
example, in some cases you might want to copy program codes from slow external

Memory System 169

memory to the SRAM and execute it from there. Despite the name given to this region is
called “SRAM,” the actual memory devices being used could be SRAM, SDRAM or other
types or read—write memory.

7.3.4 Peripheral Region (0x40000000—0x5FFFFFFF)

The Peripheral region also has the size of 512 MB. It is primarily used for peripherals, and
can also be used for data storage. However, program execution is not allowed in the
Peripheral region. The peripherals connected to this memory region can either be
AHB-Lite peripheral or APB peripherals (via a bus bridge).

7.3.5 RAM Region (0x60000000—0x9FFFFFFF)

The RAM region consists of two 512 MB blocks, which results in total of 1 GB space.
Both 512 MB memory blocks are primarily used to stored data, and in most cases the
RAM region can be used as a 1 GB continuous memory space. The RAM region can also
be used for program code execution. The only differences between the two halves of the
RAM region are the memory attributes, which might cause differences in caching behavior
if a system level cache (level-2 cache) is used. More about memory attributes will be
covered in later part of this chapter.

7.3.6 Device Region (0xA0000000—0xDFFFFFFF)

The external device region consists of two 512 MB memory blocks, which results in a
total of 1 GB space. Both 512 MB memory blocks are primarily used for peripherals and
I/0 usages. The device region does not allow program execution, but it can be used for
general data storage. Similar to the RAM region, the two halves of the device region have
different memory attributes.

7.3.7 Internal Private Peripheral Bus (OxEO000000—0xEOOFFFFF)

The internal Private Peripheral Bus (PPB) memory space is allocated for peripherals inside
the processor, such as the interrupt controller Vectored Interrupt Controller (NVIC), as
well as the debug components. The internal PPB memory space is 1 MB in size, and
program execution is not allowed in this memory range.

Within the PPB memory range, a special range of memory is defined as the System Control
Space (SCS). The SCS address is from 0xEOOOE000 to OxEOOOEFFF. It contains the
interrupt control registers, system control registers, debug control registers, etc. The NVIC
registers are part of the SCS memory space. The SCS also contains an optional timer called
the SysTick. This will be covered in Chapter 10 (Section 10.3, The SysTick Timer).

170 Chapter 7

7.3.8 Reserved Memory Space (OxEO0100000—O0xFFFFFFFF)

The last section of the memory map is a 511 MB reserved memory space. This may be
used in some microcontrollers for microcontroller vendor specific usages.

7.3.9 System Level Design

Although all the Cortex-M Processors have this fixed memory map, the usage of the
memory is very flexible. For example, it can have multiple SRAM memory blocks placed
in SRAM region as well as other locations like the CODE region, and it can also execute
program code from external memory components located in CODE/SRAM/RAM region.
Microcontroller vendors can also add their own system level memory features like system
level cache if needed.

So how does the memory map of a typical real system look like?

For a typical microcontroller developed with the Cortex-M0/MO+ processor, normally you
can find:

* Flash memory (for program code)

* Internal SRAM (for data)

* Internal peripherals

» External memory interface (for external memories as well as external peripherals, optional)
* There could also be other external peripherals interface

After putting all these components together, an example microcontroller could be
illustrated as in Figure 7.3, with the nonexecutable memory regions highlighted in yellow.

Figure 7.3 shows some of the possibilities of how memory regions can be used. However,
in many low cost microcontrollers the system designs do not have any external memory
interface or SD (Secure Digital) card interface. In these cases, some of the memory
regions like the external RAM or the external device regions might be unused.

7.4 Program Memory, Boot Loader, and Memory Remapping
7.4.1 Program Memory and Boot Loader

In microcontroller products, usually the program memory of the Cortex®-MO or
Cortex-MO+ processor is implemented with on-chip flash memory. However, it is also
possible that the program is stored externally or using other types of memory devices (e.g.,
external Quad SPI flash, EEPROM).

When the Cortex-M processor comes out of reset, it accesses the vector table in address
zero for initial Main Stack Pointer value and reset vector value, and then starts the

Memory System 171

Microcontroller Peripheral
bus
Cortex-MO / Cortex-MO+ =l o)
processor
(Internal PPB region) @ 110 >
NVIC | | Debug AHB to APB
bridge
(Peripheral region) @ UART | V\
= =
[System bus |
I C . X
(o UART (-
O”nf:r'sofr';‘/‘sr‘ On chip SRAM
(CODE region) (SRAM region) A e b \
v/ \r /
M .
External Memory SD Card (1 Timer
Interface interface
(RAM, Device (Device/RAM
regions) region) @ Timer
(Peripheral region)

I |
== I C SD card
External SRAM,
Flash LCD module

RAM . (Device region)
(regsion) Non-executable memories

Figure 7.3
Example usage of various memory regions in a microcontroller design.

program execution from the reset vector. In order to ensure the system start up correctly, a
valid vector table and a valid program memory must be available in the system to prevent
the processor from executing rogue program code. In many designs the required vector
table and boot code are provided by a flash memory starting from address zero. However,
an off-the-shelf microcontroller product might not have any program in the flash memory
before it is programmed. In order to allow the processor start up correctly, some Cortex-M
microcontrollers come with a boot loader, a small program located on the microcontroller
chip that executes after power-up and branch to the user’s application in the flash memory
only if the flash is programmed.

The boot loader is preprogrammed by the chip manufacturer. Sometimes it is stored on the
on-chip flash memory with a memory section separated from user applications (to allow
update of user program without affecting the boot loader), or stored on an NVM separated

172 Chapter 7

from the user programmable flash memory. The boot loader feature is not always needed,
even if the microcontroller does not boot up correctly due to the lacking of a valid
program image in the flash memory, a debugger can still be able to connect to the
processor via a debug connection and reprogram the flash memory.

7.4.2 Memory Remap

When a boot loader is present, it is possible that the microcontroller vendor would
implement a memory map switching feature called “remap” on the system bus. The
switching of the memory map is controlled by a hardware register, which is programmed
when the boot loader is executed. There are various types of remap arrangements. One
common remap arrangement is to allow the boot loader to be mapped to the start of the
memory during power-up using address alias, as shown in Figure 7.4.

Memory map at power up Memory map after remap
with remap turned on turned off
Boot loader turn off
remap (address alias),
Boot loader Processor fetch reset Boot loader and execute user
CODE vector'from boot loader CODE application if flash is
region alias and start region programmed.
executing boot loader
User : User
flash flash
Address Boot loader alias Address
0x00000000 T 0x00000000 4
Figure 7.4

An example of memory-remap implementation with boot loader.

The boot loader might also support additional features like hardware initialization (clock
and PLL setup), supporting of multiple boot configurations, firmware protection or even
flash erase utilities. The memory remap feature is implemented on the system bus and is
not a part of the Cortex-M0/MO+ processor, therefore different microcontrollers from
different vendors have different implementations.

Another common type of remap features implemented on some ARM microcontrollers
allows an SRAM block to be remapped to address 0x0 (Figure 7.5). Normally NVM used
on microcontrollers like flash memory is slower than SRAM. When the microcontroller is
running at high clock rate, wait states would be required if the program is executed from
the flash memory. By allowing an SRAM memory block to be remapped to address 0x0,
then the program can be copied to SRAM and execute at maximum speed. This also
avoids wait states in vector table fetch which affects interrupt latency.

Memory System 173

Memory map before SRAM is Memory map after SRAM is
remapped remapped
SRAM (data) SRAM (data)

Processor copies
SRAM (code) |V program code into SRAM (code)

SRAM, and then remap

SRAM to 0x0

SRAM is remapped to
address 0x0 for zero
wait state accesses.

User flash

User

Il SRAM (code
Address lash Address aliegs)
0x00000000 0x00000000 4
Figure 7.5

A different example of memory-remap implementation—SRAM for fast program accesses.

In some other cases, the memory remapping technique is being used in Cortex-MO
microcontrollers to allow the vector table (see Section 8.5 in Chapter 8) to be modified
dynamically during runtime. For this usage, a small part of the SRAM can be mapped

into address 0x0 as an address alias and used for storing vector table entries. Since the
Cortex-MO0+ processor has the vector table relocation feature (see Section 9.2.4 Vector
Table Offset Register in Chapter 9), the system level memory remap is not essential
because the users can define part of the on-chip SRAM or user flash memory as vector table.

7.5 Data Memory

The data memory in Cortex®-M processors is used for software variables, stack memory,
and in some cases, heap memory. Sometimes local variables in C functions could be
stored onto the stack memory. The heap memory is needed when the applications use C
functions that require dynamically allocated memory space (e.g., alloc(), malloc()
functions). Other data variables like global variables and static variables are normally
statically allocated in the beginning of the RAM space.

In most embedded applications without Operating Systems (OS), only one stack is used
(only the Main Stack Pointer is required). In this case the data memory can be arranged as
shown in Figure 7.6.

Since the stack operation is based on full descending stack arrangement, and heap memory
allocation is ascending, it is common to put the stack at the end of the memory block and
heap memory just after normal memory to get the most flexible arrangement.

For embedded applications with embedded OS, each task might have their own stack
memory range (see Figure 3.9 in Chapter 3). It is also possible that each task has its own

174 Chapter 7

Address
O0x3FFFFFFF
Stack grow
SRAM direction Stack space
region
SRAM
Heap grow Heap data
direction
Address Data
0x20000000 (e.g. Global variables,
static data, data
structures)
Figure 7.6

An example of common SRAM usage.

allocated memory space, with each memory space containing a memory layout which
consists of stack, heap, and data.

7.6 Little Endian and Big Endian Support

The Cortex®-MO0 and Cortex-MO-+ processors support either little endian or big endian
memory format. The choice is made by the microcontroller vendor when the chip is
designed, and cannot be changed by embedded programmers. Software developers must
configure their development tools project options to match the endianness of the targeted
microcontroller.

The big endian mode supported on the Cortex-M0O/MO+ processor is called Byte-Invariant
big endian mode, or “BES8” big endian mode. It is one of the big endian modes in ARM
architectures. Traditional ARM processors like ARM7TDMI " use a different big endian
mode called Word-Invariant big endian mode, or “BE32.” The difference between the two
is on the hardware interface level and does not affect programmer’s view.

Most of the Cortex-M Processor-based microcontrollers are using little endian
configuration. With little endian arrangement, the lowest byte of a word-size data is stored
in bit 0 to bit 7 (Figure 7.7).

While in big endian configuration, the lowest byte of a word-size data is stored in bit 24 to
bit 31 (Figure 7.8).

Memory System

Bits [31:24] [23:16] [15:8] [7:0]
|
0x00000008 | ByteOxB | ByteOxA | Byte9 | Byte8 |
0x00000004 | Byte7 | Byte6 | Byte5 | Byte4 |
0x00000000 | Byte3 | Byte2 | Byte1 | Byte0 |
Figure 7.7
Little endian 32-bit memory.
Bits [31:24] [23:16] [15:8] [7:0]
| |
0x00000008 | Byte8 | Byte9 | ByteOxA | Byte OxB |
0x00000004 | Byte4 | Byte5 | Byte6 | Byte7 |
0x00000000 | ByteO | Bytet | Byt2 | Byte3 |
Figure 7.8

Big endian 32-bit memory.

Both memory configurations support data handling of different sizes. The Cortex-M
processors can generate byte, half-word, and word transfers. When the memory is
accessed, the memory interface selects the data lanes based on the transfer size and the
lowest 2 bits of the address. For little endian systems, the data access can be illustrated by
the following diagram (Figure 7.9).

Similarly, a big endian system support data access of different size (Figure 7.10).
Note that there are two exceptions in big endian configurations:

1. the instruction fetch is always in little endian, and
2. the accesses to PPB address space are always in little endian.

7.7 Data Type

The Cortex®-M processors support different data types by providing various memory
access instructions for different transfer sizes, and by providing a 32-bit AHB-Lite
interface which supports 32-bit, 16-bit, and 8-bit transfers. For example, in C language
development, the following data types are commonly used (Table 7.1).

176 Chapter 7

Address

0x00000000

0x00000000

0x00000002

0x00000000

0x00000001

0x00000002

0x00000003

Address

0x00000000

0x00000000

0x00000002

0x00000000

0x00000001

0x00000002

0x00000003

Size Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Word | Data[31:24] | Data[23:16] | Data[15:8] | Data[7:0] |
Halfword | \ Data[15:8] | Data[7:0] |
Half word | Data[15:8] | Data[7:0] |
Byte | \ \ | Data[7:0] |
Byte 1 \ Data[7:0]
Byte 5 | Data[7:0] |
Byte | Data[7:0] | \

Figure 7.9

Data access in little endian system.

Size Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Word | Data[7:0] | Data[15:8] | Data[23:16] | Data[31:24] |

Halfword | Data[7:0] | Data[15:8] |

Halfword | \ Data[7:0] | Data[15:8] |

Byte | Data[7:0]

Byte ? | Data[7:0] | \

Byte 5 \ Data[7:0]

Byte | \ \ | Data[7:0] |
Figure 7.10

Data access in big endian system.

Table 7.1: Commonly used data types in C language development

Type Number of bits in ARM® Instructions

“char”, “unsigned char” 8 LDRB, LDRSB, STRB

“enum” 8/16/32 (smallest is chosen) LDRB, LDRH, LDR,
STRB, STRH, STR

“short”, “unsigned short” 16 LDRH, LDRSH, STRH

“int”, “unsigned int” 32 LDR, STR

“long”, “unsigned long” 32 LDR, STR

Memory System 177

If “stdint.h” in C99 is used, the following commonly used data types are available
(Table 7.2).

Table 7.2: Commonly used data types provided in “stdint.h” in C99

Type Number of bits in ARM® Instructions
“int8_t”, “uint8_t” 8 LDRB, LDRSB, STRB
“int16_t”, “uint16_t” 16 LDRH, LDRSH, STRH
“int32_t”, “uint32_t” 32 LDR, STR

For other data type that requires larger size (e.g., int64_t, uint64_t), the C compilers
automatically convert the data transfer into multiple memory access instructions.

Note that for peripheral register accesses, the data types being used should match the
hardware register sizes. Otherwise the peripheral might ignore the transfer or not
functioning as expected. In most cases, peripherals connected to the peripheral bus (APB)
should be accessed using word-size transfers. This is due to the fact that APB protocol
does not have transfer size signals, hence all the transfers are assumed to be word size.
Therefore peripheral registers accessed via the APB are normally declared as “volatile
unsigned integer” or “volatile uint32_t” if “stdint.h” is used.

7.8 Memory Attributes and Memory Access Permission

The Cortex®-M Processors can be used with a wide range of memory systems and
devices. In order to make porting of software between different devices easier, a number
of memory attribute settings are available for each regions in the memory map. Memory
attributes are characteristics of the memory accesses; they can affect data and instruction
accesses to memory as well as accesses to peripherals.

In the ARMv6-M architecture, which is used by the Cortex-MO and Cortex-M0O-+
processors, a number of memory access attributes are defined for different memory regions
(these attributes are also available on ARMv7-M architecture):

Executable—The executable attribute defines whether program execution is allowed in
that memory region. If a memory region is defined as nonexecutable, in ARM
documentation it is marked as eXecute Never (XN).

Bufferable—When a data write is carried out to a bufferable memory region, the write
transfer can be buffered, which means the processor can continue to execute next
instruction without waiting for the current write transfer to complete.

Cacheable—If a cache device is present on the system, it can keep a local copy of the
data during a data transfer, and reuse it next time the same memory location is accessed
to speed up the system. The cache device can be a cache memory unit, or could be a
small buffer in a memory controller.

178 Chapter 7

Shareable—The shareable attribute defines whether a memory region can be accessed
by more than one processor. If a memory region is shareable, the memory system needs
to ensure coherency between memory accesses by multiple processors in this region.

For most users of the Cortex-MO0 and Cortex-M0+ processor-based products, only the XN
attribute is relevant as it defines which regions can be used for program execution. The
other attributes are used only if cache unit or multiple processors are used. Since the
Cortex-MO and Cortex-MO+ processors do not have an internal cache unit, in most cases
these memory attributes are not used. If a system level cache is used, or when the memory
controller has a build-in cache, then these memory attributes signals exported by the
processor via the AHB interface could be used.

Base on the memory attributes, various memory types are architecturally defined, and is
used to define what type of devices could be used in each memory region:

Normal memory—Normal memories can be shareable or nonshareable, and can be
either cacheable or noncacheable. For memories with cacheable, the caching behavior
can be further divided into Write Through (WT) or Write Back Write Allocate
(WBWA).

Device memory—Device memories are noncacheable. They can be shareable or
nonshareable.

Strongly Ordered (SO) memory—A memory region that is nonbufferable, noncache-
able and transfer to/from SO region takes effect immediately. Also, the orders of SO
transfers on the memory interface must be identical to the orders of the corresponding
memory access instructions (i.e., no access reordering for speed optimization—please
note that the Cortex-MO0 and Cortex-MO0+- processors do not have such access
reordering feature anyway). SO memory regions are always shareable in terms of
architectural definition.

The memory attribute and memory types for each memory region in the Cortex-M
processors are defined in the architecture (Table 7.3), and the attribute for some of the
regions can be overridden with configuration settings in the MPU (Memory Protection
Unit) if available. During the memory accesses, the memory attributes are exported from
the processor to the AHB system, which can be used by a system level cache controller
(L2 cache) when applicable.

The PPB memory region is defined as SO. This means the memory region is nonbufferable
and noncacheable. In the Cortex-M0 and Cortex-M0+ processors, operations following an
access to SO region are not started until the access is completed. This behavior is important
for changing registers in the SCS, where we often expected the operations of changing a
control register should take place immediately before next instruction is executed. Please
note that memory attributes and permissions for SCS cannot be changed by MPU.

Memory System 179

Table 7.3: Default memory attribute map defined by the architecture

Memory

Address Region type Cache XN Shareable Descriptions

0x00000000— CODE Normal WT - - Memory for program code

0x1FFFFFFF including vector table

0x20000000— SRAM Normal WBWA - - SRAM, typically used for

0x3FFFFFFF data and stack memory

0x40000000— Peripheral Device - XN — Typically used for on-chip

O0x5FFFFFFF devices

0x60000000— RAM Normal WBWA - - Normal memory with

0x7FFFFFFF Write Back, Write Allocate
cache attributes

0x80000000— RAM Normal WT - - Normal memory with

Ox9FFFFFFF Write Through cache
attributes

0xA0000000— Device Device — XN S Shareable device memory

0xBFFFFFFF

0xC0000000— Device Device - XN — Nonshareable device

O0xDFFFFFFF memory

0xE0000000— PPB Strongly - XN S Internal Private Peripheral

OxEOOFFFFF ordered Bus

0xE0100000— Reserved Reserved - - - Reserved (Vendor-specific

OxFFFFFFFF usage)

In some other ARM processors like the Cortex-M3 processor, there can also be default
memory access permission for each region. Since the Cortex-MO processor does not have
separated privileged and nonprivileged (user) access level, the processor is in privilege
access level all the time and therefore does not have a memory map for default memory
access permission. The Cortex-M0+ processor, however, has the optional unprivileged
execution level and therefore has the default access permission as shown in Table 7.4.

In practice, most of the memory attributes and memory type definitions are unimportant
(apart from the XN attribute and access permissions) to users of Cortex-M0 and Cortex-
MO+ microcontrollers. However, if the software code has to be reused on high-end

Table 7.4: Memory access permission

Memory region Default permission Note

CODE, SRAM, Peripheral, Accessible for both privileged Access permission can be

RAM, Device and unprivileged code. overridden by MPU
configurations

System Control Space Accessible for privileged code Cannot be overridden by MPU

including NVIC, MPU, SysTick only. Attempts to access these configurations

registers from unprivileged code
result in HardFault exception.

180 Chapter 7

processors, especially on systems with multiple processors and cache memories, these
details can be important.

7.9 Effect of Hardware Behavior to Programming

The design of the processor hardware and the behavior of the bus protocol affect the
software in a number of ways. In previous section we have already mentioned that
peripherals connected to the APB are usually accessed using word-size transfers due to the
nature of the APB protocol. In this section we will look into other aspects.

7.9.1 Data Alignment

The Thumb® instruction set supported by the Cortex®-MO0 and Cortex-MO-+ processors
can only generate aligned transfers. It means that the transfer address must be a multiple
of the transfer size. For example, a word-size (32-bit) transfer can only access addresses
like 0x0, 0x4, 0x8, 0xC, etc. Similarly, a half-word transfer can only access addresses like
0x0, 0x2, 0x4, etc. All byte data accesses are aligned. Examples of aligned and unaligned
data accesses are shown in Figure 7.11.

Byte Byte Byte Byte Byte Byte Byte Byte
3 2 1 0 3 2 1 0
word } Word transfer upper 3 bytes
lower,
byte
upper half word Word
half word Half word ye ul transfers
@ transfers lower half word
upper
byte
byte lower 3 bytes /
upper
Byte size
lower
transfers orte Half word
transfers
[~ |
Aligned transfers Unaligned transfers

Figure 7.11
Examples of aligned and unaligned transfers (for little endian memory configuration).

If the program executed attempts to generate an unaligned transfer, this will result in a fault
exception and cause the HardFault handler to be executed. In normal cases, C compilers do

Memory System 181

not generate any unaligned transfers, but an unaligned transfer can still be generated if a C
program directly manipulated a pointer (example in Appendix G, Section G.6.3).

Unaligned transfers can also be generated accidentally when programming in assembly
language, for example, when load/store instructions of wrong transfer size is used. In the
case of a half-word data located in address 0x1002, which is an aligned data, it can be
accessed using LDRH, LDRSH, or STRH instructions without problems. But if the
program code used LDR or STR instruction to access this data, an unaligned access fault
would be triggered.

7.9.2 Access to Invalid Addresses

Unlike most 8-bit or 16-bit processors, a memory access to an invalid memory address
generates a fault exception on ARM?® Cortex-M-based microcontrollers. This provides
better program error detection and allows software bugs to be detected earlier.

In an AHB system connected to a Cortex-M processor, the address decoding logic detects
the address being accessed and the bus system response with an error signal if the access
is going to an invalid location. The bus error can be caused by either data accesses or
instruction fetches. When the processor detects the error response, it can trigger a
HardFault exception to handle the error.

One exception to this behavior is the branch shadows for instruction fetch. Due to the
pipeline nature of the Cortex-M processors, instructions are fetched in advance. Therefore
if the program execution reaches the end of a valid memory region and a branch is
executed, there might be chances that the addresses beyond the valid instruction memory
region could have been fetched and result in a bus error response in the AHB system.
However, in this case the bus fault would be ignored if the faulted instruction is not
executed due to the branch.

7.9.3 Use of Multiple Load and Store Instructions

The multiple load and store instructions in the Cortex-M processor can greatly increase the
system performance when used correctly. For example, it can be used to speed up data
transfer processes or can be used as a way to adjust memory pointer automatically.

However, when handling peripheral accesses, typical use of LDM or STM instructions
should be avoided. If the Cortex-MO or Cortex-M0+ processor received an interrupt
request during the execution of LDM or STM instruction, the LDM or STM instruction
will be abandoned and the interrupt service will start. At the end of the interrupt service,
the program execution will return to the interrupted LDM or STM instruction and restart
again from the first transfer of the interrupted LDM or STM.

182 Chapter 7

As a result of this restart behavior, some of the transfers in this interrupted LDM or STM
instruction could be carried out twice. It is not a problem for normal memory devices.
However, if the access is carried on a peripheral, then the repeating of the transfer could
cause error. For example, if the LDM instruction is used for reading a data in a FIFO
(First-In-First-Out) buffer, then some of the data in the FIFO could be lost as the read
operation is repeated.

As a precaution, we should avoid the use of LDM or STM instruction on peripheral
accesses unless we are sure that the restart behavior does not cause incorrect operation to
the peripheral.

7.9.4 Wait States

Some of the memory accesses might take several clock cycles to complete. For example,
the flash memory used in a low power microcontroller might have a maximum access
speed of just around 20 MHz while the microcontroller can run at over 40 MHz. When
this happens, the flash memory interface would need to insert wait states to the bus system
so that the processor will wait for the transfer to complete.

The wait states can affect the systems in a number of ways:

* The performance of the system is reduced.
* The energy efficiency of the system can be reduced because the performance is

reduced.
Performance A

Flash Flash § Flash § Flash

ows 1WS Lo2ws 3WS
‘ ‘ ‘ -
OMHz 20MHz 40MHz 60MHz Clock

frequency
Figure 7.12

Performance of an example system based on the Cortex®-MO processor
with various wait states for flash memory.

Memory System 183

* The interrupt latency of the system increases.
* The system behavior is less deterministic in terms of program execution timing.

For example, assume the flash memory system of an MCU with Cortex-MO processor has
an access speed of 50 ns (20 MHz), the performance curve of the device could look like
the one shown in Figure 7.12.

As you can see from Figure 7.12, the performance is not linear because the flash memory
access speed could limit the maximum performance. In order to solve this problem, many
microcontroller vendors introduce flash prefetch hardware in the design so that multiple
words of instructions are fetched from the flash memory each time, and when the
processor is still consuming the instructions in the buffer, the next set of instruction
fetches can start. This technique reduces the performance drop when the frequency
increases. For example, Figure 7.13 shows the improvement with a simple prefetch logic
design.

Performance A

Flash } Flash } Flash } Flash

oWws 1WS Lo2ws 3Ws
§ § § With prefetch logic
| Without prefetch logic
| | | .

OMHz 20MHz 40MHz 60MHz Clock
frequency
Figure 7.13

Performance comparison for a simple MCU with flash prefetch logic and without prefetch logic.

Further performance improvement is possible with more complex designs or with a system
level cache.

Exceptions and Interrupts

8.1 What are Exceptions and Interrupts?

In most microcontrollers, the interrupt feature enables a peripheral or an external hardware
to send a request to a processor so that the processor can execute a piece of code to
service the request. The process involves suspending the current executing task, or wake
up from sleep mode, and execute the piece of software code called exception handler to
service the request. After the request is serviced, the processor can then resume the
previous interrupted code.

In Figure 8.1:

1. A peripheral generates an interrupt request (IRQ) to the processor.

2. The processor detected and accepted the IRQ. The current executing task is
suspended and some of the status information including Program Status Register
(xPSR) (including APSR flags like carry, overflow, negative sign, and zero) and the
Program Counter (PC) are pushed into the stack alongside with couple of other
registers.

3. The processor locates the starting address of the interrupt handler from the vector table,
and then executes the interrupt handler associated with this IRQ.

4. The processor finishes the handler execution, restores the information previously pushed
to the stack, and resumes the interrupted task.

Program
execution
Processor status and
Thread .
e.g. main() some registers are save Handler
1) & B tostack —WP (3)
\/ (- 2\ - — N
Peripheral R » Processor N Service the
Q — peripheral
(Interrupt — request
Request) N [
Thread | \ %)/ Processor status and ———_ Interrupt
resume some registers are return
restored from the stack
Figure 8.1

Interrupt handling concept.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00008-4
Copyright © 2015 Elsevier Inc. All rights reserved. 185

http://dx.doi.org/10.1016/B978-0-12-803277-0.00008-4

186 Chapter 8

After the interrupt is serviced, the thread or interrupted task can resume operations as
nothing has happened because the status of the processor (e.g., APSR) is saved and
restored by the processor.

In general, interrupt is just one type of exceptions in ARM® Cortex®-M Processors.
Exceptions are events that cause changes in program flow outside normal code sequence.
When it happens, the current executing program would be suspended, and the exception
handler associated with the event would be executed. The events could either be external
or internal. When an event is from an external source, it is commonly known as interrupts
or IRQ. Exceptions and interrupts are supported in almost all modern processors. In
typical microcontrollers, the interrupts can also be generated using on-chip peripherals or
by software.

Before we continue to cover the exception and interrupt topic in details, let us first cover
some common terminologies:

Interrupt Requests (IRQs)—One of the exception types in the Cortex-M processors
which are associates with peripherals including external interrupt inputs via GPIO pins.
The Cortex-MO and Cortex-MO+ processors support up to 32 IRQ inputs.

Non-Maskable Interrupt (NMI)—A special IRQ with highest priority level and cannot
be disabled. Typically generated by peripherals like the watchdog timer or a Brown Out
Detector (BOD). This is exception type 2 in the Cortex-M Processors.

Handlers—The software code that gets executed when an exception occurred is
called exception handler. If the exception handler is associated with an interrupt
event, then it can also be called as interrupt handler, or Interrupt Service Routine
(ISR). The exception handlers are part of the program code in the compiled
program image.

Nested Interrupts—It is common to divide interrupts and exceptions into multiple levels
of priority, and while running an exception handler of a low priority exception, a higher
priority exception can be triggered and get serviced. This is commonly known as nested
exception. Priority level of an exception can be programmable or fixed. Apart from
priority settings, some exceptions (including most interrupts) can also be disabled or
enabled by software.

Nested Vectored Interrupt Controller (NVIC)—A programmable hardware unit inside
the Cortex-M processors to handle the management of interrupts and exception requests.
The NVIC in the Cortex-M0 and Cortex-M0+ processors can support up to 32 IRQ inputs,
an NMI input, and a number of system exceptions including one exception type from the
SysTick (System Tick) timer (Figure 8.2).

Exceptions and Interrupts 187

Microcontroller

Cortex-M processor

Peripheral ~
» NMI / \
_ () Processor
. > NVIC Core
Peripherals <
[] IRQs [System
> < Exceptions
f
SysTick timer

1/0 port

Figure 8.2
The NVIC in the Cortex®-M0 and Cortex-M0+ processors can deal with up to 32 IRQ inputs, an
NMI, and a number of system exceptions.

8.2 Exception Types on the Cortex®-MO and Cortex-MO+ Processors
8.2.1 Overview

The Cortex-MO and Cortex-MO+ processors contain a built-in interrupt controller called
NVIC which supports up to 32 IRQ inputs, an NMI input, and a number of system
exceptions from within the processor. Depending on the design of the microcontroller
product, the IRQ and the NMI can be generated either from on-chip peripherals or from
external sources.

Each exception source in the Cortex-MO or Cortex-M0+ processor has a unique exception
number. The exception number for NMI is 2, and the exception numbers for the on-chip
peripherals and external interrupt sources are from 16 up to 47. The other exception
numbers from 1 to 15 are for system exceptions generated inside the processor, with some
of the exception numbers in this range are not used.

Each exception type also has an associated priority. The priority levels of some exceptions
are fixed and some are programmable. Table 8.1 shows the exception types, exception
number, and priority level.

8.2.2 Non-Maskable Interrupt

The NMI is similar to IRQ, but it cannot be disabled and has the highest priority apart
from the reset. It is very useful for safety critical systems like industrial control or
automotive. Depending on the design of the microcontroller, the NMI could be used for
power failure handling, or can be connected to a watchdog unit to restart a system if the

188 Chapter 8

Table 8.1: List of exceptions in the Cortex-M0 and Cortex-M0+ processors

Exception number Exception type Priority Descriptions

1 Reset -3 (Highest) Reset

2 NMI -2 Non-Maskable Interrupt

3 HardFault -1 Fault handling exception

4-10 Reserved NA -

11 SVCall Programmable Supervisor call via SVC instruction
12—-13 Reserved NA -

14 PendSV Programmable Pendable request for system service
15 SysTick Programmable System Tick Timer

16 Interrupt #0 Programmable External Interrupt #0

17 Interrupt #1 Programmable External Interrupt #1

47 Interrupt #31 Programmable External Interrupt #31

system stopped responding. Since the NMI cannot be disabled by control registers, the
responsiveness is guaranteed.

8.2.3 HardFault

HardFault is an exception type dedicated for handling fault conditions during program
execution. These fault conditions could be trying to execute an unknown opcodes,
fault on bus interface or memory system, or illegal operations like trying to switch to
ARM® state.

8.2.4 SVCall (Supervisor Call)

SVCall exception takes place when the SVC instruction is executed. SVC is usually used
in system with Operating System (OS), allowing applications to access to system services.

8.2.5 Pendable Service Call

Pendable Service Call (PendSV) is another exception for applications with OS. Unlike the
SVCall exception, which must start immediate after the SVC instruction is executed,
PendSV can be delayed. PendSV is commonly used by the OS to schedule system
operations to be carried out only when high priority tasks are completed.

8.2.6 System Tick Timer

The SysTick Timer inside the NVIC is another feature for OS application. Almost all OS
need a timer to generate periodic interrupt for system maintenance works like context
switching. By integrating a simple timer in the Cortex-M processor, porting of OS from

Exceptions and Interrupts 189

one device to another is much easier. The SysTick timer and its exception are optional in
the Cortex-MO and Cortex-MO0+ processors. However, they are included in most
microcontroller implementations.

8.2.7 Interrupts

The number of interrupts supported in a microcontroller based on the Cortex-MO or
Cortex-MO0+ processor could be from 1 to 32. The interrupt signals could be connected
from on-chip peripherals, or from external source via the I/O port. In some cases
(depending on the microcontroller design), the external interrupt number might not match
the interrupt signal number on the Cortex-M processor.

External interrupts need to be enabled before being used. If an interrupt is not enabled, or
if the processor is already running another exception handler with same or higher priority,
the IRQ will be stored in a pending status register. The pended IRQ can be triggered when
the priority level allows and if the interrupt is enabled, for example, when the higher
priority interrupt handler that was blocking the service is completed and returned. The
NVIC can accept IRQ signals in the form of a high logic level, as well as interrupt pulse
(minimum one clock cycle). Note that in the external interface of a microcontroller, the
external interrupt signals can be active high or active low, or can have programmable
configurations.

8.3 Brief Overview of the NVIC

The NVIC is a programmable unit that allows software to manage interrupts and
exceptions. It has a number of memory mapped registers for the following:

* Enabling or disabling of each of the interrupts

* Defining the priority levels of each interrupts and some of the system exceptions

* Enabling the software to access the pending status of each interrupt, including the capa-
bility to trigger interrupts by setting pending status in software.

An additional interrupt masking feature, the PRIMASK special register covered in Section
4.2.2.6, is available to allow software to disable all interrupts and exceptions (apart from
the NMI and HardFault).

The NVIC registers can only be accessed in privileged state. For the NVIC design in
ARMv6-M architecture, including the Cortex®-MO0 and Corex-MO+ Processors, the NVIC
registers must be accessed using aligned 32-bit transfers. To make it easier for software
development, the CMSIS-CORE software framework includes a set of standardized APIs
for interrupt management. This is integrated in the device driver libraries for most
microcontrollers based on the ARM Cortex-M processors.

190 Chapter 8

The ARMv7-M architecture (e.g., Cortex-M3, Cortex-M4, and Cortex-M7 processors) has
additional interrupt masking registers and a set of interrupt active status registers. Full
details on the differences of the NVIC between different Cortex-M processors are covered
in Section 22.5 in Chapter 22.

8.4 Definition of Exception Priority Levels

In the Cortex®-M processors, each exception has a priority level. The priority level affects
whether the exception will be carried out, or waits until later (stay in a pending state). The
Cortex-MO and Cortex-MO+ processors support three fixed highest priority levels for three
of the system exceptions (Reset, NMI, and HardFault) and four programmable levels for
all other exceptions including interrupts. For exceptions with programmable priority levels,
the priority level configuration registers are 8-bit wide, but only the two MSBs are
implemented, as shown in Figure 8.3.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented Not implemented, read as zero

Figure 8.3
A Priority Level Register with 2 bits implemented.

Since bit 5 to bit 0 are not implemented, they are always read as zero, and write to
these bits is ignored. With this setup, we have possible priority levels of 0x00

(high priority), 0x40, 0x80, and 0xCO (low priority). This is very similar to the Cortex-
M3 processor, except that on the Cortex-M3 processor it has at least 3 bits
implemented, and therefore the Cortex-M3 processor has at least eight programmable
priority levels, while the Cortex-MO and Cortex-MO+ processors have only four
programmable levels.

When combine with the three fixed priority levels, the Cortex-M0 and Cortex-MO+
processors have total of seven priority levels, as shown in Figure 8.4.

The reason for removing the LSB of the Priority Level Register instead of the MSB is to
make it easier to port software from one Cortex-M-based device to another. In this way,
a program written for devices with wider priority width registers is likely to be able run
on devices with narrower priority width. If the MSB is removed instead of LSB, you
might get an inversion of priority level arrangement among several exceptions during
porting of the application. This might result in an exception which is expected to have

a lower exception priority preempting another exception which was expected to be
higher priority.

Exceptions and Interrupts 191

Highest priority Implemented
Exception Priority
Levels on Cortex-MO

s > 3
-2 NMI —— -2
-1 Hard Fault —>&— -1
0 3£ o
Architectural
orit
priority range 0x40 3¢ 0x40
0x80 Programmable —>¢ 0x80
Exceptions
0xCO0 —&— 0xCO
_ OxFF
Lowest priority
Figure 8.4

Available priority levels in the Cortex®-M0 and Cortex-M0+ Processors.

If an enabled exception event occurred (e.g., interrupt, SysTick timer) while no other
exception handler is running, and the exception is not blocked due to PRIMASK (the
interrupt masking register, see descriptions in Chapter 4), then it will be accepted by the
processor, and the exception handler will be executed. The process of switching from a
current running task to an exception handler is called preemption.

If the processor is already running another exception handler, but the new exception has
higher priority level than the current level, then preemption will also take place. The
running exception handler will be suspended, and the new exception handler is executed.
This is commonly known as Nested Interrupt or Nested Exception. After the new
exception handler is completed, the previous exception handler can resume execution and
return to thread when it is completed.

However, if the processor is already running another exception handler that has the same
or higher priority level, the new exception will have to wait by entering a pending state.
A pending exception can wait until the current exception level changes, for example, after
the running exception handler completed and returned, and lowering the current priority
level to be below the priority level of the pending exception. The pending status of
exceptions can be accessed via memory-mapped registers in the NVIC. It is possibly to
clear the pending status of an exception by writing to an NVIC register in software. If the
pending status of an exception is cleared, it will not be executed.

192 Chapter 8

If two exceptions happen at the same time and they have the same programmed priority
level, the exception with a lower exception type number will be processed first. For
example, if both IRQ #0 and IRQ #1 are enabled, both have the same priority level and
both get asserted at the same time, IRQ #0 will be handled first. This rule only applies
when the processor is accepting the exceptions, but not when one of these exceptions is
already being processed.

The interrupt nesting support in the Cortex-MO and Cortex-MO0+ Processors does not
require any software intervention. This is different from traditional ARM7TDMI"", as well
as some 8-bit and 16-bit microcontroller architectures where interrupts are disabled
automatically during interrupt services, and require additional software processing to
enable nested interrupt supports.

The ARMv6-M architecture does not support dynamic changing of interrupt priority level
for active/enabled interrupts. If the priority level of an interrupt needs to be changed, it is
normal to disable the interrupt first, change the priority level, and then enable the interrupt
again. This is different from ARMv7-M architecture (e.g., Cortex-M3 and Cortex-M4
Processors), where you can dynamically change the priority level of an active interrupt.

8.5 Vector Table

The interrupt handling in the Cortex®-M Processor is vectored, which means the
processor’s hardware automatically determines which interrupt or exception to service.

After receiving an IRQ of exception event, the processor will need to decide whether to
accept the request, and if yes, it will need to execute the corresponding exception handler
or interrupt handler. And to do that, it will need to know the starting address of the
handler, and the vector table is a lookup table in the memory that provides such
information.

The interrupt handling in the Cortex-M processors is different from the classic ARM®
processors like the ARM7TDMI . In the ARM7TDMI, the starting addresses of the
exception handlers are fixed. Since the ARM7TDMI has only one IRQ input, multiple
IRQs have to share the same IRQ handler starting address, and the IRQ handler has to
access the status of a system level interrupt controller to determine which interrupt to be
serviced and branch to the service function accordingly.

In the Cortex-M processors, the vector table stores the starting address of each exception
and interrupt individually (Figure 8.5). The built-in interrupt controller (NVIC)
automatically decides which interrupt or exception to be serviced first based on the
priority levels and generate a vector so that the processor hardware can look up the
starting address of the exception handler from the vector table.

Exceptions and Interrupts

193

Memory
Address

0x0000004C
0x00000048
0x00000044
0x00000040
0x0000003C
0x00000038
0x00000034
0x00000030
0x0000002C
0x00000028
0x00000024
0x00000020
0x0000001C
0x00000018
0x00000014
0x00000010
0x0000000C
0x00000008
0x00000004
0x00000000

Some of the spaces in the vector table are not used because the Cortex-MO0 and Cortex-
MO+ processors only have a few system exceptions. Some of the unused exceptions are
used on other ARM processors like the Cortex-M3/M4 processor for additional system

exceptions.

By default, the vector table is in address 0x00000000 of the memory space. The vector
table contains the exception vectors (starting address of ISR) for available exceptions in

Exception
Number

Interrupt#3 vector 19

Interrupt#2 vector 18

Interrupt#1 vector 17

Interrupt#0 vector 16

SysTick vector 15

PendSV vector 14

Not used 13

Not used 12
SVC vector 11

Not used 10

Not used 9

Not used 8

Not used 7

Not used 6

Not used 5

Not used 4
HardFault vector 3
NMI vector 2
Reset vector 1
MSP initial value 0
Figure 8.5

Vector table.

Note : LSB of each vector must be
set to 1 to indicate Thumb state

the system, as well as the starting value of the Main Stack Pointer (MSP) in the beginning

of the vector table. The order of exception vector being stored is the same order of the
exception number. Since each vector is one word (4 bytes), the address of the exception

vector is the exception number times four. Each exception vectors is the starting address of
the exception handler, with the LSB set to one to indicate that the exception handler is in

Thumb® code.

194 Chapter 8

The Cortex-MO+ Processor has a vector table relocation feature so that you can define a
different part of the memory space as vector table by programming a hardware register
called VTOR (Vector Table Offset Register). In the Cortex-M0+- processor, the vector
table starting address must have bit 7 to bit O set to 0. In order words, the starting address
must be a multiple of 0x 100 (256 bytes). More details of the VTOR can be found in
Section 9.2.4, Vector Table Offset Register.

8.6 Exception Sequence Overview
8.6.1 Acceptance of Exception Request

The processor accepts an exception if the following conditions are satisfied:

* The processor is not halted for debugging

* For interrupt and SysTick IRQs, the interrupt has to be enabled

* The processor is not running an exception handler of same or higher priority
* The exception is not blocked by the PRIMASK interrupt masking register

Note that for SVCall exception, if the SVC instruction is accidentally used in an exception
handler that has same or higher priority than the SVC exception itself, it will cause the
HardFault exception handler to execute.

8.6.2 Stacking and Unstacking

In order to allow an interrupted program to be resumed correctly, some of the current state
of the processor must be saved before the program execution switch to the exception
handler that services the occurred exception. Different processor architectures have
different ways to do this, in the Cortex®-M processors, the architecture uses a mixture of
automatic hardware arrangement and, only if necessary, additional software steps for
saving and restoring of processor status.

When an exception is accepted on the Cortex-MO or Cortex-M0-+ processor, some of the
registers in the register banks (RO to R3, R12, R14), the return address (PC), and the xPSR
are pushed to the current active stack memory automatically. The Link Register (LR/R14)
is then updated to a special value to be used during exception return (EXC_RETURN, to
be introduced later in this chapter, Section 8.7), and then the exception vector is
automatically located from the vector table and the exception handler starts to execute.

At the end of the exception handler, the exception handler executes a return using the
special value (EXC_RETURN, previously generated in LR) to trigger the exception return
mechanism. The processor checks if there is any other exception to be serviced. If not, the
register values previously stored onto the stack memory are restored and the interrupted
program is resumed.

Exceptions and Interrupts 195

Interrupt cleared
Interrupt occur by ISR

Interrupt ‘A/

Exception
Return
Handler ; L
Exception handler
mode /\i p \
Stacking Unstacking
Thread
mode Main Main
(main program) program program (main program)
interrupted resumed
Time gl
Figure 8.6

Stacking and unstacking of registers at exception entry and exit.

The actions of automatic saving and restoring of the register contents are called “stacking”
and “unstacking” (see Figure 8.6). These mechanisms allow exception handlers to be
implemented as normal C functions, thereby reducing the software overhead of exception
handling, as well as reducing the circuit size (no need to have extra banked registers), and
hence lowering the power consumption of the design.

For the registers not saved by the automatic stacking process, they will have to be saved
and restored by software in the exception handler if they are modified by the exception
handler. However, this does not affect the use of normal C functions as exception handler
because it is a requirement for C compilers to save and restore these other registers
(R4-R11) if they will be modified during the C function execution.

8.6.3 Exception Return Instruction

Unlike some other processors, there is no special return instruction for exception handlers.
Instead, a normal return instruction is used and a special value called EXC_RETURN is
used to trigger the exception return when it is loaded into PC. This mechanism allows
exception handlers to be implemented as a normal C function.
Two different instructions can be used for exception return. They are:

BX <Reg>

; Load a register value into PC. E.g. “BX LR”

And

POP {<Regl>,<Reg2>,.....PC}
being updated

; POP instruction with PC being one of the registers

196 Chapter 8

When one of these instructions is executed with a special value called EXC_RETURN
being loaded into the PC, the exception return mechanism will be triggered. If the value
being load into PC does not match the EXC_RETURN pattern, then it will be executed as
a normal BX or POP instruction.

8.6.4 Tail Chaining

If an exception is in pending state when another exception handler is completed, instead of
returning to the interrupted program and then entering exception sequence again, a tail-
chain scenario will occur. When this happens, the processor will not have to restore all
register values from stack and push them back to the stack again (Figure 8.7). Only a few
memory accesses are made between the switch. The tail chaining of exceptions allows
lower exception processing overhead and hence better energy efficiency.

Interrupt cleared
Interrupt occur by ISR

Interrupt A a’

Interrupt cleared

Interrupt occur by ISR
Interrupt B ‘ }4/
,//Exception Exception
Return Return

Handler
mode

L Exception handler A }—{ Exception handlerB__|
Tail-chaining

Stacking Unstacking
Thread
mode Main N S

(main program) program program (main program)

interrupted resumed

»
. Ll
Time

Figure 8.7
Tail chaining of interrupt service routines.

8.6.5 Late Arrival

Late arrival is an optimization mechanism in some of the Cortex-M processors to speed up
processing of higher priority exceptions. If a higher priority exception occurs during
stacking process of a lower-priority exception, the processor switches to handle the higher
priority exception first (Figure 8.8).

Exceptions and Interrupts 197

Interrupt cleared
Interrupt occur by ISR

Interrupt A
(low priority) Q }A/

Interrupt cleared

Interrupt occur by ISR
Interrupt B —’4/
(high priority) i
Late arrival Exception Exception
(processor switch to Return Return

process interrupt B)

H,igi':r | Exception handler B_|—{ Exception handier A |
Stacking ,5 Unstacking
Thread
mode [Thread |-pain~" Main| Thread
(main program) program program (main program)
interrupted resumed
Time =
Figure 8.8

Late arrival optimization.

Since processing of either interrupt requires the same stacking operation, the stacking
process continues as normal when the late arriving higher priority interrupt occurs. At the
end of the stacking process, the vector for the higher priority exception is fetched instead
of the lower priority one.

Without the late arrival optimization, a processor will have to preempt and enter the
exception entry sequence again at the beginning of the lower-priority exception handler.
This results in longer latency as well as larger stack memory usage.

8.7 EXC_RETURN

The EXC_RETURN is a special architecturally defined value for triggering and
helping exception return mechanism. This value is generated automatically when an
exception is accepted and is stored into the Link Register (LR, or R14) after stacking.
The EXC_RETURN is a 32-bit value, the upper 28 bits are all set to 1, with bit 2 and
bit 3 used to provide information for exception return mechanism, as shown in

Table 8.2.

Bit 0 of EXC_RETURN on the Cortex-M0/MO0+ processor is reserved and must be 1.

Bit 2 of EXC_RETURN indicates whether the unstacking should restore registers from
the main stack (using MSP) or process stack (using Process Stack Pointer (PSP)).

198 Chapter 8

Table 8.2: Bit fields in the EXC_RETURN value

Bits 31:28 27:4 3 2 1 0
Descriptions EXC_RETURN Reserved Return mode Return stack Reserved Processor
indicator state
Value OxF OxFFFFFF 1 (thread) or 0 (main stack) 0 1
0 (handler) or 1 (process stack) (reserved)

Bit 3 of EXC_RETURN indicates whether the processor is returning to Thread mode or
Handler mode.

The valid EXC_RETURN values for Cortex-MO0 and Cortex-M0-+ processors are shown in
Table 8.3.

Table 8.3: Valid EXC_RETURN values for the Cortex-M0 and
Cortex-MO0-+ processors

EXC_RETURN Condition

OxFFFFFFF1 Return to handler mode (nested exception case)
OxFFFFFFF9 Return to Thread mode and use the main stack for return
OxFFFFFFFD Return to Thread mode and use the process stack for return

Since the EXC_RETURN value is loaded into LR automatically at exception entry,

it is handled as a normal return address by the exception handler. If the return

address does not need to be saved onto the stack, the exception handler can trigger

the exception return and return to the interrupted program by executing “BX LR”, just like
a normal function. Alternatively, if the exception handler needs to execute function calls, it
will need to push the LR to the stack. At the end of the exception handler, the stacked
EXC_RETURN value can be load into PC directly by a POP instruction, thus trigger the
exception return sequence and return to the interrupted program.

The following diagrams (Figure 8.9 and Figure 8.10) show the situations where different
EXC_RETURN values are generated and used.

If the thread is using main stack (CONTROL register bit 1 is zero), the value of the LR
will be set to OxFFFFFFF9 when it enters an exception, and OxFFFFFFF1 when a nested
exception is entered, as shown in Figure 8.9.

If the thread is using process stack (CONTROL register bit 1 is set to 1), the value of LR
would be OxFFFFFFFD when entering the first exception and OxFFFFFFF1 for entering a
nested exception, as shown in Figure 8.10.

Exceptions and Interrupts 199
Interrupt #1
(Low priority)
Interrupt #2
(High priority) |
Interrupt Exception
event #2 return
Execution . |
Stacking - .
status | Interrupt Serivce | Exception
| Routine #2 | return
| |
Interrupt tgrrupt Serivce |
Handler event #1 ;ﬂgoutine #1 | |
| | i |
| |
Thread - I ! Ynstacking I
Main program | : : |
| |
I ! ! I
Main Stack Main Stack Main Stack
(| | T 1
| |
Thread mode Handler | Handler | Handler : Thread mode
mode mode | mode |
I |

LR = OXFFFFFFF9 LR = OXFFFFFFF1

Figure 8.9
LR set to EXC_RETURN values at exceptions (main stack is

used in Thread mode).

Interrupt #1
(Low priority)
Interrupt #2
(High priority) |
Exception
/ return
i |
Eﬁ;ﬁf” Stacking } -
: Interrup.t Serivce | Exception
| Routine #2
Interrupt Interrupt/Sérivce
Handler event #1 Routine {#1
e i
| |
| |
Thread - | |
Main program | |
| |
|
Process Stack Main Stack Process Stack
(ke | | 0)
| | | |
Thread mode , Handler | Handler | Handler | Thread mode
| mode | mode | mode |
| | |

LR = OXFFFFFFFD LR = OXFFFFFFF1

Figure 8.10
LR set to EXC_RETURN values at exceptions (process stack

is used in Thread mode).

200 Chapter 8

As a result of EXC_RETURN format, a normal return instruction cannot return to an
address in the range of OxFFFFFFFX, because this will be treated as an exception return
rather than a normal one. However, since the address range OxFXXXXXXX is reserved
and should not contain program code, it is not a problem.

