

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803, USA

The Boulevard, Langford Lane
Kidlington, Oxford, OX5 1GB, UK

© 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for whom they
have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

Library of Congress Cataloging-in-Publication Data
Yiu, Joseph.

The definitive guide to the ARM Cortex-M3 / Joseph Yiu.
p.	 cm.

Includes bibliographical references and index.
ISBN 978-1-85617-963-8 (alk. paper)

1. Embedded computer systems.  2. Microprocessors.  I. Title.
TK7895.E42Y58 2010
621.39’16—dc22
	 2009040437

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Academic Press publications
visit our Web site at www.elsevierdirect.com

Printed in the United States
09  10  11  12  13   10  9  8  7  6  5  4  3  2  1

www.elsevier.com/permissions
<FEFF>www.elsevierdirect.com<FEFF>

xvii

Foreword

Progress in the ARM microcontroller community since the publication of the first edition of this book
has been impressive, significantly exceeding our expectations and it is no exaggeration to say that it is
revolutionizing the world of Microcontroller Units (MCUs). There are many thousands of end users
of ARM-powered MCUs, making it the fastest growing MCU technology on the market. As such, the
second edition of Joseph’s book is very timely and provides a good opportunity to present updated
information on MCU technology.

As a community, progress has been made in many important areas including the number of com-
panies building Cortex™-M3 processor-based devices (now over 30), development of the Cortex
Microcontroller Software Interface Standard (CMSIS) enabling simpler code portability between
Cortex processors and silicon vendors, improved versions of development tool chains, and the release
of the Cortex-M0 processor to take ARM MCUs into even the lowest cost designs.

With such a rate of change it is certainly an exciting time to be developing embedded solutions
based on the Cortex-M3 processor!

—Richard York

Director of Product Marketing, ARM

xviii

Foreword

Microcontroller programmers, by nature, are truly resourceful beings. From a fixed design, they create
fantastic new products by using the microcontroller in a unique way. Constantly, they demand highly
efficient computing from the most frugal of system designs. The primary ingredient used to perform
this alchemy is the tool chain environment, and it is for this reason that engineers from ARM’s own tool
chain division joined forces with CPU designers to form a team that would rationalize, simplify, and
improve the ARM7TDMI processor design.

The result of this combination, the ARM Cortex™-M3, represents an exciting development to the
original ARM architecture. The device blends the best features from the 32-bit ARM architecture with
the highly successful Thumb-2 instruction set design while adding several new capabilities. Despite
these changes, the Cortex-M3 retains a simplified programmer’s model that will be easily recognizable
to all existing ARM aficionados.

—Wayne Lyons

Director of Embedded Solutions, ARM

xix

Preface

This book is for both hardware and software engineers who are interested in the ARM Cortex™-M3
processor. The Cortex-M3 Technical Reference Manual (TRM) and the ARMv7-M Architecture Appli-
cation Level Reference Manual already provide lots of information on this processor, but they are very
detailed and can be challenging for novice readers.

This book is intended to be a lighter read for programmers, embedded product designers, system-
on-chip (SoC) engineers, electronics enthusiasts, academic researchers, and others who are investigat-
ing the Cortex-M3 processor, with some experience of microcontrollers or microprocessors. The text
includes an introduction to the architecture, an instruction set summary, examples of some instruc-
tions, information on hardware features, and an overview of the processor’s advanced debug system. It
also provides application examples, including basic steps in software development for the Cortex-M3
processor using ARM tools as well as the Gnu’s Not Unix tool chain. This book is also suitable for
engineers who are migrating their software from ARM7TDMI to the Cortex-M3 processor because it
covers the differences between the two processors, and the porting of application software from the
ARM7TDMI to the Cortex-M3.

Acknowledgments
I would like to thank the following people for providing me with help, advice, and feedback to the first
or the second edition of this book:

Richard York, Andrew Frame, Reinhard Keil, Nick Sampays, Dev Banerjee, Robert Boys, Domi-
nic Pajak, Alan Tringham, Stephen Theobald, Dan Brook, David Brash, Haydn Povey, Gary Camp-
bell, Kevin McDermott, Richard Earnshaw, Shyam Sadasivan, Simon Craske, Simon Axford, Takashi
Ugajin, Wayne Lyons, Samin Ishtiaq, and Simon Smith.