8.8 NVIC Control Registers for Interrupt Control
8.8.1 Overview of NVIC Control Registers

The NVIC interrupt control registers are memory mapped. Their addresses are part of the
System Control Space (SCS), starting from OxEOOOE100. Here you can find the registers
for the following:

* Enabling/disabling interrupts
* Controlling the priority level of interrupts
* Accessing to the pending status of each interrupts

For ARMv6-M architecture (including Cortex®-MO0 and Cortex-MO-+ processors), all these
registers can only be accessed in privileged state and with 32-bit accesses only. In C/C++
programming, these registers can be accessed using pointers, but it is more common and
recommended to the standardized APIs provided in the CMSIS-CORE to handle interrupt
control. CMSIS-CORE software framework is integrated in most of the device driver
libraries for Cortex-M-based microcontroller devices. Using the standard APIs in
CMSIS-CORE makes the program code more portable.

The NVIC in Cortex-M0O and Cortex-MO+ processors supports up to 32 IRQ inputs.
However, in some devices there could be less number of interrupts and therefore of the
bits in the interrupt control registers described in this section might not be implemented.

Please note there is another group of system control registers called System Control Block
(SCB), which share part of the SCS. The SCB contains registers for low power features
and OS support. The OS-related features will be covered in Chapter 10, OS Support
Features.

8.8.2 Interrupt Enable and Clear Enable

The Interrupt Enable control register is a programmable register, which is used to control
the enable/disable of the IRQs (exception 16 and above). The width of this register
depends on how many interrupts are supported, the maximum size is 32 bit and minimum
size is 1 bit. This register is programmed via two separate addresses. To enable an
interrupt, the SETENA address is used, and to disable an interrupt, the CLRENA address
is used, as described in Table 8.4.

Exceptions and Interrupts 201

Table 8.4: Interrupt Enable Set and Clear Register

Address Name Type

Reset value

Descriptions

0xEO00E100 SETENA R/W

0xEOOOE180 CLRENA R/W

0x00000000

0x00000000

Set enable for interrupt 0 to 31. Write
1 to set bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)

Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable
status

Clear enable for interrupt 0 to 31. Write 1
to clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)

Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable
status

Separating the set and clear operations in two different addresses has various advantages.
First, it reduces the steps needed for enabling an interrupt, thus getting small code and
shorter execution time. For example, to enable interrupt #2, we only need to program the

NVIC with one access:

*((volatile unsigned long *)(0xEQ00E100))

Or in assembly

LDR RO,=0xEO00EL00 ;
MOVS R1,{#f0x4
STR R1,[RO]

Setup address in RO
; interrupt #2
; write to set interrupt enable

=0x4; //Enable interrupt #2

The second advantage is that this arrangement prevents race condition between
multiple application processes that can result in losing of programmed control
information. For example, if the enable control is implemented using a simple read/
write register, a read-modify-write process is required for enabling an interrupt,

e.g., interrupt #2 in this case, and if between the read operation and write operation,
an interrupt occurred and the ISR changed another bit in the interrupt enable register,
the change done by the ISR could be overwritten when the interrupted program

resumed.

Clearing of interrupt enable can be done with similar code, only the address is different.

For example, to disable interrupt #2:

*((volatile unsigned lTong *)(0xE000E180))

=0x4; //Disable interrupt {2

202 Chapter 8

Or in assembly

LDR RO,=0xEQ00E180 ; Setup address in RO
MOVS R1,#0x4 ; interrupt #2
STR R1,[RO] ; write to clear interrupt enable

In normal application development, it is best to use NVIC control functions provided in
the CMSIS compliant device driver library to enable or disable interrupts. This gives your
application code the best software portability. CMSIS-CORE is part of the device driver
library from your microcontroller vendor and is covered in Chapter 4. To enable or disable
interrupt using CMSIS, the functions provided are:

// Enable Interrupt — IRQn value of 0 refer to Interrupt #0
void NVIC_EnableIRQ(IRQn_Type IRQn);
// Disable Interrupt — IRQn value of 0 refer to Interrupt #0
void NVIC_DisableIRQ(IRQn_Type IRQn);

8.8.3 Interrupt Pending Set and Clear Register

If an interrupt takes place but cannot be processed immediately, for example, if the
processor is serving another higher priority interrupt, the IRQ will be pended. The pending
status is held in a register and will remain valid until the current priority of the processor
is lowered so that the pending request is accepted, or if the application clears the pending
status manually.

The interrupt pending status can be accessed, or modified, through the Interrupt Set
Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) register addresses. Similar
to the Interrupt Enable control register, the Interrupt Pending status register is physically
one register, but use two addresses to handle the set and clear of the bits. This allows each
bit to be modified independently, without risk of losing information due to race conditions
between two application processes. The description of the Interrupt Pending Set and Clear
Register is shown in Table 8.5.

The Interrupt Pending status register allows an interrupt to be triggered by software. If the
interrupt is already enabled, no higher priority exception handler is running, and no
interrupt masking is set, then the ISR will be carried out almost immediately. For example,
if we want to trigger interrupt #2, we can use the following code:

*((volatile unsigned Tong *)(0XEO00E100)) =0x4; //Enable interrupt #2
*((volatile unsigned long *)(0xEO00E200)) =0x4; //Pend interrupt #2

Or in assembly

MOVS R1,#0x4 ; interrupt #2
LDR RO,=0xE000E100 ; Setup address in RO

Exceptions and Interrupts 203

Table 8.5: Interrupt Pending Set and Clear Register

Address Name Type Reset value Descriptions

0xEO00E200 SETPEND R/W 0x00000000 Set pending for interrupt 0 to 31. Write 1 to
set bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)

Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending
status

0xE000E280 CLRPEND R/W 0x00000000 Clear pending for interrupt 0 to 31. Write 1
to clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)

Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending

status
STR R1,[RO] ; write to set interrupt enable
LDR R0,=0xE000E200 ; Setup address in RO
STR R1,[RO] ; write to set pending status

In some cases we might need to clear the pending status of an interrupt. For example,
when an interrupt generating peripheral is being reprogrammed, we can disable the
interrupt for this peripheral, reprogram its control registers, and clear the interrupt
pending status (which might be set by spurious activities in the peripheral during
reprogramming) before re-enabling the peripheral (in case unwanted IRQs might

be generated during reprogramming). For example, to clear the pending status of
interrupt 2:

*((volatile unsigned Tong *)(0xEQO00E280)) = =0x4;//Clear interrupt #2
// pending status

Or in assembly

LDR RO,=0xEO00E280 ; Setup address in RO
MOVS RI1,#0x4 ; interrupt #2
STR R1,[RO] ; write to clear pending status

In the CMSIS compliant device driver libraries, three functions are provided for accessing
the pending status registers:

// Set pending status of a interrupt

void NVIC_SetPendingIRQ(IRQn_Type IRQN);
// Clear pending status of a interrupt
void NVIC_ClearPendingIRQ(IRQN_Type IRQN);

204 Chapter 8

// Return true if the interrupt pending status is 1
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQN);

8.8.4 Interrupt Priority Level

Each external interrupt has an associated priority level register. Each of them is 2 bit wide,
occupying the two MSBs of the Interrupt Priority Level Registers. Each Interrupt Priority
Level Register occupies 1 byte (8 bits), as shown in Figure 8.11. NVIC registers in the
Cortex-MO and Cortex-MO0+ processors can only be accessed using word-size transfers, so
for each access, four Interrupt Priority Level Registers are accessed at the same time.

Bit 31 30 24 23 22 16 1514 8 7 6 0
OxEOOOE41C 31 30 29 28
0xEOO0E418 27 26 25 24
0xEOO0E414 23 22 21 20
0xEOO00E410 19 18 17 16
0xEOOOE40C 15 14 13 12
0xEOOOE408 1 10 9 8
0xEOOOE404 7 6 5 4
0xEOOOE400 (IRQ 3 IRQ 2 IRQ 1 IRQ O
Figure 8.11

Interrupt Priority Level Registers for each interrupt.

The unimplemented bits are read as zero. Write to those unimplemented bits are ignored
and read values of the unimplemented bits return zeros (Table 8.6).

Because each access to the Priority Level Register will access four of them in one go, if
we only want to change one of them, we need to read back the whole word, change 1 byte
and then write back the whole value. For example, if we want to set priority level of
interrupt #2 to 0xC0, we can do it by:

unsigned long temp; // a temporary variable

temp = *((volatile unsigned Tong *)(0xEOQ00E400)); // Get IPRO
temp = temp & (OxFFOOFFFF) | (0xCO << 16); // Change Priority level
*((volatile unsigned long *)(0xEOQ00E400)) = temp; // Set IPRO

Or in assembly

LDR RO,=0xEO00E400 ; Setup address in RO

LDR R1,[RO] ; Get PRIORITYO

MOVS R2, {#OxFF ; Byte mask

LSLS R2, R2, #16 ; Shift mask to interrupt #2°s position
BICS R1, R1, R2 ; Rl = R1 AND (NOT(Ox00FF0000))

MOVS R2, #0xCO ; New value for priority level

LSLS R2, R2, #16 ; Shift left by 16 bits

ORRS R1, R1, R2 ; Put new priority level

STR R1,[RO] ; write back value

Exceptions and Interrupts 205

Table 8.6: Interrupt Priority Level Registers (0xEOOOE400—0xE000E41C)

Address

Name

Type

Reset value

Descriptions

0xEO00E400

0xEO00E404

0xEO00E408

0xEO000E40C

0xEO00E410
0xEO00E414
0xEO00E418
0xEO000E41C

IPRO

IPR1

IPR2

IPR3

IPR4
IPRS
IPR6
IPR7

R/W

R/W

R/W

R/W

R/W
R/W
R/W
R/W

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000
0x00000000
0x00000000
0x00000000

Priority level for interrupt 0 to 3.
[31:30] Interrupt priority 3
[23:22] Interrupt priority 2
[15:14] Interrupt priority 1

[7:6] Interrupt priority O

Priority level for interrupt 4 to 7.
[31:30] Interrupt priority 7
[23:22] Interrupt priority 6
[15:14] Interrupt priority 5

[7:6] Interrupt priority 4

Priority level for interrupt 8 to 11.
[31:30] Interrupt priority 11
[23:22] Interrupt priority 10
[15:14] Interrupt priority 9

[7:6] Interrupt priority 8

Priority level for interrupt 12 to 15.
[31:30] Interrupt priority 15
[23:22] Interrupt priority 14
[15:14] Interrupt priority 13

[7:6] Interrupt priority 12

Priority level for interrupt 16 to 19.
Priority level for interrupt 20 to 23.
Priority level for interrupt 24 to 27.
Priority level for interrupt 28 to 31.

Alternatively, if the mask value and new value are fixed in the application code, we
can set the mask value and new priority level values using LDR instructions to shorten

the code:

LDR RO,=0xEO00E400 ; Setup address in RO

LDR R1,[RO]

LDR R2,=0x00FF0000

BICS RI,

LDR R2,=0x00C00000

ORRS R1,

R1, R2

R1, R2

STR R1,[RO]

; Get PRIORITYO
; Mask for interrupt #2’s priority

R1 AND (NOT(Ox00FF0000))

New value for interrupt #2’s priority

R1

; Put new priority level
; write back value

With CMSIS compliant device driver libraries, the interrupt priority level can be accessed

by two functions:

// Set the priority level of an interrupt or a system exception
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority);

// return the priority level of an interrupt or a system exception
uint32_t NVIC_GetPriority(IRQn_Type IRQn);

206 Chapter 8

Note that these two functions automatically shift the priority level values to the
implemented bits of the Priority Level Registers. Therefore when we want to set the
priority value of interrupt #2 to 0xCO, we should use:

NVIC_SetPriority(2, 0x3); // priority value 0x3 is shifted to become 0xCO

The Interrupt Priority Level Registers should be programmed before the interrupt is
enabled. Usually this is done at the beginning of the program. Changing of interrupt
priority when the interrupt is already enabled should be avoided as this is
architecturally unpredictable in the ARMv6-M architecture and is not supported in
Cortex-MO or Cortex-M0+ processors. This is different from the ARMv7-M
Architecture (e.g., Cortex-M3/M4 Processor) which supports dynamic switching of
interrupt priority levels.

Another different between ARMv6-M Architecture and ARMv7-M Architecture is that the
interrupt priority registers in ARMv7-M can be accessed using byte or half-word transfers,
so that you can access to individual priority level setting with byte size accesses. More

details of the differences between various Cortex-M processors are covered in Chapter 22,
Section 22.5.

8.9 Exception Masking Register (PRIMASK)

In some applications, it is necessary to disable all interrupts for a short period of time for
some time critical processes. Instead of disabling all interrupts and restoring them using
the interrupt enable/disable control register, the Cortex®-M processors provide a separate
feature for this usage. One of the special registers called PRIMASK (introduced in
Chapter 4) can be used to mask all interrupts and system exceptions, apart from the NMI
and the HardFault exceptions.

The PRIMASK is a single-bit register and is set to O at reset. When set to 0, interrupts and
system exceptions are allowed. When set to 1, only NMI and HardFault exceptions are
allowed. Effectively, when it is set to 1, it changes the current priority level to O (the
highest programmable level).

There are various ways to program the PRIMASK register.

In assembly language, you can set or clear the PRIMASK register using MSR instruction.
For example, you can use the following code to set PRIMASK (disable interrupt):

MOVS RO, #1 ; New value for PRIMASK
MSR PRIMASK, RO ; Transfer RO value to PRIMASK

Enabling the interrupt can be done in the same way by just changing the RO value to 0.

Exceptions and Interrupts 207

Alternatively, you can use the CPS instructions to set or clear PRIMASK:

CPSIE 1 ; Clear PRIMASK (Enable interrupt)
CPSID 1 ; Set PRIMASK (Disable interrupt)

In C language, users of CMSIS compliant device drivers can use the following functions
to set and clear PRIMASK. Even if CMSIS is not used, most C compilers for ARM®
processors handle these two functions automatically as intrinsic functions:

void __enable_irqg(void); // Clear PRIMASK
void __disable_irq(void); // Set PRIMASK

These two functions get compiled into the CPS instructions.

It is important to clear the PRIMASK after the time critical routine is finished. Otherwise
the processor will stop accepting new IRQ. This applies even if the __disable_irq()
function (or setting of PRIMASIIM() is used inside an interrupt handler. This behavior is
different from the ARM7TDMI ; in the ARM7TDMI processor, the I-bit in Current
Program Status Register (CPSR) can be reset (to enable interrupts) at exception return due
to restoration of the CPSR. When in the Cortex-M processors, PRIMASK and xPSR are
separated and therefore the interrupt masking is not affected by exception return.

8.10 Interrupt Inputs and Pending Behavior

The Cortex®-M processors support IRQs in form of level trigger as well as pulse input.
This feature involves a number of pending status registers associated with interrupt inputs,
including the NMI input. For each interrupt input, the pending status for each interrupt is
held in a 1-bit register which holds the interrupt request even if the IRQ signal is
de-asserted (e.g., an interrupt pulse generated from external hardware connected via the
I/O port). When the exception starts being served by the processor, the pending status is
cleared automatically by hardware.

In the case of NMI it is almost the same, apart from the fact that the NMI request is
usually served almost immediately because it is the highest priority interrupt type. In other
aspects NMI is quite similar to the IRQs: the pending status register for NMI allows
software to trigger NMI, and allows new NMI to be held in pending state if the processor
is still serving the previous NMI request.

8.10.1 Simple Interrupt Process

Most peripherals developed for ARM® processor use level trigger interrupt output. When
an interrupt event takes place, the interrupt signal connected from the peripheral to the
NVIC will be asserted. The signal will remain high until the processor clears the IRQ at

208 Chapter 8

Interrupt service routine clears the
Assertion of interrupt interrupt request at the peripheral
request cause pending
status to be set

Interrupt request X

| di Entering the interrupt handler cause
nterrupt pending the pending status to be cleared

status X

Handler

Processor mode
Thread Thread

Processor operation nn Interrupt Handler X AI . I Thread

[y
i
Stacking T Unstacking

Vector fetch Exception
return

Figure 8.12
Simple case of interrupt activation and pending status behavior.

the peripheral during the ISR. Inside the NVIC, the pending status register of the interrupt
is set when the interrupt is detected and gets cleared as the processor accepted and started
the ISR execution (Figure 8.12).

8.10.2 Simple Pulse Interrupt Handling

Some interrupt sources might generate IRQs in form of a pulse (for at least one clock
cycle). In this case, the pending status register will hold the request until the interrupt is
being served (Figure 8.13).

For pulsed IRQs, there is no need to clear the IRQ at the peripheral.

Assertion of interrupt
request cause pending

Interrupt request X status to be set

Entering the interrupt handler cause

Interrupt pending h _ |
status X the pending status to be cleared

Handler

Processor mode

Thread Thread
Processor operation nﬁ Interrupt Handler X AI_‘_X%
Stacking Unstacking
Vector fetch Exception
return
Figure 8.13

Simple case of pulsed interrupt activation and pending status behavior.

Exceptions and Interrupts 209

Assertion of interrupt request
cause pending status to be set

Interrupt request X

Interrupt request de-asserted by
the peripheral

Interrupt pending
status X

E

Pending status cleared by software

Processor mode
Thread Thread

Processor operation C Thread (interrupt X is not accepted due to disabled or masked by PRIMASK))

Figure 8.14
Interrupt pending status gets cleared by software and is not taken by the processor.

8.10.3 Canceling of Interrupt Pending Status Before the Interrupt Is Serviced

If the IRQ is not carried out immediately and is de-asserted, and the pending status is
cleared by software, then the IRQ will be ignored, and the processor will not execute the
interrupt handler (Figure 8.14). The clearing of the pending status can be carried out by
writing to the NVIC CLRPEND register. This is sometimes necessary when setting up a
peripheral, and the peripheral might have generated spurious IRQs previously.

8.10.4 Clearing of Pending Status While Peripheral Still Asserting IRO

If the IRQ signal is still asserted by the peripheral when the software clears the pending
status, the pending status will be asserted again immediately (Figure 8.15).

Assertion of interrupt request
cause pending status to be set

Interrupt request X

Pending status re-asserted

Interrupt pending
status X ﬂJ‘

Pending status cleared by software

Processor mode
Thread Thread

Processor operation (Thread (interrupt X is not accepted due to disabled or masked by PRIMASK)

Figure 8.15
Interrupt pending status gets cleared and reasserted again.

210 Chapter 8

8.10.5 IRQ Remains High When ISR Completed

Now let us go back to the normal interrupt processing scenarios. If the IRQ from a
peripheral is not cleared during the execution of the exception handler, the pending status
will be activated again at the exception return and will cause the exception handler to be
executed again. This might happen if the peripheral got more data to be processed (for
example, a data receiver might want to hold the IRQ high as long as data remain in its
received data FIFO) (Figure 8.16).

Interrupt request remain high

Assertion of interrupt
request cause pending
status to be set

Interrupt request X

Interrupt handler entered

. Entering the interrupt handler cause again and clear the
Interrupt pendin : 9
ststuz X 9 the pending status to be cleared ﬂ‘ pending status
Handler
Exception return while interrupt
Processor mode asserted cause pending status

Thread to get activated

Interrupt re-entered

Processor operation nn Interrupt Handler X Interrupt handler X
Stacking T

Vector fetch Exception
return

Vector fetch

Figure 8.16
Interrupt request remains high at the end of ISR causes reentering of the same interrupt handler.

8.10.6 Multiple IRQ Pulses Before Entering ISR

For pulsed interrupts, if the IRQ is pulsed several times before the processor starts the ISR
(for example, the processor could be handling another IRQ), then the multiple interrupt
pulses will be treated as just one IRQ (Figure 8.17).

8.10.7 IRQ Pulse During ISR Execution

If the pulsed IRQ is triggered again during the execution of the ISR, it will be processed
as a new IRQ and will cause the ISR to be entered again after the interrupt exit
(Figure 8.18).

The second IRQ does not cause the interrupt to be serviced immediately because it is at
the same priority level as the current execution priority. Once the processor exits the
handler, then the current priority level is lowered and thus allows the pending IRQ to be
serviced.

Exceptions and Interrupts 211

Multiple interrupt pulses before the
processor start processing the interrupt

Interrupt request X m
. Entering the interrupt handler cause
Interrupt pending the pending status to be cleared
status X
Handler Handler

Processor mode
Tail-chain Thread

Processor operation (Interrupt Handler Y @ Interrupt Handler X Thread

The processor cannot process interrupt X Unstackin
until handler Y is completed 9

Exception Vector fetch Exception
return return

Figure 8.17
Multiple interrupt request pulses can be treated as one request.

Assertion of interrupt
request cause pending
status to be set

Interrupt request X

New activation of the interrupt request cause the
pending status to be set again during the execution

Interrupt pending of interrupt handler

status X

Handler

Processor mode
Thread Thread

Processor operation nﬂ Interrupt Handler X A@ Interrupt Handler X I) I Thread
"' A

Stacking Unstacking

Vector fetch Exception Vector fetch
return

Figure 8.18
Interrupt pending status can be set by new interrupt request pulse during its handler execution.

8.10.8 IRQ Assertion for a Disabled Interrupt

The pending status of an interrupt can be activated even when the interrupt is disabled.
Therefore when reprogramming a peripheral and setting up its interrupt and if the previous
state of the peripheral is unknown, you might need to clear its interrupt pending status in
the NVIC before re-enabling the interrupt in the NVIC. This can be done by writing to the
Interrupt Clear Pending register in OXEOOOE280 (Section 8.8.3, Interrupt Pending Set and
Clear Register).

212 Chapter 8

One of the most common cases for this is a GPIO peripheral being reprogrammed

to switch between different interrupt-triggering modes. The external input value during
the reconfiguration might change and could cause the pending status to be set
unexpectedly.

8.11 Details of Exception Entry Sequence

When an exception takes place, a number of things happen as follows:

* Stacking and update of one of the Stack Pointers (SPs)
* Vector fetch (determine starting address of ISR) and update R15 (PC)
* Registers update (LR, Internal Program Status Register (IPSR), NVIC registers)

8.11.1 Stacking

When an exception takes place, eight registers are pushed to the stack automatically.
These registers are RO—R3, R12, R14 (the Link Register), the return address/PC (address
of the next instruction, or current address if the current instruction is to be abandoned),
and the xPSR. The stack being used for stacking is the current active stack: If the
processor was in Thread mode when the exception happened, the stacking could be using
either process stack or the main stack, depending on the setting in the CONTROL
register bit 1. If CONTROL[1] was 0, the main stack would be used for the stacking, as
shown in Figure 8.19.

Nested ISR

I execution
e
I

Stacking

Using main
stack

Handler Stacking
mode I .
I . . Using
, Using main .
I stack main
I stack
I
e S R e S
I I
Thread I I ioh .
mode Thread | . } Higher priority
> Using | IRQ
' main
Using main stack stack
(CONTROL[1] =0)
Figure 8.19

Exception stacking in nested interrupt with main stack used in the Thread mode.

Exceptions and Interrupts 213

If the processor was in Thread mode and CONTROL[1] was set to 1 when the exception
occurred, the stacking will be using the process stack, as shown in Figure 8.20.

Nested ISR
execution

Using main
stack

Handler
mode
T e e T B
|
Thread I
Higher priorit:
Thread o gher priority
mode rea } Using } RQ
' process '
Using process stack stack
(CONTROL[1]1=1)
Figure 8.20

Exception stacking in nested interrupt with process stack used in the Thread mode.

For nested exceptions, the stacking always uses the main stack because the processor is
already in handler mode, which can only use the main stack.

The reason for the registers RO—R3, R12, PC, LR, and xPSR to be saved to stack is that
these are called “caller saved registers.” According to the AAPCS (ARM Architecture
Procedure Call Standard, reference 6), a C function does not have to retain the values of
these registers. In order to allow exception handlers to be implemented as a normal C
functions, these registers have to be saved and restored by hardware, so that when the
interrupt program resumes, all these registers will be the same as before the exception
occurred.

The grouping of the register contents that are pushed onto the stack during stacking is
called a “Stack Frame.” In the Cortex®-MO and Cortex-MO+ processors, a stack frame
is always double word aligned. This ensures that the stack implementation conforms to
the AAPCS standard (reference 6). If the position of the last pushed data could be in
an address that is not double word aligned, the stacking mechanism automatically
adjusts the stacking position to the next double-word-aligned location, and sets a flag
(bit 9) in the stacked xPSR to indicate the double word stack adjustment has been
made, as shown in Figure 8.21.

During unstacking, the processor checks the flag in the stacked xPSR and adjusts the SP
accordingly.

214 Chapter 8

0x20008000 «— OId SP 0x20008000
0x20007FFC XPSR (bit 9 is 0) 0x20007FFC «— Old SP
Return Address 0x20007FF8 Unused
LR 0x20007FF4 XPSR (bit 9is 1)
R12 A stack Return Address A stack
R3 frame LR frame
R2 R12
R1 R3
0x20007FEOQ RO New SP 0x20007FEQ R2
0x20007FDC 0x20007FDC R1
0x20007FD8 RO New SP
SP was double SP was not double
word aligned word aligned
Figure 8.21

Stack frame and double word stack alignment.

The stacking of registers is carried in the following order, as shown in Figure 8.22.

Stackin LR Ret Fetch
9 3 RO (| R1 P R2 [R3 (| R12 | Lp{ NOWUM 1l yPSR [exception
start (R14) Address vector

Figure 8.22
Order of register stacking during exception sequence in the Cortex®-M0 and Cortex-M0+
processors.

When the stacking is completed, the SP will be updated, and the MSP will be selected as
the current SP (handlers always use main stack), then the exception vector will be fetched.

8.11.2 Vector Fetch and Update PC

After the stacking is done, the processor then fetches the exception vector (starting address
of the ISR) from the vector table. The vector is then updated to the PC, and instruction
fetch of the exception handler execution starts from this address.

8.11.3 Registers Update

As the exception handler starts to execute, the value of LR is updated to the corresponding
EXC_RETURN value. This value is to be used for exception return. In addition, the IPSR
is also updated to the exception number of current serving exception.

In addition, a number of NVIC registers might also get updated. This included the pending
status registers (see Section 8.8.3) for external interrupts if the exception taken is an

Exceptions and Interrupts 215

interrupt, or an internal memory-mapped register called the Interrupt Control and Status
Register (see Section 9.2.3, Control registers for System exception management) if the
exception is a system exception.

8.12 Details of Exception Exit Sequence

When an exception return instruction is executed (loading of EXC_RETURN into PC by
POP or BX instruction), the exception exit sequence begins. This included the following:

* Unstacking of registers
¢ Fetch and execute from the restored return address

8.12.1 Unstacking of Registers

In order to restore the status of the registers, as it was before the exception is taken, the
register values which were stored onto the stack during stacking is read (POP) and
restored back to the registers. Since the stack frame can either be stored on the main stack
or the processor stack, the processor first checks the value of the EXC_RETURN being
used. If bit 2 of EXC_RETURN is 0, it starts the unstacking from the main stack. If this
bit is 1, it starts the unstacking from process stack, as shown in Figure 8.23.

After the unstacking is done, the SP needs to be adjusted. During stacking, a 4 byte space
might have been included in the stack memory so as to ensure the stack frame is double
word aligned. If this is the case, the bit 9 of the unstacked xPSR would be 1, and the value
of SP could be adjusted accordingly to remove the 4 byte padding space.

In addition, the current SP selection may be switched back to process stack if bit 2 of
EXC_RETURN was set to 1, and when bit 3 of the EXC_RETURN was set, indicating the
exception exit is returning to Thread mode.

8.12.2 Fetch and Execute From Return Address

After the exception return process is completed, the processor can then fetch instruction
from the restored return address in the PC, and resume execution of the interrupted
program. The Interrupt Program Status Register (IPSR) also get updated to match the
restored context.

8.13 Interrupt Latency

For simple cases (with assumptions described below), the interrupt latency of the Cortex®-
MO processor is 16 cycles, and the interrupt latency for the Cortex-M0+ processor is 15
clock cycles. The interrupt latency is defined as from the processor clock cycle the

216 Chapter 8

Exception Return
executed

EXC_RETURN[2] =0

EXC_RETURN[2] =1

Unstacking Unstacking
using MSP

using PSP
~— Restore
Registers Al/

from Stack
Frame

xPSR

Return
Address
(PC)
LR
R12
R3
R2

SP before R1

unstacking o RO Return Address

Register
unstacking
order

Unstacked xPSR[9]=1 Adjust SP due to
previous stack frame

Unstacked xPSR[9]=0)
v double word alignment

[SP=8P+32] [SP=SP+36 |
Y
EXC_RETURN[2] =0 > EXC_RETURN[2] =1
MSP selected SP selection update PSP selected
(CONTROL[1] = 0) (CONTROL[1] = 1)
Resume program
Crma
Figure 8.23

Unstacking operation at exception exit.

interrupt is asserted, to the start of the execution of the interrupt handler. This interrupt
latency assumes the following:

* The interrupt is enabled and is not masked by PRIMASK or other executing exception
handlers.

* The memory system does not have any wait state. If the memory system has wait state,
the interrupt could be delayed by wait states that occur at the last bus transfer before

Exceptions and Interrupts 217

interrupt processing, stacking, vector fetch, or instruction fetch at the starting of inter-
rupt handler.

The interrupt latency figure included the time required for NVIC to detect the IRQ, the
stacking of registers, vector fetch and fetching of the instructions in the ISRs.

There are some cases that can result in different interrupt latency:

* Tail chaining of interrupt: if the IRQ occurs just as another exception handler return, the
unstacking and stacking process can be skipped and thus reduces the interrupt latency.
Note: a few memory accesses cycles (e.g., vector fetch) are still required.

* Late arrival: if the IRQ occurred during the stacking process of another lower-priority
interrupt, the late arrival mechanism allows the new high priority to take place first.
This can result in lower latency for the higher-priority interrupt.

These two behaviors are features to allow interrupt latency to be reduced to minimum.
However, in some embedded application, zero jitter interrupt response is required.
Fortunately the Cortex-MO0 and Cortex-M0+ processors equipped with a zero jitter feature.

On the interface of the Cortex-MO and Cortex-M0+ processors, there is an 8 bit signal
called IRQLATENCY connected to the NVIC. This signal can be used to control the
interrupt latency behavior. If this signal is connected to O, then the processor will start to
process the IRQ as soon as possible. If the signal is set to a specific value depending on
the timing of the memory system, then it can enable the zero jitter behavior to force the
interrupt latency to a higher number of cycles, but is guaranteed to have zero jitter. The
IRQLATENCY signal is normally controlled by configurable registers developed by
microcontroller vendors and is not visible on the microcontroller interface.

System Control and Low-Power Features

9.1 Brief Introduction of System Control Registers

Inside the System Control Space (SCS) address range (OxEOOOEO0O to OxEOOOEFFF),
there are a number of control registers built-in in the Cortex®-M processors. This included
the following:

* Nested Vectored Interrupt Controller (NVIC) registers for interrupt management
(already introduced in Chapter 8)

* System Control Block (SCB)—a range of registers for system control including sleep
mode features management

* System Tick timer (SysTick)—a timer which can be used by the OS or can be used as a
generic timer in applications without OS. The SysTick Timer is an optional feature.

* Memory Protection Unit (MPU)—a programmable unit for controlling memory access
permissions and memory attributes, this is covered in Chapter 12. The MPU feature is
an optional feature available on the Cortex-MO+ processor and not available on the
Cortex-MO processor.

Many of the features on the Cortex-M processors are controlled by registers in this
memory space. To make software development easier, the CMSIS-Core software frame
work defined a number of data structures in the header files (used by CMSIS compliant
device drivers) which enable these registers to be accessed in C/C++ programming
environment easily. They are listed in Table 9.1.

There is also a number of core debug registers in the SCS address range but these registers
are not accessible by software running on the Cortex-MO0/Cortex-M0+ processor and can
only be used by the debuggers only. Therefore they are not covered in this chapter.

Table 9.1: CMSIS-Core data structures for registers in System Control
Space (SCS)

CMSIS data structure symbols Descriptions
SCB System Control Block
NVIC Nested Vectored Interrupt Controller
SysTick System Tick Timer
MPU Memory Protection Unit
The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00009-6

Copyright © 2015 Elsevier Inc. All rights reserved. 2 1 9

http://dx.doi.org/10.1016/B978-0-12-803277-0.00009-6

220 Chapter 9

In ARMv6-M architecture, all the registers in the SCS can only be accessed in privileged
state and need to be accessed using aligned 32-bit data transfers.

9.2 Registers in the SCBs
9.2.1 List of Registers in the SCB

The SCB data structure contains the registers (Table 9.2).

Table 9.2: Registers inside the SCB data structure

Name Descriptions

CPU ID CPU lIdentification Base Register

ICSR Interrupt Control State Register

VTOR Vector Table Offset Register (not available in the Cortex®-M0
processor, optional in Cortex-M0+ processor)

AIRCR Application Interrupt and Reset Control Register

SCR System Control Register

CCR Configuration and Control Register

SHP[0/1] System Handler Priority Level Register (two of them)

SHCSR System Handler Control and State Register (accessible from
debugger only)

9.2.2 CPU ID Base Register

The CPU ID Base Register is a read-only register containing the processor ID value
(Figure 9.1). It allows application software as well as debugger to determine the processor
core type and version.

Bit 31 24 23 20 19 16 15 4 3 0
Implementer Variant Constant Partnumber Revision
OxE000EDOO Ox41 0x0 oxC 0xC20 0x0
Figure 9.1

CPU ID Base Register.

The current release of the Cortex-MO processor (rOp0) has CPU ID values of 0x410CC200,
and with Cortex-MO+ processor you might find value of 0x410CC600(rOp0) or 0x410CC601
(rOp1) (see Table 9.3). The variant (bit[23:20]) or revision numbers (bit[3:0]) advance for
each new release of the core. The CPU ID register can be accessed with CMSIS compliant
device drivers as “SCB->CPUID”.

Software can also use this register to determine the CPU type. Bit[7:4] of the CPU ID is
“0” for the Cortex-MO processor, “1” for Cortex-M1 processor, “3” for Cortex-M3
processor, and “4” for Cortex-M4 processor.

System Control and Low-Power Features 221

Table 9.3: CPU ID Base Register (0xEO0OOEDO0)

Bits Field Type Reset value Descriptions

31:0 CPU ID RO 0x410CC200 CPU ID value: used by debugger as well as
(Cortex-MO0 r0p0) application code to determine processor type
0x410CC600 and revision.
(Cortex-M0+ rOp0)
0x410CC601

(Cortex-M0+- rOp1)

9.2.3 Control Registers for System Exceptions Management

Beside from external interrupts, some of the system exceptions can also have
programmable priority level and can have pending status registers. First, we look at the
priority level registers for system exceptions. On the Cortex-MO and Cortex-M0+
processors, there are only three OS related system exceptions that have programmable
priority levels and they are handled by the System Handler Priority Registers (SHPR)
(Figure 9.2). These included SVC, PendSV, and SysTick. Other system exceptions like
Non-Maskable interrupt (NMI) and HardFault have fixed priority levels.

Bt 31 30 24 23 22 16 1514 876 0
OxEQOOED20 [SysTick] [Pendsv] [[| sSHPR3
OxEO00ED1C [svc | [[[| sHPR2

Figure 9.2

Priority Level Registers for programmable system exceptions.

The unimplemented bits are read as zero. Write to those unimplemented bits are ignored.
On the Cortex-MO and Cortex-MO+ processors, only the SHPR2 and SHPR3 are
implemented (Table 9.4). SHPR1 is not available on these processors (it is available on the
ARMVv7-M architecture, for example, the Cortex-M3 processor).

Table 9.4: System Handler Priority Level Registers (0xEOOOED1C—O0xEO00ED20)

Address Name Type Reset value Descriptions

0xEO0O0ED1C SHPR2 R/W 0x00000000 System Handler Priority Register 2
[31:30] SVC priority

0xEO00ED20 SHPR3 R/W 0x00000000 System Handler Priority Register 3

[31:30] SysTick priority
[23:22] PendSV priority

Users of CMSIS compliant device drivers can access to the priority levels of these system
exceptions using the following CMSIS-CORE functions, just like peripheral interrupts:

// Set the priority level of an interrupt or a system exception
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority);

// return the priority level of an interrupt or a system exception
uint32_t NVIC_GetPriority(IRQn_Type IRQN);

222 Chapter 9

Alternatively, it is also possible to access the SHPR2 and SHPR3 registers using the
following register names (Table 9.5).

Table 9.5: CMSIS register names for System Handler Priority Level Registers

Register CMSIS register name Descriptions
SHPR2 SCB -> SHP[0] System Handler Priority Register 2
SHPR3 SCB -> SHP[1] System Handler Priority Register 3

Another SCB register useful for system exception handling is the Interrupt Control State
Register (ICSR) (Table 9.6). This register allows the NMI exception to be pended by
software, as well as accessing the pending status of PendSV and SysTick exceptions. This
register also provides information useful for the debugger such as current active exception
number, and if any exception is currently pended. Since the SysTick implementation is

Table 9.6: Interrupt Control State Register (0xEOOOED04)

Bits Field Type Resetvalue Descriptions

31 NMIPENDSET R/W 0 Write 1 to pend NMI, write 0 has no effect.
On reads return pending state of NMI.

30:29 Reserved - - Reserved

28 PENDSVSET R/W 0 Write 1 to set PendSV, write 0 has no effect.
On reads return the pending state of PendSV.

27 PENDSVCLR R/'W 0 Write 1 to clear PendSV, write 0 has no effect.
On reads return the pending state of PendSV.

26 PENDSTSET R/W 0 Write 1 to pend SysTick, write 0 has no effect.
On reads return the pending state of SysTick.

25 PENDSTCLR R/W 0 Write 1 to clear SysTick pending, write 0 has no effect.
On reads return the pending state of SysTick.

24 Reserved - - Reserved

23 ISRPREEMPT RO - During debugging, this bit indicates that an exception
will be served in the next running cycle, unless it is
suppressed by debugger by C_MASKINTS in Debug
Control and Status Register.

22 ISRPENDING RO - During debugging, this bit indicates that an exception
is pended.

21 Reserved - - Reserved

20:12 VECTPENDING RO - Indicates the exception number of the highest priority
pending exception. If it is read as 0, it means no
exception is currently pended. (Note: ARMv6-M only
support up to 32 interrupts, so bit[20:18] must be 0)

11:9 Reserved - - Reserved

8:0 VECTACTIVE RO - Current active exception number, same as IPSR. If the

processor is not serving an exception (Thread mode),
this field read as 0. (Note: ARMv6-M only support up
to 32 interrupts, so bit[8:6] must be 0)

System Control and Low-Power Features 223

optional, the SysTick exception pending set/clear bits are only available when the
SysTick option is presented. As a result, the bit 26 and 25 of this register might not be
available.

Users of CMSIS compliant device driver library can access to ICSR in C/C++ code using
the register symbol “SCB->ICSR”.

Some of the fields (e.g., The ISRPREEMPT and ISRPENDING fields) in the ICSR are
used by the debug system only. In most cases, application codes only use the ICSR for
system exception control or checking of system exception pending status.

9.2.4 Vector Table Offset Register

The Vector Table Offset Register (VTOR) is optional in ARMv6-M architecture. In the
Cortex-MO processor the VTOR is not available, and the vector table is always located in
address 0x00000000. In the Cortex-MO+ processor, the VTOR is optional and is reset to
0. So by default, the vector table of the Cortex-M0+ processor is at address 0x00000000
and can be relocated to other address locations after booted up. The definition of VTOR is
shown in Table 9.7.

Table 9.7: Vector Table Offset Register (0xXEO0OEDO08)

Bits Field Type Resetvalue Descriptions

31:7 TBLOFF R/W 0 Vector Table Offset Address bit[31:7].
Note: Cortex-M0+ processor only
implemented bit[31:8], but architecturally
allows bit[31:7] to be implemented.

6:0 Reserved - - Reserved.

In C/C++ programming environment, the VTOR can be accessed as “ScB->VT0R.” Details
of using VTOR are covered in Section 9.4.

Architecturally, it is possible for an ARMv6-M processor design to implement only part of
the TBLOFF or even use a nonzero value for the reset value of VTOR. Software can write
1 to all bits in VTOR to see what is the maximum allowed address offset value. In the
Cortex-M0+ Processor, the VTOR implemented bit[31:8], so lowest 8 bits of VTOR are
always zero.

The Cortex-MO—+ processor has a maximum of 48 exceptions (32 IRQ vectors + 16 words
for system exception vectors), the maximum vector table size is 0OxC0O. By having VTOR
bit[7:0] always set to zero, it avoided the need for a hardware adder inside the processor
hardware for calculating of vector addresses.

224 Chapter 9

9.2.5 Application Interrupt and Reset Control Register

The Application Interrupt and Reset Control Register (AIRCR) have several functions. It
allows an application to request for a system reset, determine the endianess of the system,
and clear all exception active status (can be done by debugger only). It can be accessed
in CMSIS compliant device drivers as “SCB->AIRCR”. The bit fields of the AIRCR are
described in Table 9.8.

Table 9.8: Application Interrupt and Reset Control Register (0xEOOOEDOC)

Bits Field Type Reset value Descriptions
31:16 VECTKEY (during write WO — Register access key. When writing to this
operation) register, the VECTKEY field need to be set

to 0x05FA, otherwise the write operation
would be ignored.

31:16 VECTKEYSTAT (during read RO OxFAO0S5 Read as OxFA0S5
operation)

15 ENDIANESS RO Oor1 1 indicates the system is big endian.
0 indicates the system is little endian.

14:3 Reserved — — Reserved

2 SYSRESETREQ WO — Write 1 to this bit cause the external signal
SYSRESETREQ to be asserted.

1 VECTCLRACTIVE WO — Write 1 to this bit causes:

- Exception active status to be cleared

- Processor return to Thread mode

- IPSR to be cleared

This bit can only be used by debugger.
0 Reserved — — Reserved

The VECTKEY field is used to prevent accidental write to this register from resetting the
system or clearing of the exception status.

The ENDIANESS bit can be used by the application as well as debugger to determine the
endianess of the system. This endianess of a Cortex-MO or Cortex-MO+ processor system
cannot be changed by software, as the setup is defined by the microcontroller vendor.

The SYSRESETREQ bit is used to request for a system reset. When a value of 1 is
written to this bit with a valid key, it causes a signal called SYSRESETREQ on the
processor to be asserted and triggers the system reset. The actual reset timing of the
system depends on how this signal is connected. More details on the usage of this bit are
cover in Section 9.3.

The VECTCLRACTIVE bit is used by the debugger to clear exception status, for
example, when the debugger trying to rerun a program without resetting the processor.
Application code running on the processor should not use this feature.

System Control and Low-Power Features 225

9.2.6 System Control Register

The System Control Register (SCR) is mainly used to control low-power features (e.g.,
sleep modes) in the Cortex-M processors. Users of CMSIS compliant device drivers can
access to the SCR using the register name “ScB->SCR”. The definitions of the bit fields in
the SCR are listed in Table 9.9.

Table 9.9: System Control Register (0xEOOOED10)

Bits Field Type Reset value Descriptions
31:5 Reserved - - Reserved
4 SEVONPEND R/W 0 When set to 1, an event is generated for each

new pending of an interrupt. This can be used
to wakeup the processor if Wait-for-Event
(WFE) sleep is used.

3 Reserved — — Reserved

2 SLEEPDEEP R/W 0 When set to 1, deep sleep mode is selected
when sleep mode is entered. When this bit is
zero, normal sleep mode is selected when sleep
mode is entered.

1 SLEEPONEXIT R/W 0 When set to 1, enter sleep mode (Wait-for-
Interrupt (WFI)) automatically when exiting an
exception handler and returning to thread
level. When set to 0 this feature is disabled.

0 Reserved - - Reserved

The SLEEPDEEP defines if the normal sleep mode or the deep sleep mode should be used
when the processor goes into sleep. Please note that chip designers can add additional
system level power control registers to increase the number of supported sleep modes in
the device.

More details of the sleep modes and the other bit fields in the SCR are covered in Section
9.5 of this chapter.

9.2.7 Configuration and Control Register

The Configuration and Control Register (CCR) in the Cortex-MO and Cortex-M0+
processors is a read-only register. It determines the double word stack alignment behavior
and the trapping of unaligned access (see Table 9.10). On the ARMv6-M architecture,
such as the Cortex-M0/MO+ processor, these behaviors are fixed and not configurable.
This register is included to make it compatible to ARMv7-M architecture such as the
Cortex-M3 processor. On the ARMv7-M processors these two behaviors are
programmable.

226 Chapter 9

Table 9.10: Configuration and Control Register (0xEO0OED14)

Bits Field Type Reset value Descriptions

31:10 Reserved — — Reserved

9 STKALIGN RO 1 Double word exception stacking alignment
behavior is always used.

8:4 Reserved — — Reserved

3 UNALIGN_TRP RO 1 Instruction trying to carry out an unaligned
access always causes a fault exception.

2:0 Reserved — — Reserved

Users of CMSIS compliant device drivers can access to the CCR using the register name
“SCB->CCR”.

The STKALIGN bit is set to 1 indicating that when exception stacking occurs, the stack
frame is always automatically aligned to double word aligned memory location.

The UNALIGN_TRP bit is set to 1 indicating that when an instruction attempt to carry out
an unaligned transfer, a fault exception will be resulted.

9.2.8 System Handler Control and State Register

Unlike ARMv7-M architecture (e.g., Cortex-M3 processor), this register is not accessible
from software running of the Cortex-M0/Cortex-MO-+ processor. It is for debugger only.
The difference is due to the fact that in the Cortex-MO and Cortex-M0+ processor, there
are no separated configurable fault exceptions as in ARMv7-M architecture, which brings
additional control bit fields for those exceptions.

The definition of the SHCSR for ARMv6-M architecture is shown in Table 9.11.

Table 9.11: System Handler Control and State Register (OXEOOOED24)

Bits Field Type Reset value Descriptions
31:16 Reserved - - Reserved
15 SVCALLPENDED R/W 0 Write 1 to set SVCall pending status, write

0 to clear SVCall pending status.
On reads return the pending state of SVCall.
14:0 Reserved — —

9.3 Using the Self-Reset Feature

The Cortex®-M processors provide a mechanism for trigging self-reset in software. This is
supported via the SYSRESETREQ bit in the AIRCR (Table 9.3). This could be used in
HardFault handler to reset the system when things go wrong (Note: this is not suitable during

System Control and Low-Power Features 227

software development as this makes debugging of faults difficult). The SYSRESETREQ
feature might also be used by the debugger after a debug connection is established, after
flash programming is carried out and when user specified a target reset operation. Please note
this feature can also dependent on the chip design so it might not be available.

The SYSRESETREQ bit (bit 2) in the AIRCR generates a system reset request to the
microcontroller’s system reset control logic. Because the system reset control logic is not
part of the processor design, the exact timing of the reset is device specific (e.g., How
many clock cycles delay before the system is actually going into the reset state). There
can be a small delay from the time this bit is written to the actual reset, depending on the
design of the system reset control.

In typical microcontroller designs the SYSRESETREQ generates system reset for the
processor and most parts of the system, but should not affect the debug system of

the microcontroller. This allows the debug operations to work correctly even when the
software trigger a reset.

To use the SYSRESETREQ feature (or any access to the AIRCR), the program must be
running in privileged state. The easiest way is to use a function provided in the
CMSIS-CORE header file called “NvIC_SystemReset(void)”.

Instead of using CMSIS-CORE, you can access the AIRCR register directly:
// Use DMB/DSB to wait until all outstanding

// memory accesses are completed. Here DSB is used
// because the next instruction is CPS.

__DSB();

__disable_irq(); // Disable interrupts, optional
SCB->AIRCR = 0x05FAQ004; //System reset

while(1); // Wait until reset happen

The Data Synchronization Barrier (DSB) instruction is to allow the code to be used with
other ARM® processors that have write buffers in the memory interface. In these
processors, a memory write operation might be delayed and if the system reset and
memory write happened at the same time, the memory could get corrupted. As a result, a
DSB is needed to make sure previous memory accesses are completed before executing
“__disable_irq()” (“CPSID I” instruction) and trigger the reset. If the step for disabling
interrupt is skipped, a Data Memory Barrier (DMB) instruction could be used instead.
Although this is not strictly required in the Cortex-MO0 and Cortex-M0O-+ processors
(because there is no write buffer in these processor), the DSB/DMB is included for better
software portability.

The disabling of interrupt is optional; if an interrupt is generated when the system reset
request is set, and if the actual reset is delayed due to reset controller design, there can be

228 Chapter 9

chances that the processor will enter the exception handler as the system reset start. In
most cases it is not an issue, but we can prevent this from happening by setting the
exception mask register PRIMASK to disable interrupts before setting the
SYSRESETREQ bit.

When writing to AIRCR, the upper 16 bits of the write value should be set to 0xO5FA, a
key to prevent accidentally resetting the system.

The “while” loop after the write prevents the processor from executing more instructions
after the reset request has been issued.

The same reset request code can be written in assembly. In the following example code,
the step to setting up PRIMASK is optional:

DSB ; Data Synchronization Barrier
CPSID i ; Set PRIMASK
LDR RO,=0xEO00EDOC ; AIRCR register address
LDR R1,=0x05FA0004 ; Set System reset request
STR R1,[RO] ; write back value
Loop
B Loop ; dead loop, waiting for reset

9.4 Using the Vector Table Relocation Feature

The Cortex®-MO+ processor allows the vector table to be relocated using the Vector Table
Offset Register, VTOR, see Section 9.2.4. There are a number of scenarios that relocating
the vector table is very useful:

Scenarios #1, Boot loader—A number of microcontrollers have a boot loader or boot
firmware in a separated boot loader ROM. Before executing the application code in the
flash memory, the processor first executes a small program in the boot ROM. In such case,
the processor needs to boot up with the vector table in the boot ROM, execute boot code
and then program VTOR to use the vector table in user’s flash memory and branch to the
start-up code in the user’s flash memory (Figure 9.3).

To switch from the boot loader to the reset handler in the user’s application, the boot
loader might execute the following code:

LDR RO,=0xEQ00ED0O8 ; Set RO to VTOR address
LDR R1,=0x00010000 ; User’s flash memory based address

STR R1, [RO] ; Define beginning of user’s flash memory
; as vector table

LDR RO, [R1] ; Load initial MSP value

MOV SP, RO ; Set SP value (assume MSP is selected)

LDR RO,[R1, #4] ; Load reset vector

BX RO ; Branch to reset handler in user’s flash

System Control and Low-Power Features 229

System booted up with boot Vector table in user’s flash memory is
ROM’s vector table and selected just before switching to user’s
execute boot ROM’s firmware application in flash memory
Boot loader:
Processor fetch reset 1) program VTOR to
CODE vector from boot loader CODE point to user flash
region and start executing region vector table, then
boot loader 2) read the reset vector
in the user’s vector
table and
Usr Ur 3) branch to user’'s
Flash flash reset handler.
[Vector Table for user I —
0x00010000 L ®——— application L
Boot ROM Boot ROM
0x00000000 | I j Vector Table forBoot /||
loader
_ VTOR programmed to 0x00010000 by boot
VTOR =0 at start up ROM code before branch to user application
Figure 9.3

Use of VTOR by boot loader.

Scenarios #2, Dynamic changes of exception vectors—the second common usage of the
VTOR is to allow an exception vector to be changed in different stages of the program
execution. In this scenario, we need to copy the whole vector table from the program
image to SRAM, and then modify the exception vector when needed. Care must be taken
to ensure that the memory space allocated for vector table is not overlapped with the
SRAM space used by the rest of the applications (e.g., stack, data variable space).

Example code to copy the vector table from 0x00000000 to 0x20000000:

// Note that the use of memory barrier instructions shown below are
// based on architecture recommendations.
// Define a macros for word access
fhdefine HW32_REG(ADDRESS) (*((volatile unsigned Tong *)(ADDRESS)))
fidefine VTOR_NEW_ADDR 0x20000000
int i; // Toop counter
// Copy original vector table to SRAM first before programming VTOR
for (i=0;i<48;i++){ // Assume maximum number of exception is 48
// Copy each vector table entry from flash to SRAM
HW32_REG((VTOR_NEW_ADDR + (i<<2))) = HW32_REG((i<<2));
}
__DMB(); // Data Memory Barrier
// to ensure write to memory is completed
SCB->VTOR = VTOR_NEW_ADDR; // Set VTOR to the new vector table
//location
__DSB(); // Data Synchronization Barrier to ensure all
// subsequence instructions use the new configuration

Scenarios #3, Loading of application image to RAM—the third scenario where VTOR is
useful is that an application could be stored on off chip memory storage (e.g., SD card)

230 Chapter 9

and need to be loaded into the memory system and execute. In this case, after copying the
program image to RAM or SRAM, the boot code that load the image can then set up the
VTOR, and branch to the loaded application similar to scenario #1.

9.5 Low-Power Features

9.5.1 Overview

A number of low-power features are available in the Cortex®-MO and Cortex-MO+
processors. In addition, microcontroller vendors usually also implement a number of low-
power modes in their Cortex-M0/M0+--based microcontroller products. This section
focuses mostly on the low-power features provided by the Cortex-MO and Cortex-M0-+
processors. Details for microcontroller-specific low-power features are usually available in
user manuals or application notes available from the microcontroller vendor Web sites, or
in example software packages. Some examples of using device-specific low-power features
are covered in Chapter 19.

In general, the Cortex-M processors include the following low-power features:

* Two architectural sleep modes: normal sleep and deep sleep. The sleep modes can be
further extended with vendor-specific speed control features. Within the processor, both
sleep modes behave similarly. However, the rest of the microcontroller can typically
reduce power by applying different level of device-specific power reduction methods
based on these two modes.

* Two instructions for entering sleep modes: WFE and WFI. Both can be used with
normal sleep and deep sleep modes.

* Sleep-On-Exit (from exception) feature: allowing interrupt driven applications to stay in
sleep mode as often as possible.

* Optional Wake-up Interrupt Controller (WIC): this optional feature allows the clocks of
the processor to be completely turned off during sleeps. When this feature is used with
state retention technology, found in certain modern silicon implementation processes,
the processor can enter a power-down state with extremely low-leakage power, and it is
still able to wake up and resume operations almost immediately.

* Low-power design implementation: various design techniques were used to reduce the
power consumption as much as possible. Since the gate count is also very low, the static
leakage power of the processor is tiny compared to most other 32-bit microcontrollers.

In addition, various characteristics of the Cortex-M processors also help to reduce power
consumption:

* High performance: the Cortex-MO0 and Cortex-MO0+ processors performance is often
several times higher than many popular 8-bit/16-bit microcontrollers. This allows the
same computational tasks to be carried out in shorter time and the microcontroller can

System Control and Low-Power Features 231

stay in sleep modes for longer period of time. Alternately, the microcontroller can run at
a slower clock frequency to perform the same required processing task to reduce power.

* High-code density: By having a very efficient instruction set, the required program size
can be reduced and as a result you can use a Cortex-MO or Cortex-M0-+-based micro-
controller with smaller flash memory to reduce power consumption and cost.

Because the processor is only a small part of a microcontroller, to get the best energy
efficiency and maximum battery life out of a microcontroller product, it is necessary to
understand not only the processor but also the rest of the microcontroller. Most
microcontroller vendors provide application notes and software libraries to make this
easier for software developers.

9.5.2 Sleep Modes

Most microcontrollers support at least one type of sleep mode to allow the power
consumption to be reduced when no processing is required. In the Cortex-M processors,
sleep mode support is included as part of the processor architecture.

The Cortex-M Processors have two sleep modes defined in the architecture:

* Normal sleep
* Deep sleep.

Chip designers can add additional control registers and additional power control capability
to further extend the number of sleep modes. The exact meaning and behaviors of these
sleep modes depend on the implementation of the microcontrollers. Microcontroller
vendors can use various power saving measures to reduce the power of the microcontroller
during active states as well as sleep. Typically, the method for reducing power during
sleep includes the following:

* stopping some or all of the clock signals

* reducing the clock frequency to some of the logic

* reducing voltage to various parts of the microcontroller

e turning off the power supply to some parts of the microcontroller

The sleep modes can be entered by three different methods:

¢ execution of a WFE instruction
e execution of a WFI instruction
* using the Sleep-On-Exit feature (this is covered in detail in Section 9.5.5)

When entering sleep, whether the normal sleep mode or the deep sleep mode will be used is
determined by a control bit called SLEEPDEEP. This bit is located in the System Control
Register (SCR), see Section 9.2.6 of the SCB region, which contains the control bits for the

232 Chapter 9

low-power features of the Cortex-M Processors (see Table 9.9). Users of CMSIS compliant
device drivers can access to the SCR using the register name “SCB->SCR”.

Different sleep modes and different sleep operation types can result in various
combinations as shown in Figure 9.4.

SLEEPDEEP =0 SLEEPDEEP =1
(normal sleep) (deep sleep)
. Normal sleep. Deep sleep.
Execution of Wait-for-event Wait-for-event
WFE ’) . .
(incl. interrupt) (incl. interrupt)
Execution of Normal sleep. Deep sleep.
WFI Wait-for-interrupt Wait-for-interrupt
i Normal sleep. Deep sleep.
Sleep-on-exit :> Wait-for-interrupt Wait-for-interrupt
Figure 9.4

Combination of sleep modes and sleep entering methods.

9.5.3 Wait-for-Event and Wait-for-Interrupt
Overview

There are two instructions that can cause a Cortex-M processor to enter sleep: WFE
and WFL.

WEFE:

* Enter sleep conditionally
* Suitable for idle loops or idle threads in real-time operating system

WEFI:

* Enter sleep unconditionally
* Suitable for interrupt driven applications

Both instructions can be used to enter either normal sleep or deep sleep modes depending
on the value of the SLEEPDEEP bit in the SCR. The WFE can be woken up by interrupt
requests as well as events and debug requests, while WFI can be woken up by interrupt
requests or debug requests only (see Table 9.12).

Architecturally, a DSB instruction should be used before executing WFE/WFI. However,
with the simplistic nature of the pipeline in the Cortex-MO0 and Cortex-MO+ processors,
omitting the memory barrier would not cause any issue. But if the software needs to be
reusable on other ARM® processors, the DSB instruction should be used.

System Control and Low-Power Features 233

Table 9.12: WFE and WFI wake-up characteristics

Sleep type Wake-up descriptions

WFE Wake up when an interrupt occurs and requires processing, or
Wake up when an event occurs (including debug requests), or
The processor does not enter sleep due to an event occurred
before the WFE instruction executed, or
Termination of sleep mode by reset.

WFI Wake up when an interrupt occurs and requires processing, or
Wake up when there is a debug request, or
Termination of sleep mode by reset.

Wait-for-Event

When the WFE instruction is used to enter sleep, it can be woken up by interrupts as well
as a number of different events including:

* New pending interrupts (only when SEVONPEND bit in SCR is set)
» External event requests
* Debug events

Inside a Cortex-M processor, there is a single-bit event register. When the processor is
running, this register can be set to one when an event occurs and this information is stored
until the processor executes a WFE instruction. The event register can be set by any of the
following events:

* An interrupt request arrives and need servicing

» Exception entrance and exception exit

* New pending interrupts (only when SEVONPEND bit in SCR is set), even if the in-
terrupts are disabled

* An external event signal from on-chip hardware (device specific)

e Execution of an SEV (Send Event) instruction

* Debug event

When multiple events occur while the processor is awake, they will be treated as just one
event because the event register is only one bit.

This event register is cleared when the stored event is used to wake up the processor from
a WFE instruction. If the event register was set when the WFE instruction is executed,
the event register will be cleared and the WFE will be completed immediately without
entering sleep. If the event register was cleared when executing WFE, the processor will
enter sleep, and the next event will wake up the processor, with the event register
remaining cleared. The operation is summarized in Figure 9.5.

234 Chapter 9

Event latch is SLEEPDEEP
set? bit is set?
Event or
WFE Normal sleep, Interrupt
executed Wait-for-Event occurred
Exit sleep mode and

continue to next
instruction

Clear event latch and Deep sleep, Event or

continue to next Wait-for-Event

Interrupt
instruction occurred

Figure 9.5
WFE operation.

The WEFE is useful for reducing power in polling loops. For example, a peripheral with
event generation function can work with WFE so that the processor wakes up upon
completion of peripheral’s task, as shown in Figure 9.6.

v v

A peripheral is programmed
to carry out a task, with event
output when the task is
completed

A peripheral is
programmed to carry
out a task

-
A4 4
Read peripheral WFE Read peripheral
status status
Task completed? Task completed?
No No
Yes Yes

Without WFE, a polling loop

consume power and result in lower
energy efficiency

With WFE, power consumption by
the polling loop is greatly reduced

Figure 9.6
WFE usage.

Since the processor can be woken up by different events, the processor must still check the
peripheral status after being woken up to see if the task has completed.

If the SEVONPEND bit in the SCR is set, any new pending interrupts, generate an event
and wake up the processor. If an interrupt is already in pending state when WFE is
entered, a new interrupt request for the same interrupt does not cause the event to be
generated and the processor will not be woken.

Wait-for-Interrupt

The WFI instruction can be woken up by interrupt requests that are a higher priority than
the current priority level, or by debug requests (see Figure 9.7).

System Control and Low-Power Features 235

SLEEPDEEP
bit is set?
Interrupt or
WFI | No Normal sleep, halt debug
executed Wait-for-Interrupt | ~0ccurred
Exit sleep mode and

Yes continue to next
instruction, or halt

Deep sleep,
Wait-for-Interrupt | Interrupt or
halt debug
occurred
Figure 9.7

WEFI operation.

There is one special case of WFI operation: During WFI sleep, if an interrupt is blocked
by PRIMASK, but otherwise has a higher priority than the current exception priority level,
it can still wake up the processor, but the interrupt handler will not be executed until the
PRIMASK is cleared.

This characteristic allows some parts of the microcontroller to be turned off by software
(e.g., peripheral bus clock), and the software can turn it back on after waking up before
executing the interrupt service routine. This is cover in the next section (Section 9.5.4).

9.5.4 Wake-up Conditions

When a WFI instruction is executed or when the processor enters sleep mode using the
Sleep-On-Exit feature, the processor stops instruction execution and wakes up when an
(higher priority) interrupt request arrives and needs to be serviced. If the processor enters
sleep in an exception handler, and if the newly arrived interrupt request has the same or
lower priority as the current exception, the processor will not wake up and will remain in
pending state. The processor can also be woken up by a halt request from debugger, or by
a reset.

When the WFE instruction is executed, the action of the processor depends on the current
state of an event latch inside the processor:

e If the event latch was set, the event latch will be cleared and the WFE completes
without entering sleep.

» If the event latch was cleared, the processor will enter sleep mode until an event takes
place.

An event could be any of the following:

* an interrupt request arriving which needs servicing
e entering or leaving an exception handler

236 Chapter 9

* a halt debug request

* an external event signal from on-chip hardware (device specific)

* if the SEVONPEND (Send-Event-On-Pend) feature is enabled and a new pending inter-
rupt occurs

¢ execution of the SEV (Send Event) instruction

The event latch inside the processor can hold an event which happened in the past, so an old
event can cause the processor to wake up from a WFE instruction. Therefore usually the WFE
is used in an idle loop or polling loop as it might or might not cause entering of sleep mode.

WFEE can also be woken up by interrupt requests if they have a higher priority than the
current interrupt’s priority level, or when there is a new pending interrupt request and the
SEVONPEND bit (Send event on pending) is set. The SEVONPEND feature can wake up
the processor from WFE sleep even if the priority level of the newly pended interrupt is at
the same or lower level than the current interrupt. However, in this case, the processor will
not execute the interrupt handler and will resume program execution from the instruction
following the WFE.

The wake-up conditions of the WFE and WFI instructions are illustrated in Table 9.13.

Table 9.13: WFI and WFE sleep wake-up behavior

WFI behavior Wake up ISR execution
PRIMASK cleared
IRQ priority > current level Y Y
IRQ priority <= current level N N
PRIMASK set (interrupt disabled)
IRQ priority > current level Y N
IRQ priority <= current level N N
WFE behavior Wake up ISR execution
PRIMASK cleared, SEVONPEND cleared
IRQ priority > current level Y Y
IRQ priority <= current level N N
PRIMASK cleared, SEVONPEND set to 1
IRQ priority > current level Y Y
IRQ priority <= current level, or IRQ Y N
disabled(SETENA = 0)
PRIMASK set (interrupt disabled),
SEVONPEND cleared
IRQ priority > current level N N
IRQ priority <= current level N N
PRIMASK set (interrupt disabled),
SEVONPEND set to 1
IRQ priority > current level Y N
IRQ priority <= current level Y N

System Control and Low-Power Features 237

The wake-up behavior of Sleep-On-Exit is same as WFI sleep.

Some of you might wonder why when PRIMASK is set, it allows the processor to wake
up but without executing the interrupt service routine. This arrangement allows the
processor to execute system management tasks (for example, restore clock to peripherals)
before execute the interrupt service routine, as shown in Figure 9.8.

Set PRIMASK Enter sleep Clear PRIMASK

¢ Sleep
B —

{ processing CPSX)(WFI T)(CPS)(ISR execute
Enter sleep ~ Program system IRQ
routine t_:ontroller to _ Program system
switch off certain

controller to
restore clock
signals

clock signals

Figure 9.8
Use of PRIMASK with sleep.

In summary, the similarities and differences between WFI and WFE are shown in Table 9.14.

Table 9.14: WFI and WFE comparisons

WEFI and WFE

Similarities * Wake up on interrupt requests that are enabled and with higher
priority than current level
* Can be woken up by debug events
* Can be used to produce normal sleep or deep sleep
Differences * Execution of WFE does not enter sleep if the event register was
set to 1, while execution of WFI always results in sleep.
* New pending of a disabled interrupt can wake up the processor
from WFE sleep if SEVONPEND is set.
* WFE can be woken up by an external event signal.
* WFI can be woken up by an enabled interrupt request when
PRIMASK is set.

9.5.5 Sleep-On-Exit Feature

One of the low-power features of the Cortex-M processors is called Sleep-On-Exit. When
this feature is enabled, the processor automatically enters a WFI sleep mode when exiting
an exception handler and if no other exception is waiting to be processed.

This feature is useful for applications where the processor activities are interrupt-driven.
For example, the software flow could be like the flow chart in Figure 9.9.

238 Chapter 9

Initialization ISR1 (Interrupt
* Service Routine)

— Enable
First time the | Sleep-On-Exit
processor enter feature ISR2 (Interrupt
Service Routine)

sleep

p

The processor Sleep

enter sleep
automatically
after each
interrupt
processing

ISR3 (Interrupt
Service Routine)

Figure 9.9
Sleep-On-Exit program flow.

The resulting activities of the processor are illustrated in Figure 9.10.

Power A
IRQ handler IRQ handler
Execute WFI
Thread y StaCkier tNok' L
»/ unstacking &
Initialization §
Sleep Sleep Sleep ‘ L
A A A A * Time
Power up IRQ IRQ
Sleep-On-Exit
is enabled Enter sleep IRQ exit IRQ exit
(Enter sleep (Enter sleep
automatically) automatically)
Figure 9.10

Sleep-On-Exit operation.

The Sleep-On-Exit feature reduces the active cycles of the processor and also the energy
consumed by the stacking and unstacking of processes between the interrupts. Each time
the processor finishes an interrupt service routine and enters sleep, it does not have to

System Control and Low-Power Features 239

carry out the unstacking process because it knows that these registers will have to be
stacked again when another interrupt request arrives next time.

The Sleep-On-Exit feature is controlled by the SLEEPONEXIT bit in the SCR. Setting
this bit in an interrupt driven application is usually carried out as the last step of the
initialization process. Otherwise the processor might enter sleep during the initialization
of the processor, if an interrupt occurs during this stage.

9.5.6 Wake-up Interrupt Controller

Designers of microcontrollers using Cortex-M processors can optionally include a WIC
in their design. The WIC is a small interrupt detection logic that mirrors the interrupt
masking function in the NVIC. The WIC allows the power consumption of the processor
to be further reduced by stopping all the clock signals to the processor or even putting the
processor into a state retention state. When an interrupt is detected, the WIC sends a
request to a power management unit (PMU) inside the microcontroller to restore power
and clock signals to the processor, and then the processor can wake up, resume operation
and process the interrupt request.

An important advantage of the WIC feature is that it is transparent to the software. The
WIC itself does not contain any programmable registers, it has an interface that couples to
the NVIC of the Cortex-M0/M0+ processor and the interrupt mask information is
transferred from the processor to the WIC automatically during sleep. In some cases
(depending on the design of the microcontroller device) the WIC is activated only in deep
sleep mode (SLEEPDEEP bit is set), and you might also need to program additional
control registers in a device-specific PMU in the microcontroller to enable the WIC mode
deep sleep.

The WIC enables the Cortex-M processors to reduce standby power consumption using a
technology called State Retention Power Gating (SRPG). With SRPG, the leakage power
of a sequential digital system during sleep can be minimized by powering off most parts

of the logic, leaving a small memory element in each flip-flop to retain the current state.

This is shown in Figure 9.11.

When working with the WIC, a Cortex-M processor implemented with SRPG technology
can be powered down during deep sleep to minimize the leakage current of the
microcontroller. During WIC mode deep sleep, the interrupt detection operation is handed
over to the WIC. Since the state of the processor is retained in the flip-flops, the processor
can wake up and resume operations almost immediately. The operation is illustrated in
Figure 9.12. In practice, the use of SRPG power down can increase the interrupt latency
slightly, depending on how long it takes for the voltage on the processor to be stabilized
after the power-up sequence.

240 Chapter 9

Power to state retention

Vce .
L elements is always on
Power Power) Power to most parts of the system
control —»{ gating is turned off during sleep
from PMU
Inputs—m»(_ logic D Q—Sh logic Outputs
P ate
Clockll | -4-stention
l......- element
Clock D' type
buffers [>_ flip-flops
Ground

Figure 9.11
SRPG technology allows most parts of a digital system to be powered down.

4. Power Management Unit
put the processor in state
retention power down state

Wake-up [PMU | status 1. Program enable WIC
7. WIC alert the PMU and o mode deep sleep
]
power restored to the v
processor
—» IRQ > IRQ | 2. Deep sleep mode is
NMI NMI entered (e.g. WFE/WFI)
I controls Cortex-M0 :
WIC \ 5. Processor in power

6. An interrupt Interrupt masks down state
occurred \ A \

9. Processor wake up
and process the interrupt
request

8. WIC hold the interrupt
request until processor is
ready

3. Interrupt mask copied to
WIC by hardware interface

Figure 9.12
Illustration of WIC mode deep sleep operations.

Not all Cortex-M processor based microcontrollers support the WIC feature. The
reduction of power using the WIC depends on the application and the semiconductor
process being used.

When the WIC mode deep sleep is used, the SysTick timer is stopped and it would be
necessary to set up a separate peripheral timer to wake up the processor periodically if
your application requires an embedded OS and need the OS to operate continuously. Also,
when developing simple applications without any embedded OS and if WIC mode deep

System Control and Low-Power Features 241

sleep is required, and if a periodic interrupt is needed, then it would be necessary to use a
peripheral timer for periodic interrupt generation instead of the SysTick timer.

Please note that in the Cortex-M0 and Cortex-MO+ processors, the WIC can be used in
both sleep and deep sleep modes. In the Cortex-M3 and Cortex-M4 processors, the WIC
feature is only available in deep sleep.

Operating System Support Features

10.1 Overview of OS Support Features

The Cortex®-MO and Cortex-MO+ processors include a number of features targeting at
embedded Operating System (OS) support. These include:

* A System Tick (SysTick) timer, which is, a 24-bit down counter that can be used to
generate a SysTick exception at regular intervals. The SysTick timer can also be used as
a generic timer peripheral if not using an OS.

* Two stack pointers: The Main Stack Pointer (MSP) and a second stack pointer called
the Process Stack Pointer (PSP). This arrangement allows the stack of the applications
and the OS kernel to be separated.

* A SVC(all exception and SVC instruction. The SVC is used by applications to access
OS services via the exception mechanism.

* A PendSV exception. The PendSV can be used by an OS, device drivers, or the applica-
tion to generate OS service requests that can be deferred.

This chapter describes each of these features and provides some example usages. The OS
support features in the Cortex-M processor family are consistent across the whole product
range. So the feature describes here can also be found in other Cortex-M processors. This
makes porting of OS across the Cortex-M processor family very easy.

10.2 Introduction to Operating Systems in Embedded World

Before the details of the hardware features are introduced, it worth covering some
background of Operating Systems used in microcontrollers.

When the term “Operating System” is mentioned, most people will first think of desktop
operating systems like Windows and Linux or OS used by tablets and smart phones. These
operating systems require a powerful processor, a large amount of memory, and other
hardware features in order to operate. For embedded devices, the type of OS being used is
very different. Most embedded operating systems can run on very low-power
microcontrollers with a small amount of memory (relative to desktop computers) and run
at a much lower clock frequency. For example, the Keil® RTX which will be covered in
later part of this book (Chapter 20, Programming with Embedded OS) requires around
from 4 KB of program code space and around 0.5 KB of SRAM. Many of these embedded
systems do not even have a display or keyboard, and the embedded OS does not require

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00010-2
Copyright © 2015 Elsevier Inc. All rights reserved. 243

http://dx.doi.org/10.1016/B978-0-12-803277-0.00010-2

244 Chapter 10

Context switching

Task A Task B 6/ Tas>@ Task A i

[

Time

Start up and
initiailization

Figure 10.1
Multitasking and context switching.

those hardware. However, it is straight forward to add some display interfaces and user
interface devices as part of the application.

In the world of embedded applications, many OS are used for managing multiple tasks. In
this situation, the OS might divide the processor execution time into a number of time slots
and execute different tasks in each slot. At the end of each time slot, the OS task scheduler is
executed and then the execution might be switched to a different task at the beginning of the
next time slot. The switching of tasks is commonly known as context switching (Figure 10.1).

The length of each time slot depends on the hardware as well as the OS design. Some
embedded OS switch tasks several hundred times per second.

Some embedded OS also define priority levels for each task so that a high-priority task
will be executed before lower priority tasks. If the task has a higher priority than others,
an OS might execute the task for a number of time slots continuously until the task
reaches an idle state. Note that the priority definition in an OS is completely separated
from the exception priority (i.e., the interrupt priority level). The definition of task priority
is based on the OS design and varies between different OS.

Besides from supporting multitasking, an embedded OS might also provide the functions
of resource management, memory management, power management, and an Application
Programming Interface (API) for accessing peripherals, hardware, and communication
channels (Figure 10.2).

Use of an embedded OS is not always beneficial. The use of an embedded OS requires
extra program memory for the OS kernel and increases overhead in execution cycles. Most
simple applications do not require an embedded OS. However, in complex embedded
applications which demand execution of tasks in parallel, using an OS can make the
software design much easier and reduce the chance of a system design error.

Some of the embedded OS are called Real-Time OS (or RTOS) because they provide
deterministic behaviors. For example, a certain hardware event can trigger a task to be
executed within a certain time.

Operating System Support Features 245

Tasks access OS Task A Task B Task C

features via API

Embedded OS handles
task scheduling
S

Embedded OS kernel
access to SysTick and
other hardware features

which are targeted for OS ey ———
support i Processor Hardware | Peripherals

Non-shared hardware
resources can be
accessed by an
application task directly via
a device driver

v v

Embedded OS Device Drivers

OS manages shared
hardware resources and
power management

Figure 10.2
Example roles of an embedded OS.

A number of embedded OS are already available for the Cortex®-MO0 and Cortex-MO+
processors. For example, the Keil Microcontroller Development Kit (MDK) provides an
RTX kernel which is easy to use and free of charge (the RTX source code is open access
with a BSD open source license). In addition, FreeRTOS (www.freertos.org), embOS from
SEGGER (www.segger.com), pC/OS-II and pC/OS-III from Micripm (micrium.com), and
ThreadX from Express Logic (www.rtos.com) are some of the popular OS which are
supported on the Cortex-M0 and Cortex-MO+ processors.

Since the Cortex-M processors do not support virtual memory feature (there is no Memory
Management Unit (MMU)), they cannot run feature rich OS like Android or Linux.
However, there is a special version of Linux called pCLinux which targeted at embedded
devices without an MMU, and therefore nCLinux could be used on a Cortex-M processor,
including Cortex-MO and Cortex-M0+ Processors. However, like all Linux-based systems,
the uCLinux requires several megabytes of memory space and therefore not suitable for
most microcontroller devices.

10.3 The SysTick Timer

In order to allow an OS to carry out periodical context switching to support multi-
tasking, the program execution must be interrupted by a hardware device like a timer.
When the timer interrupt is triggered, an exception handler that handles OS task
scheduling is executed. The handler might also carry out other OS maintenance tasks.

http://www.freertos.org
http://www.segger.com
http://micrium.com
http://www.rtos.com

246 Chapter 10

For the Cortex®-M processors, a simple timer called SysTick is included inside the
processor to perform the function of generating this periodic interrupt request.

The SysTick has a 24-bit down counter. It reloads automatically after reaching zero and
the reload value is programmable. When reaching zero, the timer can generate a SysTick
exception (exception number 15). This exception event triggers the execution of SysTick
exception handler, which is a part of the OS software.

For systems that does not required an OS, the SysTick timer can be used for other
purposes like a generic timer peripheral for time keeping, timing measurement, or as a
interrupt source for tasks that need to be executed periodically. The SysTick exception
generation is programmable. If the exception generation is disabled, the SysTick timer can
still be used with polling method, for example, by checking the current value of the
counter or polling of a counter flag.

10.3.1 SysTick Registers

The SysTick counter is controlled by four registers (Figure 10.3) located in the System
Control Space (SCS) memory region, as listed in Table 10.1. For users of CMSIS
compliant device driver libraries, the SysTick registers can be accessed by the register
definitions included in CMSIS-CORE.

w
<+
N
w
o

OXEO00EO1C | | | | TENMS | SysTick Calibration Value Register
23 0

0XEO00E018 \ \ Current Value \ SysTick Current Value Register
23 0

OxEOOOEO014 ‘ ‘ Reload value ‘ SysTick Reload Value Register

16

OXEO00E010 | |] SysTick Control and Status Register

2 10

[1]
L C'::?:nt L Enable
g TickInt

Clk Source

Figure 10.3
The SysTick registers.

Operating System Support Features

Table 10.1: SysTick register names in CMSIS

Register CMSIS Name Details Address
SysTick Control and Status SysTick->CTRL Table 10.2 O0xEOOOE010
Register

SysTick Reload Value Register SysTick->LOAD Table 10.3 ~ OxEOOOE014
SysTick Current Value Register SysTick->VAL Table 10.4 OxEOOOE018
SysTick Calibration Value SysTick->CALIB Table 10.5 0xEOOOE01C
Register

Table 10.2: SysTick control and status register (0xEO0O0E010)

247

EBits Field Type Resetvalue Descriptions
31:17 Reserved - - Reserved
16 COUNTFLAG RO 0 Set to 1 when the SysTick timer reaches zero. Clear to
0 by reading of this register.
15:3 Reserved - - Reserved
2 CLKSOURCE R/W 0/1 Value of 1 indicates that the core clock is used for the
SysTick timer. Otherwise a reference clock frequency
(depending on MCU design) would be used.
1 TICKINT R/'W 0 SysTick interrupt enable. When this bit is set, the
SysTick exception is generated when the SysTick timer
count down to 0.
0 ENABLE R'W 0 When set to 1 the SysTick timer is enabled. Otherwise
the counting is disabled.
Table 10.3: SysTick reload value register (OxEOOOE014)
Bits Field Type Resetvalue Descriptions
31:24 Reserved - - Reserved
23:0 RELOAD R/W Undefined Specify the reload value of the SysTick timer.
Table 10.4: SysTick current value register (0OxEOOOE018)
Bits Field Type Resetvalue Descriptions

31:24 Reserved - -

23:0

Reserved
CURRENT R/W Undefined

generate).

On read returns the current value of the SysTick timer. Write
to this register with any value to clear the register and the
COUNTFLAG to 0. (This does not cause SysTick exception to

248 Chapter 10

Table 10.5: SysTick calibration value register (0xEO00E01C)

Bits Field Type Resetvalue Descriptions

31 NOREF RO - If it is read as 1, it indicates SysTick always uses core clock for
counting as no external reference clock is available. If it is 0,
then an external reference clock is available and can be used.
The value is MCU design dependent.

30 SKEW RO - If set to 1, the TENMS bit field is not accurate. The value is
MCU design dependent.

29:24 Reserved - - Reserved

23:0 TENMS RO - Ten millisecond calibration value. The value is MCU design

dependent. If this read as zero, it means calibration value is
not available.

10.3.2 Setting up SysTick

From architectural point of view the reload value and current values of the SysTick timer
are undefined at reset, the SysTick setup code needs to be in a certain sequence
(Figure 10.4) to prevent unexpected results.

Disable SysTick Program Reload Clear Current . :)
(Optional) Rt value register Ra value register et [EEtell S el o0

Figure 10.4
Setup sequence for the SysTick Timer.

For users of CMSIS compliant device driver libraries, a function called
SysTick_Config(uint32_t ticks) is available that enables SysTick exception to occur
regularly. For example:

SysTick_Config(1000); // setup SysTick exception for every 1000 CPU cycles.

Alternatively you can also program the SysTick by accessing the SysTick registers
directly:

SysTick->CTRL 0; // Disable SysTick
SysTick->LOAD = 999; // Count down from 999 to 0
SysTick->VAL = 0; // Clear current value to 0
SysTick->CTRL 0x7; // Enable SysTick enable SysTick

// exception and use processor clock

The SysTick timer can be used with polling method or by interrupt. For programs that use
a polling method, they can read the SysTick Control and Status Registers to detect the
COUNTFLAG (bit 16). If the flag is set, the SysTick counter has counted down to 0.

Operating System Support Features 249

For example, if we want to toggle a LED connected to an output port every 100 CPU
cycles, we can develop a simple application that uses the SysTick timer with a polling
loop, as shown in Figure 10.5. The polling loop reads the SysTick Control and Status
Register and toggle the LED when 1 is detected in the counter flag. Since the flag get
cleared automatically when the SysTick Control and Status Register is read, there is no

need to clear the counter flag.

‘ Initialize 1/0 ports |

v

\ Disable SysTick |

v

Set SysTick Reload
value to 99

v

Write to Current
value to clear it

Y

\ Enable SysTick |

Y
Read SysTick
Control & Status

Register

Yes

\ Toggle LED |

Figure 10.5
A simple example of using SysTick with polling.

You might wonder why the value of 99 is written into the Reload value register, and
not 100. This is because the counter counts from 99 down to 0. To obtain a periodic
counter reload, or exception, from the SysTick timer, the reload value should be
programmed to the interval value minus 1.

The SysTick Calibrate Value Register can be used to provide information for calculating the
desired reload value for the SysTick. If a timing reference is available on the microcontroller,
the TENMS field in the register may provide the tick count for 10 ms.

250 Chapter 10

However, timing reference might not be available in some of the microcontrollers, you
might find the scenarios describe in Table 10.6 on the microcontroller you use.

Table 10.6: Scenarios where SysTick calibration value register showing timing

reference is not available/not accurate

Scenarios of the SysTick
Calibration Value Explanations

NOREF bit is set to 1 There is no separate reference clock, and SysTick can
only run on the processor clock. In this case the
CLKSOURCE (bit 2 of SysTick->CTRL) is fixed to 1 so
only the processor clock can be used.

TENMS is set to 0 Calibration value information is not available.

SKEW bit is set to 1 Calibration value information is not accurate.

Users of CMSIS compliant device driver libraries can also use a variable called
SystemCoreClock (for CMSIS version 1.3 and after) or SystemFrequency (for CMSIS
version 1.0 to version 1.2) to determine the processor clock speed for reload value
calculation. This software variable can be linked to clock control functions in the
device driver libraries to provide the actual processor clock frequency being used.
Please note that this variable might not have been initialized at the beginning of the
“main()” program. To update this value to reflect current clock frequency setup, the
“SystemCoreClockUpdate()” function should be used.

10.3.3 Using SysTick Timer for Timing Measurement

If the SysTick timer is not used by the application code or by the OS, it can be used as a
simple solution for measuring number of clock cycles required for a processing task. For
examples, the following setup code can be used to carry out timing measurement if the
number of clock cycle is less than 16.7 million cycles:

unsigned int START_TIME, STOP_TIME, DURATION;

SysTick->CTRL = 0; // Disable SysTick
SysTick->LOAD = OxFFFFFF; // Count down from maximum value
SysTick->VAL = 0; // Clear current value to 0

SysTick->CTRL 0x5; // Enable SysTick, and use processor clock
while (SysTick->VAL==0); // Wait until SysTick reloaded
START_TIME = SysTick->VAL; // Read start time value

processing(); // Processing function being measured
STOP_TIME = SysTick->VAL; // Read stop time value
SysTick->CTRL = 0; // Disable SysTick
if ((SysTick->CTRL & 0x10000)==0) // if no overflow

DURATION = START_TIME — STOP_TIME; // Calculate total cycles
else

printf (“Timer overflowed\\n”);

Operating System Support Features 251

Since the SysTick is a down counter, the value of START_TIME is larger than the value
of STOP_TIME. The above example code assumes that the SysTick does not overflow
during the execution of the processing task. If the duration is more than 16.7 million
cycles (2% = 16,777,216), a SysTick interrupt handler has to be used to count the number
of times the timer overflowed.

10.3.4 Using SysTick Timer in Single Shot Mode

Apart from generating regular interrupts and timing measurement, the SysTick timer can
also be used for producing short delays in a single shot mode configuration. For example,
in the “main()” program, the following code can be used:

// Program SysTick timer to generate an interrupt after OxFFFFFF cycles.
SysTick->CTRL = 0; // Disable SysTick
SysTick->LOAD = OxFFFFFF; // Delay value
SysTick->VAL = 0x0;
SysTick->CTRL 0x7; // Enable SysTick with exception generation
// and use core clock as source
__WFIC); // Enter sleep

Inside the SysTick exception handler, we need to disable the SysTick timer to prevent
further SysTick exception being triggered. And if the delay value is short, we should also
clear the SysTick exception pending status in case the next SysTick exception has already
been triggered.

// SysTick handler to disable SysTick
void SysTick_Handler(void)
{
// Disable SysTick
SysTick->CTRL = 0;
// Clear SysTick pending status in case it has already been triggered
SCB->ICSR = SCB->ICSR | (1<<K25); // Set PENDSTCLR
return;
}

Please note that the delay from the time SysTick is enabled to the time SysTick exception
handler started to execute include a delay called interrupt latency (see Section 8.13).

If a SysTick is used to create a relatively short delay, the interrupt latency should take into
account when setting the SysTick reload value.

252 Chapter 10

10.4 Process Stack and PSP

The Cortex®-MO and Cortex-MO+ processors (also applicable to Cortex-M3/M4/M7) have
two Stack Pointers (SPs):

* the MSP—use at start-up and in exception handlers, including OS operations.
* the PSP—typically use by application tasks in a multitasking system

Both of them are 32-bit registers and can be referenced as R13, but only one is used at
one time, depending on the value in the CONTROL special register and the current mode
(Handler or Thread). The MSP is the default SP and initialized at reset by loading the
value from the first word of the memory. For simple applications, we can use MSP all the
time. In this case, we only have one stack region.

For system with an embedded OS, or in systems that required high reliability and
therefore require separation of stacks for different parts of the software, we can define
multiple stack regions (Figure 10.6): one for the OS kernel and exceptions and the others
for different tasks.

Overall, the reasons for separating the SPs and use PSP for application tasks/threads
included thefollowing:

* To enable easier context switching,
* Enhance reliability (in this arrangement stack corruption in an application task is less
likely to affect stack use by OS kernel),

Memory
Address

A RAM

Task A

Task B

Task C ‘

Data and heap
memory

Figure 10.6

Stack for
OS kernel and
exception handlers

Stack for kernel,
exception handlers

Stack for Task A

Stack for Task B

Stack for Task C

Separate memory ranges for OS and application tasks.

Operating System Support Features 253

* To reduce the overall stack size required (stack regions for application tasks do not need
to support the stack usage by exception handlers).

During context switching, the SP for the exiting application task in the PSP will have to
be saved and the PSP will then change to the SP location for the next task.

Very often the OS kernel code requires a stack to operate, and the context switching
requires switching of SP. As a result, having two SPs and separating the kernel stack from
others makes it easier for OS operations, because it avoids SP updates from affecting OS
kernel data accesses.

The separation of stack memory for different tasks and OS kernel reduces the chance of a
stack error. Although a rogue task can corrupt data in the RAM (e.g., stack overflow), an
embedded OS can check the SP value during context switching to detect stack errors. An
OS can also include MPU support to limit stack usage of each task. As a result it can help
to improve the reliability of an embedded system.

In a system with an embedded OS, the OS kernel has to keep track of the SP values for
each task during context switching, and switch over the PSP value to allow each task to
have their own stack, as shown in Figure 10.7.

As covered in Chapter 4, the selection of the pointer is determined by the current mode of
the Cortex-M processor and the value of the CONTROL register. When the processor

Memory
Address MSP
A RAM initialized
\. Stack for OS
0S| | S S kernel &
- r LN SN N exceptions
interrupts (MSP)
Task A SP
- initialized Task A Task A SP Task A
—— ._kf\/ﬁp saved restored SEEed Stack for
7777777777777777777777 i Task A
Task A PSP
Task B SP Switch to ()
| initiilized JTask B SP Tk B SP Task B SP
| s B T saved Stack for
/ Task B
Task B / (PSP)
Task B SP
‘I_'a_?_k IC SdP / restored
— m'.l’il,zf ,,,,,,,,,,,,,,, g Stack for
\ / 1 Task C
Task C \ 7 TaskCSP (PSP)
PSP switchingby —__ saved
context switching code T
Startupand | g o Task B Task G Task A Task B
v initiailization

Stack grow \ \ /4 /V ’ o

—
Time

Context switching

Figure 10.7
MSP and PSP activities with simple OS running three tasks.

254 Chapter 10

comes out of reset, it is in thread mode, the CONTROL register’s value is 0, and the MSP
is selected as the default SP.

From the default state, the current SP selection can be changed to use PSP by
programming the CONTROL register. Note that an Instruction Synchronization Barrier
(ISB) instruction should be used (an architectural recommendation) after programming the
CONTROL register bit 1 to 1. You can also switch back to use MSP by clearing bit 1 of
the CONTROL register, providing that the processor is still in privileged state.

Figure 10.8 describes the stack pointer switching flows in exception entry and exit
sequences. If an exception occurs, the processor will enter handler mode and the MSP will
be selected. The stacking process that pushes RO—R3, R12, LR, PC, and xPSR can be
carried out using either MSP or PSP, depending on the value of CONTROL register before
the exception, as explained in Chapter 8.

When an exception handler is completed, the PC is loaded with the EXC_RETURN value.
Depending on the value of lowest 4 bits of the EXC_RETURN, the processor can return to
Thread mode with MSP selected, Thread mode with PSP selected, or Handler mode with
MSP selected. The value of the CONTROL register is updated to match bit 2 of the
EXC_RETURN value.

\

Exception
(nested)

*

Stacking __ |
using main Handler mode
stack (_» MSP == SP

Stacking
Unstacking * using process
using main Exception Return stack
stack

OxFFFFFFFD T
Exception

A OXFFFFFFF1

Exception

OxFFFFFFF9 Unstacking
Unstacking using process
using main stack

stack i

Setting CONTROL[1] to 1

Thread mode, > Thread mode,
CONTROL[1]=0 CONTROL[1] =1
Reset
MSP == SP P Setting CONTROL[1] to0 PSP == SP
Figure 10.8

Switching of stack pointer selection by software or exception entry/exit.

Operating System Support Features 255

The value of MSP and PSP can be accessed using the MRS and MSR instructions. In
general, changing the value of the currently selected SP in C language is a bad idea
because access to local variables and function parameters can be dependent on the SP
value. If it is changed, the values of these variables cannot be accessed.

If you are using CMSIS compliant device driver libraries, you can access the value of the
MSP and PSP with the following functions (Table 10.7):

Table 10.7: CMSIS-CORE functions for accessing MSP and PSP

Functions Description

Uint32_t _ get MSP(void) Read the current value of the Main Stack Pointer
void __set_MSP(uint32_t topOfMainStack) Set the value of the Main Stack Pointer

uint32_t __get_PSP(void) Read the current value of the Process Stack Pointer
void __set_PSP(uint32_t topOfProcStack) Set the value of the Process Stack Pointer

To implement the context switching sequence as in Figure 10.7, the following procedures
can be used. Please note that there are various different ways to implement an embedded
0OS, the following illustration is only an example.

Memory A
¢— Top of task A’s stack
PSR
PC l«— Starting address of Task A
Stack frame
Stack frame load
RO into register bank
Task Initial stack Set PSP to)Set other Except|o_n
memories frame create stack frame registers in Return with
initialized at top of starting re ?ster bank EXC_RETURN
stack A address 9 = OxFFFFFFFD

use \ A v v r

initialized by 0S initialization (Handler mode)
reset
sequence
\J
Thread mode Thread mode — Task A
sSvC

instruction

Reset executed

v

\J

Time
Figure 10.9

Initialization of a task in a simple OS by creating a stack frame and then switch
to it using exception return.

256 Chapter 10

Save PSP
(Task A SP) Exception return with
to task data Set PSP to EXC RETURN =
structure Task B SP OxFFFFFFFD
Restore
Save_ task Task task B
A registers scheduling registers
(R4-R11) (R4-R11)
‘ OS (Handler mode) OS (Handler mode) ‘
Thread mode — Task A ‘ ‘ Thread mode — Task B

SysTick
exception

v

v

Time
Figure 10.10
Example context switching from one task to another in a simple OS.

First, we need to be able to switch from thread into OS code running in handler mode.
Typically this can be carried out with an SVC instruction, which is cover in the next
section (Section 10.5). Then we need to set up a stack frame in the memory, and use this
stack frame in an exception return mechanism to jump to the starting point of the first
thread (task A). The sequence is illustrated in Figure 10.9.

We also need to have the code to handle context switching. When an application task is
interrupted by an exception, the registers RO—R3, R12 are already saved. We need to add
code to save R4—R11 to the stack, and then save the current value of the PSP so that we
can resume the task later. The operation is illustrated in Figure 10.10.

Section 10.7 of this chapter shows example codes to create a simple multi-tasking
system.

10.5 SVCall Exception

In order to build a complete OS, we need a few more features from the processor. The first
one is a software interrupt mechanism to allow tasks to trigger a dedicated OS exception.
In ARM® processors this is called Supervisor Call (SVCall). An instruction called SVC is
available for trigging an SVCall exception. Typically, when the SVC instruction is
executed, the SVCall exception is triggered and the processor will execute the SVCall
exception handler immediately, unless an exception with a higher or same priority arrived
at the same time and is being served first.

Operating System Support Features 257

The SVCall exception can be used as a gateway for applications to access a system service
provided by the OS. An application can pass parameters to the SVCall handler inside the
OS for different services, as shown in Figure 10.11.

Services || Services || Services

JC JCJC

OS Kernel

iE iE Hardware
Application ——

svC API ﬂ/ Device Peripherals

Drivers

Operating System

Figure 10.11
SVC as a gateway to system services in OS.

In some development environments, SVCall can make the access to OS functions easier as
the accesses to OS functions do not require any address information. Therefore the OS and
the applications can be compiled and delivered separately. The application can interact
with the OS by calling the correct OS service and providing the required parameters.

The SVC instruction contains an 8-bit immediate value. This immediate value can be
extracted by the SVCall handler to determine which OS service is required. The syntax for
SVC instruction in assembly is given below:

SVC #0x3 ; Call SVC service 3

Traditional ARM development tools support a slightly different syntax (without the “#” sign).
SVC 0x3 ; Call SVC service 3

This syntax can still be used. But for new projects the newer syntax should be used.

In C language, there is no standard way to access SVC functions. In ARM development
tools (including Development Studio 5 and Keil® MDK), you can use the __svc keyword.
This topic is covered in more depth in Section 10.7.

If you were a user of ARM7TDMI or similar classic ARM processors, you might notice
that the SVC is very similar to SWI instruction on these processors. In fact, the binary
encoding of SVC is identical to the SWI Thumb® instruction. However, this instruction is

258 Chapter 10

renamed to SVC in newer architectures and the SVC handler code is different from SWI
handler code for the ARM7TDMI.

Due to the interrupt priority behavior of the Cortex®-M processors, the SVC instruction
can only be used in thread mode or exception handlers that have a lower priority then the
SVC itself. Otherwise, a HardFault exception would be generated. As a result, you cannot
use the SVC instruction inside another function accessed by an SVCall Handler as it has
the same priority level. Also, you also cannot use an SVC instruction inside an NMI
handler or the HardFault handler.

10.6 PendSV

The PendSV is an exception type which can be activated by setting a pending status bit in
the System Control Block (SCB). Unlike SVCall, PendSV activation can be deferred.
Therefore you can set its pending status even when you are running an exception handler
with a higher priority level than the PendSV exception. The PendSV exception is useful for
the following:

* Context switching operation in an embedded OS
* Separating an interrupt processing task into two halves:
e The first half must be executed quickly and is handled by a high-priority interrupt
service routine (ISR)
* The second half is less-timing critical and can be handled by a deferred PendSV
handler with a lower priority. Therefore it allows other high-priority interrupt
requests to be processed quickly.

The second use of PendSV is fairly easy to understand, and more details of such usage are
covered in Section 10.7.2 with a programming example. The use of PendSV for context
switching is more complex. In a typical OS design, context switching can be triggered by
the following:

* Task scheduling during a SysTick handler
* A task waiting for data/event calling an SVCall service to swap in another task

Usually, the SysTick exception is set up as a medium- or high-priority exception. As a result,
the SysTick handler (part of the OS) can be invoked even if another interrupt handler is
running. However, the actual context switching should not be carried out while an ISR routine
is running. Otherwise the interrupt service would be broken into multiple parts. Traditionally,
if the OS detected that an ISR is running (e.g., by looking into the stack xPSR), it will not
carry out the context switching and wait until next OS tick (as shown in Figure 10.12).

By deferring the context switching to the next SysTick exception, the IRQ handler can
complete the execution. However, if the IRQ is generated periodically with a regular

Operating System Support Features 259

Handler mode

SysTick

(High priority)
IRQ (Medium
priority)

L]

\ |

IRQ
[Task A Task B . Task C [} * ‘ Task C Task A Task B
v * e P .

Time
Context switching

No context switching

Figure 10.12
Without PendSV—Context switching is not carried out if the OS detects and ISR is running.

interval and the IRQ rate coincides with the pattern of task switching activities, then some
tasks might receive a larger share of processing time, or in some cases the context switching
cannot be carried out for a long period, for example, if the IRQ occurs too frequently.

In order to solve this problem, the actual context switching process can be separated from
the SysTick handler and implemented in a low-priority PendSV handler. By setting the
priority of the PendSV exception to the lowest priority level, the PendSV handler can only
be executed when there is no other interrupt service is running.

Take the activities in Figure 10.13 as an example; the OS task scheduler is triggered by
the SysTick exception periodically for task scheduling. The OS task scheduler sets the
pending state of the PendSV exception (lowest priority) before exiting the exception. If
there is no IRQ handler running, the PendSV handler starts immediately after the SysTick
exception exit and carries out the context switching. If an IRQ is running when the
SysTick exception occurred, then the PendSV exception must wait until the IRQ handler
finished before it can start because the PendSV is programmed to the lowest priority level.
When all the IRQ activities have been completed, the PendSV handler can then carry out
the required context switching.

10.7 Advanced Topics: Using SVC and PendSV in Programming

In practice, the SVCall and PendSV exceptions are rarely used directly without OS. For
applications with an embedded OS, an API of the OS normally handles these for you.

260 Chapter 10

Handler mode

SysTick Interrupt Context

Thread mode

(High priority) event switching
after ISR
IRQ (Medium x
priority) /
PendSV
(Low priority)

IRQ
[Task A | Task B | Task C ‘ E)s} + Task A | Task B | Task C
h N > _—7

/

\

Time

Context switching
in PendSV

Figure 10.13
With PendSV—Context switching can be carried out after IRQ handler is completed.

Nevertheless, the information about using SVCall and PendSV can still be useful for
developers for debugging software.

Note: This section covers programming techniques that can be difficult for beginners.
For beginners, you can skip the rest of this chapter and study other parts of this book first,
and revisit this section once you are family with the programming environment.

The SVC instruction is not natively supported in C language. For C language development
with ARM® tool chains (KEIL® Microcontroller Development Kit for ARM, or ARM
Development Studio 5), the SVC instruction can be generated using __svc function or
inline assembly. In GNU Compiler Collection and some other tool chains, this can be
generated using inline assembly.

10.7.1 Using the SVC Exception

SVC (SuperVisor Call) is commonly used in an OS environment for application tasks to
access to system service provided by the OS. In general, using the SVC involves the
following process:

1. Set up optional input parameters to pass to SVC handler in registers (e.g., RO—R3)
based on programming practice outlined by AAPCS
2. Execute the SVC instruction

Operating System Support Features 261

3. The SVC exception handler starts execution and can optionally extract address of the
stack frame using SP values

4. Using extracted stack frame address, the input parameters which are stored as stacked
registers can be located and read by the SVC exception handler.

5. Optionally, the SVC exception handler can also track the immediate value in the
executed SVC instruction using the stacked PC value in the stack frame.

6. The SVC exception handler then carry out the require processing.

7. 1If the SVC exception handler needs to return a value back to the application task that
made the SVC call, it needs to put the return value back onto the stack frame, usually at
where the stacked RO is located.

8. The SVC exception handler executes an exception return, and the contents of the stack
frame are restored to the register bank.

9. The modified stacked RO value in the stack frame, which contains the return value of
the SVC handler, is loaded into RO and can be used by the application task as the return
value.

You might wonder why we need to extract the input parameters from the stack frame,
instead of just using the values in the register bank. The reason is that if another
exception with priority level higher than SVC exception occurred during stacking, the
other exception handler would be executed first and it could change the values in registers
R0O—R3 and R12 before the SVC handler is entered. (In Cortex®-M processors,
exceptions handlers can be normal C functions and therefore these registers can be
changed.)

Similarly, the return value has to be put into the stack frame. Otherwise, the value
stored into RO will be lost during the unstacking process of returning from the
exception.

In the next step, we will see how to do all these in a programming example. The following
example is based in Keil MDK, and can also be used on ARM DS-5.

First, we need to ensure that the vector table already has the “SVC_Handler” defined. If
you are using CMSIS-based software packages from microcontroller vendors, the
“SVC_Handler” definition should be included in the vector table already. Otherwise, you
might need to add this to the vector table.