I would like to thank Ian Bell and Jamie Brettle at National Instruments for their help in reviewing
the materials covering NI LabVIEW and for their support. I would also like to express my gratitude to
Carlos O’Donell, Brian Barrera, and Daniel Jacobowitz from CodeSourcery for their support and help
in reviewing the materials covering software development with the CodeSourcery tool chain. And, of
course, thanks to the staff at Elsevier for their professional work toward the publication of this book.

Finally, a special thank-you to Peter Cole and Ivan Yardley for their continuous support and advice
during this project.

xx

Conventions

Various typographical conventions have been used in this book, as follows:

Normal assembly program codes:•	
	 MOV R0, R1; Move data from Register R1 to Register R0

Assembly code in generalized syntax; items inside < > must be replaced by real register names:•	
	 MRS <reg>, <special_reg>

C program codes:•	
	 for (i=0;i<3;i++) { func1(); }

Pseudocode:•	
	 if (a > b) { ...

Values:•	
	4’hC, 0x123 are both hexadecimal values1.	
	2.	 #3 indicates item number 3 (e.g., IRQ #3 means IRQ number 3)
	3.	 #immed_12 refers to 12-bit immediate data

Register bits:•	
Typically used to illustrate a part of a value based on bit position; for example, bit[15:12] means
bit number 15 down to 12.

Register access types are as follows:•	
	R is Read only1.	
	W is Write only2.	
	R/W is Read or Write accessible3.	
	R/Wc is Readable and clear by a Write access4.	

xxi

Terms and Abbreviations

Abbreviation	 Meaning
ADK	 AMBA Design Kit
AHB	 Advanced High-Performance Bus
AHB-AP	 AHB Access Port
AMBA	 Advanced Microcontroller Bus Architecture
APB	 Advanced Peripheral Bus
ARM ARM	 ARM Architecture Reference Manual
ASIC	 Application-specific integrated circuit
ATB	 Advanced Trace Bus
BE8	 Byte-invariant big endian mode
CMSIS	 Cortex Microcontroller Software Interface Standard
CPI	 Cycles per instruction
CPU	 Central processing unit
CS3	 CodeSourcery Common Start-up Code Sequence
DAP	 Debug Access Port
DSP	 Digital Signal Processor/Digital Signal Processing
DWT	 Data Watchpoint and Trace unit
EABI/ABI	 Embedded application binary interface
ETM	 Embedded Trace Macrocell
FPB	 Flash Patch and Breakpoint unit
FPGA	 Field Programmable Gate Array
FSR	 Fault status register
HTM	 CoreSight AHB Trace Macrocell
ICE	 In-circuit emulator
IDE	 Integrated Development Environment
IRQ	 Interrupt Request (normally refers to external interrupts)
ISA	 Instruction set architecture
ISR	 Interrupt Service Routine
ITM	 Instrumentation Trace Macrocell
JTAG	 Joint Test Action Group (a standard of test/debug interfaces)
JTAG-DP	 JTAG Debug Port
LR	 Link register
LSB	 Least Significant Bit
LSU	 Load/store unit
MCU	 Microcontroller Unit
MDK-ARM	 Keil Microcontroller Development Kit for ARM
MMU	 Memory management unit
MPU	 Memory Protection Unit
MSB	 Most Significant Bit
MSP	 Main Stack Pointer
NMI	 Nonmaskable interrupt

xxii Terms and Abbreviations

NVIC	 Nested Vectored Interrupt Controller
OS	 Operating system
PC	 Program counter
PMU	 Power management unit
PSP	 Process Stack Pointer
PPB	 Private Peripheral Bus
PSR	 Program Status Register
SCB	 System control block
SCS	 System control space
SIMD	 Single Instruction, Multiple Data
SoC	 System-on-Chip
SP	 Stack pointer
SRPG	 State retention power gating
SW	 Serial-Wire
SW-DP	 Serial-Wire Debug Port
SWJ-DP	 Serial-Wire JTAG Debug Port
SWV	 Serial-Wire Viewer (an operation mode of TPIU)
TCM	 Tightly coupled memory (Cortex-M1 feature)
TPA	 Trace Port Analyzer
TPIU	 Trace Port Interface Unit
TRM	 Technical Reference Manual
UAL	 Unified Assembly Language
UART	 Universal Asynchronous Receiver Transmitter
WIC	 Wakeup Interrupt Controller

1Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00004-1

In This Chapter

What Is the ARM Cortex-M3 Processor?.. 1
Background of ARM and ARM Architecture... 2
Instruction Set Development... 7
The Thumb-2 Technology and Instruction Set Architecture... 8
Cortex-M3 Processor Applications.. 9
Organization of This Book.. 10
Further Reading... 10

CHAPTER

Introduction 1

1.1  What Is the ARM Cortex-M3 Processor?
The microcontroller market is vast, with more than 20 billion devices per year estimated to be shipped
in 2010. A bewildering array of vendors, devices, and architectures is competing in this market. The
requirement for higher performance microcontrollers has been driven globally by the industry’s chang-
ing needs; for example, microcontrollers are required to handle more work without increasing a prod-
uct’s frequency or power. In addition, microcontrollers are becoming increasingly connected, whether
by Universal Serial Bus (USB), Ethernet, or wireless radio, and hence, the processing needed to support
these communication channels and advanced peripherals are growing. Similarly, general application
complexity is on the increase, driven by more sophisticated user interfaces, multimedia requirements,
system speed, and convergence of functionalities.

The ARM Cortex™-M3 processor, the first of the Cortex generation of processors released by ARM
in 2006, was primarily designed to target the 32-bit microcontroller market. The Cortex-M3 processor
provides excellent performance at low gate count and comes with many new features previously avail-
able only in high-end processors. The Cortex-M3 addresses the requirements for the 32-bit embedded
processor market in the following ways:

•	 Greater performance efficiency: allowing more work to be done without increasing the frequency
or power requirements

•	 Low power consumption: enabling longer battery life, especially critical in portable products
including wireless networking applications

2 CHAPTER 1  Introduction

•	 Enhanced determinism: guaranteeing that critical tasks and interrupts are serviced as quickly as
possible and in a known number of cycles

•	 Improved code density: ensuring that code fits in even the smallest memory footprints
•	 Ease of use: providing easier programmability and debugging for the growing number of 8-bit and

16-bit users migrating to 32 bits
•	 Lower cost solutions: reducing 32-bit-based system costs close to those of legacy 8-bit and 16-bit

devices and enabling low-end, 32-bit microcontrollers to be priced at less than US$1 for the first time
•	 Wide choice of development tools: from low-cost or free compilers to full-featured development

suites from many development tool vendors

Microcontrollers based on the Cortex-M3 processor already compete head-on with devices based
on a wide variety of other architectures. Designers are increasingly looking at reducing the system cost,
as opposed to the traditional device cost. As such, organizations are implementing device aggregation,
whereby a single, more powerful device can potentially replace three or four traditional 8-bit devices.

Other cost savings can be achieved by improving the amount of code reuse across all systems.
Because Cortex-M3 processor-based microcontrollers can be easily programmed using the C language
and are based on a well-established architecture, application code can be ported and reused easily,
reducing development time and testing costs.

It is worthwhile highlighting that the Cortex-M3 processor is not the first ARM processor to be used
to create generic microcontrollers. The venerable ARM7 processor has been very successful in this
market, with partners such as NXP (Philips), Texas Instruments, Atmel, OKI, and many other vendors
delivering robust 32-bit Microcontroller Units (MCUs). The ARM7 is the most widely used 32-bit
embedded processor in history, with over 1 billion processors produced each year in a huge variety of
electronic products, from mobile phones to cars.

The Cortex-M3 processor builds on the success of the ARM7 processor to deliver devices that are
significantly easier to program and debug and yet deliver a higher processing capability. Additionally,
the Cortex-M3 processor introduces a number of features and technologies that meet the specific
requirements of the microcontroller applications, such as nonmaskable interrupts for critical tasks,
highly deterministic nested vector interrupts, atomic bit manipulation, and an optional Memory Protec-
tion Unit (MPU). These factors make the Cortex-M3 processor attractive to existing ARM processor
users as well as many new users considering use of 32-bit MCUs in their products.