Secondly, we need to be able to put the input parameters into the right registers and
execute the SVC instruction. With Keil MDK or ARM DS-5, the “__svc” keyword can be
used to define the SVC function including the SVC number (the immediate value in the
SVC instruction), the input parameters and the return parameter definitions. You can

262 Chapter 10

define multiple SVC functions with different SVC numbers. For example, the following
code defined three SVC function prototypes:

int __svc(0x00) svc_service_add(int x, int y);
int __svc(0x01) svc_service_sub(int x, int y);
int __svc(0x02) svc_service_incr(int x);

After the SVC functions are defined, we can then use it in our application code. For example:
z = svc_service_add(x, y);
The code for the SVC handler is separated into two parts in the following example:

* The first part is an assembly wrapper code to extract the starting address of exception
stack frame and put it to register RO as input parameter for the second part.

* The second part extracts the SVC number and input parameters from the stack
frame and carries out the SVC operation in C. The program code might also need to
deal with error conditions that an SVC instruction is executed with invalid SVC
number.

The first half of the SVC handler has to be carried out in assembly because we cannot tell
the stack frame starting location from a C base SVC handler. Even we can find out the
current value of the SPs, we do not know how many registers would have been pushed
onto the stack at the beginning of C handler.

Using the embedded assembly feature in ARM compilation tools, the first part of the SVC
handler can be written as:

// SVC handler - Assembly wrapper to extract
// stack frame starting address
__asm void SVC_Handler(void)
{
MOVS ro, #4
MOV rl, LR
TST ro, rl
BEQ stacking_used_MSP
MRS RO, PSP ; first parameter - stacking was using PSP
LDR R1,=__cpp(SVC_Handler_main)
BX R1
stacking_used_MSP
MRS RO, MSP ; first parameter - stacking was using MSP
LDR R1,=__cpp(SVC_Handler_main)
BX R1
}

We use BX instruction to branch instead of using “B __cpp(SVC_Handler_main)” in case
the linker rearranged the positioning of the function order, the BX instruction will still be
able to reach the branch destination.

Operating System Support Features

263

The second part of the SVC handler used the extracted stack frame starting address as the
input parameter and used it as a pointer to an integer array to access the stacked register
values. The example code is listed below:

svc_demo.c

{

/7

{

int
UART

X =
7 =
prin

X =
7 =
prin

X =
7 =
prin

whil

MOVS
MOV
TST
BEQ
MRS
LDR
BX

#include <stdio.h>

// Define SVC function

int __svc(0x00) svc_service_add(int x, int y);
int __svc(0x01) svc_service_sub(int x, int y);
int __svc(0x02) svc_service_incr(int x);

void SVC_Handler_main(unsigned int * svc_args);

// Function declarations
int main(void)

X, Yy, Z;

_Config(); // Initialize UART for printf

3; y = 5;
svc_service_add(x, y);
tf ("3+5 = %d \n", z);

9; y = 2;
svc_service_sub(x, y);
tf ("9-2 = %d \n", z);

3;
svc_service_incr(x);

tf ("3++ = %d \n", z);

e(l);

// SVC handler - Assembly wrapper to extract

stack frame starting address

_asm void SVC_Handler(void)

ro, {4
rl, LR
ro, rl

stacking_used_MSP

RO, PSP ; first parameter - stacking was using PSP
R1,=__cpp(SVC_Handler_main)

R1

Continued

264 Chapter 10

stacking_used_MSP
MRS RO, MSP ; first parameter - stacking was using MSP
LDR R1,=_ cpp(SVC_Handler_main)
BX R1

}

// SVC handler - main code to handle processing
// Input parameter is stack frame starting address
// obtained from assembly wrapper.
void SVC_Handler_main(unsigned int * svc_args)
{
// Stack frame contains:
// r0, rl, r2, r3, r12, rl4, the return address and xPSR
// - Stacked RO = svc_args[0]
// - Stacked Rl = svc_args[1]
// - Stacked R2 = svc_args[2]
// - Stacked R3 = svc_args[3]
// - Stacked R12 = svc_args[4]
// - Stacked LR = svc_args[5]
// - Stacked PC = svc_args[6]
// - Stacked xPSR= svc_args([7]

unsigned int svc_number;
svc_number = ((char *)svc_args[6]1)[-2];
switch(svc_number)
{
case 0: svc_args[0] = svc_args[0] + svc_argsl[1];
break;
case 1: svc_args[0] = svc_args[0] - svc_args[1];
break;
case 2: svc_args[0] = svc_args[0] + 1;
break;
default: // Unknown SVC request
break;
}
return;

The program also requires additional support code for Universal Asynchronous Receiver/
Transmitter (UART) hardware initialization and printf support (more on this will be
covered in Chapter 18, Programming Examples). After the program executes, the UART
outputs the expected results generated from the SVC functions.

The priority level of the SVC exception is programmable. To assign a new priority level to

the SVC exception, we can use the CMSIS-CORE function NVIC_SetPriority. For

example, if we want to set SVC priority level to 0x80, we can use:
NVIC_SetPriority(SVCall_IRQn, 0x2);

The function automatically shifts the priority level value to the implemented bit of the

priority level register (0x2<<6 equals 0x80).

Operating System Support Features 265

10.7.2 Using the PendSV Exception

Unlike the SVCall, the PendSV exception is triggered by writing to the Interrupt Control
State Register (address 0XEOOOEDO4, see Table 9.6). If the PendSV exception is blocked
due to insufficient priority level, it will wait until the current priority level drops or the
blocking (e.g., PRIMASK) is removed.

To put PendSV exception into pending state, we can use the following C code:
SCB->ICSR = SCB->ICSR | (1<<K28); // Set PendSV pending status

The priority level of the PendSV exception is programmable. To assign a new priority
level to the PendSV exception, we can use the CMSIS-CORE function NVIC_SetPriority.
For example, if we want to set PendSV priority level to 0xCO, we can use:

NVIC_SetPriority(PendSV_IRQn, 0x3); // Set PendSV to Towest level

The function automatically shifts the priority level value to the implemented bit of the
priority level register (0x3<<6 equals 0xCO0).

Unlike the SVCall, the PendSV exception is not synchronous, which means after the
instruction that sets the PendSV exception pending status is executed, the processor can still
execute a number of instructions before the exception sequence takes place. For this reason,
PendSV can only work as a subroutine without any input parameters and output return values.

The most important usage of the PendSV exception is for OS operations such as context
switching in an OS environment, please refer to the next section 10.8 for example.

For systems without OS, the PendSV exception can also be used, for example, for
deferring certain interrupt service. For example, an interrupt service can need a fair
amount of time to process. The first portion of the processing might need high priority, but
if the whole ISR is executed with high-priority level, other interrupt services would be
blocked out for a long time. In these cases, we can partition the interrupt service
processing into two halves (Figure 10.14):

* The first half is the time critical part that needs to be executed quickly with high
priority. It is put inside the normal ISR. At the end of the ISR, it sets the pending status
of the PendSV.

* The second half contains the remaining processing work needed for the interrupt service.
It is placed inside the PendSV handler and is executed in low exception priority.

The following code demonstrates the triggering and setup for PendSV exception. It sets up
a timer exception at high priority and the PendSV exception at lower priority. Each time
the high-priority timer exception is triggered, the timer handler only executes for a short
period of time, carries out essential tasks and sets the pending status of PendSV. The
PendSV then executed after the timer handler completes and reports to the terminal that
the timer exception has been executed.

266 Chapter 10

EXC?PFIO” A Pending Status of
Priority First part of the PendSV is set before
interrupt service A exception return Other interrupt requests can be
(time critical) served, and does not get

ISR A blocked by non-urgent
! processing in ISR A
\
IRQ Bf \

)
PendSVv] (PendSVv

IRQA |

/ Second part of the interrupt service A
(less urgent, not time critical)

|

Time
Figure 10.14
Using PendSV to partition an interrupt service into two halves.

pendsv_demo.c

#include <stdio.h>

int main(void)

{
UartConfig(); // Initialize UART

NVIC_SetPriority(SysTick_IRQn, 0x0); // Set Timer to highest level
NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest level

// Program timer interrupt with CMSIS-Core SysTick function
SysTick_Config(OxFFFFFFUL); // Maximum delay for this example
while(1);

void PendSV_Handler(void)

{ // Execute at Tow priority
printf ("[PendSV] Timer interrupt triggered\n");
return;

void SysTick_IRQHandler(void)

{ // Execute at high priority
SCB->ICSR = SCB->ICSR | (1<<K28); // Set PendSV pending status
return;

With this arrangement, the processing task required by the timer exception is split into two
halves. Since the “printf” process can take long time, it is executed by the PendSV at a
low priority so that other higher- or medium-priority exceptions can take place while printf
is running. This type of interrupt processing method can be applied to many applications
to help improving the interrupt response of embedded systems.

Operating System Support Features 267

10.8 Advanced Topics: Context Switching in Action

To demonstrate the context switching operation in a real example, here we use a simple
task scheduler that switches between four tasks in a round robin arrangement. If multiple
LEDs are available, each of the tasks toggles one of the LED at different speed.

The context switching operation is carried out by the PendSV exception handler. Since the
exception sequence already saved registers RO—R3, R12, LR, Return Address and xPSR,
the PendSV only needs to store R4—R11 to the process stack (Figure 10.15).

When PendSV is entered

Memory

}

Task A stack

Exception
Stack Frame
(RO-R3, R12,
LR, PC, xPSR)

for Task A

PSP —»

Memory

f

PSP —>

Task A context is
saved

Task A stack
Exception
Stack Frame
(RO-R3, R12,
LR, PC, xPSR)
for Task A
R4-R11 for Psparray(]
Task A
Task B’s SP ~
Store PSP)
- vglyg/,/f/"’* Task A’s SP
Figure 10.15

Me

}

o
J

Point to Task B
context

mory

Task B stack

Exception
Stack Frame
(RO-R3, R12,
LR, PC, xPSR)

for Task B

R4-R11 for
Task B

d PSP value
r next task

Context switching from one task to another.

The code for the project can be implemented as:

Memory

}

PSP —»

Task B context is
restored

Task B stack

Exception
Stack Frame
(RO-R3, R12,
LR, PC, xPSR)

for Task B

Example code for a multi-tasking system with 4 tasks
- LED and UART control code not shown here

#include "stdio.h"

void LED_Config(void);
_ INLINE static void LED_On (uint32_t Ted);
_ INLINE static void LED_Off (uint32_t Ted);

/* Macros for word accesses */
Jfdefine HW32_REG(ADDRESS)

(*((volatile unsigned long

*) (ADDRESS)))

Continued

268 Chapter 10

// UART functions
extern void UART_config(void);
extern void UART_echo(void);

void taskO(void); // Toggle LEDO
void taskl(void); // Toggle LEDI
void task2(void); // Toggle LED?
void task3(void); // UART echo

void Task_Init(uint32_t task_id, uint32_t PC, uint32_t PSP_value);

// Stack for each task (2Kbytes each - 256 x 8 bytes)
long Tong taskO_stack[256], taskl_stack[256], taskZ_stack[256], task3_stack[256];

// Data variables use by 0S

uint32_t curr_task=0; // Current task
uint32_t next_task=1; // Next task
uint32_t PSP_array[4]; // Process Stack Pointer for each task

int main(void)

{
// Configure LED outputs
LED_Config();
UART_config();

printf("Context Switching demo 1:\n");
Task_Init(0, ((unsigned long) taskO0),

((unsigned int) taskO_stack) + (sizeof taskO_stack) - 16*4);
Task_Init(1l, ((unsigned long) taskl),

((unsigned int) taskl_stack) + (sizeof taskl_stack) - 16*4);
Task_Init(2, ((unsigned long) task2),

(Cunsigned int) task2_stack) + (sizeof task2_stack) - 16*4);
Task_Init(3, ((unsigned long) task3),

((unsigned int) task3_stack) + (sizeof task3_stack) - 16*4);

NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest Tlevel
NVIC_SetPriority(SysTick_IRQn, 0x0); // Set Timer to highest level

curr_task = 0; // Switch to task #0 (Current task)
__set_PSP((PSP_arrayl[curr_task] + 16*4)); // Set PSP to top of task 0 stack

SysTick_Config(48000); // 1000 Hz SysTick interrupt on 48MHz core clock

_ set_CONTROL(Ox3); // Switch to use Process Stack, unprivileged state
__ISB(); // Execute ISB after changing CONTROL (architectural
recommendation)

task0(); // Start task 0, do not return

// Should not be here
printf ("ERROR: task execution fail\n");
while (1);

Operating System Support Features

269

void Task_Init(uint32_t task_id, uint32_t PC_value, uint32_t PSP_value)

{

// Process Stack Pointer (PSP) value
PSP_array[task_id] = PSP_value;
// Stack Frame format

/] ----
// 15
/] 14
// 13
/] 12
// 8-11
/] ----
/] 4-
// 0
/] ----
HW32_RE
HW32_RE
return;

- xPSP

- Return Address
- LR

- R12

- RO - R3

- R8 - RI11

- R4 - R7

G((PSP_array[task_id] + (14<<2))) = PC_value; // initial PC
G((PSP_array[task_id] + (15<<2))) = 0x01000000; // initial xPSR

__asm void PendSV_Handler(void)

{

// Con
// Simp

// Save
MRS
SUBS
STMIA
MOV

MOV

MOV

MOV
STMIA
SUBS
LDR

LDR
ADDS
ADDS
LDR
STR

/] -
// Load
LDR R4,
LDR

STR
ADDS
ADDS
LDR
ADDS

text switching code

le version - assume all tasks are unprivileged

current context

RO, PSP // Get current process stack pointer value
RO, {32 // Allocate 32 bytes for R4 to R11

RO!, {R4-R7} // Save R4 to R7 in task stack (4 regs)
R4, R8 // Copy R8 to R11 to R4 to R7

R5, R9

R6, R10

R7, R11

RO!, {R4-R7} // Save R8 to R11 in task stack (4 regs)
RO, 32
R1,=__cpp(&curr_task)

RZ2,[R1] // Get current task ID

R2, R2 // Array offset = ID value x 4 (2 adds)
R2, R2

R3,=__cpp(&PSP_array)

RO,[R3, R21 // Save PSP value into PSP_array

next context

=__cpp(&next_task)

R4,[R4] // Get next task ID

R4,[R1] // Set curr_task = next_task

R4, R4 // Array offset = ID value x 4 (2 adds)
R4, R4

RO,[R3, R41 // Load PSP value from PSP_array

RO, #16

Continued

270 Chapter 10

LDMIA RO!,{R4-R7} // Load R8 to R11 from task stack (4 regs)
MOV R8, R4 // Copy to R8 - R11 to R4 to R7

MOV R9, R5

MOV R10, R6

MOV R11, R7

MSR PSP, RO // Set PSP to next task

SUBS RO, #32

LDMIA RO!,{R4-R7} // Load R4 to R7 from task stack (4 regs)
BX LR // Return

ALIGN 4

void SysTick_Handler(void) // 1KHz
{
// Simple task round robin scheduler
switch(curr_task) {
case(0): next_task=1l; break;
case(l): next_task=2; break;
case(2): next_task=3; break;
case(3): next_task=0; break;
default: next_task=0;
printf ("ERROR: illegal task\n");
while(1);
}
if (curr_task!=next_task){ // Context switching needed
SCB->ICSR |= SCB_ICSR_PENDSVSET_Msk; // Set PendSV to pending
}
return;

void taskO(void) // Toggle LED #0
{
int i;
while (1) {
LED_On(0);
for (i=0;i<OxFFFFF;i++){ __NOP();}
LED_Off(0);
for (i=0;1<0OxFFFFF;i++){ __NOP();}
}// end while
}
/* _____________________________ */
void taskl(void) // Toggle LED #1
{
int i;
while (1) {
LED_On(1);
for (i=0;i<0OX1FFFFF;i++){ __NOP();}

Operating System Support Features 271

LED_Off(1);
for (i=0;i<Ox1FFFFF;i++){ _NOP();}
}// end while
}
/* _____________________________ */
void task2(void) // Toggle LED #2
{
int i;
while (1) {
LED_On(2);
for (i=0;i<0x2FFFFF;i++){ _NOP();}
LED_Off(2);
for (i=0;i<0x2FFFFF;i++){ __NOP();}
}// end while
}
/* _____________________________ */
void task3(void)
{
// Only 3 LEDs on this board, so task 3 have no LED
// process UART echo instead
while (1) {
UART_echo();
}// end while

The example also shows a simple method to start the first task:

curr_task = 0; // Switch to task #0 (Current task)
__set_PSP((PSP_arrayl[curr_task] + 16*4)); // Set PSP to top of task 0 stack

_ set_CONTROL(Ox3); // Switch to use Process Stack, unprivileged state

__ISB(); // Execute ISB after changing CONTROL (architectural recommendation)
task0(); // Start task 0

Using this method, the PSP is set up to task O before taskO is executed, and we enter taskO
directly. In this arrangement, it is not strictly required to initialize the stack frame for task
0 (after the printf message), but we included the taskO initialization code there so that all
the tasks set up have the same look and feel.

With this simple design, you can use either run all tasks in unprivileged state by setting
CONTROL to 3, or run all tasks in privileged state by setting CONTROL to 2. The
execution of ISB is a recommendation in the architecture.

This simple OS example calls the first task directly, which is not very flexible in coding
because in real world the OS developer created the OS will not know which task should
be started first. Another limitation of the first example is that we assumed all the tasks are

272 Chapter 10

executed in same unprivileged/privileged state. In some applications, we might need to run
some of the tasks in privileged state and some in unprivileged state. To do this:

* We need to define a way to store the privilege level for each task (potentially we can
use the LSB of the PSP_array[] because lowest 2 bits of the SPs are always 0.

* We also need to define the initial privilege level for each task in task initialization stage.

* We need to modify the context switching code to save and restore the value of the
CONTROL register at context switch.

In the second example, we modify the simple OS to use bit 0 of PSP_array to hold the
privilege level of each task, and change the way the OS start the first task.

Instead of directly calling “task0” to start the first task in the system, we start the OS
initialization with an SVCall exception and use exception return to start the first task
(task0). In this way, OS code can then be independent of the application, as the first task
could then be any of the tasks. The SVC mechanism shown in the example is using __svc
keyword, a feature in the ARM® C compiler tool chain. For other tool chains you will
need to edit the source code to use inline assembly to insert the SVC instruction.

Note: with this implementation the stack initialization for taskO would be necessary.

The code for the project can be implemented as:

Example code for a multi-tasking system with 4 tasks
- LED and UART control code not shown here

ffinclude "stdio.h"

/* Macros for word accesses */
fhdefine HW32_REG(ADDRESS) (*((volatile unsigned long *)(ADDRESS)))

void LED_Config(void);

_ INLINE static void LED_On (uint32_t Ted);
_ INLINE static void LED_Off (uint32_t led);
// UART functions

extern void UART_config(void);

extern void UART_echo(void);

void taskO(void) // Toggle LEDO
void taskl(vo1d) // Toggle LEDI
void task2(void); // Toggle LED?
void task3(void); // UART echo

void Task_Init(uint32_t task_id, uint32_t PC, uint32_t PSP_value, uint32_t
Unprivileged);

void __svc(0x00) 0S_Init(void); // OS initialization (SVC service use by main)
void SVC_Handler_C(unsigned int * svc_args);

void 0S_start(void);// 0S startup code (called by SVC handler)

Operating System Support Features

273

// Stack for each task (2Kbytes each - 256 x 8 bytes)
Tong long taskO_stack[256], taskl_stack[256],
task2_stack[256], task3_stack[256];

// Data variables use by 0S

uint32_t curr_task=0; // Current task
uint32_t next_task=1; // Next task
uint32_t PSP_array[4]; // Process Stack Pointer for each task

// bit 0 indicate the task should execute in unprivileged state
uint32_t svc_exc_return; // EXC_RETURN use by SVC

int main(void)

{
// Configure LED outputs
LED_Config();
UART_config();

printf("Context Switching demo 2:\n");
0S_Init(); // Use SVC service to start the 0S

// Should not be here
printf ("ERROR: task execution fail\n");
while (1);

/* Assembly wrapper for SVC handler
- also allow OS to change EXC_RETURN value */
_asm void SVC_Handler(void)
{
MOVS RO, #4 // Extract stack frame location
MOV R1, LR
TST RO, R1
BEQ stacking_used_MSP
MRS RO, PSP ; first parameter - stacking was using PSP
B SVC_Handler_cont
stacking_used_MSP
MRS RO, MSP ; first parameter - stacking was using MSP
SVC_Handler_cont
LDR R2,=__cpp(&svc_exc_return) // Save current EXC_RETURN
MOV R1, LR
STR R1,[R2]
BL __cpp(SVC_Handler_C) // Run C part of SVC_Handler
LDR R2,=_ cpp(&svc_exc_return) // Load new EXC_RETURN
LDR R1,[R2]
BX R1
ALIGN 4

/* SVC handler to select 0S services - only one implemented :
SVC #0 for starting the 0S
*/

Continued

274 Chapter 10

void SVC_Handler_C(unsigned int * svc_args)
{
uint8_t svc_number;
svc_number = ((char *) svc_args[6])[-2]; // Memory[(Stacked PC)-2]
switch(svc_number) {
case (0): // 0S init
puts ("SVC #0: 0S Initization\n");
0S_start();
break;
default:
puts ("ERROR: Unknown SVC service number");
printf("- SVC number 0x%x\n", svc_number);
while(1l);
} // end switch

void 0S_start(void)
{
Task_Init(0, ((unsigned long) task0),
(((unsigned int) taskO_stack) + (sizeof taskO_stack) - 16*4),
TASK_LEVEL_UNPRIVILEGED);
Task_Init(1l, ((unsigned long) taskl),
(((unsigned int) taskl_stack) + (sizeof taskl_stack) - 16*4),
TASK_LEVEL_UNPRIVILEGED);
Task_Init(2, ((unsigned long) task2),
(((unsigned int) task2_stack) + (sizeof task2_stack) - 16*4),
TASK_LEVEL_UNPRIVILEGED);
Task_Init(3, ((unsigned long) task3),
(((unsigned int) task3_stack) + (sizeof task3_stack) - 16*4),
TASK_LEVEL_UNPRIVILEGED);

NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest Tlevel
NVIC_SetPriority(SysTick_IRQn, 0x0); // Set Timer to highest Tlevel

curr_task = 0; // Switch to task #0 (Current task)

_ set_PSP((PSP_arraylcurr_task] + 8*4)); // Set PSP to RO of task 0 stack
svc_exc_return = OxFFFFFFFDUL; // Return to Thread and use PSP

SysTick_Config(48000); // 1000 Hz SysTick interrupt on 48MHz core clock

if (PSP_arrayl[curr_task] & 1) {

__set_CONTROL(Ox3); // Switch to use Process Stack, unprivileged state
} else |

_ set_CONTROL(O0x2); // Switch to use Process Stack, privileged state
}
__ISB(); // Execute ISB after changing CONTROL (architectural
recommendation)
return;

Operating System Support Features 275

void Task_Init(uint32_t task_id, uint32_t PC_value,
uint32_t PSP_value, uint32_t Unprivileged)

// Process Stack Pointer (PSP) value, and bit 0
// for privileged/unprivileged info
PSP_arrayltask_id] = PSP_value | Unprivileged;
// Stack Frame format

[/ =
// 15 - xPSP

/] 14 - Return Address
// 13 - LR

// 12 - R12

// 8-11 - RO - R3

[/ ===

// 4-7 - R8 - RI11

// 0-3 - R4 - R7

[/ ===

HW32_REG(PSP_value + (14<<2)) = PC_value; // initial Program Counter
HW32_REG(PSP_value + (15<<2)) = 0x01000000; // initial xPSR
return;

__asm void PendSV_Handler(void)
{ // Context switching code
// Tasks can be privileged or unprivileged

/] mmmmmm e

// Save current context

MRS RO, PSP // Get current process stack pointer value
SUBS RO, 32 // Allocate 32 bytes for R4 to RI11

STMIA RO!,{R4-R7} // Save R4 to R7 in task stack (4 regs)
MOV R4, R8 // Copy R8 to R11 to R4 to R7

MOV R5, R9

MOV R6, R10

MOV R7, R11

STMIA RO!,{R4-R7} // Save R8 to R11 in task stack (4 regs)
SUBS RO, #32

MRS R1, CONTROL // Extract bit 0 of CONTROL

MOVS R2, #1

ANDS R1, R1, R2

ORRS RO, RO, R1 // Merge CONTROL[O] in bit 0 of RO

LDR R1,=__cpp(&curr_task)

LDR RZ2,[R1] // Get current task ID

ADDS R2, R2 // Array offset = ID value x 4 (2 adds)
ADDS R2, R2

LDR R3,=__cpp(&PSP_array)

STR RO,[R3, R21 // Save PSP value & CONTROL[O] into PSP_array
[/ =

// Load next context

LDR R4,=_ cpp(&next_task)

LDR R4, [R4] // Get next task ID

Continued

276 Chapter 10

STR R4,[R1] // Set curr_task = next_task

ADDS R4 ,R4 // Array offset = ID value x 4 (2 adds)
ADDS R4 ,R4

LDR RO,[R3, R4] // Load PSP value from PSP_array

MOVS R1, #1

ANDS R1, R1, RO // Extract CONTROL[O]

MSR CONTROL, RI1

MOVS R1, #3

BICS RO, RO, R1 // Clear lowest 2 bits of PSP

ADDS RO, #16

LDMIA RO!,{R4-R7} // Load R8 to R11 from task stack (4 regs)
MOV R8, R4 // Copy from R4 - R7 to R8 - RI11

MOV R9, R5

MOV R10, R6

MOV R11, R7

MSR PSP, RO // Set PSP to next task

SUBS RO, #32

LDMIA RO!,{R4-R7} // Load R4 to R7 from task stack (4 regs)
BX LR // Return

ALIGN 4

void SysTick_Handler(void) // 1KHz
{
// Simple task round robin scheduler
switch(curr_task) {
case(0): next_task=l; break;
case(l): next_task=2; break;
case(2): next_task=3; break;
case(3): next_task=0; break;
default: next_task=0;
printf ("ERROR: illegal task\n");
while(l);
}
if (curr_task!=next_task){ // Context switching needed
SCB->ICSR |= SCB_ICSR_PENDSVSET_Msk; // Set PendSV to pending
}

return;

void taskO(void) // Toggle LED #0
{
int i;
while (1) {
LED_On(0);
for (i=0;i<0OxFFFFF;i++){ _NOP();}
LED_Off(0);

Operating System Support Features

277

for (i=0;i<OxFFFFF;i++){ __NOP();}
y// end while
}
/* _____________________________ */
void taskl(void) // Toggle LED #1
{
int 1;
while (1) {
LED_On(1);
for (i=0;i<0x1FFFFF;i++){ __NOP();}
LED_Off(1);
for (i=0;i<Ox1FFFFF;i++){ _NOP();}
}// end while
}
/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, */
void task2(void) // Toggle LED #2
{
int i;

while (1) {
LED_On(2);
for (i=0;i<0x2FFFFF;i++){ __NOP();}
LED_Off(2);
for (i=0;i<0X2FFFFF;i++){ __NOP();!}
}// end while

/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, */
void task3(void)
{
// Only 3 LEDs on this board, so task 3 have no LED
// process UART echo instead
while (1) {
UART_echo();
y// end while

Fault Handling

11.1 Fault Exception Overview

In ARM® processors, if a program goes wrong and the processor detects a fault, then a
fault exception occurs. On the Cortex®-M0/MO+ processors, there is only one exception
type that handles faults: the HardFault exception.

The HardFault exception is almost the highest priority exception type, with a priority level
of —1. Only the Non-Maskable Interrupt (NMI) can preempt the HardFault exception.
When the HardFault handler is triggered, we know that the microcontroller is in trouble
and corrective action is needed. The HardFault handler is also useful for debugging
software during the software development stage. By setting a breakpoint in the HardFault
handler (or use a debug feature called vector catch to halt the processor at HardFault), the
program execution stops when a fault occurs. By examining the content of the stack, often
we can back trace the location of the fault and try to identify the reason for the failure.

This behavior is very different from most 8-bit and 16-bit microcontrollers. In these
microcontrollers, often the only safety net is a watchdog timer. However, it takes time for
a watchdog timer to trigger, and often there is no way to determine how the program went
wrong.

11.2 What Can Cause a Fault?

There are a number of possible reasons for a fault to occur. For the Cortex®-MO and
Cortex-MO+ processors, we can group these possible causes into two areas: Memory
related and Program Errors (Table 11.1).

For memory related faults, the error response from the bus system can also be caused by a
number of different reasons:

* Address being accessed is invalid. In such case the bus interconnect component should
generate an error response back to the processor to indicate an error.

* The bus slave cannot accept the transfer because the transfer type is invalid (depending
on bus slave design).

* The bus slave cannot accept the transfer because it is not enabled or initialized (for
example, a microcontroller might generate an error response if a peripheral is accessed
but the clock for the peripheral bus is turned off).

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00011-4
Copyright © 2015 Elsevier Inc. All rights reserved. 279

http://dx.doi.org/10.1016/B978-0-12-803277-0.00011-4

280 Chapter 11

Table 11.1: Faults that trigger HardFault exceptions

Fault classification Fault condition

Memory related * Bus error (can be program accesses or data accesses).
* Bus error generated by bus infrastructure due to attempt to access an
invalid address.

* Bus error generated by bus slave.

* Attempt to execute program from memory region marked as nonexecutable
(see memory attribute in Chapter 7).

* Attempt to access registers in System Control Space at unprivileged access
level (not applicable to Cortex®-MO processor).

* Memory access violated the memory permission defined in the Memory
Protection Unit (MPU) settings (MPU is an optional component in the
Cortex-M0+ processor, see Chapter 12 for more information).

Program error * Execution of undefined instruction.

* Trying to switch to ARM® state (Cortex-M processors only support Thumb®
instructions).

* Attempt to generate an unaligned memory access (not allowed in ARMv6-M
architecture).

* Attempt to execute an SVC (SuperVisor Call) instruction when the SVCall
exception priority level is the same or lower than the current exception level.

* Invalid EXC_RETURN value during exception return.

* Attempt to execute a breakpoint instruction (BKPT) when debug is not
enabled (no debugger attached).

When the direct cause (e.g., program code segment) of the HardFault exception is located,
it might still take some effort to locate the source of the problem. For example, a bus error
can be caused by an incorrect pointer manipulation, a stack memory corruption, a memory
overflow, an incorrect memory map setup, or other reasons.

11.3 Analyze a Fault

Depending on the type of fault, very often it is straightforward to locate the instruction
that caused the HardFault exception. In order to do that, we need to know the register
contents when the HardFault exception is entered and the register contents that were
pushed to the stack just before the HardFault handler starts. These values include the
return program address, which usually tells us the instruction address that caused the fault.

If a debugger is available, we can create a HardFault exception handler that includes a
breakpoint instruction, which halts the processor. Alternatively, we can use the debugger to
set a breakpoint at the beginning of the HardFault handler, so that the processor halts
automatically when a HardFault is entered. After the processor is halted due to a
HardFault, we can then try to locate the fault by the following flow (Figure 11.1).

Fault Handling

281

Processor is not in

PSP pointed to valid
stack memory region?

Investigate stack pointer

» setup in vector table and
in project.

Investigate possible stack
leak in program code.

Investigate any program
code that modify stack

IPSR = 3? HardFault exception, it is
halted by other breakpoint
or watch point.
Bit 2 of LR No
(EXC_RETURN) is 0?
Yes
Main Stack Pointer (MSP) Process Stack Pointer (PSP)
was used for stacking was used for stacking
MSP pointed to valid No No
stack memory region?
Yes Yes
Memory
Address
T Stack frame starting at Stack frame starting at
MSP. Stacked PC is PSP. Stacked PC is -
xPSR located at MSP+0x18 located at PSP+0x18
Stack PC Stacked PC
Frame at SP+0x18
LR
L
R12

Create disassembled code of
R3 the execution image and see
R2 where the stacked PC is.

R1
RO -4— Stack Pointer

Figure 11.1

Identifying the program address of a fault event.

pointer directly

To aid the analysis, we should also generate a disassembly listing of the compiled image,
and locate the fault using the stacked program counter (PC) value found on the stack
frame. If the faulting address is a memory access instruction, you should also check

the register value (or stacked register value) to see if the memory access operated on the
correct address. Besides from checking the address range, we should also check if the

address of the memory access is aligned correctly.

Apart from the stacked PC (return address) value, the stack frame also contains other
stacked register values, which can be useful for debugging. For example, the stacked
interrupt program status register (IPSR) (within the xPSR) indicates that if the processor
was running an exception handler, and if the stacked execution PSR (EPSR) shows the

processor state is not Thumb® state, it could indicate that the LSB of an exception vector
is not set to 1 correctly. (If the T bit of EPSR is 0, the fault is caused by accidentally

switching to ARM state.)

282 Chapter 11

The stacked LR might also provide information like the return address of the faulting
function. If the fault happened within an exception handler, it could show whether the
value of the EXC_RETURN was accidentally corrupted.

In addition, the current register values can provide various clues that can help identify the
cause of a fault. Apart from the current stack pointer values, the current Link Register
(R14) value might also be useful. If the LR shows an invalid EXC_RETURN value, it
could mean that the value of LR was modified incorrectly during an exception handler
before the HardFault is triggered.

The CONTROL register can also be useful. In simple applications without an OS, usually
the Processor Stack Pointer (PSP) is not used and the CONTROL register should always
be zero in such cases. If the CONTROL register value was set to 0x2/0x3 (bit 1 setto 1,
indicates that PSP is used in Thread state), it could mean LR has been modified
incorrectly during a previous exception handler, or a stack corruption has taken place
which incorrectly modified the value of EXC_RETURN.

11.4 Accidental Switching to ARM® State

A number of common program errors that cause HardFault are due to accidentally
switching to ARM state. Usually this can be detected by checking the values of the
stacked xPSR. If the T (Thumb®) bit is cleared, then the fault was caused by an accidental
switch to ARM state.

The common errors that cause this problem are given in Table 11.2.

Table 11.2: Various causes of accidental switching to ARM® state

Error Descriptions

Use of incorrect libraries The linking stage might have accidentally pulled in libraries compiled
with ARM instructions (for ARM7TDMI). Check linker script setting
and disassembled code of the compiled image to see if the C libraries
are correct.

Functions not being declared If you are using GNU assembly tools and the project contains multiple

correctly files, you need to make sure that the functions being called from a
different file are declared correctly. Otherwise any such calls might
result in an accidental state change.

LSB of vector in the vector The vector in the vector table should have the LSB set to 1 to indicate

table set to 0 Thumb® state. If the stacked PC is pointing to the beginning of an
exception handler and the stacked xPSR has the T bit cleared to 0, the
error is likely to be in the vector table.

Function pointer with LSB If a function pointer is declared with the LSB set to 0, calling the

setto 0 function will also cause the processor to enter a HardFault.

Fault Handling 283

11.5 Error Handling in Real Applications

In real applications, the embedded systems will be running without a debugger attached
and stopping the processor is not acceptable for many applications. In most cases, the
HardFault exception handler can be used to carry out safety actions and then reset the
processor. For example, the following steps can be carried out.

* Perform application specific safety actions (e.g., perform shut down sequence in a
motor controller).

e Optionally the system can report the error within a user interface, and then reset the
system using the SYSRESETREQ (System Reset Request) in the Application Interrupt
and Reset Control Register (AIRCR, see Chapter 9, Table 9.8), or other system control
methods specific to the microcontroller.

Since a HardFault could be caused by an error in the stack pointer value, a HardFault handler
programmed in C language might not perform correctly because C generated code might
require stack memory to operate. Therefore, for safety critical systems, ideally the HardFault
handler should be programmed in assembly language, or use an assembly language wrapper
to check if the stack pointer is in a valid memory range before entering a C routine.

11.6 Error Handling During Software Development

Typically, the development tools provide various debug functionality to help debug
software issues. For example, if the Cortex®-M0+ processor is used and the Micro Trace
Buffer (MTB) feature is available on the chip, the development tool might be able to make
use of such feature to enable software developers to locate fault information quickly. For
users of the Cortex-MO processor, the MTB feature is not available and so other debug
analysis methods might be needed. (More information of using MTB is covered in Chapter
13, Debug Features).

The HardFault handler can be used to report debug information during software
development. This could be done using a user interface (e.g., LCD module), a simple
UART interface, or if the development tool supports semihosting (see Chapter 18,
Programming Examples), you could just use simple “printf” for such purpose.

In order to simplify coding effort, the error reporting function is typically written in C. If
the HardFault handler needs to report debug information such as the extracted faulting
program address, as shown in Figure 11.1, we will also need an assembly wrapper to
determine the address location of the stack frame.

The assembly language wrapper code extracts the address of the exception stack frame and
passes it to the C section of the HardFault handler, which displays the stack frame

284 Chapter 11

Bit 2 of LR No
(EXC_RETURN) is 07
Yes
Main Stack Pointer (MSP) Process Stack Pointer (PSP)
was used for stacking was used for stacking

K /

Put Stack Frame
address in RO

Dead loop / self reset /
Halt (using BKPT
instruction)

Stack Frame located in No
valid memory region?

Yes

Branch to C handler
for reporting

Figure 11.2
Assembly wrapper for HardFault handler.

(Figure 11.2). Otherwise, there is no easy way to locate the stack frame inside the C
handler. Although you can access the stack pointer value using inline assembly, embedded
assembly, a named register variable, or an intrinsic function, the value of the stack pointer
could change when entering the C function itself.

The assembly code for such an assembly wrapper can be implemented using embedded
assembly if using Keil® MDK-ARM™ or ARM DS-5™, for example:

Assembly wrapper using embedded assembler in Keil® MDK

// HardFault handler wrapper in assembly
// 1t extracts the location of stack frame and passes it to handler
// in C as a pointer. We also extract the LR value as second
// parameter.
__asm void HardFault_Handler(void)
{
MOVS ro, #4
MOV rl, LR
TST ro, rl
BEQ stacking_used_MSP
MRS RO, PSP ; first parameter - stacking was using PSP
B get_LR_and_branch
stacking_used_MSP
MRS RO, MSP ; first parameter - stacking was using MSP

Fault Handling 285

get_LR_and_branch

MOV R1, LR ; second parameter is LR current value
LDR RZ2,=__cpp(hard_fault_handler_c)
BX R2

The handler in C accepts the parameters from the assembly wrapper and extracts the stack
frame contents and LR values.

HardFault handler to report stacked register values

// HardFault handler in C, with stack frame location and LR value
// extracted from the assembly wrapper as input parameters
void hard_fault_handler_c(unsigned int * hardfault_args, unsigned Tr_value)
{

unsigned int stacked_rO0;

unsigned int stacked_rl;

unsigned int stacked_r2;

unsigned int stacked_r3;

unsigned int stacked_rl2;

unsigned int stacked_1r;

unsigned int stacked_pc;

unsigned int stacked_psr;

stacked_r0 = ((unsigned long) hardfault_args[0]);
stacked_rl = ((unsigned long) hardfault_args[11);
stacked_r2 = ((unsigned Tong) hardfault_args[2]);
stacked_r3 = ((unsigned Tong) hardfault_args[31);

stacked_1r = ((unsigned long) hardfault_args[5]);
stacked_pc (unsigned long) hardfault_args[6]);

(
(
(
(
stacked_r12 = ((unsigned long) hardfault_args[4]);
(
(
stacked_psr = ((unsigned long) hardfault_args[7]);

printf ("[HardFault handler]\n");

printf ("RO = %x\n", stacked_r0);

printf ("Rl = %x\n", stacked_rl);

printf ("R2 = %x\n", stacked_r2);

printf ("R3 = %x\n", stacked_r3);

printf ("R12 = %x\n", stacked_rl2);

printf ("Stacked LR = %x\n", stacked_Ir);
printf ("Stacked PC = %x\n", stacked_pc);
printf ("Stacked PSR = %x\n", stacked_psr);
printf ("Current LR = %x\n", Tr_value);
while(1l); // endless loop

286 Chapter 11

The C handler can only work if the stack pointer is still pointing to a valid RAM/SRAM
memory region because (a) it extracts debug information from the stack, and (b) the
handler codes generated from C compilers often require a valid stack memory
configuration to operate. Alternatively, you can carry out the debug information reporting
entirely in assembly code. Doing this in assembly language is not too difficult when you
have access to an assembly routine for text output. Several examples of assembly text
outputting routines can be found in Chapter 21. Details about embedded assembly
programming (used in the assembly wrapper) can also be found in this chapter.

11.7 Lockup

The Cortex®-MO0 and Cortex-MO-+ processors can enter a lockup state if another fault
occurs during the execution of a HardFault exception handler, or when a fault occurs
during the execution of an NMI handler. This is because when these two exception
handlers are executing, the priority level does not allow the HardFault handler to preempt.

During the lockup state, the processor stops executing instructions and asserts a LOCKUP
status signal. Depending on the implementation of the microcontroller, the LOCKUP
status signal can be programmed to reset the system automatically, rather than waiting for
a watchdog timer to time out and reset the system.

The lockup state prevents the failed program from corrupting more data in the memory or
data in the peripherals. During software development, this behavior can help us debug the
problem as the memory contents might contain vital clues about how the software failed.

11.7.1 Causes of Lockup

There are a number of conditions that can cause lockup in the Cortex®-MO or Cortex-MO-+
processor (or ARMv6-M architecture).

e Fault occurred during NMI handler

* Fault occurred during HardFault handler (also referred as double fault)

* Bus error response during reset sequence (when trying to obtain initial SP value/reset
vector)

* Bus error response during unstacking of xPSR during exception return using MSP
(Main Stack Pointer) for the unstacking

* SVC instruction execution inside NMI handler or HardFault handler (insufficient priority)

Use of an SVC instruction in an NMI or HardFault handler can cause a lockup because
the SVC all priority level is always lower than these handlers and therefore blocked. Since
this program error cannot be handled by the HardFault exception (the priority level is
already —1 or —2), the system enters lockup state.

Fault Handling 287

The lockup state can also be caused by a bus system error during the reset sequence.
When the first two words of the memory are fetched and if a bus fault happens in one
of these accesses, it means the processor cannot determine the initial stack pointer
value (the HardFault handler might need the stack as well), or the reset vector is
unknown. In these cases, the processor cannot continue normal operation and must
enter the lockup state.

If a bus error response occurs during exception entrance (stacking), this does not cause a
lockup even when entering a HardFault or NMI exception, see Figure 11.3. However, once
the HardFault exception or NMI exception handler is started, a bus error response can
cause a lockup. As a result, in safety critical systems, a HardFault handler written in C
might not be the best arrangement because the C compiler might insert stack operations at
the beginning of the handler code. E.g.:

HardFault_Handler
PUSH (R4, R5} ; This can cause lock up if the MSP is corrupted

For exception exit (unstacking), it is possible to cause a lockup if a bus error response is
received during the unstacking process of the xPSR using MSP, see Figure 11.3. In such
cases, the xPSR cannot be determined and so the correct priority level of the system is
unknown. As a result, the system is locked up and cannot be recovered apart from
resetting it or halting it for debug.

Fault occurring here cause
lock up Fault occurring

Priority ~ Faultoccurring here might cause
A here do not cause lock up Fault occurring
lock up

here does not
1/2 / cause lock up

0 to OxCO, /\

or thread
* HardFault or NMI handler +
Stacking Unstacking
Time g
Figure 11.3

Lockup condition during exception sequences.

288 Chapter 11

11.7.2 What Happens During a Lockup?

If the lockup is caused by a double fault, the priority level of the system stays at —1. If
an NMI exception occurred, it is possible for the NMI to preempt and execute. After the
NMI is completed, the exception handler is terminated and the system returns to the
lockup state.

Otherwise, in other lockup scenarios the system cannot be recovered and must be reset or
restored using a debugger attached to it. The LOCKUP signal can be used by
microcontroller designers or system-on-chip designer to reset the system via a configurable
setting in the reset controller.

11.8 Preventing Lockup

Lockup and HardFault exceptions might look scary to some embedded developers. There
are various reasons why embedded systems can go wrong but the lockup and HardFault
mechanisms can prevent the problem from getting worse. The sources of errors or
problems that can cause any embedded microcontroller system to crash are

* unstable power supply or electromagnetic interference,

» flash memory corruption,

* an error in external interface signals,

* component damage due to operating conditions or natural aging process,
* incorrect clock generation arrangement or poor clock signal quality,

* software errors

The HardFault and lockup behaviors allow error conditions to be detected and help
debugging. Although we cannot fully prevent all the potential issues listed above, we can
take various measures in software to improve the reliability of an embedded system.

First, we should keep the NMI exception handler and HardFault exception handler as
simple as possible. Some tasks associated with the NMI exception or HardFault exception
can be separated into a different exception like PendSV, and executed after the urgent
parts of the exception handling are complete. By making the NMI and HardFault handler
shorter and easier to understand, we can also reduce the risk of accidentally using SVC
instruction in these handlers.

Second, for safety critical applications, you might want to use an assembly wrapper to
check the SP value before entering the HardFault handler in C (Figure 11.4).

If necessary, we can program the entire HardFault handler in assembly. In such cases, we
can avoid some stack memory accesses to prevent lockup if the stack pointer is corrupted
and pointing to an invalid memory location.

Fault Handling 289

HardFault
handler

NY

Deal with Call main
stack error »- body of
first handler in C

Figure 11.4

Adding of SP checking in assembly wrapper.

Similarly, if the NMI handler is very simple, we can program the NMI handler in
assembly language and use just RO—R3, R12 if we want to avoid stack memory accesses
because these registers are already stacked. But in most cases, a stack pointer error would
probably trigger the HardFault exception fairly quickly so there is no need to worry about
programming the NMI in C language.

11.9 Comparison with Fault Handling in ARMv7-M Architecture

Since the Cortex®-MO0 and Cortex-MO+ processors are designed to target ultra-low power
applications, it does not include some of the additional fault analysis features found in
processors using the ARMv7-M architecture.

Table 11.3 lists the major differences between the fault handling features in ARMv6-M
and ARMv7-M processors. The most significant difference is that the ARMv7-M
architecture supports an extra three fault exception types, which are configurable.

The additional fault exceptions in ARMv7-M architecture have programmable priority
levels and enable some of the faults to be dealt with using lower priority exception
handlers, while high priority interrupt services are still serviced. These fault exceptions are
disabled by default, so all fault events are managed by HardFault handlers. When enabled,
if the fault event occurs when the current priority is lower than the corresponding
configurable fault exception, the corresponding configurable fault handler is executed.
Otherwise, it will escalate to the HardFault handler.

Additional fault status registers are also available to provide information about what
caused the fault. These registers can be used by the fault handlers or the debugger, to
provide fault details to the software developers.

290 Chapter 11

Table 11.3: Comparison for fault handling features in various Cortex®-M processors

Status Register

ARM6-M ARM7-M

(Cortex®-MO0, (Cortex-M3, ARM7-M
Cortex-M0+ Cortex-M4 (Cortex-M7
processors) processors) processor) Notes

HardFault exception Y Y Y For faults at start-up
sequence or fault escalation
(configurable fault exception
not available)

Bus Fault exception - Y Y For bus error response and
unprivileged access to system
control space

MemManage Fault — Y Y For MPU access violation and

exception execution from XN memory

Usage Fault exception - Y Y For other software-generated
fault

Fault Status Registers Y Y Y Debug Fault Status Register

for debugger (DFSR) indicates the source
of a debug event

Fault Status Registers - Y Y Fault Status Registers that

for application software provide hints about the cause
of the fault

Fault Address Registers — Y Y A register to indicate the
memory address that is
associated with a BusFault/
MemManage fault event

Auxiliary Fault Status - Y - For additional device-specific

Register fault information

Auxiliary Bus Fault - - Y Indicates which bus interface

triggered a bus fault

Memory Protection Unit

12.1 What is MPU?

The Memory Protection Unit (MPU) is a programmable block inside the processor that
defines memory attributes (e.g., cacheable, bufferable, see Section 7.8) and memory access
permissions. It is an optional feature for the Cortex®—MO+, Cortex-M3, Cortex-M4, and
Cortex-M7 processors, but is not available on the Cortex-MO processor. As it is optional,
some of the Cortex-MO+ microcontrollers have the MPU feature (e.g., the STM32L.053
microcontroller used in the STM32L0 Discovery board) and some do not (to reduce
silicon area and power consumption).

Unlike most other features, the MPU does not bring performance gains to embedded
applications. MPU is used to detect problems in the system (e.g., when an application task
behaves erroneously by trying to access a memory location which is invalid or
disallowed). If a problem is detected, the HardFault exception is triggered. If the
application is working perfectly, the MPU should never trigger any fault exception. In fact,
many of the microcontroller applications do not need MPU.

However, as we know it, things can go wrong from time to time. In those cases, the MPU
can be used to make an embedded system more robust, and in some cases make the
system more secure by:

* Preventing application tasks from corrupting stack or data memory used by other tasks
and the OS kernel,

* Preventing unprivileged tasks from accessing certain peripherals that can be critical to
the reliability or security of the system,

* Defining SRAM or RAM space as nonexecutable (eXecute Never, XN) to prevent code
injection attacks.

You can also use the MPU to define other memory attributes such as “cacheable” which
can be exported to system level cache unit or memory controllers. These system level
components can then make use of the memory attribute information to decide how a
memory access should be handled.

By default, the MPU is disabled, and the memory access permission and memory
attributes are defined by the default memory map as outlined in Chapter 7. The same

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00012-6
Copyright © 2015 Elsevier Inc. All rights reserved. 291

http://dx.doi.org/10.1016/B978-0-12-803277-0.00012-6

292 Chapter 12

applies to Cortex-M processors without MPU. In such case, the default memory attributes
would be used.

The MPU contains a number of configuration registers, and these registers must be
programmed to define memory regions and the MPU must be enabled before being used.
If the MPU is not enabled, the behavior of the processor is the same as though no MPU
is present.

12.2 MPU Use Cases

You might wonder—do I need to use the MPU in my applications?

Simple/beginner’s project—If you are creating simple I/O control applications, or if you
are a beginner starting to learn microcontroller programming, it is unlikely that you should
need to use the MPU in your project unless the microcontroller device you are using have
system level cache and need the MPU to define cache behaviors.

Internet of things—If you are creating Internet-related applications, or application that can
be exposed to an untrusted communication interface, the MPU can be useful to help
improve the security. For example, by defining memory ranges that are used as
communication buffers as nonexecutable address spaces to prevent code injection attacks.

Industrial control applications—If you are creating applications that need to have high
reliability, the MPU is very useful for defining stack restrictions in a multitasking
system, and to detect unexpected faults (e.g., detection of unexpected accesses to certain
memory spaces).

Automotive applications—the MPU is commonly used in the automotive segment. In some
of the commonly used automotive certification processes, e.g., ISO26262, it is essential to
demonstrate that software elements does not interfere each other, and therefore the MPU is
needed to handle memory partitioning.

We can classify the MPU usages into a range of use cases.
Security management

* Software components that are not trusted, or have a higher risk of being compromised
should be executed in unprivileged level, and the MPU can be used to restrict the
memory spaces that these components can access to. The memory access permissions
can also be applied to peripherals.

* RAM spaces that are used as communication buffers can contain malicious code
injected through communication interface. MPU can be used to define these memory
spaces as nonexecutable.

Memory Protection Unit 293

System reliability

* In a multitasking system, the MPU can be used to define the valid memory space
for the stack of an application task. If an application task malfunctioned and
consumed more stack space than it should, the MPU can limit the stack usage so
that the task will not be able to corrupt stack space used by other application tasks
or the OS data.

* In systems without embedded OS, the MPU can be used to define a non-accessible
memory space at the end of the stack memory space so that a stack overflow can be
detected.

* In applications that have high functional safety requirements, the MPU can be used for
memory partitioning to ensure software components cannot affect each other. For
example, an application task running in unprivileged state cannot corrupt data or stack
used by the OS or other tasks.

* Some applications might copy program code into SRAM for execution, or copy the
vector table in the SRAM for faster access. After the program code or vector table has
been copied, the memory space can be defined as read only to prevent these memory
spaces getting changed accidentally.

Memory attributes management

* You can use the MPU to define which memory space should be cached, and the cache
behavior (e.g., write-through vs write-back).

* You can use the MPU setting to override the default memory types for certain memory
space.

Note: The MPU settings only affect the access right of program code running on the same
processor. In a multiprocessor system, MPU settings on one processor do not affect the
access right of another processor.

Some of the embedded OS have built-in support for the MPU. In such case, the MPU
configuration can be switched dynamically each time the OS switches context. So,
different application tasks can have different MPU configurations.

For systems that do not use any embedded OS or if the embedded OS used does not
support the MPU, the MPU can still be used with a static configuration.

In practice, it is not always possibly to completely isolate the memory space of

each software components. For example, many of the runtime library functions could
be shared, and data variables are placed together if the software components are
compiled together. However, stack spaces of different application tasks can be
separated easily and stack protection is often critical in applications that require
functional safety.

294 Chapter 12

12.3 Technical Introduction

The MPU works by defining a number of memory regions and restrict the memory
accesses into these regions. The restrictions apply to both data and instruction accesses
when the MPU is enabled. If the processor tries to access to a memory location not
covered with a defined memory region, or if the access violated the memory access
permission set by the memory region, the HardFault exception would be triggered and the
access would be blocked before the access reach the memory system. The HardFault
exception handler can then decide what to do next, for example, if the system should be
reset or just terminate the offending task in an OS environment.

The MPU in the Cortex®-M0+ processor supports up to eight programmable memory
regions and an optional background region. Each programmable region can have its own:

* starting addresses,
* sizes, and
* settings (memory attributes, access permissions).

Some of the details for the MPU in the Cortex-MO+ are the same as in the MPU in the
Cortex-M3 and Cortex-M4 processors, which also support eight programmable regions.
The MPU in the Cortex-M7 processor can support 8 or 16 regions, depending on the
choice of the chip designers. Details about the comparisons of the MPU are covered in
Section 12.9.

In ARMv6-M and ARMv7-M architectures, MPU regions can be overlapped. If a memory
location falls in two programmed MPU regions, the memory access attributes and
permission will be based on the highest-numbered region. For example, if a transfer
address is within the address range defined for region 1 and region 4, the region 4 settings
will be used.

By default, the MPU access permissions are bypassed when the processor is running Non-
Maskable Interrupt (NMI) or HardFault handler. For example, the MPU might be used as a
mechanism to detect stack limit by allocating a small SRAM space at the bottom of the
stack as non accessible. When the stack limit is reached, the HardFault handler can bypass
the MPU restriction and utilize the reserved SRAM space for fault handling.

12.4 MPU Registers

The MPU contains a number of memory mapped registers. These registers are located in
the System Control Space (SCS). The CMSIS-CORE header file has defined a data
structure for MPU registers to allow them to be accessed easily. A summary of these
registers is shown in Table 12.1.

Memory Protection Unit 295

Table 12.1: Summary of the MPU registers

and Size Register

CMSIS-CORE

Addresses Registers symbol Functions

0xEOO00ED90 MPU Type Register MPU->TYPE Provides information about
the MPU

O0xEO00ED94 MPU Control Register MPU->CTRL MPU enable/disable and
background region control

OxEOOOED98 MPU Region Number Register MPU->RNR Select which MPU region to be
configured

0xEO00ED9C MPU Region Base Address MPU->RBAR Defines base address of a MPU

Register region
OxEOOOEDAO MPU Region Base Attribute MPU->RASR Defines size and attributes of a

MPU region

As in other registers in the SCS, the MPU registers are privileged accesses only.
They prevent the unprivileged programs to bypass the security management imposed

using MPU.

In ARM® ARMV6-M architecture, the MPU registers can be accessed by 32-bit memory
access instructions only.

12.4.1 MPU Type Register

The first register is the MPU Type register. The MPU Type register can be used to
determine whether the MPU is fitted. If the DREGION field is read as 0, the MPU is not
implemented (see Table 12.2).

Table 12.2: MPU Type Register (MPU->TYPE, 0xEO0O0ED90)

Bits

Name Type

Reset value

Description

23:16

15:8

IREGION R

DREGION R

SEPARATE R

0

Oor8

Number of instruction regions
supported by this MPU;
because ARMv6-M architecture
uses a unified MPU, this is
always 0.

Number of regions supported
by this MPU; in the Cortex®-
MO+ processors, this is either
0 (MPU not present) or 8
(MPU present).

This is always 0 as the MPU is
unified.

296 Chapter 12

12.4.2 MPU Control Register

The MPU is controlled by a number of registers. The first one is the MPU Control
Register (see Table 12.3). This register has three control bits. After reset, the reset value of
this register is zero, which disables the MPU. To enable the MPU, the software should first
set up the settings for each MPU regions, and then set the ENABLE bit in the MPU
Control Register.

The PRIVDEFENA bit in the MPU Control Register is used to enable the background
region (region “minus 1”). By using PRIVDEFENA and if no other regions are set up,
privileged programs will be able to access all memory locations, and only unprivileged
programs will be blocked. However, if other MPU regions are programmed and enabled,
they can override the background region. For example, for two systems with similar region
setups but only one with PRIVDEFENA set to 1 (the right-hand side in Figure 12.1), the
one with PRIVDEFENA set to one will allow privileged access to background regions.

The HFNMIENA is used to define the behavior of the MPU during execution of NMI,
HardFault handlers, or when FAULTMASK is set. By default, the MPU is bypassed
(disabled) in these cases. This allows the HardFault handler and the NMI Handler to
execute even if the MPU was set up incorrectly.

Setting the enable bit in the MPU Control Register is usually the last step in the MPU
setup code. Otherwise, the MPU might generate faults accidentally before the region
configuration is done. In many cases, especially in embedded OS with dynamic MPU
configurations, the MPU should be disabled at the start of the MPU configuration routine
to make sure that the HardFault will not be triggered accidentally during configuration of
MPU regions.

Table 12.3: MPU Control Register (MPU->CTRL, 0xEOOOED94)

Bits Name Type Reset value Description

2 PRIVDEFENA R/W 0 Privileged default memory map enable.
When set to 1 and if the MPU is enabled,
the default memory map will be used for
privileged accesses as a background
region. If this bit is not set, the
background region is disabled and any
access not covered by any enabled region
will cause a fault.

1 HFNMIENA R/W 0 If set to 1, it enables the MPU during the
HardFault handler and NMI handler;
otherwise, the MPU is not enabled for the
HardFault handler and NML.

0 ENABLE R/W 0 Enables the MPU if set to 1.

Memory Protection Unit 297

4GB

PRIVDEFENA =0

-

Region 3

N
Access not
allowed

Region 3
permission
override
region 2

Region 2

Region 2
permission)

4[

Region 1

Region 1
permission

A

Region 0

N
Access not
allowed

Region 0

permission

4GB

0

Figure 12.1
The effect of the PRIVDEFENA bit (background region enable).

12.4.3 MPU Region Number Register

PRIVDEFENA =1

4 N\
- Privileged
accesses only
Region -1 —
Region 3
permission
override
Region 3 region 2
Region 2 Region 2
permission)
. Region 1
Region 1 permission
N
Region -1 - Privileged
accesses only
Region 0 -

Region 0
permission

The next MPU Control Register is the MPU Region Number register (see Table 12.4),
before each region is set up, write to this register to select the region to be programmed.

Table 12.4: MPU Region Number Register (MPU->RNR, 0xEO00ED98)

Bits

Name

Type

Reset value

Description

7:0

REGION

R/W -

Select the region that is being programmed. Since
eight regions are supported in the MPU, only bit
[2:0] of this register is implemented.

12.4.4 MPU Region Base Address Register

The starting address of each region is defined by the MPU Region Base Address register
(see Table 12.5). Using the VALID and REGION fields in this register, we can skip the
step of programming the MPU Region Number register. This can reduce the complexity of
the program code, especially if the whole MPU setup is defined in a lookup table.

298 Chapter 12

Table 12.5: MPU Region Base Address Register (MPU->RBAR, 0xEO0OED9C)

Bits

Name Type

Reset value

Description

31:N

3:0

ADDR R/W

VALID R/W

REGION R/W

Base address of the region; N is dependent on the
region size—for example, a 64-kB size region will have
a base address field of [31:16].

If this is 1, the REGION defined in bit[3:0] will be
used in this programming step; otherwise, the region
selected by the MPU Region Number register is used.
This field overrides the MPU Region Number register
if VALID is 1; otherwise it is ignored. Since eight
regions are supported in the Cortex®-M3 and Cortex-
M4 MPU, the region number override is ignored if the
value of the REGION field is larger than 7.

12.4.5 MPU Region Base Attribute and Size Register

The properties of each region also need to be defined. This is controlled by the MPU
Region Base Attribute and Size register (see Table 12.6).

Table 12.6: MPU Region Base Attribute and Size Register (MPU->RASR, OxEOOOEDADO)

Bits Name Type Reset value Description

31:29 Reserved - - -

28 XN R/W - Instruction Access Disable (1 = Disable
instruction fetch from this region; an
attempt to do so will result in a memory
management fault)

27 Reserved - — -

26:24 AP R/W — Data Access Permission field

23:22 Reserved - - -

21:19 TEX R/W — Type Extension field—always 0 in
ARMv6-M

18 S R/W — Shareable

17 C R/W — Cacheable

16 B R/W — Bufferable

15:8 SRD R/W - Sub-Region Disable

7:6 Reserved - -

5:1 REGION SIZE R/W - MPU Protection Region size

0 ENABLE R/W - Region enable

The REGION SIZE field (5 bits) in the MPU Region Base Attribute and Size register
determines the size of the region (see Table 12.7).

The Sub-Region Disable field (bit[15:8] of the MPU Region Base Attribute and Size
register) is used to divide a region into eight equal subregions and then to define each as

Memory Protection Unit 299

Table 12.7: Encoding of REGION SIZE field for different memory region sizes

REGION size Size REGION size Size
b00000 Reserved b10000 128 KB
b00001 Reserved b10001 256 KB
b00010 Reserved b10010 512 KB
b00011 Reserved b10011 1 MB
b00100 Reserved b10100 2 MB
b00101 Reserved b10101 4 MB
b00110 Reserved b10110 8 MB
b00111 256 byte b10111 16 MB
b01000 512 byte b11000 32 MB
b01001 1 KB b11001 64 MB
b01010 2 KB b11010 128 MB
b01011 4 KB b11011 256 MB
b01100 8 KB b11100 512 MB
b01101 16 KB b11101 1 GB
b01110 32 KB b11110 2 GB
b01111 64 KB b11111 4 GB

enabled or disabled. If a subregion is disabled and overlaps another region, the access
rules for the other region are applied. If the subregion is disabled and does not overlap
any other region, access to this memory range will result in a HardFault exception.

The data Access Permission (AP) field (bit[26:24]) defines the AP of the region
(see Table 12.8).

Table 12.8: Encoding of AP field for various access permission configurations

AP Value Privileged access User access Description

000 No access No access No access

001 Read/Write No access Privileged access only

010 Read/Write Read only Write in a user program generates a fault
011 Read/Write Read/Write Full access

100 Unpredictable Unpredictable Unpredictable

101 Read only No access Privileged read only

110 Read only Read only Read only

111 Read only Read only Read only

The XN (Execute Never) field (bit[28]) decides whether an instruction fetch from this
region is allowed. When this field is set to 1, all instructions fetched from this region will
generate a HardFault exception when they enter the execution stage.

The TEX (Type Extension), S (Shareable), B (Bufferable), and C (Cacheable) fields (bit
[21:16]) are more complex. These memory attributes are exported to the bus system

300 Chapter 12

Microcontroller
Cortex-MO+
Processor
Memory accesses attributes
Memory
Processor |accesses MPU %} %}
Core I System || ,J\
Memory
Level Memory
L /| Controller
Memory Cache
accesses Memory Memory
accesses accesses
Figure 12.2
Memory attributes can be exported to system-level components like L2 cache and memory
controller.

together with each instruction and data accesses, and the information can be used by the
bus system such as write buffers or cache units, as shown in Figure 12.2.

Although the Cortex®-MO+ processor do not include cache controllers, the
implementation follows the ARMv6-M architecture, which can support external cache
controllers on the system bus level, including advanced memory systems with caching
capabilities. Therefore, the region access properties S, B, and C fields should be
programmed correctly to support different types of memory or devices. The

definition of these bit fields are shown in Table 12.9. There is also a TEX field which

Table 12.9: Memory attributes (TEX is always 0 in ARMv6-M architecture)

TEX B Description Region shareability
b000 0 0 Strongly ordered (transfers carry out and complete in Shareable
programmed order)
bo00 0 1 Shared device (write can be buffered) Shareable
booo 1 0 Outer and inner write-through; no write allocate [S]
b000 1 1 Outer and inner write-back; no write allocate [S]
b001 0 0 Outer and inner non-cacheable [S]
(not supported)
b001 0 1 Reserved Reserved
b001 1 0 Implementation defined (not supported) -
b001 1 1 Outer and inner write-back; write and read allocate [S]
(not supported)
bo10 0 0 Nonshared device (not supported) Not shared
b010 0 1 Reserved Reserved
bo10 1 X Reserved Reserved
b1BB A A Cached memory; BB = outer policy, AA = inner policy [S]
(not supported)

Note: [S] indicates that shareability is determined by the S-bit field (shared by multiple processors).

Memory Protection Unit 301

enables two levels of cache attributes. However, this is not supported in ARMv6-M
architecture and therefore is always set to 0 in the Cortex-MO+ processor.

However, in many microcontrollers, these memory attributes are not used by the bus
system and only the B (Bufferable) attribute affects the write buffer in some of the
peripheral bus bridge designs.

If the microcontroller device you use supports cache, you will need to set up the memory
attributes correctly based on the type of memory or devices in the memory regions. In
most cases, the memory attributes can be configured as shown in Table 12.10.

Table 12.10: Commonly used memory attributes in microcontrollers

Type Memory type Commonly used memory attributes
ROM, flash Normal memory Nonshareable, write-through
(program memories) C=1,B=0,TEX=0,S=0
Internal SRAM Normal memory Shareable, write-through

C=1,B=0,TEX=0,5S=1/S=0
External RAM Normal memory Shareable, write-back

C=1,B=1,TEX=0,5S=1/S=0
Peripherals Device Shareable devices

C=0,B=1,TEX=0,5S=1/S=0

The shareable attribute is important for multiprocessor systems with caches. In

these systems, if a transfer is marked as shareable, then the cache system might

need to do extra work to ensure data coherency between the caches for different
processors (Figure 12.3). In single processor systems, the shareable attribute is normally
not used.

CPU CPU

| Cache coherency |
management
Cache < Cache

Memory

Figure 12.3
Cache coherency in multiprocessor systems need shareable attribute.

302 Chapter 12

12.5 Setting Up the MPU

Most simple applications do not require MPU. By default, the MPU is disabled and the
system works as if the MPU is not present. Before using the MPU, you need to work out
what memory regions the program or application tasks need to (and are allowed to) access.

* Program code for privileged applications including handlers and OS kernel, typically
privileged accesses only.

* Data memory including stack for privileged applications including handlers and OS
kernel, typically privileged accesses only.

* Program code for unprivileged applications (application tasks), full access.

* Data memory including stack for unprivileged applications (application tasks), full
accesses.

* Peripherals that are for privileged applications including handlers and OS kernel, privi-
leged accesses only.

* Peripherals that can be used by unprivileged applications (application tasks), full
accesses.

The MPU is designed to be optimized for minimum silicon size and minimum power. As a
result, there are some restrictions on the memory region configurations:

* The size of the memory region must be a power of 2, ranges from 256 bytes to 4 GB.
* The starting address of a memory region must be aligned to an integer multiple value of
the region size.

When defining the address and size of the memory region, one must be aware of these two
restrictions. For example, if the region size is 4 KB (0x1000), the starting address must be
“N x 0x1000” where N is an integer (see Figure 12.4).

Not
Address Allowed Address AIIowedX
0x08006000 0x08006000 -
4KB region not
0x08005000 0x08005000 | _ 2lenedto

multiplication of

4KB region aligned . .
region size

to multiplication
of region size

0x08004000 0x08004000 -

Figure 12.4
Memory Protection Unit region addresses must be aligned to integer multiplication of the
region sizes.

Memory Protection Unit 303

If the goal for using the MPU is to prevent unprivileged tasks from accessing certain
memory regions, the background region feature is very useful as it reduces the setup
steps required. You only need to set up the region setting for unprivileged tasks, and
privileged tasks and handlers have full access to other memory spaces using the
background region.

There is no need to set up memory regions for Private Peripheral Bus (PPB) address
ranges (including SCS) and the Vector table. Accesses to PPB (including MPU, NVIC,
SysTick, ITM) are always allowed in privileged state, and vector fetches are always
permitted by the MPU.

The HardFault handler (void HardFault_Handler(void)) should always be defined if you are
going to use the MPU.

By default, the vector table in startup code should contain the exception vector definition
for the HardFault handler. If you are using vector table relocation feature, you might need
to ensure that the vector table is set up accordingly. More information about using fault
handlers is covered in Chapter 11.

To help setting the MPU, we define a number of constant values:

ftdefine MPU_DEFS_RASR_SIZE_256B
ftdefine MPU_DEFS_RASR_SIZE_512B
ftdefine MPU_DEFS_RASR_SIZE_1KB
ffdefine MPU_DEFS_RASR_SIZE_2KB
ffdefine MPU_DEFS_RASR_SIZE_4KB
ffdefine MPU_DEFS_RASR_SIZE_8KB
ffdefine MPU_DEFS_RASR_SIZE_16KB
ffdefine MPU_DEFS_RASR_SIZE_32KB
fidefine MPU_DEFS_RASR_SIZE_64KB
ffdefine MPU_DEFS_RASR_SIZE_128KB
ffdefine MPU_DEFS_RASR_SIZE_256KB (0x11 << MPU_RASR_SIZE_Pos)
fidefine MPU_DEFS_RASR_SIZE_512KB (0x12 << MPU_RASR_SIZE_Pos)

(0x07 << MPU_RASR_SIZE_Pos)
(
(
(
(
(
(
(
(
(
(
(
ffdefine MPU_DEFS_RASR_SIZE_IMB (0x13 << MPU_RASR_SIZE_Pos)
(
(
(
(
(
(
(
(
(
(
(
(

0x08 << MPU_RASR_SIZE_Pos)
0x09 << MPU_RASR_SIZE_Pos)
0x0A << MPU_RASR_SIZE_Pos)
0x0B << MPU_RASR_SIZE_Pos)
0x0C << MPU_RASR_SIZE_Pos)
0x0D << MPU_RASR_SIZE_Pos)
Ox0E << MPU_RASR_SIZE_Pos)
0x0F << MPU_RASR_SIZE_Pos)
0x10 << MPU_RASR_SIZE_Pos)

ffdefine MPU_DEFS_RASR_SIZE_2MB 0x14 << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_4MB 0x15 << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_8MB 0x16 << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_16MB 0x17 << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_32MB 0x18 << MPU_RASR_SIZE_Pos)
ftdefine MPU_DEFS_RASR_SIZE_64MB 0x19 << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_128MB (0x1A << MPU_RASR_SIZE_Pos)
fidefine MPU_DEFS_RASR_SIZE_256MB (0x1B << MPU_RASR_SIZE_Pos)
ftdefine MPU_DEFS_RASR_SIZE_512MB (0x1C << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_1GB 0x1D << MPU_RASR_SIZE_Pos)
fidefine MPU_DEFS_RASR_SIZE_2GB Ox1E << MPU_RASR_SIZE_Pos)
ffdefine MPU_DEFS_RASR_SIZE_4GB Ox1F << MPU_RASR_SIZE_Pos)

304 Chapter 12

ftdefine MPU_DEFS_RASE_AP_NO_ACCESS
jtdefine MPU_DEFS_RASE_AP_PRIV_RW

jtdefine MPU_DEFS_RASE_AP_PRIV_RW_USER_RO (0x2 << MPU_RASR_AP_Pos)
ftdefine MPU_DEFS_RASE_AP_FULL_ACCESS 0x3 << MPU_RASR_AP_Pos)

(0x0 << MPU_RASR_AP_Pos)
(
(
(
jtdefine MPU_DEFS_RASE_AP_PRIV_RO (0x5 << MPU_RASR_AP_Pos)
(
(
(
(

0x1 << MPU_RASR_AP_Pos)

jtdefine MPU_DEFS_RASE_AP_RO 0x6 << MPU_RASR_AP_Pos)

jtdefine MPU_DEFS_NORMAL_MEMORY_WT MPU_RASR_C_Msk)

ftdefine MPU_DEFS_NORMAL_MEMORY_WB MPU_RASR_C_Msk | MPU_RASR_B_Msk)

jtdefine MPU_DEFS_NORMAL_SHARED_MEMORY_WT (MPU_RASR_C_Msk | MPU_RASR_S_Msk)

jtdefine MPU_DEFS_NORMAL_SHARED_MEMORY_WB (MPU_DEFS_NORMAL_MEMORY_WB | MPU_RASR_S_Msk)
ftdefine MPU_DEFS_SHARED_DEVICE (MPU_RASR_B_Msk)

jtdefine MPU_DEFS_STRONGLY_ORDERED_DEVICE (0x0)

For a simple case of only four required regions, the MPU setup code can be written as a

simple loop, with the configuration for the MPU->RBAR and MPU->RASR coded as a

constant table:
T R EEEE

int mpu_setup(void)
{

uint32_t 1i;

uint32_t const mpu_cfg_rbar(4] = {
0x08000000, // Flash address for STM32L0
0x20000000, // SRAM
IOPPERIPH_BASE, // GPIO base address
USART1_BASE // USART base address

b
uint32_t const mpu_cfg_rasr[4] = {

(MPU_DEFS_RASR_SIZE_64KB | MPU_DEFS_NORMAL_MEMORY_WT |
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk), // Flash
(MPU_DEFS_RASR_SIZE_8KB | MPU_DEFS_NORMAL_MEMORY_WT |
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk), // SRAM
(MPU_DEFS_RASR_SIZE_4KB | MPU_DEFS_SHARED_DEVICE \
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk), // GPIOA toGPIOD
(MPU_DEFS_RASR_SIZE_2KB | MPU_DEFS_SHARED_DEVICE |
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk) // USART

b

if (MPU->TYPE==0) {return 1;} // NO MPU: Return 1 to indicate error

__ DMB(); // Make sure outstanding transfers are done

MPU->CTRL = 0; // Disable the MPU

for (i=0;i<4;i++) { // Configure only 4 regions
MPU->RNR = 1i; // Select which MPU region to configure
MPU->RBAR = mpu_cfg_rbar[i]; // Configure region base address register
MPU->RASR = mpu_cfg_rasr[i]; // Configure region attribute and size register

}

for (i=4;i<8;i++) {// Disabled unused regions
MPU->RNR = 1; // Select which MPU region to configure
MPU->RBAR 0; // Configure region base address register
MPU->RASR 0; // Configure region attribute and size register
}

Memory Protection Unit 305

MPU->CTRL = MPU_CTRL_ENABLE_Msk; // Enable the MPU

__DSB(); // Memory barriers to ensure subsequence data & instruction
__ISB(); // transfers using updated MPU settings

return 0; // No error

A simple check was added in the beginning of the function to detect if the MPU is
present. If the MPU is not available, the function exits with a value of 1 to indicate the
error. Otherwise it returns O to indicate successful operations.

The example code also programs unused MPU regions to make sure that unused MPU
regions are disabled. This is important for systems that configure MPU dynamically
because an unused region could have been programmed to be enabled previously.

The flow for this simple MPU setup function is illustrated by Figure 12.5.

Check MPU Type register
to see if MPU exist and N Error
there are enough regions
Yes
Disable MPU
Region selection and Select region #i
programming of region Program region
registers can be combined base address
in one step and configuration
Select region #i
Disable unused
regions
<Loop 8-n times
Enable MPU
MPU setup

completed

Figure 12.5
Example steps to set up the Memory Protection Unit (MPU).

306 Chapter 12

To simplify the operation, the selection of MPU region to be programmed can be merged
into the programming of MPU->RBAR, as shown in the following code:

A
int mpu_setup(void)
{
uint32_t i;
uint32_t const mpu_cfg_rbarf4] = {
// Flash address for STM32L0

(0x08000000] MPU_RBAR_VALID_Msk | (MPU_RBAR_REGION_Msk & 0)),
// SRAM
(0x20000000] MPU_RBAR_VALID_Msk | (MPU_RBAR_REGION_Msk & 1)),

// GPIO base address
(IOPPERIPH_BASE| MPU_RBAR_VALID_Msk | (MPU_RBAR_REGION_Msk & 2)),
// USART base address
(USART1_BASE| MPU_RBAR_VALID_Msk | (MPU_RBAR_REGION_Msk & 3))
by
uint32_t const mpu_cfg_rasrl4] = {
(MPU_DEFS_RASR_SIZE_64KB MPU_DEFS_NORMAL_MEMORY_WT
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk), // Flash
(MPU_DEFS_RASR_SIZE_B8KB MPU_DEFS_NORMAL_MEMORY_WT
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk), // SRAM
(MPU_DEFS_RASR_SIZE_4KB MPU_DEFS_SHARED_DEVICE
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk), // GPIO A to GPIO D
(MPU_DEFS_RASR_SIZE_2KB MPU_DEFS_SHARED_DEVICE
MPU_DEFS_RASE_AP_FULL_ACCESS | MPU_RASR_ENABLE_Msk) // USART

b
if (MPU->TYPE==0) {return 1;} // Return 1 to indicate error

__DMB(); // Make sure outstanding transfers are done
MPU->CTRL = 0; // Disable the MPU
for (i=0;i<4;i++) { // Configure only 4 regions
MPU->RBAR = mpu_cfg_rbar[i]; // Configure region base address register
MPU->RASR = mpu_cfg_rasr[i]; // Configure region attribute and size register

}
for (i=4;i<8;i++) {// Disabled unused regions
MPU->RNR = 1i; // Select which MPU region to configure
MPU->RBAR 0; // Configure region base address register
MPU->RASR = 0; // Configure region attribute and size register
}
MPU->CTRL = MPU_CTRL_ENABLE_Msk; // Enable the MPU
__DSB(); // Memory barriers to ensure subsequence data & instruction
__ISB(); // transfers using updated MPU settings
return 0; // No error

Memory Protection Unit 307

These configuration methods shown so far assume that we know the required settings in
advance. If not, we might need to create some generic functions to make the MPU
configuration easier. For example, we can create the following C functions:

//
// Enable MPU with input options

// Options can be MPU_CTRL_HFNMIENA_Msk or MPU_CTRL_PRIVDEFENA_Msk

void mpu_enable(uint32_t options)
{
MPU->CTRL = MPU_CTRL_ENABLE_Msk
__DSB();
__ISB(O);
return;
}
// Disable the MPU.
void mpu_disable(void)
{
__ DMB();
MPU->CTRL = 0;
return;
}

// Disable the MPU

options;

// Function to disable a region (0 to 7)
void mpu_region_disable(uint32_t region_num)

{

MPU->RNR = region_num;
MPU->RBAR = 0;
MPU->RASR = 0;

return;

}
// Function to enable a region

void mpu_region_config(uint32_t region_num, uint32_t addr,

attributes)
{

MPU->RNR = region_num;
MPU->RBAR = addr;

MPU->RASR = size | attributes;
return;

}

// Disable the MPU

// Ensure MPU settings take effects
// Sequence instruction fetches using update settings

// Make sure outstanding transfers are done

uint32_t size, uint32_t

After these functions are created, we can configure the MPU using these functions:

int mpu_setup(void)
{
if (MPU->TYPE==0)
mpu_disable();

{return 1;}

// NO MPU:

Return 1 to indicate error

308 Chapter 12

mpu_region_config(0, 0x08000000, MPU_DEFS_RASR_SIZE_64KB,
MPU_DEFS_NORMAL_MEMORY_WT | MPU_DEFS_RASE_AP_FULL_ACCESS
MPU_RASR_ENABLE_Msk), // Region 0 - Flash

mpu_region_config(l, 0x20000000, MPU_DEFS_RASR_SIZE_8KB,
MPU_DEFS_NORMAL_MEMORY_WT | MPU_DEFS_RASE_AP_FULL_ACCESS
MPU_RASR_ENABLE_Msk), // Region 1 - SRAM

mpu_region_config(2, IOPPERIPH_BASE, MPU_DEFS_RASR_SIZE_4KB,
MPU_DEFS_SHARED_DEVICE | MPU_DEFS_RASE_AP_FULL_ACCESS
MPU_RASR_ENABLE_Msk), // Region 2 - GPIO A to GPIO D

mpu_region_config(3, USART1_BASE, MPU_DEFS_RASR_SIZE_2KB,
MPU_DEFS_SHARED_DEVICE | MPU_DEFS_RASE_AP_FULL_ACCESS
MPU_RASR_ENABLE_Msk), // Region 3 - USART

mpu_region_disable(4);// Disabled unused regions

mpu_region_disable(5);

mpu_region_disable(6);

mpu_region_disable(7);

mpu_enable(0); // Enable the MPU with no additional option

return 0; // No error

12.6 Memory Barrier and MPU Configuration

In the examples shown, we have added a number of memory barrier instructions in the
MPU configuration code.

Data Memory Barrier (DMB). This is used before disabling the MPU to ensure that
there is no reordering of data transfers and if there is any outstanding transfer, we

wait until the transfer is completed before writing to the MPU Control Register
(MPU->CTRL) to disable the MPU.

Data Synchronization Barrier (DSB). This is used after enabling the MPU to ensure that
the subsequent ISB instruction is executed only after the write to the MPU Control
Register is completed. This also ensures all subsequent data transfers use the new
MPU settings.

Instruction Synchronization Barrier (ISB). This is used after the DSB to ensure the pro-
cessor pipeline is flushed and subsequent instructions are refetched again with updated
MPU settings.

The use of these memory barriers are based on architecture recommendations. Omitting
these memory barriers on the Cortex®-M0+ processor rarely causes any failure due to
simple nature of the processor pipeline: the processor can only handle one data transfer at
any time. The only case where an ISB is really needed is when the MPU settings are updated
and the subsequent instruction access can only be carried out using the new MPU settings.

However, from software portability point of view, these memory barriers are important
because it allows the software to be reused on all Cortex-M processors.

Memory Protection Unit 309

If the MPU is used by an embedded OS and the MPU configuration is done inside the
context switching operation, which is typically within the PendSV exception handler, the
ISB instruction is not required from architecture point of view because the exception
entrance and exit sequence also has the ISB effect.

Additional information about the use of memory barriers on the Cortex-M processors can
be found on ARM® application note 321, A Programmer Guide to the Memory Barrier
instruction for ARM Cortex-M Family Processor (reference 8).

12.7 Using Sub-Region Disable

The Sub-Region Disable (SRD) feature is used to divide an MPU region into eight equal
parts and set each of them enabled or disabled individually. This feature can be used in a
number of ways:

12.7.1 Allow Efficient Memory Separation

The SRD enables more efficient memory usage while allowing protection to be
implemented. For example, assumed that task A needs 5 KB of stack and task B needs

3 KB of stack, and the MPU is used to separate the stack space, the memory arrangement
without SRD feature will need 8 KB for task A’s stack and 4 KB for task B’s stack, as
shown in Figure 12.6.

4K Region
Stack for — when running
Task B Task B
(3KB)
0x20010000 B —
8K Region
— when running
Stack for Task A
Task A
(5KB)
0x20008000 —
Figure 12.6

Without Sub-Region Disable, more memory space could be wasted because of region size and
alignment requirements.

310 Chapter 12

With the SRD, we can reduce the memory usage by overlapping the two memory regions,
and use SRD to prevent the application task to access the other task’s stack space, as
shown in Figure 12.7.

0x20010000] .
Stack for 4K Region when
Task B running Task B, with
(3KB) SRD = 00000011
8K Region when so that Task A stack is
running Task A, with not accessible
— SRD=11100000
Stack for so that Task B stack
Task A is not accessible
(5KB)
0x20008000 _
Figure 12.7

With Sub-Region Disable (SRD), regions can be overlapped but still separated for better memory
usage efficiency.

12.7.2 Reduce the Total Number of Regions Needed

When defining peripheral access permissions, very often you might find that some
peripherals need to be accessed by unprivileged tasks and some must be protected and
have to be privileged access only. To implement the protection without SRD, we might
need to use a large number of regions.

Since the peripherals usually have the same address size, we can easily apply SRD to
define the access permissions. For example, we can define a region (or use the background
region feature) to enable privileged accesses to all peripherals. Then define a higher
numbered region which overlapped the peripheral address space as FULL ACCESS
(accessible by unprivileged task), and use SRD to mask out the peripherals that has
privileged access only. A simple illustration is shown in Figure 12.8.

12.8 Considerations When Using MPU

A number of aspects need to be considered when using the MPU. In many cases, when the
MPU is used with an embedded OS, it is highly desirable to have MPU support built-in

Memory Protection Unit 311

Sub Region
A Disable
Device #7
‘ (Unprivileged accessible) H 0 Full Access -4— Background
- Privileged Region
Device #6
‘ (Privileged only) H 1 i
Device #5
(Privileged only) 1
‘ ioaoe i H 0 Full Access
Memory (Unprivileged accessible)
Space Device #3
. ‘ (Unprivileged accessible) H 0 Full Access
Device #2 i
(Privileged only) 1
Device #1
‘ (Unprivileged accessible) H 0 Full Access
Device #0
(Unprivileged accessible) 0 Full Access

Foreground Full Access Region
with subregion disable set to
0x64 (01100100)

Figure 12.8
Using Sub-Region Disable to control access right to separate peripherals.

with the OS being used. For example, a special version of FreeRTOS (called
FreeRTOS-MPU, www.freertos.org), and the OpenRTOS from Wittenstein High Integrity
Systems (www.highintegritysystems.com) can make use of the MPU features. It is also
possible to use the MPU with a static configuration with other RTOS, and use the stack
limit detection feature for stack overflow detection.

12.8.1 Program Code

In most cases, it can be difficult to isolate the program memory into different MPU
regions for different tasks because the tasks can share various functions, including
runtime library functions and device driver library functions. Also, if the application
tasks and the OS are compiled together, it can be difficult to have clear and well-
aligned address boundaries between each of the application tasks and the OS kernel,
which is needed for setting up the MPU regions. Typically the program memory (e.g.,
flash) can be defined as just one region, and might be configured with read only
access permission.

12.8.2 Data Memory

If the application tasks and OS are compiled together in one go, it is likely that some of
the data used by the application tasks and the OS will be mixed together. It is then
impossible to isolate the access permissions of individual data elements. You might need

http://www.freertos.org
http://www.highintegritysystems.com

312 Chapter 12

to compile the tasks separately and then use linker scripts or other methods to place the
data sections in the RAM manually. However, heap memory space might be needed to be
shared and cannot be protected using MPU.

Isolation of stack memory is usually easier to handle. You can reserve memory space in
the linking stage and force the application tasks to use the reserved space for stack
operations. Different embedded OS and tool chains have different ways to allocate stack
spaces.

12.9 Comparing with the MPU in the Cortex®-M3/M4/M7 Processors

The optional MPU in the Cortex-MO+- processor is fairly similar to the MPU in the
Cortex-M3, Cortex-M4 and Cortex-M7. There are a few differences, so if an MPU
configuration software has to be used on Cortex-M0+ as well as on Cortex-M3/M4/M7
Processors, the following areas (see Table 12.11) need to be taken care of.

The MPU memory attributes in ARMv6-M only support one level of cache policy.
Therefore the TEX field is always O in the Cortex-MO+ processor. On the ARMv7-M
architecture, the TEX can be set to non-zero value and enable separated inner and outer
cache schemes.

In addition, in ARMv7-M architecture, there is a configurable fault exception for handling
MPU-generated fault exception called MemManage fault (Memory Management Fault),
and additional fault status registers for easier diagnosis of the causes of the fault. By
default, the MemManage fault is disabled so that the HardFault would still be used, but

Table 12.11: Comparison of MPU features in Cortex®-MO-+ processor to Cortex-M3/M4/M7

processors

ARMvV6-M (Cortex-MO0+) ARMvV7-M (Cortex-M3/M4/M7)
Number of regions 8 8 (all)/16 (Cortex-M7 only)
Unified | & D regions Y Y
Region address Y Y
Region size 256 bytes to 4 GB 32 bytes to 4 GB

(can use SRD to get to 32 bytes)
Region memory attributes S, C, B, XN TEX, S, C, B, XN
Region Access Permission (AP) Y Y
Sub-Region Disable (SRD) 8 bits 8 bits
Background region Yes (programmable) Yes (programmable)
MPU bypass for NM/HardFault ~ Yes (programmable) Yes (programmable)
Alias of MPU registers N Y
MPU registers accesses Word size only Word/Halfword/Byte
Fault exception HardFault only HardFault/MemManage

Memory Protection Unit 313

the MemManage fault can be enabled at runtime with a configurable priority level to allow
more flexible fault management.

Although the ARMv7-M architecture allows a smaller region size (down to 32 bytes), in
ARMv6-M with can use the 256 byte region size with Sub-Region Disable to set 32 byte
subregions. In ARMv7-M architecture sub-Region Disable cannot be used if the region
size is 128 bytes or less. So you get the same effective minimum region size.

Overall, the MPUs support similar level of memory protection features, and the software
porting between the two MPU types should be straight forward. However, the ARMv7-M
architecture supports a range of fault status registers that help fault handlers to manage the
fault events. This is not available in the ARMv6-M architecture. As a result, in most cases
a HardFault event in the Cortex-M0+4- processor is considered as nonrecoverable (or fatal)
which require a reset or task termination, whereas in ARMv7-M architecture, it is possible
to recover from some of the MPU-related fault situations.

Debug Features

13.1 Software Development and Debug Features

During software development, we often need to examine the operation of program
execution in detail, to understand why a program does not work as expected, or to ensure
correct operations. Although it is possible to provide some visibility of the program’s
operation using various peripheral interfaces such as using a UART to generate debug
messages, the level of details you can get through these interfaces is limited. In addition, it
is not always possible to debug some of the issues, especially if the program crashed
before the interface peripheral is initialized, or if the failure mechanism can be affected by
debug message reporting code.

As a result, the ARM® Cortex®-M processors integrate a number of debug features to
make it easier for software developers to find out what is happening inside the processors.
The debug features on the processor is only part of the story. We also need the following
items to support the debug operations (Figure 13.1).

* Debugger software on the debug host (e.g., personal computer) is needed to enable the
software developers to extract the debug information.

* Debug adaptor (typically a hardware unit) that connects between the debug host and the
microcontroller. Sometimes the adaptor is integrated in the development board.

* Debug interface on the microcontrollers.

‘|| Debugger
software

USB connection

Microcontroller

=
Debug
connection Development
board

Debug Host
(Personal Computer)
Debug Adaptor

Figure 13.1
A classic microcontroller development environment.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00013-8
Copyright © 2015 Elsevier Inc. All rights reserved. 3 15

http://dx.doi.org/10.1016/B978-0-12-803277-0.00013-8

316 Chapter 13

For some of the Cortex-M3, Cortex-M4, and Cortex-M7 microcontrollers, you might have
an additional trace interface for additional debug information to be sent to the debug host
in real time. The Cortex-MO and Cortex-MO+ processors do not have such trace interface
and therefore will not be covered in this book.

In this chapter, we will cover a number of debug terms and some of these are listed in
Table 13.1. Note these terms are not standardized across all microcontroller architectures,
so the terms used by some microcontroller vendors can be different.

During software development, some of the debug features like breakpoint, watchpoints,
and single stepping are often needed. These debug features are now part of modern
processor design and part of the ARMv6-M and ARMv7-M architecture.

All the debug and trace features on the Cortex-MO and Cortex-M0+ processor are
designed so that the debug operations can be performed on a target platform via a low-pin
count serial interface. In addition to debug operations, this interface can also be used for
device programming (in-system programmable). This is different from some older

Table 13.1: Common debug terminologies related to ARM® microcontrollers

Terms Descriptions

Halt Stopping of program execution due to a debug event (e.g., breakpoint or
watchpoint), or due to user debug request.

Breakpoint Program execution reaches an address marked as a breakpoint, causing a
debug event to be generated, which halts the processor.

Hardware breakpoint A hardware comparator is used to compare the current program address to a

reference address setup by the debugger. When the processor fetches and
executes an instruction from this address, the comparator generates a debug
event signal to stop the processor.

Software breakpoint A BreakPoint instruction (BKPT) is inserted to the program memory so that
program execution halts when it get to this address.
Watchpoint A data or peripheral address can be marked as a watched variable, and an

access to this address causes a debug event to be generated, which halts
program execution.

Debugger A piece of software running on a debug host (e.g., a personal computer) that
communicates with the debug system in a microcontroller, usually via a USB
adaptor (or an in-circuit debugger), so that the debug features of the
microcontroller can be accessed.

In-Circuit Debugger A piece of hardware that connects between the debug host (e.g., a personal
computer) and the microcontroller. Usually the connection to the debug
host is USB or ethernet, and the connection to the microcontroller is JTAG
or Serial Wire protocol. Various terminologies are used for In-Circuit
Debuggers: USB-JTAG adaptor, In-Circuit Emulator (ICE), JTAG/SW
emulator, Run-Time Control Unit, etc.

Profiling A feature in debugger that collects statistics of program execution. This is
very useful for performance analysis and software optimization.

Debug Features 317

generation microcontrollers that require an emulator to emulate the microcontroller, or in
some other microcontroller products that require the microcontroller to be programmed,
prior to insertion in the target platform.

Another difference between ARM-based microcontrollers and some other microcontrollers
is that there is no need for a debug agent (a small piece of debug support software)
running on the processor to perform the debug operations. When the debug features are
accessed, the processor hardware performs the debug operation. As a result, the debug
operations do not require any program size overhead and does not affect any data in
memory including the stack.

13.2 Debug Interface
13.2.1 JTAG and Serial Wire Debug Communication Protocol

In order to access the debug features on the microcontroller, a debug interface is needed.
For ARM® Cortex®-MO0 and Cortex-M0-+- microcontrollers, this interface can either be the
JTAG (Joint Test Action Group) protocol or the Serial Wire debug protocol (Figure 13.2).

JTAG—Many microcontrollers support a serial protocol called JTAG—Joint Test Action
Group. JTAG protocol is an industry standard protocol (IEEE 1149.1) and can be used for
various functions such as chip-level or PCB-level testing, as well as access to debug fea-
tures inside microcontrollers. While JTAG is sufficient for many debug usage scenarios, it
needs at least 4 pins: TCK, TDI, TMS, and TDO, while the reset signal nTRST is optional.
Serial Wire Debug—The Serial Wire debug protocol only needs two pins: SWCLK and
SWDIO. The Serial Wire debug protocol provides the same debug access features and
also supports parity error detection, which enables better reliability in systems with
higher electrical noises. Therefore the Serial Wire debug protocol is very attractive for
many microcontroller vendors and users.

JTAG Debug interface Serial Wire Debug interface
—»—[| nTRST (optional) O
——»—[| TDI]
—»—1[] TCK —»——[] SWCLK (share with TCK)
Debug Debug
——»—] TMS E —a—p—{| SWDIO (share with TMS)
—4—1(] TDO 4
O O
O O
O O

Figure 13.2
JTAG and Serial Wire debug interface.

318 Chapter 13

Table 13.2: Signals for JTAG debug connection

JTAG Signal Descriptions

TCK Clock signal

TMS Test Mode Select signal—controls the protocol state
transition.

TDI Test Data In—serial data input

TDO Test Data Out—serial data output

nTRST Test reset—Active-low asynchronous reset for a JTAG state

control unit called the TAP controller. The nTRST signal is
optional. Without nTRST, the TAP controller can be reset
with five cycles of TMS pulled high.

Both protocols transfer the control information and data in serial bit sequences. Many
debug adaptors can support both protocols and they can share the same debug connector
layout (see appendix F, Debug Connector Arrangements).

JTAG is a four-pin or five-pin serial debug protocol that is commonly used for digital
component testing. The interface contains the following signals (Table 13.2).

Although the JTAG interface is commonly used and well supported, using four or five pins
for debug operations is too many for some microcontrollers with low-pin counts. As a result,
ARM developed the Serial Wire debug protocol, which uses only two pins (Table 13.3).

Table 13.3: Signals for Serial Wire debug connection

Serial Wire signal Descriptions
SWCLK Clock signal
SWDIO Data input/output—pbidirectional data and control communication

Although only two signals are required, the Serial Wire debug protocol can

offer better performance than JTAG and can provide the same processor debug
functionality. The Serial Wire debug protocol is already supported by most in-circuit
debuggers and debugger software tools that support the ARM Cortex-M processor
family.

Typically Cortex-MO and Cortex-M0-+ microcontrollers only support one of these debug
protocols to reduce power: mostly Serial Wire debug protocol because fewer pins are
needed.

The debug interface allows the following:

* The flash memory to be reprogrammed easily without the need to remove it from the
circuit board.
* Applications to be debugged and tested.

Debug Features 319

* Production testing (e.g., a self-test application can be downloaded to the microcontroller
memory and executed, or boundary scan could be carried out via JTAG connection if it
is implemented in the microcontroller).

13.2.2 Cortex-M Processor and CoreSightTM Debug Architecture

Unlike most other processors, in ARM Cortex processors the debug interface and the
debug features of the processor are implemented in separate units. The processor design
contains a generic parallel bus interface that allows all the debug features to be accessed.
A separate debug interface block (called Debug Access Port in ARM documentation) is
used to convert a debug interface protocol to the parallel bus interface (Figure 13.3). This
arrangement is part of the CoreSight™ debug architecture and it makes the ARM Cortex
processors debug solution flexible.

The use of the CoreSight debug architecture brings a number of advantages to the Cortex-
MO/MO+ processor and other processors in the Cortex-M processor family:

* By separating the debug interface from the main processor logic, the choice of debug
interface protocol is much more flexible, without affecting the underlying debug fea-
tures on the main processor logic.

e Multiple processors can share the same debug interface block, allowing a much more
scalable debug system. Other test logic can also be added to the system easily, as the
internal connection is a simple parallel bus interface.

* The design is consistent between all Cortex-M processors, making it easy for tool
vendors to support the whole Cortex-M processor family with one tool chain.

Details of the CoreSight debug architecture can be found in the ARM Web site.

HHHHHHHHHHHHHHHH

Debug Access Port Microcontroller Break Point Unit

1 5 .
Processor system = :
:]JTAG o s Cortex-MoMo+ ||~ o :;
Serial Wire | Y2 pap H> [BPU 4 — Data Watchpoint
LT DWT 4——"_"::
DBG
///ir Processc;\~\235—E(E;I?s?:§|igsf::p§é)

Debugger access to core

HAARAA HHA&L

memory, peripherals Bus -
and optional test N bl —— [Optional test logic for
logic ; —— chip production
[I I — testing
E(I:;,;Ah/ SRAM || Peripherals :—E;j;tltlli?g;l—‘lf::
IEEEEEEEELEEEELE:

Figure 13.3
Debug interface connection inside the processor.

320 Chapter 13

For normal software development, it is not necessary to have an in-depth understanding of
CoreSight technology. For readers who would like to have a brief overview of the
CoreSight technology, a document called “CoreSight Technical Introduction” (ARM EPM
039795, reference 13) provides a good overview of the CoreSight Debug Architecture. In
addition, the ARM Debug Interface v5.2 (ARM IHI 0031C, reference 14) provides
detailed information on the Serial Wire debug protocol.

13.2.3 Design Considerations with Debug Interface

Many microcontroller products have the JTAG or Serial wire interface pin shared with the
peripheral interface or other I/O pins. When the debug interface pins are used for I/O,
usually by programming certain peripheral control registers to switch the usage to I/O, the
debugger cannot connect to the processor. Therefore when designing an embedded system,
you should avoid using the debug interface pins as I/O if you want to allow the system to
be debugged easily.

In some cases, if the pins are switched from debug mode to I/O very quickly after the
program starts, this could lock out the debugger completely. This is due to the debugger not
having enough time to connect and halt the processor before the pin usage is switched.

As a result, you cannot debug the application and cannot reprogram the flash memory. From
another point of view, you might be able to use it as a feature to block other people from
accessing the program code in the chip. However, this arrangement is not guaranteed to be
secure and can be worked around if the microcontroller’s design has a special boot mode
that can disable the application. Some microcontrollers have read-back protection features
to prevent access to the program images, which is a more secure solution. For details of
such features, please refer to the documentation from your microcontroller vendor.

13.3 Debug Features Overview

The Cortex®-MO0 and Cortex-MO-+ processors support a number of useful debug features.
For example:

* Halting, resume, and single stepping of program execution

* Access to processor core registers and special registers

e Hardware breakpoints (up to four comparators)

* Software breakpoints (BKPT instruction)

* Data watchpoints (up to two comparators)

* On-the-fly memory access (system memory can be accessed without stopping the processor)
* PC sampling for basic profiling

* Support JTAG or Serial Wire debug protocol

In addition, the Cortex-MO+ processor supports:

* Instruction trace using a debug component called Micro Trace Buffer (MTB)

Debug Features 321

Theses debug features are vital for software development, and can be used for other tasks
like flash programming and product testing.

The debug features of the Cortex-MO and Cortex-MO+ processors are based on the ARM®
CoreSight debug architecture. They are consistent between all Cortex-M processors,
making it easy for a debug tool to support all Cortex-M processors with little modification.
It is also very scalable, making it possible to build complex multiprocessor products using
the CoreSight debug architecture.

The designs of the Cortex-MO and Cortex-MO-+ processors allow the debug features to be
configurable. For example, system-on-chip designers can remove some or all of the debug
features, to reduce the circuit size for ultra-low power applications like wireless sensors. If
a debug interface is implemented, debugger software can also read various registers to
detect which debug features are implemented.

13.4 Debug System

The debug features on Cortex®-MO0 and Cortex-MO0-+ processors are controlled by a
number of debug components. These debug components are connected together via an
internal bus system. However, application code running on the Cortex-M processor
cannot access these components (this is different from the Cortex-M3/M4/M7 processor,
where debug components can be accessed by application software). The debug
components can only be accessed by the debugger that connects to the microcontroller
(Figure 13.4).

There are a number of debug components in the Cortex-M0/Cortex-M0+-based systems
(Table 13.4).

The debug system also allows access to the system’s memory map including flash, SRAM,
and peripherals. The accesses to the system memory can be carried out even when the
processor is running. By accessing the Application Interrupt and Reset Control Register in
the System Control Block (SCB), the debugger can also request a system reset to reset the
microcontroller.

Additional information about the debug components is covered in appendix E.

13.5 Halt Mode and Debug Events

The Cortex®-MO0 and Cortex-M0+ processors have a halt mode that stops the program
execution and allows processor registers and memory space to be accessed by the
debugger. During halt mode:

* Instruction execution is stopped.
* SysTick timer stops counting.

322 Chapter 13

Note: MTB is available on Cortex-M0+ only
Trace interface |
_____ —p |
| | Processor core : I
nterna > |
bus | _ _ _ _ —— IMIB | | sram
Debug | "0] '
)) control | | SCB’ g AHB I |
Serial wire registers | | 70 Bus L __)
or JTAG o| Debug || | |nterface_->
i "1 Interface
-
BP unit || Flash
memory
DWT unit
- +
ROM table Cortex-M0/MO '— Peripherals
. Processor
Microcontroller
Figure 13.4

Debug components in Cortex®-M0/Cortex-M0+ microcontrollers.