1.2  Background of ARM and ARM Architecture
1.2.1  A Brief History
To help you understand the variations of ARM processors and architecture versions, let’s look at a little
bit of ARM history.

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer,
Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor family,
and VLSI became the initial licensee. Subsequently, additional companies, including Texas Instru-
ments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor designs, extending the
applications of ARM processors into mobile phones, computer hard disks, personal digital assistants
(PDAs), home entertainment systems, and many other consumer products.

3

Nowadays, ARM partners ship in excess of 2 billion ARM processors each year. Unlike many
semiconductor companies, ARM does not manufacture processors or sell the chips directly. Instead,
ARM licenses the processor designs to business partners, including a majority of the world’s leading
semiconductor companies. Based on the ARM low-cost and power-efficient processor designs, these
partners create their processors, microcontrollers, and system-on-chip solutions. This business model
is commonly called intellectual property (IP) licensing.

In addition to processor designs, ARM also licenses systems-level IP and various software IPs.
To support these products, ARM has developed a strong base of development tools, hardware, and
software products to enable partners to develop their own products.

1.2.2  Architecture Versions
Over the years, ARM has continued to develop new processors and system blocks. These include the
popular ARM7TDMI processor and, more recently, the ARM1176TZ(F)-S processor, which is used
in high-end applications such as smart phones. The evolution of features and enhancements to the
processors over time has led to successive versions of the ARM architecture. Note that architecture
version numbers are independent from processor names. For example, the ARM7TDMI processor is
based on the ARMv4T architecture (the T is for Thumb® instruction mode support).

The Cortex-M3 Processor versus Cortex-M3-Based MCUs
The Cortex-M3 processor is the central processing unit (CPU) of a microcontroller chip. In addition, a
number of other components are required for the whole Cortex-M3 processor-based microcontroller. After chip
manufacturers license the Cortex-M3 processor, they can put the Cortex-M3 processor in their silicon designs,
adding memory, peripherals, input/output (I/O), and other features. Cortex-M3 processor-based chips from
different manufacturers will have different memory sizes, types, peripherals, and features. This book focuses on
the architecture of the processor core. For details about the rest of the chip, readers are advised to check the
particular chip manufacturer’s documentation.

1.2  Background of ARM and ARM Architecture

Figure 1.1

The Cortex-M3 Processor versus the Cortex-M3-Based MCU.

Cortex-M3
core

Debug
system

MemoryPeripherals

Internal bus

Clock and
reset

I/O

Cortex-M3 chip Developed by
ARM

Developed by
chip

manufacturers
Developed by
ARM, design
houses, chip

manufacturers

4 CHAPTER 1  Introduction

The ARMv5E architecture was introduced with the ARM9E processor families, including the
ARM926E-S and ARM946E-S processors. This architecture added “Enhanced” Digital Signal
Processing (DSP) instructions for multimedia applications.

With the arrival of the ARM11 processor family, the architecture was extended to the ARMv6. New
features in this architecture included memory system features and Single Instruction–Multiple Data
(SIMD) instructions. Processors based on the ARMv6 architecture include the ARM1136J(F)-S, the
ARM1156T2(F)-S, and the ARM1176JZ(F)-S.

Following the introduction of the ARM11 family, it was decided that many of the new technologies,
such as the optimized Thumb-2 instruction set, were just as applicable to the lower cost markets of micro-
controller and automotive components. It was also decided that although the architecture needed to be con-
sistent from the lowest MCU to the highest performance application processor, there was a need to deliver
processor architectures that best fit applications, enabling very deterministic and low gate count processors
for cost-sensitive markets and feature-rich and high-performance ones for high-end applications.

Over the past several years, ARM extended its product portfolio by diversifying its CPU develop
ment, which resulted in the architecture version 7 or v7. In this version, the architecture design is
divided into three profiles:

The •	 A profile is designed for high-performance open application platforms.
The •	 R profile is designed for high-end embedded systems in which real-time performance is
needed.
The •	 M profile is designed for deeply embedded microcontroller-type systems.