Table 13.4: Debug components in the Cortex®-M0/Cortex-M+ processor systems

Debug components

Descriptions

Processor core
debug registers

BP unit
DWT unit

ROM table

MTB

Debug features inside the processor core are accessible by a few debug
control registers. They provide:

* Halting, single step, resume execution

* Access to the core’s registers when the processor is halted

* Control of the vector catch feature

The BreakPoint unit provides up to 4 breakpoint address comparators.

The Data Watchpoint unit provides up to 2 data address comparators. It also
allows the debugger to sample the program counter regularly for profiling.

A small lookup table that enables a debugger to detect the available debug
components in the system. The table lists the address of each debug
component and the debugger can then identify the available debug features
by checking the Identification registers of these components.

The Micro Trace Buffer supports instruction trace by allocating a small part of
the SRAM for storing program flow changes.

» If the processor was

in sleep mode, it wakes up from the sleep mode before halt.

* Registers in the processor’s register bank, as well as special registers, can be accessed
by the debugger (both read and write).
* Memory and peripheral contents can be accessed (this can be done without halting the

processor).

Debug Features

323

* Interrupts can still enter pending state.

* You can resume program execution, carry out single step operation, or reset the

microcontroller.

When a debugger is connected to the Cortex-MO or Cortex-M0+ processor, it first

programs a debug control register in the processor to enable the debug system. This step

cannot be done by the application running on the microcontroller. After the debug system
is enabled, the debugger can then stop the processor, download the application to the

microcontroller flash memory if required, reset the microcontroller and then we can test

the application.

The Cortex-MO or Cortex-MO+ processor enters halt mode when:

* Debug is enabled by a debugger, and
* A debug event occurs.

There are various sources of debug events. They can be generated by either hardware or

software (Figure 13.5).

Debugger asserts
halt request

Completion of a
single step operatio

—
Debug
Events

Hardware debug

request (on-chip / E?]Ztt))?gd

external)
Breakpoint instructio
- p Debug
Disabled
Figure 13.5

HALT

Debug
Enabled
Debug
Disabled
Ignore

HardFault

Debug events on Cortex®-M0/Cortex-M0+ processor.

324 Chapter 13

A debugger can stop the program execution by writing to debug control registers. On an
embedded system with multiple processors, it is also possible to stop multiple processors
at the same time using a hardware debug request signal and distribute the debug request
using an on-chip debug event communication system.

The program execution can be stopped by hardware breakpoints, software breakpoints,
watchpoints, or a vector catch event. The vector catch is a mechanism that allows the core
to be halted when certain exceptions take place. On the Cortex-MO or Cortex-M0O-+
processor, two vector catch conditions are provided:

¢ Reset
e HardFault

The vector catch feature is controlled by debug registers in the Cortex-M0/MO0+ processor
allowing the processor to be stopped automatically upon a reset, or when a HardFault
execution takes place (e.g., due to a software error). When the vector catch operation
occurs, the processor stops before execution of the first instruction in the reset or
HardFault exception handler.

Once the debugger software detects that the processor is halted, the debugger then
checks a Debug Fault Status Register inside the SCB of the Cortex-M0/M0+ processor
to determine the reason for halting. Then the debugger can inform the user that the
processor is halted and why, for example, when it reached a breakpoint. After the
processor is halted, you can then access the registers inside the processor’s register
bank and special registers, the data in memories or peripherals, or carry out single step
operation.

A halted Cortex-M0/M0+ processor can resume program execution by the debugger
writing to the debug register, by a hardware debug restart interface (e.g., used in
multiprocessor systems so that multiple processors can resume program execution at the
same time), or by reset.

13.6 Instruction Tracing Support Using the MTB

When program execution fails and the processor enters HardFault, it is very useful if we
can see the instruction execution history and see what program code was executed before
the fault event. This feature is what instruction trace is used for, and is one of the key
reasons to have the MTB (Micro Trace Buffer) in the Cortex®-MO+ processor.

The MTB is a small component that is placed between the SRAM and the system bus
(Figure 13.6). In normal operation, the MTB acts as an interface module to connect the
on-chip SRAM to AHB.

Debug Features 325

Trace
Cortex-M0+ processor interface

AHB
interconnect
AHB
MTB Configuration
registers
Trace

information
Arbiter

\ SRAM interface \

On-chip
SRAM

Figure 13.6
MTB integrates as a bridge between AHB and on-chip SRAM.

During debug operations, the debugger can configure the MTB to allocate a small portion of
the SRAM as trace buffer for storing trace information. Of course, care must be taken to
ensure that the application does not use the same SRAM space allocated for trace operations.

When a program branch occurred, or when the program flow changed due to interrupts,
the MTB stores the source program counter and destination program counters into the
SRAM. A total of 8 bytes of trace data per branch is needed. For example, if just 512
bytes of the SRAM is allocated for instruction trace, we can store up to 64 most recent
program flow changes. This is a great help for software debugging.

The MTB supports two operation modes:

Circular buffer mode—the MTB uses the allocated SRAM in circular buffer mode and
trace operates continuously. When the processor enters HardFault, the debugger can
then extract the information in the trace buffer and recreate the trace history. An
example screen shot of using MTB with Keil® MDK is shown in Figure 13.7.

The circular buffer mode is the most common usage model for the MTB.

Tools

File Edit View Project Flash Debug Peripherals

NEeda) s a3 |

RE R

SVCS Window Help

= ffz| Bt _font

B-ENa-=-

B BTG 0| v @ s
Registers o @ Disassembly o Trace Data o
= . 27: } =~ Display: Executi = 5 in Al Er
?egcliir [Value | 0x00000172 4770 BX ir _ isplay: ecution EH | ") E in E‘] <) | (=] | £
i 79: int num = -1; Index Address Opcode Instruction Src Code Function
RO 0x000001F4 (0x00000174 2400 MOVS r4,$0x00 B
= R1 0x0000017A 0x00000176 4324 NS v4. 28 2,378 X : 0x00000... | 1A52 SUBS r2r2rl Delay |
R2 OXFFFFFFFS 80: dnt dir = 57 2,379/ X : 0x00000... |4282 CMP 12,0 Delay
R3 0xEQDOED1C < b -
Ré 0x00000000 : 2,380 X : 0x00000.. [D3FA | BCC 0x000002D6 Delay
RS 0x0000A3D7 l [Biinky.c | [£] startup_MKL25Z45 v X 2,381/ X : 0x00000... | 4A03 LDR r2,[pc#12] ; @0x00000.. Delay
~R6 0x00000001 220/* = 2,382/ X : 0x00000... | 6812 LDR r2,[r2,#0x00] Delay
R7 0x00000000 :
RS OxBFDFFFDC 23 T SysTick Handler 2,383 X : 0x00000... | 1A52 SUBS r2r2rl Delay
R9 OxIFFFF618 20 [i = ; 2,384/X:0x00000.. |4282 | CMP 1210 Delay
R10 0x000003F0 25Hvoid SysTick Handler(void) [2,385/X: 0x00000.. |[D3FA | BCC 0x000002D6 Delay
-R11 0x000003F0 ® 26 msTicks++; /* in(
R12 0x00000000 > 27 |3 2,386 TRACEG..
0x20000468 28 L 2,387 X : 0x00000... |485E LDR r0,[pc#376] ; @0x0000.. | msTicks++; .. |SysTick_Handler
0x00000239 20@/% 2,388/ X : 0x00000... | 6800 LDR 10,[r0,#0x00] SysTick_Handler
0x000002EQ . . .
0xA1000000 SOT delays number of tick Systicks (happens 2,389/ X : 0x00000... | 1C40 ADDS 10,10,#1 SysTick Handler
: gim *INLINE - o e 2,390/ X : 0x00000.. 495D | LDR rL[pc#372] ; @0x0000.. SysTick_Handler
] 1N eeniC WOLE DETaN AL acL S G0 2,391/X: 0x00000.. 6008 | STR r0,[r1,#0x00] SysTick_Handler
=] 33 uint32 t curTicks;
i 34 - 2,392/ X : 0x00000... (4770 BX Ir } SysTick_Handler
Privilege Privileged 35/ curTicks = msTicks; 2,393/ X : 0x00000... 6812 LDR r2,[r2,#0x00] Delay
- Stack MsP 36 while ((msTicks - curTicks) < dlyTicks); 2,394|X : 0x00000... |1A52 SUBS r2r2rl Delay
b g |} > 2,395/X: 0x00000.. 4282 | CMP 1210 Delay
roject | =X Registers <«] 3 2,396/ X : 0x00000.. |[D3FA | BCC 0x000002D6 Delay
Command o Memory 1
_WDWORD (0xF0000004, master); // MASTER -
3} Address:
MTB_Setup() ; E
BS \\Blinky\Blinky.c\26 =
< 13
o
= ..
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE DEFINE DIR | &Call Stack + Locals ‘DMemory1|
CMSIS-DAP Debugger t1:0.00000000 sec L:27 C:2 CAP NUM SCRL OVR R/W

Figure 13.7

MTB provides instruction execution history including visibility of interrupt events.

€1 493dvyD 9z¢

Debug Features 327

One shot mode—the MTB starts writing trace from the start of the allocated trace
buffer, and stops tracing when the trace write pointer reaches a specific watermark
level. The MTB can optionally stop the processor execution by asserting a debug
request signal.

The key advantages of the MTB instruction trace solutions are as follows:

Software developer can use existing low-cost debug adaptors to extract trace
information.

Typically, the impact to the program execution cycles is tiny. For example, when
executing a branch operation, the processor does not access the SRAM and so the MTB
can write the trace information without stalling the processor. However, if another bus
master (e.g., a DMA controller) is trying to access the SRAM at the same time, the
DMA access would stall.

Small silicon overhead—the size of the MTB is typically 1.5 K gates in size (some
interface logic is needed to bridge between the SRAM and the AHB anyway), and it
shares the system SRAM for trace operations. So it has minimum impact to the power
and area of the silicon.

The size and base address of the MTB instruction trace is completely configurable
allowing high flexibility.

If required, a chip designer could also design the system with a separate SRAM for MTB
operation. But of course this will increase the silicon area and power. But then if the MTB
is not used, potentially the application code might be able to utilize the extra SRAM.

There are some limitations of the MTB solution:

The MTB instruction trace can only provide limited trace history. Unlike the ETM trace
solution in the Cortex-M3, Cortex-M4, and Cortex-M7 processors, the trace history is
stored on chip until the debugger extracts the trace, so the length of the trace history is
limited.

The MTB trace does not provide timing information of the program execution. The
trace information only provides the source and destination of the program flow changes.

Nevertheless, it is a very useful low-cost debug solution for microcontroller software
developers.

Getting Started with the Keil
Microcontroller Development Kit

14.1 Introduction to Keil Microcontroller Development Kit
14.1.1 Overview

The ARM® Keil® Microcontroller Development Kit (MDK-ARM) is one of the most
popular development suites for ARM microcontrollers. The Keil MDK is a Windows-
based development suite and provides the following components:

. uVision® Integrated Development Environment (IDE)
* ARM Compilation Tools including

¢ C/C++ compiler

* Assembler

e Linker and utilities
e Debugger
e Simulator
¢ RTX Real-Time OS Kernel, an embedded OS for microcontrollers
* Reference start-up code for over 3000s of microcontrollers
* Flash programming algorithms for various microcontrollers
* Program examples and development board support files

A Lite version of the Keil MDK-ARM can be downloaded from the Keil Web site
(www.keil.com). The Lite version of the tool is limited to 32-KB program code
(compiled size), but has no time limitation. This 32-KB memory size is sufficient for
most simple applications. If you need to create more complex applications, you can
purchase a license on Keil Web site and obtain a software license number. This license
number can then be used to turn the evaluation version to a full version. The Lite
version of Keil MDK-ARM is also included in a number of Cortex®-M evaluation kits
from various microcontroller vendors. A special version of Keil MDK-ARM for
STM32L0/FO devices is also available from http://www2.keil.com/stmicroelectronics-
stm32.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00014-X
Copyright © 2015 Elsevier Inc. All rights reserved. 329

http://www.keil.com
http://www2.keil.com/stmicroelectronics-stm32
http://www2.keil.com/stmicroelectronics-stm32
http://dx.doi.org/10.1016/B978-0-12-803277-0.00014-X

330 Chapter 14

14.1.2 The Tools

The C compiler used in the Keil MDK is based on the same compiler engine in the ARM
Compilation Tools, which is also used in the ARM Development Studio 5 (DS-5"")
product. This compilation tool provides excellent performance and code density.

If needed, you can also use Keil MDK with gcc. For more information on this topic,
please refer to Chapter 16.

The debugger in pVision IDE works with a number of debug adaptors:

» Keil USB-JTAG adaptors like ULINK™2 and ULINK Pro, ULINK-ME
* Signum Jtaglet/Jtaglet-Trace
+ SEGGER J-Link, J-Trace

There are also a number of debug adaptors that come with development boards:

* CMSIS-DAP (an open source debug adaptor project in the CMSIS project)
* ST-LINK, ST-LINK V2

* Silicon Labs UDA Debugger

e Stellaris ICDI (Texas Instrument)

* NULink Debugger

It is also possible to use other debug adaptors if a third party debugger plugin is available.
For example, CooCox (www.coocox.org) provides open debug probes called CoLink and
CoLinkEx. The design information and schematics for these hardware probes is freely
available, so that anyone can build their own debug adaptor in a “DIY” manner.

Even if you do not have an in-circuit debugger, you could generate the program image and
program the microcontroller using third party programming tools. But of course, having a
supported in-circuit debugger allows you to debug the system though the pVision IDE
which is much easier and more effective. Many low cost development boards also have
built-in debug adaptors which can also be used as stand-alone adaptors for a separate
microcontroller device.

14.1.3 Advantages of Using Keil MDK

Keil MDK provides a high-quality compiler, lots of features, and wide range of
microcontroller product support. It is also designed to be very easy to use.

Another advantage of using the Keil MDK is that it supports a huge number of ARM
microcontrollers on the market. In addition to standard compiler and debug support, it also
provides configuration files such as start-up code and RTX OS configuration files, making
software development easier and quicker.

http://www.coocox.org

Getting Started with the Keil Microcontroller Development Kit 331

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEda| s i | | 1 MM EEE KB v

Jj_j\/m&
L)

; LOAD SE
Liiia) L) SN iag | | v [N

Figure 14.1
Accessing the pack installer from the Keil MDK IDE.

Since version 5 of the Keil MDK, the IDE supports the CMSIS-PACK feature. By using
the software pack installer, you can download up to date software packages for the
microcontroller device you use easily.

14.1.4 Installation

The Keil MDK can be downloaded from http://www.keil.com/arm/demo/eval/arm.htm.

After the Keil MDK is installed, you also need to download and install the software packs
for the microcontroller devices. You can either use the pack installer to handle the
download and installation (Figure 14.1), or download the pack from www.keil.com/pack
and then install them manually inside the pack installer.

The pack installer (Figure 14.2) allows you to install up-to-date software packages for
more than 3000 Cortex-M microcontroller devices. Simply click on install button on the
left-hand side and the program would download and install the required software package
into the tool chain automatically.

Currently Keil MDK is available only for Windows platform.

14.2 Typical Program Compilation Flow

A typical program compilation flow of a project in the Keil® MDK environment is
illustrated in Figure 14.3. Once a project is created, the compilation flow can be handled
by the IDE and therefore you can program your microcontroller and test it with just a
few steps.

With the Cortex®-M microcontroller, although you can program almost everything in C,
the start-up code for ARM® tool chains (which is provided by the microcontroller vendors
and usually included in the Keil software pack installation) is usually in assembly
language. In addition, you will normally need a few more files from the microcontroller
vendors (as covered in Chapter 3, Section 3.5.4), which are typically also included in the

http://www.keil.com/arm/demo/eval/arm.htm
http://www.keil.com/pack
mailto:Image of Figure 14.1|tif

332 Chapter 14

2 | Device:

File Packs Window Help

Packs Examples I LANIK]| Devices [Boards l b
Pack Action Description Search: X
- ARM:CMSIS @ Up to d.j_CMSlS (Cortex Microcontroller Software Interfac 4 |(| peyice /| Summary
AnalogDevices:ADU... 53 Install | Analog Devices ADUCM320 Device Support and [P 210 Device 13 Devices
AnalogDevices:ADu... 7@ Install | Analog Devices ADuCM36x Device Support and ©-% ARM 18 Devices
Infineon:XMC1000._... §> Install | Infineon XMC1000 Series Device Support ©-? Atmel 133 Devices
Infineon:XMC4000_... 7@ Install | Infineon XMC4000 Series Device Support @@ Energy Micro 198 Devices
KeilzARMCortex_DFP @ Offline ARM Cortex-M Profile Device Support Template ®-? Freescale 209 Devices
€ _Install _Glyn Bulb Board Development Board Support P: - Infineon 80 Devices
& _Install_| Analog Devices ARM Cortex-M4 CMdxx Family T [l o & paxim 4 Devices
Keil:EFM32GGxxx_D... & _Install | Silicon Labs EFM32 Giant Gecko Series Device St ©-? Nordic Semiconductor 6 Devices
Keil:EFM32Gxxx_DFP f} Install | Energy Micro EFM32 Gecko Series Device Suppo ®-¢ Nuvoton 377 Devices
& Install Energy Micro EFM32 Leopard Gecko Series Devit ©? NXP 256 Devices
(D.. & Install Energy Micro EFM32 Tiny Gecko Series Device St @ Renesas 2 Devices
|&_Install | Energy Micro EFM32 Wonder Gecko Series Devic ®-9 Silicon Labs 40 Devices
? Install | Energy Micro EFM32 Zero Gecko Series Device S ©-% SONiX 40 Devices
f? Install | Spansion FMO+ Series Device Support ©-@ Spansion 361 Devices
| ;@ Install | Spansion FM3 Basic Series Device Support -9 STMicroelectronics 459 Devices
M3HighPerfor... % Install | Spansion FM3 High Performance Series Device £ -9 Texas Instruments 340 Devices
L, @ _Install _Spansion FM3 Low Power Series Device Support ®-9 Toshiba 67 Devices
Install | Spansion FM3 Ultra Low Leak Series Device Supy
& _Install | Spansion FM4 Series Device Support
& _Install | Freescale Kinetis KOO Series Device Support
& _Install _Freescale Kinetis K10 Series Device Support
@ < _Install | Freescale Kinetis K20 Series Device Support and
& _Install_| Freescale Kinetis K30 Series Device Support
Kei tis_K40_DFP | _Install & _Install | Freescale Kinetis K40 Series Device Support
Keil:Kinetis_K50_DFP ? Install | Freescale Kinetis K50 Series Device Support
Kei tis_K60_DFP @ S _Install | Freescale Kinetis K60 Series Device Support and
Keil:Kinetis_K70_DFP ;@ Install | Freescale Kinetis K70 Series Device Support and
Keil:Kinetis_KEAXX_... f') Install | Freescale Kinetis KEAxx Series Device Support
f? Install | Freescale Kinetis KExx Series Device Support
® @ _Up to d.| Freescale Kinetis KLxx Series Device Support anc
D... 53 Install | Freescale Kinetis KMxx Series Device Support an
(| © Install | Freescale Kinetis KVxx Series Device Support
Keil:Kinetis KWPR1... | % _Install | Freescale Kinetis WPR1516 Series Device Suppor &
<« | »
Ready [loNuUNE
Figure 14.2
Pack installer.
Cfiles (. Object files (.0)
Binary program
image (.bin
a rmcc & ()
(compiler) Executable
image file
Scatter loading script (.axf)
Project memory armIink Optionalstep Disassembled
. . I
settings layout (I|nker) code (.txt)

Assembly files (. s)

fromelf

Object files (.0)

Flash
Programming

armasm
(assembler)

Debug

Figure 14.3
Example compilation flow with Keil MDK.

mailto:Image of Figure 14.2|tif
mailto:Image of Figure 14.3|eps

Getting Started with the Keil Microcontroller Development Kit 333

Startup code file
‘ startup_<device>.s ‘ Startup
(assembly)

CMSIS system Initialization
[system_<device>.h }q\
Need customization

system_<device>.c €.g. for CIC.’Ck
configuration

Application Application Device specific header file Device specific
pp program file <device>.h definitions
Application From microcontroller
specific vendors

Figure 14.4
Example project with CMSIS-CORE.

software pack. As a minimum, you can create a project with just one application file and a
few files from the microcontroller vendor, as shown in Figure 14.4.

Behind the scenes, the device-specific header file pulls in further CMSIS-CORE header
files including some generic CMSIS-CORE files from ARM?®, as shown in Figure 14.5.
Typically you can include these files easily by enabling the CMSIS-CORE option in the
project, so it is not necessary to include them in the project explicitly. You can also
manually include these header files in the project search path if you need to use specific
microcontrollers that are not covered by the available CMSIS-PACK.

Startup code file From microcontroller
‘ startup_<device>.s ‘ Startup vendors
(assembly)

SIS system Initialization

E system_<device>.h
Need customization

|
system_<device>.c e.g. for CIQCk
configuration

o From ARM (generic CMSIS files)
Application Application Device spemflc header file
PP program file <device>.h

core_cm0.h /
core_cminstr.h
core_cmOplus.h
o Device specific definitions
Application

specific

Figure 14.5
Example project view when including CMSIS-CORE files from ARM.

mailto:Image of Figure 14.4|eps
mailto:Image of Figure 14.5|eps

334 Chapter 14

If you are using older versions of CMSIS-CORE (version 2.0 or older), you might also
find that you need to include a file called core_cm0.c in the CMSIS-CORE package for
some of the core functions like access to special registers and couple of intrinsic functions.
These files are no longer required in newer versions of CMSIS-CORE as the functions
have been incorporated directly into the header files.

14.3 Introduction of the Hardware

There are many different types of microcontroller development boards on the market and
it is impossible to cover them all. Here I will cover a few choices that I used to set up the
examples in this book.

14.3.1 Freescale Freedom Board (FRDM-KL25Z)

The Freescale Freedom FRDM-KL25Z board (Figure 14.6) is based on the Freescale
MKL25Z128VLK4 microcontroller. This is based on the Cortex®-M0+ processor and
comes with 128-KB flash and 16-KB SRAM.

This development board included an on board debug adaptor which is CMSIS-DAP
compatible and support virtual COM part (to support UART communication via USB). It
also works with mbed " development environment. In addition to Freescale Web site,
wide range of resources about this board can be found on http://developer.mbed.org/
platforms/KL.257/.

The examples in this book should work with both rev D and rev E of this board.

O -

Figure 14.6
Freescale Freedom board (FRDM-KL25Z).

http://developer.mbed.org/platforms/KL25Z/
http://developer.mbed.org/platforms/KL25Z/
mailto:Image of Figure 14.6|tif

Getting Started with the Keil Microcontroller Development Kit

335

Before using the FRDM-KL25Z board with Keil MDK, the on board firmware for the
debug adaptor need to be updated. Please refer to the instructions on mbed Web page:

http://mbed.org/handbook/Firmware-FRDM-KL25Z.

For Windows users, you might also need to install device driver to enable the
CMSIS-DAP and USB virtual com port: http://developer.mbed.org/handbook/Windows-
serial-configuration.

0x000000C0O
0x000000C4
0x000000C8
0x000000CC

OXFFFFFFFF
OXFFFFFFFF
OXFFFFFFFF
OXFFFFFFFE

Caution: Be very careful with creating your own start-up code for this device series as the
address 0xCO to 0xCF of the program image generated has special purpose. This memory area
is used for flash protection and need to be programmed to the specific values to enable the
flash to be erased and updated later, for example:

In most cases, the start-up code for this series of microcontroller devices should include the
code required to insert these values. If you are creating your own start-up code, you need to
make sure it contains such values right after the vector table; otherwise you can lock out the
microcontroller device and make the board unrecoverable.

14.3.2 STMicroelectronics STM32L0 Discovery

The STM32L0 Discovery (Figure 14.7) is based on the STM32L053C8T6, a
microcontroller based on the Cortex-M0+ processor, and comes with 64-KB flash and

8-KB SRAM.

Figure 14.7
STM32L0 Discovery.

http://mbed.org/handbook/Firmware-FRDM-KL25Z
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
mailto:Image of Figure 14.7|tif

336 Chapter 14

There are several useful features about the STM32L0 Discovery board:

* It can be plugged into breadboards for prototyping.

e It included an on board debug adaptor called ST-LINK v2-1, and the debug adaptor
support virtual COM port feature.

e It included an E-paper display with 172 x 72 screen size.

Before using the STM32L0 Discovery with Keil MDK, you must:

1. Install the device driver for ST-LINK v2-1. (This is needed even the system have
ST-LINK v2 driver installed previously). The device driver can be downloaded from
http://www.st.com/web/catalog/tools/FM147/SC1887/PF260218.

2. The latest ST-LINK firmware needs to be installed to the board. The firmware and the
instructions for the installation can be found here: http://developer.mbed.org/teams/ST/
wiki/Nucleo-Firmware.

14.3.3 STMicroelectronics STM32FO0 Discovery

The STM32FO0 Discovery (Figure 14.8) is based on the STM32F051R8T6, a microcontroller
based on the Cortex-MO processor, and comes with 64-KB flash and 8-KB SRAM.

This low cost board has a debug adaptor included called ST-LINK v2. Similar to the
STM32L0 Discovery, you can plug this board on a breadboard for prototyping. However,
it does not have virtual COM port feature, so an additional adaptor is needed to handle
UART communication between this board and the personal computer.

Before using the STMFODiscovery board with Keil MDK, you need to install the
ST-LINK v2 device driver. After the Keil MDK is installed, the ST-LINK v2 Driver
installation files can be located in C:\KeilARM\STLink\USBDriver or
C:\Keil_vS\ARM\STLink\USBDriver.

14.3.4 NXP LPC1114FN28

The last one covered here is a Cortex-MO processor-based microcontroller in a 28-pin DIP
package. The NXP LPC1114FN28 can easily be used by hobbyists to create applications
on breadboards (Figure 14.9) or homemade PCBs.

In Figure 14.9, the left-hand side is a voltage regulator module for breadboards and

the connector on the right is for debug connection. (For more details about debug
connection, please refer to appendix H, A breadboard project with an ARM® Cortex-M0
microcontroller.)

http://www.st.com/web/catalog/tools/FM147/SC1887/PF260218
http://developer.mbed.org/teams/ST/wiki/Nucleo-Firmware
http://developer.mbed.org/teams/ST/wiki/Nucleo-Firmware

Getting Started with the Keil Microcontroller Development Kit 337

Figure 14.8
STM32F0 Discovery.

Figure 14.9
A breadboard with LPC1114FN28.

mailto:Image of Figure 14.9|tif
mailto:Image of Figure 14.8|tif

338 Chapter 14

As you can see from Figure 14.9, it is easy to construct a minimum system for
breadboard. To use this with Keil MDK, a separate USB debug adaptor such as a
ULINK ™2 is required.

The LPC1114FN28 microcontroller includes a 12-MHz internal RC oscillator inside. So
the external crystal is optional. However, if your application requires a clock source with
high precision, then an external crystal is often necessary.

The details of the circuit construction are covered in appendix H.

14.4 Getting Started with uVision® IDE
14.4.1 What Are Needed to Start

To start with creating of your first project, we assume that:

* You have version 5 of Keil MDK and the software pack (for the microcontroller you are
using) installed. The examples shown here are based on Keil MDK 5.12.

* You have access to a Cortex®-M0/Cortex-M0+ development board. (If not, you can test
some of the examples using the built-in instruction set simulator.)

* A debug adaptor (either built-in in the development board or a stand-alone one) that is
supported by Keil MDK.

14.4.2 Starting Keil MDK

When the Keil MDK started, a screen similar to Figure 14.10 is shown.

We start by creating a new project. This can be done by using the pull-down menu: select
Project — New pVision Project, as shown in Figure 14.11.

L4 pvision

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NE @ 4 s@]9 o o|mmmn|EEEGB vooe Fla@fale o & &= '&\
oaEeE|wR| EE
Project 2

Project |@Books ‘ {3 Functions “].,Templates

Build Output

<

Figure 14.10
LWVision IDE start screen.

mailto:Image of Figure 14.10|tif

Getting Started with the Keil Microcontroller Development Kit 339

L4 pvision
File Edit View Flash Debug Peripherals Tools SVCS Window Help

NS 48 [New pVision Project...

D New Multi-Project Workspace...
A et Open Project...

FrEE Save Project in pVision4 format

Close Project

Export >
Manage >

Figure 14.11
Create a new project.

For the first project, we are going to create a simple program that toggles an LED. We will
call this project “blinky.” The location of the project depends on your preference, in this
demonstration we put the project in:

* For Freescale FRDM-KL25Z: C:\CMOBook_Examples\ch_14\kl25z\blinky
(Section 14.4.3)
e For STM32L0 Discovery: C:\CM0Book_Examples\ch_14_stm3210_blinky
(Section 14.4.4)
e For STM32F0 Discovery: C:\CMOBook_Examples\ch_14_stm32f0_blinky
(Section 14.4.5)
e For LPC1114FN28: C:\CMOBook_Examples\ch_14_Ipc1114_blinky (Section 14.4.6)

14.4.3 Project Setup Steps for Freescale FRDM-KL25Z

The next step of the project creation wizard defines the microcontroller to be used for the
project. For FRDM-KL25Z hardware, MKL.257128xxx4 is selected, as shown in
Figure 14.12.

Now the screen switches to a Run-Time Environment manager which allows us to
include the software component used. In order to simplify the project setup, the
CMSIS-CORE and the device-specific start-up code options are selected, as shown in
Figure 14.13.

Now a project with the start-up codes is generated, as shown in Figure 14.14.

Then we add a new file to the project by right click on “Source Group 1,” and select “Add
New Item...,” as shown in Figure 14.15.

A new window dialog as in Figure 14.16 is shown. We select C file and enter “blinky” as
the file name.

Now we can expand “Source Group 1" and open the “blinky.c,” and add the project code,
as shown in Figure 14.17.

mailto:Image of Figure 14.11|tif

340 Chapter 14

Select Device for Target ‘Target 1'.. ‘

2% Freescale

o-% KLxx Series

0% KLOx

% KLix

=% Kx

8 MKL24732%04
8 MKL24Z64x004
- N \VIKL.257128x00c4

4 - | O]

cru |
ISoﬁware Packs LI

Vendor: Freescale

Device: MKL25Z 12804

Toolset ~ ARM

Search:

Description:

- ARM 4 | |Core features

- 32-bit ARM Cortex-M0+ core (up to 48MHz CPU Clock)
- Nested vectored interrupt contr. (NVIC)

- Async. wake-up interrupt contr. (AWIC)

Debug and trace capability

- 2-pin serial wire debug (SWD)

- Micro trace buffer (MTB)

- Data watchpoint and trace (DWT)

System and power management

- Software watchdog

- Integrated bit manipulation engine (BME)
- DMA controller

- Low-leakage wake-up unit (LLWU)

o |

Cancel |

Help |

Figure 14.12

Select MKL25Z7128xxx4 for FRDM-KL25Z board.

Software Component S.. Variant Version Description
29 oMsis Cortex Microcontroller Software Interface Components

¢ CORE i 3400 |CMSIS-CORE for Cortex-M, SC000, and SC300

¢ psp O 142 | CMSIS-DSP Library for Cortex-M, SC000, and SC300

@ RTOS (AP 10 CMSIS-RTOS API for Cortex-M, SC000, and SC300

@ € CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
59 Device L | | Startup, System Setup

¢ Startup || 100 | System Startup for Freescale KLxx Series
% File System MDK-Pro 6.2.0 File Access on various storage devices
¥ Graphics MDK-Pro 5261 r Interface on graphical ispl
@ Network MDK-Pro 620 |IP rking usi 0 rial protocol
% uss MDK-Pro 6.2.0 USB Communication with various device classes
Validation Output Description

Resolve] ISeIeclPacks] I Details I Cancel Help
Figure 14.13
Select CMSIS-CORE and device-specific startup.

mailto:Image of Figure 14.12|tif
mailto:Image of Figure 14.13|tif

Getting Started with the Keil Microcontroller Development Kit 341

LA C:\CMOBook |

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

N d@ & o9 | ea|®n B R =EERKID voate Fa®lale oo e|E) R
@ @m'%lTargetl S\IA%@@@

Project : - ll

=% Project: blinky -
o Target 1
-3 source Group 1
% cmsis

o9 Device
-0 startup_MKL2574:s (Startup)
[system_MKL25Z4.c (Startup)

@Project @Books | {3 Functions |[).,,Templates I

Build Output

Figure 14.14
Project with start-up code.

C\CMOBook. @ \blinky.uvproj - pVision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

==L | @ volatie Faelale oo e|@) R

=% Project: blinky =]
8 @ Target 1
@ source Group
% oMsIS 4K Options for Group 'Source Group 1. Alt+F7
=9 Device Add New Item to Group ‘Source Group 1'...

startup MKl agg Existing Files to Group 'Source Group 1'..
system_MKI Remove Group 'Source Group 1' and its Files

Eiject @Books | {} Func Open Build Log

Build Output Rebuild all target files ' I
Build target F7 N

’ &4 Manage Project Items... -

Show Include File Dependencies

Add a new Item to Group

Figure 14.15
Add new item to project.

The program that is created carried out a few operation steps:

e Update the SystemCoreClock variable (optional)

e Configure the GPIO ports for LED outputs

* Enter a simple loop to turn on and off the RGB LED, with a delay specified by a C
macro called LOOP_COUNT

mailto:Image of Figure 14.14|tif
mailto:Image of Figure 14.15|tif

342 Chapter 14

Create a new C source file and add it to the project.

X
(h

=

'@ User Code Template

| blinky

| C:\CM0Book_Examples\ch_14_kI25z_blinky

Add

Figure 14.16
Select file type and file name of the new file.

C:\CMOBook_Examples\ch_14 kI25z_blinky\blinky.uvproj - pVision (= |5 eS|

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEH@| 4 a9 e 0| B RBR|ESERBD volbte Eaal@ﬂoo@al@lq
@ @ﬁ]gngargetl B#lﬁ%@@@|
Project a blinky.c ‘
=% Project: blinky = 1 #include <MKL25%4.H]
242 Target 1 2
=& Source Group 1 z
blinky.c :
% cmsis 6 void LED Config(void);:
7
8
9
0

const uint32_t led mask[] = {1UL << 18, 1UL << 19,
// LED #0, #1 are port B, LED #2 is port D

e @ Device void LED_Set (void):;
0 startup_MKL25Z4.s (Startup) void LED_Clear(void);)
B _ INLINE static void LED On (uint32_t led);
SEE M s e b o " INLINE static void LED Off (uint32_t led);

EProject GBooks ‘ {} Functions |[]¢Templates ‘

Build Output

Figure 14.17
Blinky program code added.

mailto:Image of Figure 14.16|tif
mailto:Image of Figure 14.17|tif

Getting Started with the Keil Microcontroller Development Kit 343

The full program code of the blinky program is shown below.

Blinky.c for FRDM-KL25Z Board
#include <MKL25Z4.H>

const uint32_t Ted_mask[] = {1UL << 18, 1UL << 19, 1UL << 1};
// LED #0, #1 are port B, LED #2 is port D

void LED_Config(void);

void LED_Set(void);

void LED_Clear(void);

_ INLINE static void LED_On (uint32_t led);
_ INLINE static void LED_Off (uint32_t Ted);
void Delay(uint32_t nCount);

int main(void)
{
SystemCoreClockUpdate(); // Optional- Setup SystemCoreClock variable

// Configure LED outputs
LED_Config();

J#define LOOP_COUNT 0x80000
while(1){
Delay(LOOP_COUNT);
LED_Set();
Delay(LOOP_COUNT);
LED_Clear();
b

void Delay(uint32_t nCount)
{
while(nCount--)

void LED_Config(void)
{

SIM->SCGCH [= (1UL << 10) | (1UL << 12); /* Enable Clock to Port B & D */
PORTB->PCR[18] = (1UL << 8); /* Pin PTB18 is GPIO */
PORTB->PCR[19]1 = (1UL << 8); /* Pin PTB19 is GPIO */
PORTD->PCR[1] = (1UL << 8); /* Pin PTD1 is GPIO */

Continued

344 Chapter 14

FPTB->PDOR

(Ted_mask[0]
led_mask[1]); /* switch Red/Green LED off */
(led_mask[0]
led_mask[1]); /* enable PTB18/19 as Output */

FPTB->PDDR

FPTD->PDOR = Ted_mask[2]; /* switch Blue LED off */
FPTD->PDDR = Ted_mask[2]; /* enable PTD1l as Qutput */
return;

void LED_Set(void)
{
LED_On(0);
LED_On(1);
LED_On(2);
return;

void LED_Clear(void)
{
LED_Off(0);
LED_Off(1);
LED_Off(2);
return;

_ INLINE static void LED_On (uint32_t Tled) {
if (led == 2) FPTD->PCOR = led_mask[led];
else FPTB->PCOR = Ted_mask[led];

_ INLINE static void LED_Off (uint32_t led) f{
if (led == 2) FPTD->PSOR = led_mask[led];
else FPTB->PSOR led_mask[Ted];

Getting Started with the Keil Microcontroller Development Kit 345

Clock Configuration Settings

The next step is to define the clock configuration (this step is optional for this project).
Inside the project, we can see “system_MKIL25Z4.c.” We can open this file and edit the
CLOCK_SETUP to 1. This gives us a 48-MHz processor clock and a 24-MHz bus clock
as the system starts up.

Project Settings

After the project and program files are created, it is often necessary to adjust a few project
settings before the application can be downloaded to the microcontroller’s flash memory
and be tested. In most cases, the Keil puVision IDE will set up all the required
microcontroller-specific settings automatically once the device is selected. However, we
still need to set up:

* Debug settings
e Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a
project to work.

There are many project settings available; first we will introduce the settings that are
essential for getting the program code downloaded to the flash and executing it. The
project settings menu can be accessed by:

» Target option button on the tool bar g.

e Pull-down menu: Project — Option for Target.

* Right click on the project target name (e.g., “Target 1) in the project window, and
select options for target.

* Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.18.

By default, the Keil pVision IDE automatically sets up the memory map for us when we
select the microcontroller device. In most cases, we do not need to change the memory
settings. However, if the program operation fails or if flash programming is not
functioning correctly, we need to go through the settings to make sure that they were not
accidentally changed to incorrect values.

Debugger Settings

Some settings have to be set up manually. An example would be the debugger
configuration because pVision IDE does not know which in-circuit debugger you will be
using. First, we look at the debug options as shown in Figure 14.19. In here, we selected
“CMSIS-DAP” for FRDM-KL25Z. For other development boards, you can change the
settings to use other supported debugger.

346 Chapter 14

Targeted microcontroller

Device device for the project

Target Memory map, C library option

Output executable / library,
output folder

Output

C compiler and assembler
listing, output folder

Listing

Define optional programs to
run before and after compile
and build processes

User

C Compiler optimization,
defines, include path and
misc options

C/C++

Assembler defines, include

Assembler path and misc options

Memory layout, Scatter

Linker loading file option

Debug Debug target, Debugger

Debugger
Settings

Flash programming setup

Utilities

1 e

Flash
programming
settings

Figure 14.18

Project option tabs in Keil MDK.

Options for Target ‘Target 1°

Devicel Target] Outputl Lisﬁng] User | CIC++| Asm I Linker Debug IUtiIities'

("~ Use Simulator
[LimitSpeed to Real-Time

® Use:

Settings |

CMSIS-DAP Debugger

Debugger specific

configuration settings

Flash programming
mechanism, flash

programming algorithm

Altera Blaster Cortex Debugger
Stellaris ICDI

[v' Load Application at Startup
Initialization File:

l ElFe]

[¥" Runto main()

Signum Systems JTAGjet
J-LINK/ J-TRACE Cortex
ULINK Pro Cortex Debugger
NULink Debugger

SiLabs UDA Debugger
ST-Link Debugger

[v Load A
Initializatio|

—

Restore Debug Session Settings
[v' Breakpoints [V Toolbox
[v' Watch Windows & Performance Analyzer
[v' System Viewer

[v Memory Display

CMSIS-DAP Debugger
FastModels Debugger

PEMicro Debugger

[V Watch Windows

[v' Memory Display [v System Viewer

CPUDLL: Parameter:

Driver DLL: Parameter:

ISARMCMS,DLL |

Dialog DLL: Parameter:

ISARMCM3.DLL l

Dialog DLL: Parameter:

IDARMCMLDLL l-pCMO+

ITARMCM1.DLL I-pCMO+

o |

Cancel | Defaults I

Help |

Figure 14.19

Select CMSIS-DAP debug adaptor for Freescale FRDM-KL25Z.

mailto:Image of Figure 14.19|tif
mailto:Image of Figure 14.18|eps

Getting Started with the Keil Microcontroller Development Kit 347

Cortex-M Target Driver Setuj

Debug I Flash Download l

—CMSIS-DAP - JTAG/SW Adapter—— —SW Device
[mMBED CMSIS-DAP ~| IDCODE Device Name Move

SWDIO |® 0x0BC11477 ARM CoreSight SW-DP Up
Serial No: I_“

Down
Firmware Version: |1.0 L)
[I Automatic Detection ID CODE
v SWJ Port = @ Automatic Detection

¢ Manual Configuration Device Name: I
Max Clock: IIMHz ¥ l
Add | Delete Update AP: |0x00
—Debug
Connect & Reset Options Cache Options Download Options
Connect:]Normal L‘ Reset |Au’(odetect Ll [¥ Cache Code [~ Verify Code Download
[v Resetafter Connect [v' Cache Memory [~ Download to Flash

OK | Cancel | Help |

Figure 14.20
Options for CMSIS-DAP.

We can now plug in the development board to the USB port. A window pop up might
shows the board is connected as a USB mass storage. That is normal as the USB debug
adaptor supports multifunctions. Now we need to set up the settings for the CMSIS-DAP
debug adaptor by clicking on the “Settings” button next to it.

Since the KLL25Z microcontroller does not support JTAG, in the CMSIS-DAP setting, we
must select SW (Serial Wire) protocol as shown in Figure 14.20. Otherwise, you should
see “RDDI-DAP Error” status in the JTAG Device Chain window of this dialog.

From the SW Device status, it shows that the debugger can read the IDCODE of the
debug interface and from that we now know that the debugger can communicate with the
board. In some cases, you might also need to adjust the maximum clock frequency for
the debug communication. This depends on the microcontroller device, the circuit board
(PCB) design as well as the debug cable length.

In normal cases, the flash programming option should be set up correctly by the tool when
you select the microcontroller device. For example, the flash programming options for the
KL25Z device is set up automatically by Keil MDK (Figure 14.21). However, in a few
cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the
program. The compile process can be carried out by a number of buttons on the tool bar

mailto:Image of Figure 14.20|tif

348 Chapter 14

Cortex-M Target DﬁVer‘S

Debug Flash Download

—Download Function RAM for Algorithm
LORD (" EraseFullChip [Program
3 @ EraseSectors [V Verify Start: [0x1FFFF000 Size: |0x4000
(" Do notErase [~ Resetand Run
—Programming Algorithm
Description | Device Size | Device Type I Address Range I
MKXX 48Mhz 128kB Prog ... 128k On-chip Flash 00000000H - 0001FFFFH
Start: I Size:
Add | Femove |

OK I Cancel I Help |

Figure 14.21
Flash programming algorithm options.

f% Target 1 - ﬁfﬁ: é%

Target options —T

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Figure 14.22
Frequently used buttons on the tool bar.

as shown in Figure 14.22. Simply click on the “Build Target” button to start the compile
process, use the pull-down menu (in the Project menu — Build Target), or use hot key F7.
After the program is compiled and linked, we will see the compile status message as
shown in Figure 14.23.

The program can then be tested by starting a debug session by using pull-down menu
(Debug — Start/Stop Debug session), by clicking on the debug session button @ on the
tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled
image should be programmed on the microcontroller, as shown in Figure 14.24. If not, you
can download the image using the “Load” button on the tool bar.

mailto:Image of Figure 14.21|tif
mailto:Image of Figure 14.22|eps

Getting Started with the Keil Microcontroller Development Kit 349

C:\CMOBook_Examples\ch_14_ki25z_blinky\blinky.uvproj - pVision

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEda@| s @[99 6| o | B BB R|ESEE B voatle E@N@“‘@N@Ml
(S EE e] 8 Target1 EEEERET]
Project 2B | systemMKi25Zac | |] blinkyc | v X
a% Project: blinky ==l 54 #include "MKL25%4.h" -
=42 Target 1 S5 .
@@ Source Group 1 2_6] #define DISABLE_WDOG L E]
3 blinky.c 58 #define CLOCK SETUP 1
© cmsis 59 /% Predefined clock setups
B @ Device (] 60 0 ... Multipurpose Clock Generator (MCG) in FLL
D startup_MKL2574:s (Startup) 61 Reference clock source for MCG module is t
B 62 Core clock = 41.94MHz, BusClock = 13.98MH:z
= SyStenibIKEEDZAicICtaTp) L] 63 1 ... Multipurpose Clock Generator (MCG) in PLL ¥
Projed GBooks ‘ {3 Functions !ﬂ.ﬂemplates ‘ < i] »
Build Output a3
Build target 'Target 1°' o

compiling blinky.c...

assembling startup MKL25Z4.s...

compiling system MKL25Z4.c...

linking...

Program Size: Code=1500 RO-data=236 RW-data=4 ZI-data=1124
".\Objects\blinky.axf" - 0 Error(s), 0 Warning(s).

Figure 14.23
Compile result for the blinky project on the Build Output window.

C\CMOBook_Examples\ch_14_kI25z_blinky\blinky.uvproj - pVision = |I= PXS
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
MNedd| s &9 6| «o|prn R = 1z | @ volatile EL‘%N@IOOOGI@I‘\[
‘e > 03] 98] Target1 REERREY]
Project 2E [] systemMKi25Z4c | |] blinkyc | v X
a% Project: blinky = 54 #include "MKL25%Z4.h" -
=42 Target 1 S5 .
@& Source Group 1 2_6] #define DISABLE_WDOG 1 @
3 blinky.c 58 #define CLOCK SETUP 1
© cmsis 59 F/* Predefined clock setups
B@_ Device . Multipurpose Clock Generator (MCG) in FLL

Reference clock source for MCG module is t
Core clock = 41.94MHz, BusClock = 13.98MH:z
. Multipurpose Clock Generator (MCG) in PLL ¥

D startup_MKL2574:s (Startup)
0 system_MKL25Z4.c (Startup)

il Project @Books ‘ {3} Functions iﬂ.ﬂemplates ‘

Build Output a
compiling system MKL25Z4.c... a
linking...

Program Size: Code=1500 RO-data=236 RW-data=4 ZI-data=1124
".\Objects\blinky.axf" - 0 Error(s), O Warning(s).

Load "C:\\CMOBook Examples\\ch 14 k125z blinky\\Cbjects\\blinky.axf"
Erase Done.

Programming Done.

Verify OK.

< »

Figure 14.24
Flash programming status output.

mailto:Image of Figure 14.23|tif
mailto:Image of Figure 14.24|tif

350 Chapter 14

After the program is downloaded to the microcontroller, the window will change into a
debugger session mode, as shown in Figure 14.25.

Now we can start the program execution using the Run button, as shown in Figure 14.26, or
start the program execution using hot key F5, or using pull-down menu (Debug — Run).

 C\CMOBook_Examples! d\qi4kl$z_blinky\blin.uroj -
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help ;
NS+ @]9 o] o | P RAR|IEFEGED o as@e - oeF) S

ERolvrev s DREDA- O 2 0 8- %

Registers. a Disassembly a
ot Val 20 4770 BX ir R
_E_ggl_s_gl I 2ue 18: SystemCoreClockUpdate () ;
16:
OxIFFFF068 . 17: // Configure LED outputs I
Ox1FFFF068 £30%00000222 FO00F949 BL.W SystemCoreClockUpdate (0x000004B8)
0xIFFFFO68 LED_Config(): x
0x1FFFF068 »
0x000006C8 = =
OxIFFFF004 1] blinky.c s
0x00000000 ST . . =
phee 0x00000000 13 int main(void) 2
RS 0xBFDFFFDC . laEd
OxIFFFF618 15 || systemCoreClockUpdate () ;
R10 0x000006C8 16
R11 0x000006C8 17 // configure LED outputs
R12 0x00000000 B s LED_Config();
R13(SP) Ox1FFFF468 19
iR | 20 | #define LOOP_COUNT 0x80000
0 “U 215 while(){ .
il Project | = Registers < »
Command 2 Call Stack + Locals 2 &
Load "C:\\CMOBook Examples\\ch_14_k125z_blinky\\Objects\\blinky.axf a Name Location/Value Type
*** Restricted Version with 32768 Byte Code Size Limit 9 main |0x00000222 ‘int 0
*#** Currently used: 1740 Bytes (5%) |
=
<[1l | »
=3 T =
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet | (aCall Stack + Lm"alSIMemoryl
| CMSIS-DAP Debugg: B

Figure 14.25
Debugger session.

File Edif View Project Flash
NESdd| s &9
Al E NI S O A

Run (F5)
Regi i Start code execution|
RO Ox1FFFF068

Figure 14.26
Run button.

mailto:Image of Figure 14.25|tif
mailto:Image of Figure 14.26|tif

Getting Started with the Keil Microcontroller Development Kit 351

Now you should see the LED on the board blinking. Congratulation! You have got the
blinky project working. You can close the debug session using the debug session button @
on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug —
Start/Stop Debug Session).

14.4.4 Project Setup Steps for STMicroelectronics STM32L0 Discovery

For the STM32L0 Discovery board, we are going to create the example blinky project in
C:\CMOBook_Examples\ch_14_stm3210_blinky.

The next step of the project creation wizard defines the microcontroller to be used for the
project. For the STM32L0 Discovery board, the STM32L053C8 device is selected, as
shown in Figure 14.27.

Now the screen switches to a Run-Time Environment manager which allows us to include
the software component used. In order to simplify the project setup, the CMSIS-CORE
and the device-specific start-up code options are selected, as shown Figure 14.28.

Now a project with the start-up codes is generated, as shown in Figure 14.29.

Select Device for Target ‘Target 1'...

1cpu|

lSoﬂware Packs L‘

Vendor: STMicroelectronics
Device: STM32L053C8

Toolset ~ ARM
Search:
Description:
2% STMicroelectronics :' The STM32L0 devices provides high power efficiency for a wide range of -

performance. Itis achieved with a large choice of internal and external clock
sources, an internal voltage adaptation and several low-power modes.
2% STM32L0 Series Typical applications include application control and user interfaces,
handheld equipment, A/V receivers and digital TV, PC peripherals, gaming
s STM321051 and GPS platforms. industrial applications. PLCs. inverters, printers.

% STM32L052 scanners, alarm systems, video intercoms, and HVACs

5% STM321053 - CRC calculation unit, 96-bit unique ID
& STM32L053C6 - USB 2.0 crystal-less, battery charging detection and LPM
| | - True RNG and firewall protection

% STM32F0 Series

€ STM32L053R6
& STM32L053R8 ~| ~

OK I Cancel I Help |

Figure 14.27
Select STM32L053C8 for STM32L0 Discovery board.

mailto:Image of Figure 14.27|tif

352 Chapter 14

A4 Manage Run-Time Environment ;J

Software Component S.. Variant Version Description
2 9 CMSIS Cortex Microcontroller Software Interface Components =
% CORE Id 3400 | CMSIS-CORE for Cortex-M, SC000, and SC300
¢ psp [m] 142 | CMSIS-DSP Library for Cortex-M, SC000. and SC300
[% RTOS (APD 1.0 CMSIS-RTOS API for Cortex-M, SC000, and SC300
@ % CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
29 Device Startup, System Setup
4 Startup v 100 System Startup for STMicroelectronics STM32L053 Devices
] @ File System MDK-Pro 6.2.0 File Access on various storage devices
® ¥ Graphics MDK-Pro 5261 r ical i ||
@ Network MDK-Pro 6.2.0 |IP Networking using Ethernet or Serial protocols
% usB MDK-Pro 6.20 USB Communication with various device classes L]
Validation Output Description
Resolve] ISeIectPacks] I Details.] Cancel Help

Figure 14.28
Select CMSIS-CORE and device-specific startup.

| k_Examples\ch_14_stm3210_blinky Y) - }
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
N@dd|s walac|es|rnnn IE 15| @ volatile Baw@loo@a]l-\[

@ﬁ|%]Target1 Bﬁ'ﬂﬁ%@@@

Project
a-% Project: blinky
247 Targetl
3 Source Group 1
@ cMsis
2% Device
D startup_stm321053xx.s (Startup)
system_stm32I0xx.c (Startup)

< | >~
@Project eBooks | {3} Functions |“.)Templates ‘

Build Output

ULINK2/ME Cortex C J

Figure 14.29
Project with start-up code.

Then we add a new file to the project by right clicking on “Source Group 1,” and select
“Add New Item...,” as shown in Figure 14.30.

A new window dialog as in Figure 14.31 is shown. We select C file and enter blinky as the
file name.

Now we can expand “Source Group 1” and open the “blinky.c,” and add the project code,
as shown in Figure 14.32. In order to help GPIO setup, we also added a separate C file to
handle GPIO configuration functions.

mailto:Image of Figure 14.28|tif
mailto:Image of Figure 14.29|tif

Getting Started with the Keil Microcontroller Development Kit 353

C:\CMOBook_ 3210_blinky\blinky.uvproj - pVision =

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEdd| s an|o o] |m R B R|EEEER B vooe Faslale oo e|E A
@Egi'gglhrgetl .N:b%@??@
=% Project: blinky -
=% Target1
3 Source Grg . - :
& CMSIS #X Options for Group ‘Source Group 1'... Alt+F7
2% Device ‘ : Add New Item to Group ‘Source Group 1'...

startup Add Existing Files to Group 'Source Group 1'...
system Remove Group 'Source Group 1' and its Files

< | Open Build Log
E]Project GBooks | {1 Rebuild all target files

%] Build target F7 —
Build Output a
&b Manage Project Items...

Show Include File Dependencies

< >

Add a new Item to Group

Figure 14.30
Add new item to project.

CFile (c) Create a new C source file and add it to the project.

@ C++File (.cpp)

E Asm File (.s)

User Code Template

- [
Name: I blinky

Location: I C:\CM0Book_Examples\ch_14_stm3210_blinky

B
Add Close Help I

Figure 14.31
Select file type and file name of the new file.

mailto:Image of Figure 14.30|tif
mailto:Image of Figure 14.31|tif

354 Chapter 14

ﬂ C\CMOBook_Examples\ch_14_stm32I0_blinky\blinky.uvproj - pVisio

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Nedd|s a9 o] | e 7 ® R == /| B volatile Faelale <5>ﬁl|=\}
S E e]] Target B EE RS

lproject : 2@) blinkyc | v X
2% Pproject: blinky B 1 #include "stm3210xx.h" A

0 & Target1 | g |#include "gpio defs.h"
% b Eou;;giw - 4 void LED Config(void);
= § 5 void LED_Set(void);
8 gpio_funcs.c 6 void LED Clear(void):
7
8
9

% cMsIS void Delay(uint32_t nCount);
2% Device
; B startup_stm321053xx.s (Startup) L

// GPIO functions
10 extern void Config Pin(GPIO TypeDef* GPIO, -

1 system_stm32100xc (Startup) 11 uint32_t output_type, uint32_t output_spe:
<« | |~ 12 extern void Config_ Pin AlternateFunc (GPIO_T: .
i Project %Books ‘ {} Functions ‘ﬂ.;TempIates ‘ | K ‘I’ >
Build Output 2

Figure 14.32
Program code added to example blinky project for STM32L0 Discovery.

The program that is created carried out a few operation steps:

* Configure the GPIO ports for LED outputs
* Enter a simple loop to turn on and off the LEDs, with a delay specified by a C macro
called LOOP_COUNT

The full program code of the blinky program is shown below.

Blinky.c for STM32L0 Discovery Board

#include "stm3210xx.h"
##include "gpio_defs.h"

void LED_Config(void);

void LED_Set(void);

void LED_Clear(void);

void Delay(uint32_t nCount);

// GPIO functions
extern void Config_Pin(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t mode,
uint32_t output_type, uint32_t output_speed, uint32_t pull_type);

mailto:Image of Figure 14.32|tif

Getting Started with the Keil Microcontroller Development Kit 355

extern void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t
AF);

int main(void)

{
// Configure LED outputs
LED_Config();

Jfdefine LOOP_COUNT 0x40000
while(1){
Delay(LOOP_COUNT);
LED_Set();
Delay (LOOP_COUNT);
LED_Clear();
b

void Delay(uint32_t nCount)
{
while(nCount--) {
}
}
void LED_Config(void)
{
RCC->IOPENR |= RCC_IOPENR_GPIOBEN; // Enable Port B clock - for LED
RCC->IOPENR |= RCC_IOPENR_GPIOAEN; // Enable Port A clock - for LED & USART
Config_Pin(GPIOB, 4, GPIO_MODE_OQUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,
GPTO_NO_PULL); // PB4
Config_Pin(GPIOA, 5, GPIO_MODE_QUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,
GPTO_NO_PULL); // PA5
return;
}
void LED_Set(void)
{
GPIOA->BSRR = (1<<5); // Set bit b5
GPIOB->BSRR (1<<4); // Set bit 4
return;
}
void LED_Clear(void)
{
GPIOA->BSRR
GPIOB->BSRR
return;

(1<<(5+16)); // Clear bit 5
(1<<(4+16)); // Clear bit 4

356 Chapter 14

The GPIO functions file is:

gpio_funcs.c

#include "stm3210xx.h"

/* Configure GPIO pin */
void Config_Pin(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t mode,
uint32_t output_type, uint32_t output_speed, uint32_t pull_type)
{
GPIOX->MODER &= ~(0x3 << (2*pin)); // Clear mode
GPIOx->MODER [= (mode << (2*pin)); // Set mode

GPIOX->0TYPER &= ~(0x1 << pin); // Clear Type
GPIOX->0TYPER |= (output_type << pin); // Set Type

GPIOX->0SPEEDR &= ~(0x3 << (2*pin)); // Clear speed
GPIOx->0SPEEDR |= (output_speed << (2*pin)); // Set speed

GPIOX->PUPDR &= ~(0x3 << (2*pin)); // Clear pull up/pull down
GPIOx->PUPDR |= (pull_type << (2*pin)); // Set pull up/pull down
return;
}
// Set GPIO pin alternate function
void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t AF)
{
int bit_num;
if (pin>=8) {
bit_num = (pin-8) * 4;
GPIOX->AFR[1] &= ~(0xF << bit_num); // Clear AF
GPIOX->AFR[1] |= (AF << bit_num); // Set new AF
} else {
pit_num = pin * 4;
GPIOXx->AFR[0] &= ~(0xF << bit_num); // Clear AF
GPIOX->AFRLO] |= (AF << bit_num); // Set new AF

And a header file is used to define constants for GPIO configurations:

gpio_defs.h

ftdefine GPIO_MODE_INPUT
ffdefine GPIO_MODE_OUTPUT
ffdefine GPIO_MODE_ALTERN
ffdefine GPIO_MODE_ANALOG

w N = O

Getting Started with the Keil Microcontroller Development Kit 357

ftdefine GPIO_TYPE_PUSHPULL 0
ftdefine GPIO_TYPE_OPENDRAIN 1

ftdefine GPIO_SPEED_LOW 0
jtdefine GPIO_SPEED_MED 1
ftdefine GPIO_SPEED_HIGH 3
ftdefine GPIO_NO_PULL 0
jtdefine GPIO_PULL_UP 1
jtdefine GPIO_PULL_DOWN 2

Project Settings

After the project and program files are created, it is often necessary to adjust a few project
settings before the application can be downloaded to the microcontroller’s flash memory
and be tested. In most cases, the Keil pnVision IDE will set up all the required
microcontroller-specific settings automatically once the device is selected. However, we
still need to set up:

* Debug settings
e Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a
project to work.

There are many project settings available; first we will introduce the settings that are
essential for getting the program code downloaded to the flash and executing it. The
project settings menu can be accessed by:

* Target option button on the tool bar .

e Pull-down menu: Project — Option for Target.

* Right click on the project target name (e.g., “Target 1”) in the project window, and
select options for target.

* Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.33.

By default, the Keil pVision IDE automatically sets up the memory map for us when we
select the microcontroller device. In most cases, we do not need to change the memory
settings. However, if the program operation fails or if flash programming is not
functioning correctly, we need to go through the settings to make sure that they were not
accidentally changed to incorrect values.

C Compiler optimization,
defines, include path and
misc options

Targeted microcontroller C/C++

Device device for the project

Assembler defines, include

Target Memory map, C library option Assembler path and misc options

Memory layout, Scatter

Output executable / library,
Output loading file option

output folder Linker

C compiler and assembler
listing, output folder

Listing Debug Debug target, Debugger

W
n
%
3
=
Q
N
-
N

Define optional programs to .
User run before and after compile Debu_gger co%?ibtgr;s;c::z:gif: <
and build processes Settings 9 9
Utilities Flash programming setup

W e

Flash
programming
settings

Flash programming
mechanism, flash
programming algorithm

Figure 14.33
Project option tabs in Keil MDK.

Debugger Settings

Some settings have to be set up manually. An example would be the debugger
configuration because pVision IDE does not know which in-circuit debugger you will be
using. First, we look at the debug options as shown in Figure 14.34. Here, we selected
“ST-LINK” for the STM32L0 Discovery board. For other development boards you can
change the settings to use other supported debugger.

We can now plug in the development board to the USB port. A window pop up might

show the board is connected as a USB mass storage. That is normal as the USB debug
adaptor supports multifunctions. Now we need to set up the settings for the ST-LINK

debug adaptor by clicking on the “Settings” button next to it.

Since the STM32L.053C8 microcontroller does not support JTAG, in the ST-LINK setting,
we must select SW (Serial Wire) protocol as shown in Figure 14.35. Otherwise an error
message would be shown to indicate that STM32F0 and LO series do not support JTAG.

From the SW Device status, it shows that the debugger can read the IDCODE of the
debug interface and from that we now know that the debugger can communicate with

the board. In some cases, you might also need to adjust the maximum clock frequency for
the debug communication. This depends on the microcontroller device, the circuit board
(PCB) design as well as the debug cable length.

mailto:Image of Figure 14.33|eps

Options for Target ‘Target 1*

Device | Target| Output | Listing | User | C/C++| Asm | Linker Debug |Uﬁ|iﬁes|

(" Use Simulator Settings I @ Use: |ST-Link Debugger v | Settings |
[~ Limit Speed to Real-Time Altera Blaster Cortex Debugger [

Stellaris ICDI]
[v' Load Application at Startup [¥" Runto main() [v Load A Signum Systems JTAGjet

J-LINK/ J-TRACE Cortex
Initialization File: Initializatio| ULINK Pro Cortex Debugger

" l_ NULink Debugger -
| J ﬂ' SiLabs UDA Debugger
ST-Link Debugger

Restore Debug Session Settings Restore CMSIS-DAP Debugger

v Breakpoints v Toolbox v BrgFastModels Debugger -
7 5 y I I PEMicro Debugger E
[v" Watch Windows & Performance Analyzer [v' Watch Windows
[¥v' Memory Display [v' System Viewer [v Memory Display [v System Viewer

CPUDLL: Parameter: Driver DLL: Parameter:

ISARMCM&DLL | ISARMCM3,DLL |

Dialog DLL: Parameter: Dialog DLL: Parameter:

IDARMCM1.DLL |—pCMO+ ITARMCM1.DLL |—pCMO+

| OK || Cancel || Defaults I

Figure 14.34
Select ST-LINK debug adaptor for STM32L0 Discovery.

[Cortex-M Target Driver Setu

Debug ITraceI Flash Downloadl
—Debug Adapter————— —SW Device
Unit |ST-LINKN2 ~| IDCODE | Device Name | tove
SWDIO | 0x0BC11477 ARM CoreSight SW-DP U |
Serial Number: IN/A G
HW Version: |V2 Dawn |
FimwerEN eion: IV2J23SS @ Automatic Detection ID CODE: I
Port: l 'I (" Manual Configuration Device Name: I
Max Clock: |4MHz 2 l Add I Delete | Update | 1P len: I
—Debug
Connect & Reset Options Cache Options Download Options
Connect: INormal LI Reset lAutodetect ZI [¥" Cache Code [~ Verify Code Download
[¥] Reset afer Connect ¥ Cache Memory [~ Download to Flash
OK I Cancel Apply

Figure 14.35
Options for ST-LINK.

mailto:Image of Figure 14.34|tif
mailto:Image of Figure 14.35|tif

360 Chapter 14

~Cortex-M Tar—get Driver Setup

Debugl Trace Flash Download l

—Download Function RAM for Algorithm
LORD (" EraseFullChip [Program
¥4 (® Erase Sectors [Verify Start: |0x20000000 Size: |0x1000
(" Do notErase |~ Resetand Run
—Programming Algorithm
Description] Device Size | Device Type I Address Range I
STM32L0 64KB Flash 64k On-chip Flash 08000000H - 0800FFFFH
Start: | Size:
Add Femove |

OK | Cancel Apply

Figure 14.36
Flash programming algorithm options.

In normal cases, the flash programming option should be set up correctly by the tool when
you select the microcontroller device. For example, the flash programming options for the
STM32L0 device is set up automatically by Keil MDK (Figure 14.36). However, in a few
cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the
program. The compile process can be carried out by a number of buttons on the tool bar
as shown in Figure 14.37. Simply click on the “Build Target” button to start the compile
process, use the pull-down menu (in the Project menu — Build Target), or use hot key F7.
After the program is compiled and linked, we will see the compile status message as
shown in Figure 14.38.

The program can then be tested by starting a debug session by using pull-down menu
(Debug — Start/Stop Debug session), by clicking on the debug session button @ on the
tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled
image should be programmed on the microcontroller, as shown in Figure 14.39. If not, you
can download the image using the “Load” button on the tool bar.

mailto:Image of Figure 14.36|tif

Getting Started with the Keil Microcontroller Development Kit 361

& (3| 38| Taget 1 RN T
Target options —T

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Figure 14.37
Frequently used buttons on the tool bar.

B cxouton e it sz oy o D =

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

IE 15| B volatile E@#I@IO @ﬁ||'&‘

NEEd| s v@[9c|es|ernn
S B E e B Tergerd BRI
Project 38 /] blinkye | v x
2% Project: blinky (] 1 #include "stm3210xx.h" -
2% Targetl 2 #include "gpio_defs.h" I
3 |
CR= Group 1 s . .
[DourCf-: S 4 void LED Config(void);
I8z b"f'ky‘c 5 void LED Set(void);
! gpio_funcs.c 6 void LED Clear(void);
- % omsis 7 void Delay(uint32_t nCount);
5] @ Device g /7 . .
LB ! GPIO functions
B kS - 10 extern void Config Pin(GPIO_TypeDef* GPIO, -
system_stm3210xx.c (Startup) il uint32_t output type, uint32_t output_spe:
4| | ’|'| 12 extern void Config Pin AlternateFunc(GPIO T:
a8 %
Project @Books ‘ {3} Functions “l.}TempIates ‘ < [E >
Build Output n
Rebuild target 'Target 1' -

compiling blinky.c...

compiling gpio_funcs.c...

assembling startup_stm321053xx.S...

compiling system Stm3210XX.C...

linking...

Program Size: Code=1344 RO-data=224 RW-data=32 ZI-data=1632
".\Objects\blinky.axf" - 0 Error(s), O Warning(s).

Figure 14.38
Compile result for the blinky project on the Build Output window.

mailto:Image of Figure 14.37|eps
mailto:Image of Figure 14.38|tif

362 Chapter 14

C\CMOBook_Examples\ch_14_stm3210_blinky\blinky.uvproj - pVision = = Y I
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
N s wdl9 | | B IE 12| B volatile Flaelale o & &|EY) %
@ '25E1|?Q|Target1 E|&.\|lﬁ%vé?
Project 28| [blinkyc | v X
2% Project: blinky 15| 1 #include "stm3210xx.h" -
=49 Targetl 2 #include "gpio_defs.h" [
3 =
=& Source Group 1 ; ’ :
i B o g 4 void LED Config(void);
= blinky.c 5 void LED_Set(void);
0 gpio_funcs.c 6 void LED Clear(void):
% cMmsIs 7 void Delay(uint32_t nCount);
29 Device 8 /7 .
0 startup_stm321053xxs (Startu 2 GBIO EuncLions
B b (P) — 10 extern void Config Pin(GPIO TypeDef* GPIO, °
= system_stm32I0xx.c (Startup) il uint32_t output type, uint32_t output_spe:
‘ I | ’l" 12 extern void Config Pin AlternateFunc (GPIO T:
ilg %
il Project @Bcoks ‘ {} Functions “]_,Temp!ates ‘ < 1 »
Build Output 2
assembling scar\:up_scm321053xx. S.ee -~
compiling system stm3210xX.cC...
linking...
Program Size: Code=1344 RO-data=224 RW-data=32 ZI-data=1632
".\Objects\blinky.axf" - 0 Error(s), O Warning(s).
Load "C:\\CMOBook Examples\\ch 14 stm3210 blinky\\Objects\\blinky.axf" =
Erase Done.
Programming Done.
Verify OK. -
< 2

Figure 14.39
Flash programming status output.

After the program is downloaded to the microcontroller, the window will change into a
debugger session mode, as shown in Figure 14.40.

Now we can start the program execution using the Run button, as shown in Figure 14.41,
or start the program execution using hot key F5, or using pull-down menu (Debug —
Run).

Now you should see the LEDs on the board blinking. Congratulation! You have got the
blinky project working. You can close the debug session using the debug session button @
on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug —
Start/Stop Debug Session).

14.4.5 Project Setup Steps for STMicroelectronics STM32F0 Discovery

For the STM32F0 Discovery board, we are going to create the example blinky project in
C:\CMOBook_Examples\ch_14_stm32f0_blinky.

mailto:Image of Figure 14.39|tif

Getting Started with the Keil Microcontroller Development Kit 363

§: C:\CMOBook_Examples\ch_14_stm3210_blinky\blinky.uvproj - pVision

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

MNMEedd s a9 o |mnnn: = /5| B volatile B%uwuo@ml«\
HEBelwreo s | DEBEERA-O)3-8- @ @ x-

Registers n Disassembly i1

[Value [0x080001D0 BD1C POP {r2-r4,pc}
: LED Config():

I Register

0x20000080 20: $define LOOP_COUNT 0x80000
0x20000280 ﬁo;cosooomz F7FFFFDE BL.W LED_Config (0x08000192)
0x20000280 . 21: while (1) {
0x20000280
0x08000620
0x20000020) blinky.c | [startup_stm32i053xcs
0x00000000.
(x00000000 {
OXFFFFFFFF // Configure LED outputs
OXFFFFFFFF | LED_cConfig():
R10 0x08000620
= R11 0x08000620 #define LOOP COUNT 0x80000
R12 OxFFFFFFFF D while(1){

~RI3(SP) 020000680 Delay (LOOP_COUNT) ;

=] Project | == Registers < | —

Command a Call Stack + Locals

Running with Code Size Limit: 32K

= -
Load "C:\\CMOBook Examples\\ch 14_stm3210_blinky\\Object: | Name Location/Value | Type

¢ main |0x080001D2 |int f0

##%% Doorwirtrad Vareinn wmith 22TER Rirkra Fada Siwa Timst+

< i | 3

> 4
ASSIGN BreakDisable BreakEnable BreakXill BreakList | &Call Stack + L...| &l

Figure 14.40
Debugger session.

File Edit View Project Flash
NEdad| &+ @9
BTN I W e Y
Register

NSNS NN

Run (F5)

Regﬂ Start code execution
B core

S Ox1FFFF068

Figure 14.41
Run button.

mailto:Image of Figure 14.40|tif
mailto:Image of Figure 14.41|tif

364 Chapter 14

The next step of the project creation wizard defines the microcontroller to be used for the

project. For the STM32F0 Discovery hardware, STM32F051RS is selected, as shown in
Figure 14.42.

Now the screen switches to a Run-Time Environment manager which allows us to inclu
the software component used. In order to simplify the project setup, the CMSIS-CORE
and the device-specific start-up code options are selected, as shown Figure 14.43.

Now a project with the start-up codes is generated, as shown in Figure 14.44.

Then we add a new file to the project by right clicking on “Source Group 1,” and select
“Add New Item...,” as shown in Figure 14.45.

de

A new window dialog as in Figure 14.46 is shown. We select C file and enter blinky as the

file name.

Now we can expand “Source Group 1”7 and open the “blinky.c,” and add the project code,
as shown in Figure 14.47. In order to help GPIO setup, we also added a separate C file to
handle GPIO configuration functions.

Select Device for Tai'get ‘Target 1'... X
cPU |
ISoﬂware Packs L'
Vendor: STMicroelectronics
Device: STM32F051R8
Toolset ~ ARM
Search:
Description:
a-% STM32F051 :‘ STMicroelectronics' STM32F0 series delivers 32-bit perfformance while -~
P STM32F051C4 providing the essentials of the STM32 family, particularly for cost-sensitive
applications. STM32 FO MCUs combine real-time performance, low-power
€0 STM32F051C6 operation, and the advanced architecture and peripherals associated with
| the STM32 platform available. This series of products is highly competitive in
STM32F051C8 traditional 8-bit and 16-bit markets and eliminates the need to manage
é STM32F051K4 different architectures and the associated development overhead.
Typical applications include application control and user interfaces.
€ STM32F051K6 handheld equipment, A/V receivers and digital TV, PC peripherals. gaming
é STM32F051K8 and GPS platforms, industrial applications, PLCs, inverters, printers,
| STM32F051R4 scanners, alarm systems, video intercoms, and HVACs
€ STM32F051R6 - SRAM with HW parity checking
| STM32E051R8 5 - Timer with deadtime generation and emergency stop 3

o |

Cancel I

Help |

Figure 14.42

Select STM32F051R8 for STM32F0 Discovery Board.

mailto:Image of Figure 14.42|tif

Getting Started with the Keil Microcontroller Development Kit 365

Software Component S.. Variant Version Description .
@€ Board Support STM32F0-Disco...|1.0.0 STMicroelectronics STM32F0-Discovery Board 1]
=% cmsis Cortex Microcontroller Software Interface Components
¢ CORE =4 3.40.0 |CMSIS-CORE for Cortex-M, SC000, and SC300
% Dsp] 142 |CMSIS-DSP Library for Cortex-M, SC000, and SC
& RTOS (AP 10 MSIS-RTOS API for T n
@-% CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
59 Device Startup, System Setup
¢ Startup Id 14.0 System Startup for STMicroelectronics STM32F051_58_71 Devices
@9 File System MDK-Pro 6.2.0 File Access on various storage devices
R4 Graphics MDK-Pro 5.26.1 |User Interface on graphical LCD displays [
@9 Network MDK-Pro 6.20 |IP Networking using Ethernet or Serial protocols
®$ Uss MDK-Pro 620 |USB Communication with various device classes LI
Validation Output Description
| Resolve] ISeIec!PacksJ I Details I Cancel Help

Figure 14.43
Select CMSIS-CORE and device-specific startup.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NS48 5 @] c]co[BRBR[EEEMED oo Fla#lals o QQII'\[
: @|%|Targetl ﬁ[ﬁ%@@@

Project
2% Project blinky
2 Target1
E Source Group 1
~® cmsis
a® Device
startup_stm32f051.s (Startup)
system_stm32fOxx.c (Startup)

Project @Books J {} Functions]n..,Templates |

Build Output

Figure 14.44
Project with start-up code.

The program that is created carried out a few operation steps:

e Configure the GPIO ports for LED outputs
* Enter a simple loop to turn on and off the LED, with a delay specified by a C macro
called LOOP_COUNT

mailto:Image of Figure 14.43|tif
mailto:Image of Figure 14.44|tif

366 Chapter 14

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEd@| s wa|aoc|es|rnnr = /2| B volatile Eammoo@m@lM

|3’£|Target1 &[ﬁ%@@@

El--% Project: blinky
2% Targetl

B Source Groun 1
& CMSIS #X Options for Group 'Source Group 1'... Alt+F7

¥ Device l Add New Item to Group 'Source Group 1'..
starty Add Existing Files to Group 'Source Group 1'..
. syste Remove Group 'Source Group 1' and its Files

i=] Project @Books] {

Build Output

Open Build Log
Rebuild all target files
Build target F7 2

&4 Manage Project Items...

< Show Include File Dependencies »

Add a new Item to Group

Figure 14.45
Add new item to project.

Create a new C source file and add it to the project.

<

C++File (.cpp)
@ Asm File (.s)
Header File (h)

TextFile (.txi)
9] i
¥ Image File (*)

‘@ User Code Template

Type: | CFile (.c)

Name: I blinky

Location: I C:\CM0Book_Examples\ch_14_stm32f0_blinky

Add

Figure 14.46
Select file type and file name of the new file.

mailto:Image of Figure 14.45|tif
mailto:Image of Figure 14.46|tif

Getting Started with the Keil Microcontroller Development Kit 367

: E C:\CMOBook_Examples\ch_14_stm32f0_blinky\blinky.uvproj - pVisio

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Nedd|s a&|9 | | B 2 ® | = E B volatile Rl ale <5>a||=&|
(S B e] B Target 1 Fl&ld2 e e
Project 2@ (] blinkyc | v X
ER Project: blinky 1 #include "stm32f0xx.h" -
=45 Target1 2 #include "gpio_defs.h" H
3
CR=1S G 1 > . :
i uourc§ roup 4 void LED Config(void);:
sy blinly.c S void LED Set(void);
O gpio_funcsc 6 void LED_Clear(void):;
~% cMsls 7 void Delay(uint32_t nCount);
29 Device g /) . .
B start 132051 (Start GPIO functions
LB Sk = Glarip) 10 extern void Config Pin(GPIO TypeDef* GPIO, -
=1 system_stm32fOxx.c (Startup) il uint32_t output type, uint32_t output_spe
12 extern void Config_Pin AlternateFunc(GPIO_T _
3123
iject @Books ‘ {1} Functions |[]+Templates ‘ < III 2

Build Output a

»

Figure 14.47
Program code added to example blinky project for STM32L0 Discovery.

The full program code of the blinky program is shown below.

Blinky.c for STM32F0 Discovery Board

#include "stm32f0xx.h"
#Finclude "gpio_defs.h"

void LED_Config(void);

void LED_Set(void);

void LED_Clear(void);

void Delay(uint32_t nCount);

// GPI0 functions

extern void Config_Pin(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t mode,
uint32_t output_type, uint32_t output_speed, uint32_t pull_type);

extern void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t

AF);

int main(void)

{
// Configure LED outputs
LED_Config();

Continued

mailto:Image of Figure 14.47|tif

368 Chapter 14

fidefine LOOP_COUNT OxI1FFFFF
while(1){
Delay(LOOP_COUNT);
LED_Set();
Delay (LOOP_COUNT);
LED_Clear();
b

void Delay(uint32_t nCount)
{
while(nCount--);
}
void LED_Config(void)
{
RCC->AHBENR |= RCC_AHBENR_GPIOCEN; // Enable Port C clock
Config_Pin(GPIOC, 8, GPIO_MODE_OUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,
GPTO_NO_PULL);
Config_Pin(GPIOC, 9, GPIO_MODE_OUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,
GPIO_NO_PULL);
return;
}
void LED_Set(void)
{
GPIOC->BSRR (1<<8); // Set bit 8
GPIOC->BSRR = (1<K9); // Set bit 9
return;

void LED_Clear(void)
{
GPIOC->BSRR
GPIOC->BSRR
return;

(1<L(8+16)); // Clear bit 8
(1<<(9+16)); // Clear bit 9

The GPIO functions file is:

gpio_funcs.c

f#Finclude "stm32f0xx.h"

/* Configure GPIO pin */
void Config_Pin(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t mode,
uint32_t output_type, uint32_t output_speed, uint32_t pull_type)
{
GPIOX->MODER &= ~(0x3 << (2*pin)); // Clear mode
GPIOX->MODER |= (mode << (2*pin)); // Set mode

Getting Started with the Keil Microcontroller Development Kit

369

return
}

{

if (pi

} else

GPIOx->0TYPER &=
GPIOX->0TYPER |= (output_type << pin); // Set Type

GPIOx->0SPEEDR &=
GPIOx->0SPEEDR

GPIOx->PUPDR

bit_
GPTOX->AFR[1] &= ~(0xF << bit_num);
GPIOX->AFR[1] |= (AF << bit_num);
bit_
GPIOXx->AFR[0] &= ~(0xF << bit_num);

GPIOX->AFRLO] [|= (AF << bit_num);

int bit_num;

n>=8) {
num = (pin-8) * 4;

{
num = pin * 4;

~(0x1 <K

~(0x3 << (2*pin));
|= (output_speed << (2*pin)); // Set speed

GPIOx->PUPDR &= ~(0x3 << (2*pin));
|= (pull_type << (2%pin)); // Set pull up/pull down

// Set GPIO pin alternate function
void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t AF)

// Clear Type

// Clear speed

// Clear pull up/pull down

// Clear AF
// Set new AF

// Clear AF
// Set new AF

And a header file is used to define constants for GPIO configurations:

gpio_defs.h

Jidefine
Jidefine
Jidefine
Jidefine

Jidefine
Jidefine

Jidefine
jHdefine
Jidefine

Jfdefine
Jidefine
Jidefine

GPIO_MODE_INPUT

GPIO_MODE_OUTPUT
GPIO_MODE_ALTERN
GPIO_MODE_ANALOG

w N = O

GPIO_TYPE_PUSHPULL
GPIO_TYPE_OPENDRAIN

GPIO_SPEED_LOW
GPIO_SPEED_MED
GPIO_SPEED_HIGH

GPIO_NO_PULL
GPIO_PULL_UP
GPIO_PULL_DOWN

0

(e}

370 Chapter 14

Project Settings

After the project and program files are created, it is often necessary to adjust a few project
settings before the application can be downloaded to the microcontroller’s flash memory and
be tested. In most cases, the Keil pVision IDE will set up all the required microcontroller-
specific settings automatically once the device is selected. However, we still need to set up:

* Debug settings
e Compiler optimization settings
It is useful to understand what settings are available and what settings are needed to get a

project to work.

There are many project settings available; first we will introduce the settings that are
essential for getting the program code downloaded to the flash and executing it. The
project settings menu can be accessed by:

Target option button on the tool bar .

Pull-down menu: Project — Option for Target.

Right click on the project target name (e.g., “Target 1”) in the project window, and
select options for target.

Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.48.

C Compiler optimization,
defines, include path and
misc options

Targeted microcontroller
9 CIC++

Device device for the project

Assembler defines, include

Target Memory map, C library option Assembler path and misc options

Output executable / library,
output folder

Memory layout, Scatter
loading file option

Output Linker

C compiler and assembler

Listing listing, output folder Debug Debug target, Debugger
Define optional programs to e
User run before and after compile Debl‘!gger De'bugg('er speqﬁc
and build processes Settmgs configuration settings
Utilities Flash programming setup

W e

Flash Flash programming
programming mechanism, flash
settings programming algorithm

Figure 14.48
Project option tabs in Keil MDK.

mailto:Image of Figure 14.48|eps

Getting Started with the Keil Microcontroller Development Kit 371

By default, the Keil pVision IDE automatically sets up the memory map for us when we
select the microcontroller device. In most cases, we do not need to change the memory
settings. However, if the program operation fails or if flash programming is not
functioning correctly, we need to go through the settings to make sure that they were not
accidentally changed to incorrect values.

Debugger Settings

Some settings have to be set up manually. An example would be the debugger
configuration because pnVision IDE does not know which in-circuit debugger you will be
using. First, we look at the debug options as shown in Figure 14.49. Here, we selected
“ST-LINK” for STM32F0 Discovery. For other development boards you can change the
settings to use other supported debugger.

A Options forTarget Target 1"

Device | Target| Output| Listing | User | C/C++| Asm | Linker Debug IUﬁ|i1ies|

(" Use Simulator Settings (® Use: |ST-Link Debugger v | Settings
9 99 9
[~ Limit Speed to Real-Time Altera Blaster Cortex Debugger | »
| Stellanis ICDI =
S - Signum Systems JTAGjet 5
[v' Load Application at Startup [¥" Run to main() [v Load A J-LINK / -TRACE Cortex main()
Initialization File: Initializatio| ULINK Pro Cortex Debugger
= NULink Debugger = =
I J S SiLabs UDA Debui i er J =
Restore Debug Session Settings Restore . e.bg ger 1
[v Breakpoints [V Toolbox [v BrdFastModels Debugger
: PEMicro Debugger =
[v' Watch Windows & Performance Analyzer [V Wateh Winaows
[v' Memory Display [v' System Viewer [v' Memory Display [v' System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
’SARMCM3.DLL [ISARMCMB.DLL [
Dialog DLL: Parameter. Dialog DLL: Parameter.
IDARMCMI DLL ’-pCMO+ ITARMCM].DLL I-pCMO+

[ok][cancel |[Defauts |

Figure 14.49
Select ST-LINK debug adaptor for STM32F0 Discovery.

We can now plug in the development board to the USB port. Now we need to set up the
settings for the ST-LINK debug adaptor by click on the “Settings” button next to it.

Since the STM32F051R8 microcontroller does not support JTAG, in the ST-LINK setting,
we must select SW (Serial Wire) protocol as shown in Figure 14.50. Otherwise an error
message would be shown to indicate that STM32F0 and LO series do not support JTAG.

mailto:Image of Figure 14.49|tif

372 Chapter 14

Debug ITraceI Flash Downloadl

—Debug Adapter———————————————— ~SW Device
Unit [ST-LINK/V2 ~| IDCODE | Device Name | Move
SWDIO 0x0BB11477 ARM CoreSight SW-DP Un |
Serial Number: lr b

HW Version: |V2 Dowin |
Firmware Version: IVZJMSO & Automatic Detection ID CODE I—
Port: I ¥ l ¢ Manual Configuration Device Name I

Max Clock: |1.8MHZ Y I Add | Delete IR len

Update

—Debug
Connect & Reset Options Cache Options Download Options -
Connect |Normal Zl Reset]Autodetect LI [v' Cache Code [~ Verify Code Download
[VIIReTorat Co e [v' Cache Memory [~ Download to Flash

OK I Cancel Apply

Figure 14.50
Options for ST-LINK.

From the SW Device status, it shows that the debugger can read the IDCODE of the
debug interface and from that we now know that the debugger can communicate with

the board. In some cases, you might also need to adjust the maximum clock frequency for
the debug communication. This depends on the microcontroller device, the circuit board
(PCB) design as well as the debug cable length.

In normal cases the flash programming option should be set up correctly by the tool when
you select the microcontroller device. For example, the flash programming options for the
STM32F0 device is set up automatically by Keil MDK (Figure 14.51). However, in a few
cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the
program. The compile process can be carried out by a number of buttons on the tool bar
as shown in Figure 14.52. Simply click on the “Build Target” button to start the compile
process, use the pull-down menu (in the Project menu — Build Target), or use hot key F7.
After the program is compiled and linked, we will see the compile status message as
shown in Figure 14.53.

mailto:Image of Figure 14.50|tif

Getting Started with the Keil Microcontroller Development Kit 373

Debug | Trace Flash Download I

—Download Function RAM for Algorithm
LOAD (" EraseFullChip [Program
54 ® Erase Sectors |v Verify Start IOXZOOOOOOO Size: |0X1000
(" Do notErase [~ Resetand Run
—Programming Algorithm
Description | Device Size | Device Type I Address Range
STM32F0xx 64kB Flash 64k On-chip Flash 08000000H - 0800FFFFH

Start: | Size:

Add Remove I

OK I Cancel Apply

Figure 14.51
Flash programming algorithm options.

% Target 1 v A ﬁ%

A T
Target options

Program the compiled application
to the microcontroller

A

Rebuild all files

Build target

Figure 14.52
Frequently used buttons on the tool bar.

The program can then be tested by starting a debug session by using pull-down menu
(Debug — Start/Stop Debug session), by clicking on the debug session button @ on the
tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled
image should be programmed on the microcontroller, as shown in Figure 14.54. If not, you
can download the image using the “Load” button on the tool bar.

mailto:Image of Figure 14.51|tif
mailto:Image of Figure 14.52|eps

C\CMOBook_Examples\ch_14_stm32f0_blinky\blinky.uvproj - pVisiol (=520 A ‘
| File Edit View Project Flash Debug Peripherals Tools SVCS Window Help 7
Nedad| a9 | | ® % ™ M| EEE M| B volatile Faelale
S 8 e | B8] Target 1 [&dzev@ '

R 1] blinky.c |

a% Project: blinky =l 1 #include "stm32f0xx.h"
=4 Targetl #include "gpio defs.h"

=25 Source Group 1

void LED Config(void);
B blinky.c i g

void LED_Set(void);

@ cMmsis
ER 4 Device

void Delay(uint32_t nCount);

O startup_stm32f051s (Start FRRLERL L
B e Skl extern void donfig Pin(GPIO TypeDef* GPIO,
system_stm32f0xx.c (Startup) uint32_t output type, uint32 t output_spe -

@Project @Bocks ‘ {3 Functions “LTemplates ‘ ‘ < |I’

2
3
4
5
] gpio_funcs.c 6 void LED_Clear (void);
7.
8
9
0
i

Build Output

Rebuild target 'Target 1'

compiling blinky.c...

compiling gpio_funcs.c...

assembling startup_stm32f051.s...

compiling system stm32fOxx.c...

linking...

Program Size: Code=1532 RO-data=224 RW-data=20 ZI-data=1636
".\Objects\blinky.axf" - 0 Error(s), O Warning(s).

Figure 14.53
Compile result for the blinky project on the Build Output window.

K2 C\CMOBook_Examples\ch_14_stm32f0_blinky\blinky.uvproj - Vision ' =3 % |
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEE@ » @]9 o NS JE 15| B volatile e ale @a|@]|«\,
‘e S| 88 rarget1 EEEERET
Project 2@] blinky.c v X
2% Project: blinky =l 1 #include "stm32f0xx.h" -
=4 Targetl 2 #include "gpio_defs.h" B
g
= Group 1 e . :
uourc? =g 4 void LED_Config(void);
oaky 47 5 void LED_set(void);
0 gpio_funcs.c 6 void LED Clear(void);
% cwmsis 7 void Delay(uint32_t nCount);
59 Device - g // .
O startup_stm32f051.s (Start g S
0 o kel 10 extern void Config Pin(GPIO TypeDef* GPIO, -
system_stm32f0xx.c (Startup) ~| i1l uint32_t output type, uint32 t output spe -
EProject @Books ‘ {3 Functions “LTemplates ‘ < E‘ >
Build Output 2 3
compiling system stm32fOXX.C... ~
linking...
Program Size: Code=1532 RO-data=224 RW-data=20 ZI-data=1636
!

Load "C:\\CMOBook Examples\\ch 14 stm32f0_blinky\\Objects\\blinky.axf"
Erase Done.

Programming Done.

Verify OK.

< »

Figure 14.54
Flash programming status output.

mailto:Image of Figure 14.53|tif
mailto:Image of Figure 14.54|tif

Getting Started with the Keil Microcontroller Development Kit 375

After the program is downloaded to the microcontroller, the window will change into a
debugger session mode, as shown in Figure 14.55.

C:\CMOBook_F.xamEes\ch_14_stm32f0_blinky\blinky.uvpro' - pVisiol
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Nede| s a9 | | & % ™| EEJE | B volatie Flar@e o e|@) X
& Bolwoeeo s DREDI-OV2-8-0- 8%~
Registers 2 Disassembly 2@
Register [Value [« 0x080001CO BD1C POP {r2-r4,pc} -
| 17: LED_Config():

0"2000007§ 19: #define LOOP_COUNT Ox1FFFFF
0x20000278 2>0x080001C2 F7FFFFE3 BL.W LED Config (0x0800018C)
0x20000278 20: while (1) {

0x20000278 e m|
0x080006DC : ;
0x20000014 |] blinky.c
0x00000000 T = -
0x00000000 16 // Conflgure LED outputs
OxFFFFFFFF ‘ | LED_config();

OxFFFFFFFF |

0x080006DC #define LOOP_COUNT Ox1FFFFF
0x080006DC while (1) {

P el

e | Nelav (T.OOP COTINT) -
EIPrOJect == Registers | E’

Command Call Stack + Locals

Running with Code Size Limit: 32K -
Load "C:\\CMOBook Examples\\ch 14 stm32f0 blinky\\Object:

Name Location/Value Type
¢ main |0x080001C2 lint 0

< 11 | »

S 1
ASSIGN BreakDisable BreakEnable BreakXill BreakList | t?f]CalI Stack + L.. Trace ExcepﬁoA..‘Evem Counters Memory 1

Figure 14.55
Debugger session.

Now we can start the program execution using the Run button, as shown in Figure 14.56, or
start the program execution using hot key F5, or using pull-down menu (Debug — Run).

Now you should see the LEDs on the board blinking. Congratulation! You have got the
blinky project working. You can close the debug session using the debug session button @

File Edit View Project Flash
NEdd@ s+ @9
A ENC R R R

| Registe Run (F5)

Regﬂ Start code execution
= Core

| ~° Ox1FFFF068

—
e

Figure 14.56
Run button.

mailto:Image of Figure 14.55|tif
mailto:Image of Figure 14.56|tif

376 Chapter 14

on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug —
Start/Stop Debug Session).

14.4.6 Project Setup Steps for NXP LPC1114FN28

The example setup described in this section is based on a breadboard circuit construction
as described in appendix H. Please refer to this appendix for details on the hardware setup.
After this is done, we can then create the first blinky project following the instructions
illustrated here. Here, we assume that you are using Keil ULINK'" 2/ULINK Pro debug
adaptor. If a different adaptor is used, the debug configuration options would be different
from what we have shown here.

For the LPC1114FN28 microcontroller device, we are going to create the example blinky
project in C:\CMOBook_Examples\ch_14_lpc1114_blinky.

The next step of the project creation wizard defines the microcontroller to be used for the
project. For this project, the LPC1114FN28/102 is selected, as shown in Figure 14.57.

Now the screen switches to a Run-Time Environment manager which allows us to include
the software component used. In order to simplify the project setup, the CMSIS-CORE
and the device-specific start-up code options are selected, as shown Figure 14.58.

Select Device for Target ‘Target 1'... J
| cru |
‘ lSoﬂware Packs LI
Vendor: NXP
Device: LPC1114FN28/102
Toolset ~ ARM
Search:
Description:
LPC1113FBD48/302 :I The LPC1100 series is designed for low cost 8/16-bit microcontroller -
e applications, offering performance, low power, simple
@ LPC1113FHN33/202 instruction set and memory addressing together with reduced code size
LPC1113FHN33/302 compared to existing 8/16-bit architectures.
€ Typical applications include 8-/16-bit applications, eMetering. Lighting. Alarm
- LPC1114FBD48/302 systems, Consumer peripherals, Mobile devices and White goods.
LPC1114FDH28/102
€ - Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.
LPC1114FHI33/302 - Unique device serial number for identification.
LPC1114FHN33/202 - Extended temperature (-40 C to +105 C)
LPC1114FHN33/302
LPC1114FN28/102
‘) | dhd -
oK | Cancel I Help

Figure 14.57
Select LPC1114FN28/102 for the DIP part (you can find this in the LPC11xxL series).

mailto:Image of Figure 14.57|tif

Getting Started with the Keil Microcontroller Development Kit 377

Software Component S.. Variant Version Description
2 ¢ oMsis | Cortex Microcontroller Software Interface Components

¢ CORE 14 3400 |CMSIS-CORE for Cortex-M, SC000, and SC300

¢ Dsp r 142 | CMSIS-DSP Library for M,

@ RTOS (APD 10 -RTOS API for -

@ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
=29 Device Startup, System Setup

@ Startup v 1.00 System Startup for NXP LPC1100 Series
@9 File System MDK-Pro 6.20 File Access on various storage devices
& Graphics MDK-Pro 5.26.1 | User Interface raphical LCD di:
% Network MDK-Pro 6.20 |IP Networking using Ethernet or Serial protocols
@ uss MDK-Pro 6.2.0 USB Communication with various device classes
Validation Output Description

Resolve] [SelectPacksl [Details] Cancel Help

Figure 14.58
Select CMSIS-CORE and device-specific startup.

X

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NS A@| 2 wd| o] <o | ™ BAN[EFEED ot Maxiale oo e|@) R
P EE e] 98 Target1 &K b2 e

Project
=% Project: blinky
=47 Targetl
3 Source Group 1
@ cmsis

59 Device
' startup_LPC11xxs (Startup)
)] system_LPC11xx.c (Startup)

EProject eBooks ‘ {} Functions “].,Templates ‘

Build Output

Figure 14.59
Project with start-up code.

Now a project with the start-up codes is generated, as shown in Figure 14.59.

Then we add a new file to the project by right clicking on “Source Group 1,” and select
“Add New Item...,” as shown in Figure 14.60.

A new window dialog as in Figure 14.61 is shown. We select C file and enter blinky as the
file name.

mailto:Image of Figure 14.58|tif
mailto:Image of Figure 14.59|tif

378 Chapter 14

C\CMO0Boo! Y n v = =
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
%ﬁﬁdalbu&"““l | mom A IE 1i| @ volatile B@\“'@l'f‘@‘l@|\
om F& &2 e 2@

P¥

=@ % Project: blinky N
©#9 Target1
& Source Groy=1
% cMsIs 4\ Options for Group 'Source Group 1'... Alt+F7
=9 Device] Add New Item to Group ‘Source Group 1'...
B startup_ Add Existing Files to Group 'Source Group 1'...
a8 system_| Remove Group ‘Source Group 1' and its Files

[i£] Project eBooks | O S ey

Rebuild all target files

Build Output (] Build target 7 1
&4 Manage Project Items... i
Show Include File Dependencies %
<

Add a new Item to Group

Figure 14.60
Add new item to project.

(C] cFile (o) Create a new C source file and add it to the project.

@ User Code Template

Type: [criecg

Name: I blinky

Location: I C:\CM0Book_Examples\ch_14_lpc1114_blinky

Add Close Help

Figure 14.61
Select file type and file name of the new file.

mailto:Image of Figure 14.60|tif
mailto:Image of Figure 14.61|tif

Getting Started with the Keil Microcontroller Development Kit 379

iew Project Flash Debug S Window Help

NEE@ s @9 | | | = = 2 15| @ volatile Flaelale & &|[F
S EE e 8] Target M &= e e

Project 2 |] blinky.c

| &% Project: blinky 1 // LED is connected to pin PIOL 5
245 Targetl /(System running at 48MHz
#include "LPCllxx.h"

=& Source Group 1

3 blinky.c void LED Config(void):
@ cmsis void LED Set(void);

o ® Device void LED Clear(void);
2 startup_LPC11xx.s (Startup) void Delay(uint32_ t nCount);

O system_LPC11xx.c (Start =
SaL X (Startup) 10 int main(void)
11 3¢

12 // Confioure TFED outnuts

EPrOJeCt @30(«5 {3 Functions [],,Te"wp\ates <« | 1 |

Build Output

Figure 14.62
Program code added to example blinky project for LPC1114.

Now we can expand “Source Group 1” and open the “blinky.c,” and add the project code,
as shown in Figure 14.62. For this project, we assume that the LED is connected to pin 5
of port 1.

The program that is created carried out a few operation steps:

* Configure the GPIO ports for LED outputs
* Enter a simple loop to turn on and off the LED, with a delay specified by a C macro
called LOOP_COUNT

The full program code of the blinky program is shown below.

Blinky.c for LPC1114FN28 on Breadboard

// LED is connected to pin PIO1_5
// System running at 48MHz
#Finclude "LPC1Ixx.h"

void LED_Config(void);
void LED_Set(void);

Continued

mailto:Image of Figure 14.62|tif

380 Chapter 14

void LED_Clear(void);
void Delay(uint32_t nCount);

int main(void)

{
// Configure LED outputs
LED_Config();

fidefine LOOP_COUNT 0x80000
while(1){
Delay(LOOP_COUNT);
LED_Set();
Delay(LOOP_COUNT);
LED_Clear();
b

void Delay(uint32_t nCount)
{
while(nCount--)
(I
}
void LED_Config(void)
{
// Enable clocks to GPIO and IO config block
// Bit 6: GPIO, bit 16: I0 config
LPC_SYSCON->SYSAHBCLKCTRL |= ((1<<16) | (1<<6));

__NOP(); // Short time delay to ensure the <clock is on before next access
__NOP();
__NOP();

// PI01_5 IO output config

// bit[10] - Open drain (0 = standard I/0, 1 = open drain)

/] bitl[5] - Hysteresis (0O=disable, 1 =enable)

// bit[4:3]1 - MODE(O=inactive, 1 =pulldown, 2=pullup, 3=repeater)
// bit[2:0] - Function (0 = I0, 1=~RTS, 2=CT32B0_CAPO)
LPC_IOCON->PI01_5 = (0<<10) | (0<<5) | (0<<3) | (0x0);

// Optional: Turn off clock to I/0 Config block to save power
LPC_SYSCON->SYSAHBCLKCTRL &= ~(1<<16);

// Set pin 8 as output
LPC_GPIO1->DIR = LPC_GPIO1->DIR | (1<<5);
return;

Getting Started with the Keil Microcontroller Development Kit 381

void LED_Set(void)

{
// Set bit 5 output to 1
LPC_GPIO1->MASKED_ACCESS [1<X5]
return;

}

(1<<5);

void LED_Clear(void)

{
// Clear bit 5 output to 1
LPC_GPIO1->MASKED_ACCESS [1<<5]
return;

}

I
o

Project Settings

After the project and program files are created, it is often necessary to adjust a few project
settings before the application can be downloaded to the microcontroller’s flash memory and
be tested. In most cases, the Keil puVision IDE will set up all the required microcontroller-
specific settings automatically once the device is selected. However, we still need to set up:

* Debug settings
e Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a
project to work.

There are many project settings available; first we will introduce the settings that are
essential for getting the program code downloaded to the flash and executing it. The
project settings menu can be accessed by:

» Target option button on the tool bar g.

e Pull-down menu: Project — Option for Target.

* Right click on the project target name (e.g., “Target 1”) in the project window, and
select options for target.

* Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.63.

By default, the Keil pVision IDE automatically sets up the memory map for us when we
select the microcontroller device. In most cases, we do not need to change the memory
settings. However, if the program operation fails or if flash programming is not
functioning correctly, we need to go through the settings to make sure that they were not
accidentally changed to incorrect values.

382 Chapter 14

C Compiler optimization,
defines, include path and
misc options

Targeted microcontroller C/C++

Device device for the project

Assembler defines, include

Target Memory map, C library option Assembler path and misc options

Output executable / library,
output folder

Memory layout, Scatter
loading file option

Output Linker

C compiler and assembler

Listing listing, output folder Debug Debug target, Debugger

Define optional programs to -
User run before and after compile Debu_gger ci?ibtggsg:zzgif: <
and build processes Settings 9 g
Utilities Flash programming setup

W e

Flash
programming
settings

Flash programming
mechanism, flash
programming algorithm

Figure 14.63
Project option tabs in Keil MDK.

Debugger Settings

Some settings have to be set up manually. An example would be the debugger
configuration because nVision IDE does not know which in-circuit debugger you will be
using. First we look at the debug options as shown in Figure 14.64. Here, we selected
“ULINK2/ME.” You might need to select other debug adaptor based on the hardware you
have.

We can now plug in the breadboard and connect the ULINK?2 to the USB port. Next we
need to set up the settings for the ULINK2 debug adaptor by clicking on the “Settings”
button next to it.

Since the LPC1114FN28 microcontroller does not support JTAG, in the ULINK?2 settings,
we must select SW (Serial Wire) protocol as shown in Figure 14.65. Otherwise nothing
will show up in the JTAG device chain window.

Several options need a bit of attention here:

The maximum SW clock is reduced to 200 KHz. Typically on breadboard environment,
there can be higher electrical noise and therefore might need a slower debug communi-
cation speed for reliable debug operations.

The Reset type is set to SYSRESETREQ (System Reset Request). This ensures that the
debugger correctly resets the microcontroller when entering debug session.

mailto:Image of Figure 14.63|eps

Getting Started with the Keil Microcontroller Development Kit 383

Device| Target| Outputl Listingl User
(" Use Simulator

[~ Limit Speed to Real-Time

| cice+| Asm | Linker Debug | uiities |

Settings

GV (UL INK2/ME Cortex Debugger VI Settings |

[v" Load Application at Startup
Initialization File:

[¥" Run to main() v Load Application at Startup

Initialization File:

[¥" Run to main()

B

Restore Debug Session Settings

[v Breakpoints

[¥v" Memory Display

[v Toolbox
[V Watch Windows & Performance Analyzer
[V System Viewer

Restore Debug Session Settings
[v Breakpoints
[V Watch Windows
[v" Memory Display

[v Toolbox

[V System Viewer

CPUDLL: Parameter: Driver DLL: Parameter:
|SARMCM34DLL | ISARMCM3.DLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:

IDARMCMLDLL I-pCMO+

ITARMCM1.DLL |—pCMO+

o |

Cancel | Defaults |

Help

‘Cortex-M farget Drit
Debug ITracel Flash Download |

—ULINKUSB - JTAG/SW Adapter

Serial No: [ARST0)S v

ULINK Version: |ULINK2

Device Family: IConex-M
Firmware Version: |V2A02

Figure 14.64
Select ULINK2/ME Cortex Debugger.

® Automatic Detection

—SW Device
IDCODE | Device Name | Move
SWDIO [® 0x0BB11477 ARM CoreSight SW-DP

ID CODE I

il

v swy Port: ISW v I Manual Configuration Device Name: I
Max Clock: |200kHz v I Add | Delete Update | AP: IOXOO
—Debug
Connect & Reset Options Cache Options Download Options
Connect: |Normal Ll Reset ISYSRESETREO Ll [v' Cache Code [Verify Code Download
[V Resetafter Connect [~ Stop after Bootloader [v' Cache Memory [” Download to Flash

o]

Cancel |

Help

Figure 14.65
Options for ULINK2/Cortex debug.

mailto:Image of Figure 14.64|tif
mailto:Image of Figure 14.65|tif

384 Chapter 14

From the SW Device status, it shows that the debugger can read the IDCODE of the
debug interface and from that we now know that the debugger can communicate with the
board. In some cases, you might also need to further reduce the maximum clock frequency
for the debug communication. This depends on the microcontroller device, the circuit
board (PCB) design as well as the debug cable length.

In normal cases, the flash programming option should be set up correctly by the tool when
you select the microcontroller device. For example, the flash programming options for the
LPC1114FN28 device is set up automatically by Keil MDK (Figure 14.66). However, in a
few cases you might need to set up this manually.

Cortex M Target DS .S

Debug I Trace Flash Download I
—Download Function RAM for Algorithm
LOAD (" Erase FullChip [v Program
54 ® EraseSectors [Verify Start |0x10000000 Size: [0x0FED
(" Do notErase [~ Resetand Run
—Programming Algorithm
Description I Device Size | Device Type I Address Range
LPC11x0¢/122x/13xx IAP 32... 32k On-chip Flash 00000000H - 00007FFFH
Start I Size:
Add | Remove |
OK I Cancel | Help
Figure 14.66

Flash programming algorithm options.

Compilation

After the project options are set, we can now start the program compilation and test the
program. The compile process can be carried out by a number of buttons on the tool bar
as shown in Figure 14.67. Simply click on the “Build Target” button to start the compile
process, use the pull-down menu (in the Project menu — Build Target), or use hot key F7.
After the program is compiled and linked, we will see the compile status message as
shown in Figure 14.68.

The program can then be tested by starting a debug session by using pull-down menu
(Debug — Start/Stop Debug session), by clicking on the debug session button @ on the

mailto:Image of Figure 14.66|tif

Getting Started with the Keil Microcontroller Development Kit 385

F 5% | Targetd

AN

Target options —T

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Figure 14.67
Frequently used buttons on the tool bar.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
== JE M| B volatile EE&"|@| °

NEdd| s @9 | | & 5

LOAD

& Lk | £1| Target 1

Project

=% Project: blinky
2#F Target1
25 Source Group 1
3 plinky.c
@ CMsIs
29 Device
B startup_LPC11xx.s (Startup)
B system_LPC11xx.c (Startup)

[

il Project Books | {3 Functions | ()4 Templates
() + ¥

Build Output

¥7mlinky.c

o @|[F) 2

7
8
9)

10

11

12

13

14

15

16

void LED Clear(void);
void Delay (uint32_t nCount);

int main(void)

{
// configure LED outputs
LED_Config();

#define LOOP_COUNT 0x80000
while (1) {

g

Rebuild target 'Target 1'
compiling blinky.c...
assembling startup_LPCllxx.s...
compiling system LPCllxx.cC...
linking...

Program Size: Code=1428 RO-data=284 RW-data=4 ZI-data=612

".\Objects\blinky.axf" - 0 Error(s), O Warning(s).

Compile result for the blinky project on the Build Output window.

Figure 14.68

tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled
image should be programmed on the microcontroller, as shown in Figure 14.69. If not, you
can download the image using the “Load” button on the tool bar.

After the program is downloaded to the microcontroller, the window will change into a
debugger session mode, as shown in Figure 14.70.

mailto:Image of Figure 14.67|eps
mailto:Image of Figure 14.68|tif

386 Chapter 14

r T T N
C:\CMOBook_Examples\ch_14_Ipc1114_blinky\blinky.uvproj - pVision =N
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Nedd| s a@B|9 | o | BB R R|EE/EIG|B voste Fas ale o & &|FF) A
‘e S Target 1 F&lazeo@
Project 2@] blinky.c | v X
=% Project: blinky il 1 // LED is connected to pin PIOl 5 -
=49 Target1 2 // System running at 48MHz =
3 " "
&-@ Source Group 1 3 #include "LPCllxx.h
A i :
inky.c 5 void LED Config(void):
@ CMsIs 6 void LED Set(void):
=% Device I 7 void LED_Clear(void);
O startup_LPC11xxs (Startup) 8 void Delay(uint32_t nCount);
O system_LPC11xx.c (Starty &
R 4 i =~ 10 int main(void) %
[i=] Project GBooks ‘ {} Functions ![l+TempIates [< >
Build Output n
assembling startup LPC11xx.s... i
compiling system LPCllxx.c...
linking...
Program Size: Code=1428 RO-data=284 RW-data=4 ZI-data=612
".\Objects\blinky.axf" - 0 Error(s), O Warning(s).
Load "C:\\CMOBook Examples\\ch_14_lpcll114_blinky\\Objects\\blinky.axf"
Erase Done.
Programming Done.
Verify OK. 57
< »
L J

Figure 14.69
Flash programming status output.

msum,, R //<|mvolat..e Fae@e oeal@) x|
% Bl we oo n>|na-- - O-m- e

Registers a Disassembly.

[Tox00000182 4770 BX

133 LED Config():

14:

0x10000068 15: #define LOOP_COUNT 0x80000

0x10000068 0x000001B4 F7FFFFE4 BL.W LED_Config (0x00000180)
0x10000068 | 16: while(1){

0x10000068 <« [m

0x000002C0
0x10000004] blinky.c |

(0x00000000 n
0x00000000 12 // Configure LED outputs

0x49001405 P 13 || LED Config():
0x10000168 4
OxOOOOOZCO 15 | #define LOOP_COUNT 0x80000

L i 16 while (1) {
E Project ‘ == Registers

Command 2 Call Stack + Locals

Running with Code Size Limit: 32K -
Load "C:\\CMOBook Examples\\ch 14 1lpclll4 blinky\\Object:
-

Register | Value I -

Name Location/Value Type
¢ main |0x00000184 lint 0

< 1 J »

>
1 - &
ASSIGN BreakDisable BreakEnable BreakKill BreakList | @L‘lCaII Stack + l_..l sl .| g&al Event Counters\ Memory 1 [

Figure 14.70
Debugger session.

mailto:Image of Figure 14.69|tif
mailto:Image of Figure 14.70|tif

Getting Started with the Keil Microcontroller Development Kit 387

File Edit View Project Flash
éﬁﬁgﬁlﬂ @9
wEe| me el

Registe

Run (F5)

Start code execution

Regist
= Core
= R0 Ox1FFFF068

Figure 14.71
Run button.

Now we can start the program execution using the Run button, as shown in Figure 14.71, or
start the program execution using hot key F5, or using pull-down menu (Debug — Run).

Now you should see the LEDs on the board blinking. Congratulation! You have got the
blinky project working. You can close the debug session using the debug session button @

on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug —
Start/Stop Debug Session).

14.5 Using the IDE and the Debugger

There are a lot of useful buttons on the tool bar. During program development, a range of

icons is available on the tool bar for compilation as well as access to project options
(Figure 14.72).

Save all

S Download Insert/Remove Bookmarks Start/Stop Debug Session Insert/Remove Breakpoints
ave
Open to Flash Target Options Incremental Find Enable/Disable Breakpoints
New Select Targets S:‘flfi\r;:)onr::grti,s Find Disah\s All Breakpoints
e mant Find in Files Kill All Breakpoints
ﬂ|r-\ CMQBogk 14_kiZ5z_blinky_A\bli jx - pVision
A Yolf W Profct Flash Dpbug Peri Tools SVCS Window Wielp
RIS LY \ 4 [Py B = E] B voltie Flasale oo &|@) %
Translate —pe& (& & & 4] $2| Debug BA‘\‘ R] ‘}
iy - N
Build (F7) P""z‘ B i e
Build all —i-=—Pryieqt: Hinky X Show/Hide the Project Windows i
& #7 Dgbup uVision Configurations 1
Batch Build — & Application 14E Pack installer =
Stop Build - blinky.c ig Select Software Pack
D readme.xt 17 Manage Run Time Environment
& cmsis 18
¥ Device 19
20
il ad
ElProject | @ Books | {3 Functions | [y Templates <[I »
Build Output 2
< »
=

Figure 14.72
Tool bar buttons during software development.

mailto:Image of Figure 14.71|tif
mailto:Image of Figure 14.72|eps

388 Chapter 14

E C:\CMOBook_Examples\ch_14_kI25z_blinky_2\blinky.uvprojx - p\ﬁsiori_g@u

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEead@| s @2 | | & B ® R EEE G| B voatie Flas@ e & &|[F)
(& Bo|laeeu » DRED
Registers a Disassembly L]
Register | Value | 12 SystemCoreClockUpdate () ;)
& Core x b 4 // Configure LED outputs
RO Ox1FFFF068 0x000001FE FOOOF95B BL.W SystemCoreClockUpdate (0x000004B8)
R1 O0x1FFFF068 18: LED_Config(); ‘5
R2 Ox1FFFF068 19: =
R3 O0x1FFFF068 < @)
R4 0x000006A8 —
R5 Ox1FFFF004] blinky.c v X
R6 0x00000000
R7 0x00000000 P> 15 | SystemCoreClockUpdate () ; -
R8 OxFFEGFFBB 16]
R9 O0x1FFFF618 iL7] // Configure LED outputs
R10 0x000006A8 18 LED_Config();
R11 0x000006A8 19
R12 0x00000000 20 | #¢define LOOP_COUNT 0x80000 E
R13(SP) Ox1FFFF468 218 while(1){
RI4(R) 40000153 22 Delay (LOOP COUNT) ;
R15(PC) 0x000001FE 23 LED Set () T
xPSR 0x01000000 ia 4)
& Banked 24 Delay (LOOP_COUNT) ;
MSP OxIFFFF468 25 LED_Clear();
PSP OXFFFFFFFC 26 b
= System 25 | }
PRIMASK 0 28 L
CONTR.. 0x00 29 void Delay(uint32 t nCount)
=1 Internal 30 9 -
Mode Thread 31 [while(nCount—-) ‘
Privilege Privileged 32 {
Stack MSP
33 } X
[iE] Project | = Registers D UL ||
Command a Call Stack + Locals 1 3
Load "C:\\CMOBook Examples\\ch_14_k125z_blinky 2\\Object: a Name Location/Value Type
*#*x* Reatricred Veraion with 32768 Bure Cnde Size Timit ¢ main 0x000001FE int fQ

< | I »

> L
I
ASSIGN BreakDisable BreakEnable BreakKill BreakList | @Call Stack + Locals IElMemory 1

Figure 14.73
Debug session screen.

When the debugger starts, the IDE display will change (as shown in Figure 14.73) in order
to present information and controls useful while debugging. From the display you can see

and change the core registers (left-hand side), you can also see the source window and the
disassembly window. Please note the icons on the tool bar also changed (Figure 14.74).

In the debug session you can view the code in source form (C code) or in disassembly
code form. Debug operations can be carried out at source level or instruction level:

» If you highlight the source window, the debug operation (e.g., single stepping, break-
points) is carried out based on each line of C code, or assembly code if the source is in
assembly language.

» If the disassembly window is highlighted, the debug operation is based on instruction level,
so you can single step each assembly instruction even if they are compiled from C code.

mailto:Image of Figure 14.73|tif

Getting Started with the Keil Microcontroller Development Kit 389

Reset the CPU

Run

Stop

Step

Step Over

Step Out

Run to cursor line
Show next statement
Command window
Disassembly window
Symbol window
Register window

Call stack window
Watch window
Memory window
Serial window
Analysis window
Trace window
System View window
Toolbox

"SdHa| s oa | | ®

Start/Stop Debug Session

Incremental Find

== E IR B volatie

Eo wees s DREERA-O)2-2- - @-|

JT AA AAAA A 4 4 4

A

W
4

-

Figure 14.74

Debug session tool bar.

Insert/Remove Breakpoints
Enable/Disable Breakpoints
Disable All Breakpoints

Kill All Breakpoints

Find

Fas@e o el

Show/Hide the Project Windows
uVision Configurations

In either source windows or disassembly windows, you can insert/remove breakpoint using
the icons near top right-hand corner of the window, by right clicking on the source/
instruction line and selecting insert breakpoint, as shown in Figure 14.75.

You can examine the contents of the memory using the memory window in the bottom
right corner. You can modify the representation format of the data by right clicking on the

|] blinky.c

{3

21l [? while (1) {
2o |

Split Window horizontally
Insert '#include file'

Go to Headerfile

Show Disassembly at 0x00000208
Set Program Counter
Run to Cursor line

Insert/Remove Breakpoint
Enable/Disable Breakpoint

Insert Tracepoint at line 22...

Enahla/Micahla Trarannint

Ctrl+F10

NAlaxz TANAD _CATTATM -

F9
Ctrl+F9

bcation/Value
pOOOOlFE

1@

Type
int fQ)

Figure 14.75

Insert breakpoint by right clicking on the line of code and select insert breakpoint.

mailto:Image of Figure 14.74|eps
mailto:Image of Figure 14.75|tif

390 Chapter 14

7N
Address: IOXO —
oxooooooo - £0 TA BB A _20 02
0x0000000 Decimal
0x0000001 -
0x0000002 | Easioncd i
0x0000003 Signed | 2
0x0000004
.|ox0000005 Ascii =
Nennnnnng FI t
oa
(‘%Call Staq
Double
[—— Add ‘N0’ tn > =

Figure 14.76
Memory window.

left-hand column of the window and select the suitable data format, as shown in

Figure 14.76.

You can also examine the peripheral registers in the IDE easily using the System
Viewer feature. The System Viewer feature utilizes the CMSIS-SVD (System View
Descriptions) and visualizes the peripheral register contents in a convenient dialog

(Figure 14.77).

ch_14_kI25z_blinky_2\blinky.uvprojx - |
Flash Debug | Peripherals | Tools SVCS Window Help

9 o | | System Viewer > FTFA

» DMA
DMAMUX0
PIT

TPM

' 17: // Confi ADCO
: 0x000001FE FOOOF958 RTC

@7 — ‘ DACO
LPTMRO
TSI0
SIM
PORT
MCG
0sco
12C
UART
USBO
CMPO
SPI

Tian

i
ol » |ER

2 Disassembly
1S: SystemCo:

Core Peripherals

>

v

Flae@ e

& &3 2

-

=

eClockU ¥

v X

4 [»

2 UARTO

!

Property
> BDH
BDL

[z

Value

I

[V] uarto
UARTL

UART2

00 00 00 00

02 00 00 4B

Figure 14.77

Peripheral register display using CMSIS-SVD.

N aooN

00
00
00
02

00
00
00
00

41
00
00
00

02
00
00
49

00
00
45
02
00

00
00
02
00
00

43
00
00
00

02
00
00
4B
02

00
00
00
02

00
00
00
00

mailto:Image of Figure 14.76|tif
mailto:Image of Figure 14.77|tif

Getting Started with the Keil Microcontroller Development Kit 391

14.6 Under the Hood
14.6.1 CMSIS Files

When the project wizard is used to create a project, in the “Manage Run Time
Environment” step, a number of CMSIS-CORE support and the device start-up files can be
added to the project easily.

* The CMSIS-CORE option adds the required header files in the include path of the
project.

* The Device — Startup option adds the start-up code, system_<device>.c and
system_<device>.h to the project.

The start-up code and the system_<device>.c are copied to the local project directory
automatically, in a subdirectory called “RTE\Device\<device_name>.” So you can modify
these files without worrying about affecting other projects.

If necessary, instead of using the project wizard to include the CMSIS files, you can
include the start-up code and the header include path to the project manually.

In some cases, some microcontroller software packages might also come with
CMSIS-DRIVER, a cross platform peripheral driver. This can make your peripheral
programming easier. Alternatively, the device driver library from MCU vendors might also
contain device driver codes for the peripherals.

14.6.2 Clock Setup

In the example projects, the system_<device>.c contains a Systeminit() function that is
executed. In some cases, the system_<device>.c file might need modifications to allow you

to set up the system to run at the right clock speed. The details of the configuration of the
SystemInit() function is microcontroller vendors specific.

14.6.3 Stack and Heap Setup

The size of the stack (Main Stack) and heap memory are defined in the start-up file. You
can edit the assembly start-up code in the text editor in the IDE directly. Alternatively, you
can use a Configuration Wizard: When the start-up file is open in the editor, you should
see two tabs at the bottom of the active file windows. Click on the “Configuration Wizard”
and you can edit the stack and heap size easily, as shown in Figure 14.78.

If you click on the Text Editor tab, you can see that there are a number of special
comments in the start-up code file. The Configuration Wizard utilizes these special
comments to create a GUI-like interface. More information on the Configuration Wizard

392 Chapter 14

E C:\CMOBook_Examples\ch_14_kI25z_blinky_2\blinky.uvprojx - u\ﬁsw

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NSda@| » aa | | ™ 2 ™ P EE | B volatie BET TR Y EREY
@L’J :\?L!|l5”%°|Debug E]}:\[ﬁ%s‘?@

Project

v X

a-% Project: blinky
=% Debug
=& Application Option Value

0 blinky.c = Stack Configuration
O readme.txt Stack Size (in Bytes) 0x0000 0400
€ cMmsIs &-Heap Configuration
29 Device Heap Size (in Bytes) 0x0000 0000
D startup_MKL2574:s (Startup) Flash Configuration
@ system_MKL257Z4.c (Startup) Flash nonvolatile option byte (FO...
Flash security byte (FSEC)

ExpandAll | Collapse Al | Hep | [ShowGrid

Stack Configuration

[l Project @Books {} Functions | [}, Templates Text Editor)\Conﬁguration Wizard /
Build Output

Figure 14.78
Configuration Wizard.

can be found on the Keil Web site: http://www.keil.com/support/man/docs/uv4/uv4_ut_
configwizard.htm.

You need to adjust the stack and heap memory size according to your application. The
stack size requirements for various functions can be determined from a generated HTML
file after the compilation (see Section 14.6.4).

The heap memory is typically used by memory allocation functions, and in some cases
also used by other C runtime functions, including “printf” when certain data formatting
string is specified.

14.6.4 Compilation

When you click on “Build”/“Rebuild all,” the tool chain go through the development flow

as outlined in Figure 14.3 (apart from generation of binary file which is optional and is
disabled by default).

http://www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm
http://www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm
mailto:Image of Figure 14.78|tif

Getting Started with the Keil Microcontroller Development Kit 393

When you start the debug session, the uVisi0n® IDE automatically programs the program
image to the flash memory, and optionally sets up a breakpoint at the start of the main()
program. The microcontroller is then reset so that the program starts and halts at the
entrance of main().

If you want to, you can disable the “Run to main()” option in the debug options. The
debugger will then start the debug session at the first instruction of the reset handler. This
is useful if you have to debug the “SystemlInit()” which executes before entering main().

If you need to find out more about the memory utilization of the project, double click on
the project target (e.g., “Target 1) in the project navigation window. This opens a memory
map report file (you can find this file under the Listings subdirectory).

Another useful file generated during the compilation is an HTML file in the Objects
subdirectory. The name of the file is same as the project output file (e.g., if the executable
is blinky.axf, the HTM report file is b1inky.htm). This file reports the stack size usages
and as the call tree.

14.7 Customizations of the Project Environment
14.7.1 Target Options

There is a wide range of project options in the Keil MDK Vision® IDE. We have already
covered the debug options and the flash programming option briefly, and here we will
introduce the other options.

Device Options

This tab allows you to select the microcontroller device you want to use. When you click
on a device, on the right-hand side of the screen it will also show a brief introduction of
the product.

Target Options

This allows you to set up the memory map, clock frequency (use by instruction set
simulator to determine timing), an option related to C run time library selection (standard
C library/MicroLib), and an option for Cross Module Optimization. Please see Section
14.7.2 for more information about the last two options.

Output Options

The output option tab allows you to select if the project should be generating an
executable image or a library. It also allows you to specify the directory where the
generated file is created and the output file name.

394 Chapter 14

Listing Options

The listing option tab allows you to enable/disable assembly listing files. By default, the C
Compiler listing file is turned off. When debugging software bugs, it can be useful to turn on
this option so that you can see exactly what assembly instruction sequence is generated.
Similar to the “Output” options, you can click on “Select Folder for Objects” to define where
the output listings should be stored. You can also generate disassembly listing after the
linking stage, using a different method that is shown in the User options (next paragraph).

User Options

The User option tab allows you to specify additional commands to be executed. For
example, in Figure 14.79, the following command line is added:

$K\ARMMARMCC\BIN\fromelf.exe -¢ -d -e -s #L. —output list.txt

This command generates a disassembled listing of the complete program image. This gets
executed after the compilation stage and can be very useful for debugging (see section
Appendix G.2). In the user option example shown below, “$K” is the root folder of the
Keil development tool and “#L” is the linker output file. These key sequences can also be

IN4 options for Target 'Debug

Devicel Targetl Outputl Listing User IC/CHI Asm I Linkerl Debugl Utilitiesl
Command Items User Command .. StoponExitC.. Spawn
=-Before Compile C/C...
™ Run#1 5] Not Specified |T™
I Run #2 (5] Not Specified | I~
=--Before Build/Rebuild
I Run#1 5] Not Specified |T™
™ Run #2 5] Not Specified |T™
= After Build/Rebuild
¥ Run #1 $SKNARMVARMCC\BIN\fromelf.exe -c -d -e -s #L --outpu... @ O
[~ Run#2 =] O
[v' Beep When Complete [~ Start Debugging
ok | cancel | Defauts | Help

Figure 14.79
Add user command to execute after build.

mailto:Image of Figure 14.79|tif

Getting Started with the Keil Microcontroller Development Kit 395

used to pass argument to external user programs. You can find a list on key sequence
codes from this link on the Keil Web site: http://www.keil.com/support/man/docs/uv4/uv4_
ut_keysequence.htm.

C/C++ Options

The C/C++ option tab allows you to define the optimization options, C preprocessing
directives (defines), search path for include files, and miscellaneous compile switches.
Please note that by selecting CMSIS-CORE option when creating the project, by default, a
number of directories are automatically included in the search path of the project (see the
Compile control string list at the bottom). If you want to use a specific version of
CMSIS-CORE files, you might need to disable this automatic include path feature by
clicking on the “No Auto Includes” box in this dialog, and add the specific version of
CMSIS-CORE header files in the project manually.

Assembler Options

This allows you to define preprocessing directives, include-paths, and additional assembler
command switches if required.

Linker Options

By default, the project wizard automatically sets up the required memory layout when you
select the microcontroller device. You can create the memory layout by:

* Using the R/O (read only, i.e., flash) and R/W (read/write, i.e., SRAM) address in the
linker options.

* Define the memory layout in the Target option tab and select “Use Memory Layout
from Target Dialog.”

* Manually define the memory layout using a text-based file called Scatter File (this file
is automatically generated during a compilation) using the “Scatter File” option. You
can also get this file generated automatically from a compilation, and then customize it
for the next compilation.

Debug Options

The debug option dialog allows us to select between testing with real hardware (right-hand
side of the dialog) and testing the program code with an instruction set simulator (left-hand
side of the dialog). It also allows us to configure several debug options. For example, when
entering a debug session, we can choose to halt the processor as the processor exit reset, or
halt it when the processor just before executing “main()” (when “Run to main()” is selected).

You can also define an additional script file (Initialization file) which is executed each
time before the debug session starts.

http://www.keil.com/support/man/docs/uv4/uv4_ut_keysequence.htm
http://www.keil.com/support/man/docs/uv4/uv4_ut_keysequence.htm

396 Chapter 14

Inside the sub menu for the debug adaptor, you might find three different tabs:

e Debug
e Trace—for Cortex®-M3, Cortex-M4, and Cortex-M7 with trace interface
¢ Flash download

Utilities Options

The Utilities options tab allows you to define what debug adaptor is used for flash
programming, and flash programming algorithm used.

14.7.2 Optimization Options

A number of compiler and code generation options are available to allow different
optimizations. The first group of these options is the C compiler options, as shown in
Figure 14.80. The C compiler options allow you to select optimization levels (0—3, see
Table 14.1) through a drop-down menu. Optimization is set to reduce code size by default
unless the tick box “Optimize for Time” is set.

Options for Target 'Debu
Devicel Target[Outputl Listingl User C/C++ IAsm I Linkerl Debugl Utilitiesl
— Preprocessor Symbols
Define: l
Undefine: I
— Language / Code Generation
[~ Execute-only Code [~ StictANSIC e
e Tl |Level 0 (-00) vI [~ Enum Container always int |Al|Warnings ﬂ
[~ Optimize for Time [~ Plain Charis Signed [~ Thumb Mode
[~ SplitLoad and Store Multiple [~ Read-Only Position Independent [~ No Auto Includes
[~ One ELF Section per Function [~ Read-Write Position Independent [~ C99Mode
Include l —|
Paths
Misc l
Controls
Compiler |-c —cpu Cortex-M0+-D__EVAL -g -O0 --apcs=interwork -
control |- C:\CMOBook_Examples\ch_14_kI25z_blinky_2\RTE
string |-1 C:\Keil_v5\ARM\PACK\ARM\CMSIS\4.2.0\CMSIS\Include Y

ok | cancel | Defauts Help

Figure 14.80
Compiler options.

mailto:Image of Figure 14.80|tif

Getting Started with the Keil Microcontroller Development Kit 397

Table 14.1: Various C compiler optimization levels

Optimization level Descriptions

-00 Applies minimum optimization—most optimizations are switched
off, and the code generated has the best debug view.

-O1 Applies restricted optimization—unused inline functions, unused

static functions, redundant codes are removed. Instructions can be
reordered to avoid interlock situations. The code generated is
reasonably optimized with a good debug view.

-02 Applies high optimization—optimize the program code according
to the processor-specific behavior. The code generated is highly
optimized, with limited debug view.

-03 Applies the most aggressive optimization—optimize in accordance
with the time/space option. By default, multifile compilation is
enabled at this level. This give the highest level of optimization, but
take longer compilation time and lower software debug visibility.

You can also add additional compiler switches directly in the “Misc Controls” text box.
For example, if you are using a Cortex-MO processor with a 32-cycle multiplier (e.g., one
from the Cortex-MO DesignStart” program), you can add the —multiply_latency=32
option so that the C compiler can optimize the generated code accordingly.

In applications where performance is critical, you can consider adding the following
command in the “Misc Controls”: —loop_optimization_level=2.

This option performs additional optimizations including loop unrolling to enhance the
performance of the application, at a cost of higher code size.

A second group of useful options can be found in the target options window as shown in
Figure 14.81: Cross-Module Optimization and MicroLIB.

ﬂ Options for Target ‘Debug’) r

|
Device Target I Outputl Listingl User] C/C++| Asm I Linkerl Debugl Uﬁlities]
Freescale MKL25Z128xx4
— Code Generation
Xtal (MHz): {120 ARM Compiler: |Use latestinstalled version Ll
Operating system: |None ﬂ
System Viewer File: [~ Use Cross-Module Optimization
IMKL2524.svd J [~ Use MicroLIB [~ Big Endian
[~ Use Custom File
—Read/Only Memory Areas —Read/Write Memory Areas
default off-chip Start Size Startup default off-chip Start Size Nolnit
— onm | [~ | i oan. | [-

Figure 14.81
Code generation options.

mailto:Image of Figure 14.81|tif

398 Chapter 14

The MicroLIB C library is optimized for microcontrollers and other embedded
applications. If the MicroLIB option is not selected, the standard ISO C libraries are used.
The MicroLIB has a smaller program memory foot print, but has a slower performance
and has a few limitations. In most applications that are migrating from 8-bit/16-bit
microcontrollers to ARM® Cortex-MO/MO+ processors, the slightly lower performance of
MicroLIB is unlikely to be an issue because the Cortex-M0/M0+ processors provide much
higher performance than most 8-bit or 16-bit processors.

The Cross Module Optimization operation takes information from a prior build and uses it
to place UNUSED functions into their own ELF section in the compiled object file. In this
way, the linker can remove unused functions to reduce code size.

More details of optimization techniques can be found in Keil Application Note
202—MDK-ARM Compiler Optimizations (reference 9).

14.7.3 Runtime Environment Options

In the tool bar diagram (Figure 14.72), there are three icons at the end of the second row:

* Manage Runtime Environment
¢ Select Software Pack
e Pack installer

You can add or remove software components from your project by the Manage Runtime
Environment dialog. And if needed, you can install additional software components from
the Pack Installer.

Please note that it is not unusual to have multiple versions if certain software pack is installed
on a system. For example, there can be multiple versions of the CMSIS-CORE support files
installed on a system for different device driver library packs. You can select a specific
version of the software pack in your project using the “Select Software Pack” dialog.

14.7.4 Project Management

In the project navigation window (e.g., Figure 14.17, Figure 14.32, Figures 14.47 and
14.62) you can see that there are “Target 1~ and “Source Group 1.” These can be modified
to give it more intuitive names. To change them, just click on the name to highlight it, and
then click it again to edit.

You can have multiple source groups in a project. For example, if you have a fair number
of project files in you project, it is useful to group the files and name the source group
based on the type of the software (e.g., motor control, GUI, etc.). To add a new source
group in a project target, just right click on the project target and select “Add Group.”

Getting Started with the Keil Microcontroller Development Kit 399

’“
5z_blinky_2\blinky.uvprojx - pVision E X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help |
gﬁtﬁﬂ@|/,—;\j§|“) | | & 7™ ow S JE | B volatile E]E&f°|@|. 0ﬁ||'\
P [8 ©] 8] pebug & d=evd |
Project 2 |} blinky.c | |] startup MKL25Z4s | | readme.txt v x|
a-% Project: blinky - This is an example blinky project for the
@ #5 Debug Freescale Freedom FRDM-KL25Z board.
[y o The LED on the board actual contains three
=] Application TN
PR i individual LEDs: Red, Green and Blue.
blinky.c - Red : port B pin 18
0 readme.txt - Green: port B pin 19
% oMsis - Blue :port D pin 1
=% Device The program toggle the RGB LEDs all at the same
D startup_MKL25Z4ss (Startup) time |

1 system_MKL25Z4.c (Startup) |
EProject 6800&(5 {3 Functions “.,Temp]ates ‘ < I »
Build Output)
compiling system MKL25Z4.c... a

linking...
Program Size: Code=1464 RO-data=240 RW-data=4 ZI-data=1124

" .\Objects\blinky.axf" - 0 Error(s), O Warning(s).

Load "C:\\CMOBook Examples\\ch_14_k125z_blinky 2\\Objects\\blinky.axf"
Erase Done.

111

Figure 14.82
A project can be improved by renaming Target, Source Group, and adding Text file to explain the code.

To make the project information more visible, you can also include text files in a project
for additional information as shown in Figure 14.82.

You can also have multiple Targets in a project. This is commonly used in product
development where you can have a software code base for multiple similar products. Each
target can have different compilation options, project file list, etc. To add a new target for a
project, you can use the pull-down menu: Project — Manage — Components, Environments,
Books..., or click on the [#] icon on the tool bar to access the project management window
(Figure 14.83), and then click on the new project target button as shown in Figure 14.84.

IPERERY

& File Extensions, Books and Environment...

Configure file extensions, books
and environment

Figure 14.83
Adding a new target to a project.

mailto:Image of Figure 14.82|tif
mailto:Image of Figure 14.83|tif

400 Chapter 14

rManage Pfojeqt Item

Project ltems I Folders/Extensions | Books |

Project Targets: il S IR 2 |Groups: 3% |2 ¥] [Files: X2+
blinky.c

readme.ixt

AddFiles... |

Setas Current Target l

Add Files as Image... I

OK | Cancel I Help

Figure 14.84
Adding a new target to a project.

14.8 Using the Simulator

The pVision® IDE includes an instruction set simulator. The simulator provides instruction
set level simulation, and for a limited number of microcontroller devices, a device-level
simulation feature (including peripheral simulation) is also available. To enable this
feature, change the debug option to use simulator as shown in Figure 14.85.

After this is set, the simulator would be used when a debug session is started. From here,
it is possible to execute the program, single step through the program, and also examine
the system status.

In many cases, depending on the microcontroller product you are using, the debug
simulator might not be able to fully simulate all the peripherals available on the
microcontroller. Also, it may be necessary to adjust the memory map of the simulated
device. This can be done by accessing the memory configuration via the pull-down menu:
Debug — Memory.

mailto:Image of Figure 14.84|tif

Getting Started with the Keil Microcontroller Development Kit 401

Options for Target 'Debug’

[~ Limit Speed to Real-Time

(@ Use Simulator

Devicel Targetl Outputl Listing' User I C/CHI Asm I Linker Debug IUtiIitiesl

(" Use: ICMSIS-DAPDebugger LI Settings |

[v' Load Application at Startup [V Runto main()
Initialization File:

|] e |

[V Load Application at Startup
Initialization File:

[v" Runto main()

Restore Debug Session Settings
[v' Breakpoints [v Toolbox
[v" Watch Windows & Performance Analyzer
[v' Memory Display [v' System Viewer

[v' Breakpoints
[v Watch Windows
[v' Memory Display

Restore Debug Session Settings

[v Toolbox

[V’ System Viewer

CPUDLL: Parameter: Driver DLL: Parameter:
ISARMCM3.DLL | ISARMCM3.DLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:

IDARMCM1.DLL I-pCMO+

ITARMCM1.DLL I-pCMO+

ok |

Cancel | Defaults l

Help

Figure 14.85
Enable simulator for debug.

14.9 Execution in SRAM

In addition to downloading the program to flash memory, you can also download a
program to RAM and test it without changing the content inside the flash memory. To do
this, we need to change a number of options in the project:

* Memory layout of the image (Target options, Figure 14.86)

* Linker option (select “Use memory Layout from Target Dialog”)

* Flash programming option (remove flash programming step, Figure 14.87)
* Debug option—add a debug initialization command file (Figure 14.88)

First, we need to specify the new memory map for the compiled image (Figure 14.86).
The memory layout depends on the microcontroller used for the project.

Then, we specify the linker to handle the link process based on the memory layout we

specified in the Target dialog.

In addition, the flash programming option is modified to remove flash programming steps

(Figure 14.87).

mailto:Image of Figure 14.85|tif

402 Chapter 14

Options for Target

Device Target I Ouiputl Lisﬁngl User I C/C-Hl Asm

] Linkerl Debugl Uﬁliﬁesl

Freescale MKL25Z128xxx4
—Code Generation
Xtal (MHz): |12.0 ARM Compiler: IUse latest installed version Ll
Operating system: |None Ll
System Viewer File: [~ Use Cross-Module Optimization
[MKL2524.5vd _I [~ Use MicroLIB I~ Big Endian
[~ Use Custom File
—Read/Only Memory Areas —Read/Write Memory Areas
default off-chip Start Size Startup default off-chip Start Size Nolnit
™ Rowmt: | | c ~ Raw | | -
[~ ROM2 | | c r RAM2: | | r
[ROMS3: | | c r RAM3: | | r
on-chip on-chip
¥ IRoMmI: |Ox1FFFFOOO |0x1ooo G F RAMI: |mooooooo |0x3000 -
I~ IRom2 | | C T RAM2 | | -
ok | cCancel | Defauts | Help |

Figure 14.86

Define memory map for execution from SRAM.

‘Cortex-M farget D

Debug Flash Download I
—Download Function RAM for Algorithm
LORD (" EraseFullChip [~ Program
i 1 (" EraseSectors [Verify Start. [0xIFFFF000 Size: [0x4000
® Do notErase [~ Resetand Run
—Programming Algorithm
Description] Device Size | Device Type I Address Range |
MKXX 48Mhz 128kB Prog ... 128k On-chip Flash 00000000H - 0001FFFFH
Start | Size:
Add | Remove |
oK I Cancel I Help |

Figure 14.87

Remove flash programming steps from project options.

mailto:Image of Figure 14.86|tif
mailto:Image of Figure 14.87|tif

Getting Started with the Keil Microcontroller Development Kit 403

Device | Target| Output| Listing| User | C/C++| Asm | Linker Debug | Utiities |
(" Use Simulator Settings @® Use: |CMS|S-DAP Debugger ﬂ Settings
[~ Limit Speed to Real-Time
[¥ Load Application at Startup [¥" Run to main() [v' Load Application at Startup [¥" Run to main()
Initialization File: Initialization File:
I J Edit I\ram_debug.ini _I Edit...
Restore Debug Session Settings Restore Debug Session Settings

[v Breakpoints [v Toolbox [v' Breakpoints [v" Toolbox

[v" Watch Windows & Performance Analyzer [v Watch Windows

[v' Memory Display [v' System Viewer [v' Memory Display [v' System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
ISARMCMS.DLL | ISARMCMBDLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDARMCMI.DLL I-pCMO+ ITARMCM1.DLL I-pCMO+

ok | cancel | Defauts | Help |

Figure 14.88
Add an Initialization File for debug (ram_debug.ini).

The next step is to create a simple debug start-up script to load the initial stack pointer
and program counter to the right location. For this example, a file called ram_debug.ini is
created with the following text:

ram_debug.ini

reset

// VTOR in Cortex-MO+

// Remap interrupt vectors to SRAM
_WDWORD(OXEQOOOEDO8, Ox1FFFF000);

LOAD blinky.axf INCREMENTAL // Download image to board

SP = _RDWORD(Ox1FFFFO000); // Setup Stack Pointer
PC = _RDWORD(Ox1FFFFOO04); // Setup Program Counter

We then need to set up the debug option so that this debug start-up script is used when the
debug session starts. The debug option changes for this example are shown in
Figure 14.88 (Initialization File option).

Now we can start the debug session as normal.

mailto:Image of Figure 14.88|tif

404 Chapter 14

When the debug session is started, it will download the program to SRAM and set the
program counter to correct starting point in the program image automatically. The
application can then be started.

Testing a program image from RAM can have a number of limitations. First, it is
necessary to use a debugger script to change the program counter and initial stack pointer
to the right locations. Otherwise, the reset vector and initial stack pointer value in the flash
memory will be used after the processor is reset.

The second issue is that additional hardware is required to use the exception vector table
in RAM. The vector table normally resides in the flash memory from address 0x0. For
Cortex®-MO0+ processor, the optional Vector Table Offset Register (VTOR) can be used to
define the vector table to SRAM. For Cortex-MO processor, the VTOR is not available. In
some microcontrollers, device-specific memory remapping hardware is available to
overcome this issue, but the debug initialization file need to initialize such memory
remapping to enable correct interrupt operations.

14.10 Using MTB for Instruction Trace

Instruction trace via MTB (Micro Trace Buffer) is supported in Keil MTB. To enable this
feature on the Freescale FRDM-KL25Z board, a debug initialization command file is
required. A sample of this file is shown below.

DBG_MTB.ini
/**/
/* MTB.ini: Initialization Script for Cortex-MO0+ MTB(Micro Trace Buffer) */
/**/
// <K< Use Configuration Wizard in Context Menu >>> //
/**/
/* This file is part of the uVision/ARM development tools. */

/* Copyright (c) 2005-2012 Keil Software. Al1 rights reserved. */
/* This software may only be used under the terms of a valid, current, */
/* end user licence from KEIL for a compatible version of KEIL software */

/* development tools. Nothing else gives you the right to use this software. */
/**/

FUNC void MTB_Setup (void) {
unsigned long position;
unsigned long master;
unsigned long watermark;
unsigned Tong _flow;

// <e0.31> Trace: MTB (Micro Trace Buffer)
// <00.0..4 > Buffer Size

// <4=> 2568

// <b=> 512B

Getting Started with the Keil Microcontroller Development Kit 405

/7 <6=> 1kB
/7 <7=> 2kB
// <8=> 4kB
/7 <9=> 8kB

// Buffer Position

// <i> Buffer position in RAM. Must be a multiple of the buffer size.
// <02.0> Stop Trace when buffer is full

// <o02.1> Stop Target when buffer is full

/] </e>
master = 0x80000008;
position = 0x20000000;
_flow = (0x00000000;
position &= OxFFFFFFF8; // Mask POSITION.POINTER field
watermark = position + ((16 <<(master & Ox1F)) - 32);
_flow | = watermark;
_WDWORD(0xF0000004, 0x00000000); // MASTER
_WDWORD(0xF0000000, position); // POSITION
_WDWORD(0xF0000008, _flow); // FLOW
_WDWORD(0xF0000004, master); // MASTER

}

MTB_Setup();

E C\CMOBook_Examples\ch_14_kI25z_blinky_4_MTB\blinky.uvprojx - p\ﬁsio

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Nod@| s walo e [7 m B B[EEE G| B vohatie Fla*|ale 0&][@%\\
i BB e 5| 98] pebug E]A\Ib%“?&

Project 7 ; L] blinky.c | v x

B Freyect-eriy Expand All | Collapse All | Help | [~ Show Grid
=49 Debug - liShowand;
=& Application Option Value
3 i -
0 blinky.c = Trace: MTB (Micro Trace Buffer) 4 =
1 readme.xt Buffer Size 4kB
¥ oMsIS Buffer Position 0x2000 0000
9 Device Stop Trace when buffer is full O
Stop Target when buffer is full O ,ﬂ
l Trace: MTB (Micro Trace Buffer)

EProject GBooks | {3 Functions H].,Templates |

Build Output 2

Load "C:\\CMOBook Examples\\ch_14_k125z_blinky 4 MIB\\Objects\\blinky.axf" -
Erase Done.

Programming Done.

Verify OK.

Text Editor)\, Configuration Wizard /[

Figure 14.89
MTB Configuration via Configuration Wizard.

mailto:Image of Figure 14.89|tif

'R C\CMOBook_Examples\ch_14_kI257_blinky_4_MTB\blinky.uvprojx -
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NeSda|s B2 c|«u | dBBRBB|EEE //,alg,mm—\ga#|| e 0 OQI@I'\|
xlpolwee s v | DREERA-O3- ,(lvl %~

“mr

Registers a Disassembly (| Trace Data 2
EI:iegister IValue - Oxoozcl);zosw:;ég(l)‘ w[n [z” l B in Al [ZII |
5 0x00000002 .omoizézos zggiaYleiagg = ddress Opcode Instruction Src Code Function
- OXF8OFFOCO <[] 5 3,311/X:0x00000.. (6849 | LDR rL[rL#0x04] LED_Config &
dteaany ‘ 3,312 X: 0x00000.. 4308 | ORRS r00r1 LED_Config
T g | X 3,313|X:0x00000.. [490F | LDR rl[pc#60] ; @0x.. LED_Config
- 0x000006A3 " PG/ ; &
- R5 Ox1FFFF004 // cOnfiz_;ure Lja 3,314 X : 0x00000... |3980 SUBS rl,r1,#0x80 LED_Config
B 000000000 i =0 ronfiatls 3,315 X: 0x00000.. (6148 | STR r0[rL#0x14] LED_Config
RS OXFFEGFFBB 20 | $define Loor couls 3,316/X:0x00000.. [480D | LDR r0,[pc#52] ; @0x..| FPTD->P../LED_Config
-~ R9 0x1FFFF618) 2138 while(1){ 3,317 X : 0x00000... 6880 LDR r0,[r0,#0x08] LED_Config
Wi e - 22 Delay (LOOP_C 3,318|X: 0x00000.. 490D | LDR rl[pc#52] ; @0x.. LED_Config
RI12 (x00000000 gi ngl’;s‘?iéé; y 3,319/X: 0x00000.. 6008 | STR r0,[rL#0x00] LED_Config
~-R13(SP) _ OxIFFFF468 - s T 3,320/X:0x00000.. |480B | LDR r0,[pc#44] ; @0x.. FPTD->P.. LED_Config
& g:gg;’g i 2 | 3,321 X: 0x00000.. 6880 | LDR r0,[r0,#0x08] LED_Config
. PRl R =] ol |) g 3,322|X:0x00000.. |6148 | STR r0,[rl#0x14] LED_Config
B Project | W <m " y 3323|X:0x00000.. 4770 BX Ir } LED_Config —

Figure 14.90
Enabling MTB trace (instruction trace showing on the right).

v1L 493dvyD 90p

mailto:Image of Figure 14.90|tif

Getting Started with the Keil Microcontroller Development Kit 407

After this file is created, you can configure the debugger to initialize the debug session
with this file as shown in previous section (see Figure 14.88).

To edit the configuration, you can use the Configuration Wizard (see Section 14.6.3 for
similar information) to configure the memory size allocated for instruction trace and other
options (Figure 14.89).

After the debug options are set up, during the debug session, you can access to the
instruction trace using pull-down menu: View — Trace — Trace Data, or using the Trace
icon on the tool bar, as shown in Figure 14.90.

Getting Started with IAR Embedded
Workbench for ARM®

15.1 Overview of IAR Embedded Workbench for ARM®

IAR Embedded Workbench for ARM is a popular development suite for ARM-based
microcontrollers. It contains the following:

e C and C++ compiler for various ARM processors
* Integration Development Environment (IDE) with project management and editor
« C-SPY® debugger with ARM simulator, JTAG support and support for RTOS-aware
debugging on hardware (a number of RTOS plug-ins are available). The debugger sup-
ports various debug adaptors including the following:
* IAR I-Jet/I-jet Trace and JTAGjet/JTAGjet Trace,
* CMSIS-DAP,
e Segger J-Link/J-Link Ultra/J-Trace,
 GDB server,
e ST Link/ST Link v2,
e TI XDS 100/200 and Stellaris FTDI/ICDI,
* SAM-ICE (Atmel), ...etc.
* Additional components including ARM assembler, linker and librarian tools, flash pro-
gramming support
* Examples for various development boards from multiple manufacturers
* Documentation

The full version of IAR Embedded Workbench also supports the following:

* Automatic checking of MISRA C rules (MISCRA C:1998, MISRA C:2004)
* Source code for runtime libraries

e C-RUN runtime analysis (optional)

e C-STAT static analysis

IAR Embedded Workbench is a commercial tool. Various editions are available, including
a free version called Kickstart which is limited to 16 KB' code size (for Cortex®-MO and

' 16 KB code size limit applies to ARMv6-M processors including Cortex-MO and Cortex-MO+ processors.
For ARMv7-M including Cortex-M3, Cortex-M4 and the Cortex-M7 processors, the code size limit is 32 KB.

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0-+ Processors. http:/dx.doi.org/10.1016/B978-0-12-803277-0.00015-1
Copyright © 2015 Elsevier Inc. All rights reserved. 409

http://dx.doi.org/10.1016/B978-0-12-803277-0.00015-1

410 Chapter 15

Cortex-MO+ processors) and has some of the advance features disabled. You can also
download a fully featured version for a 30 days evaluation.

IAR Embedded Workbench is easy to use and supports many debug features available in
the Cortex-M processors. In this chapter we will demonstrate the use of IAR Embedded
Workbench for ARM with the Freescale Freedom board FRDM-KL25Z. Before you start,
please read section 14.3.1 regarding updating the firmware and device driver installation.

In the example code package from the companion Web site for this book, there are
additional examples for other hardware listed in section 14.3.

15.2 Typical Program Compilation Flow

Just like most commercial development suites, the compilation process is handled
automatically by the IDE and can be invoked easily by the GUI. So in most cases you do
not need to understand the details of the compilation flow. Once the project is created, the
IDE automatically invokes various tools to compile the code and generate the executable
image, as shown in Figure 15.1.

Most of the device configurations such as configuration files for memory layout, flash
programming details are preinstalled so that you only need to select the right
microcontroller devices in the project settings to enable the correct compilation flow.

In order to simplify the application development and allow quicker software development,
in most cases you will be using a number of files prepared by the microcontroller vendors
so that you do not have to waste time in creating definition files for peripheral registers.

Cfiles (.c) Object files (.0)
a Binary program
iccarm image (.bin)
(compiler) Executable g
image file & ielftool
Config (.icf) (.out)
Project memory |I|nkarm Disassembled
settings |av0ut (Imker) P b code (.txt)
ielfdumparm
Assembly files (.s) Object files (.0)
Flash

Programming
iasmarm
(assembler)
Debug

Figure 15.1
Example compilation flow with IAR Embedded Workbench.

Getting Started with IAR Embedded Workbench for ARM® 411

These files are normally part of the CMSIS compliant device driver library from the
microcontroller vendors. In many cases these are referred as software packages which might
also include additional components such as examples, tutorials, additional software libraries.

A minimalistic example project using CMSIS device library is illustrated in Figure 15.2.

Startup code file
‘ startup_<device>.s ‘ Startup
(assembly)

CMSIS system Initialization
E system_<device>.h }q\
Need customization

system_<device>.c €.g. for CIO.Ck
configuration

x
Aoblication Application Device specific header file Device specific
PP program file <device>.h definitions
Application From microcontroller

specific vendors
Figure 15.2

Example project with CMSIS-CORE.

While your application might only contain one file (left hand side of Figure 15.2), the
project also includes a number of files from the microcontroller vendor. While you can
create your applications almost entirel