Let’s look at these profiles in a bit more detail:

•	 A Profile (ARMv7-A): Application processors which are designed to handle complex applications
such as high-end embedded operating systems (OSs) (e.g., Symbian, Linux, and Windows
Embedded). These processors requiring the highest processing power, virtual memory system
support with memory management units (MMUs), and, optionally, enhanced Java support and a
secure program execution environment. Example products include high-end mobile phones and
electronic wallets for financial transactions.

•	 R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at the higher end
of the real-time1 market—those applications, such as high-end breaking systems and hard drive
controllers, in which high processing power and high reliability are essential and for which low
latency is important.

•	 M Profile (ARMv7-M): Processors targeting low-cost applications in which processing efficiency is
important and cost, power consumption, low interrupt latency, and ease of use are critical, as well
as industrial control applications, including real-time control systems.

The Cortex processor families are the first products developed on architecture v7, and the Cortex-M3
processor is based on one profile of the v7 architecture, called ARM v7-M, an architecture specification
for microcontroller products.

1 There is always great debate as to whether we can have a “real-time” system using general processors. By definition, “real
time” means that the system can get a response within a guaranteed period. In any processor-based system, you may or may
not be able to get this response due to choice of OS, interrupt latency, or memory latency, as well as if the CPU is running a
higher priority interrupt.

51.2  Background of ARM and ARM Architecture

This book focuses on the Cortex-M3 processor, but it is only one of the Cortex product families
that use the ARMv7 architecture. Other Cortex family processors include the Cortex-A8 (application
processor), which is based on the ARMv7-A profile, and the Cortex-R4 (real-time processor), which is
based on the ARMv7-R profile (see Figure 1.2).

The details of the ARMv7-M architecture are documented in The ARMv7-M Architecture Applica-
tion Level Reference Manual [Ref. 2]. This document can be obtained via the ARM web site through a
simple registration process. The ARMv7-M architecture contains the following key areas:

Programmer’s model•	
Instruction set•	
Memory model•	
Debug architecture•	

Processor-specific information, such as interface details and timing, is documented in the Cortex-
M3 Technical Reference Manual (TRM) [Ref. 1]. This manual can be accessed freely on the ARM web
site. The Cortex-M3 TRM also covers a number of implementation details not covered by the architec-
ture specifications, such as the list of supported instructions, because some of the instructions covered
in the ARMv7-M architecture specification are optional on ARMv7-M devices.

1.2.3  Processor Naming
Traditionally, ARM used a numbering scheme to name processors. In the early days (the 1990s), suffixes
were also used to indicate features on the processors. For example, with the ARM7TDMI processor, the
T indicates Thumb instruction support, D indicates JTAG debugging, M indicates fast multiplier, and
I indicates an embedded ICE module. Subsequently, it was decided that these features should become
standard features of future ARM processors; therefore, these suffixes are no longer added to the new

Figure 1.2

The Evolution of ARM Processor Architecture.

ARM7TDMI,
920T,

Intel StrongARM

Architecture
v4/v4T

Examples

Architecture v7

v7-A (application)
e.g., Cortex-A8

v7-R (real-time)
e.g., Cortex-R4

v7-M (microcontroller)
e.g., Cortex-M3

Architecture
v5/v5E

ARM926, 946,
966,

Intel XScale

Architecture v6

ARM1136, 1176,
1156T-2

Cortex-M0,
Cortex-M1 (FPGA)

Architecture v6-M

6 CHAPTER 1  Introduction

processor family names. Instead, variations on memory interface, cache, and tightly coupled memory
(TCM) have created a new scheme for processor naming.

For example, ARM processors with cache and MMUs are now given the suffix “26” or “36,”
whereas processors with MPUs are given the suffix “46” (e.g., ARM946E-S). In addition, other suf-
fixes are added to indicate synthesizable2 (S) and Jazelle (J) technology. Table 1.1 presents a summary
of processor names.

With version 7 of the architecture, ARM has migrated away from these complex numbering schemes
that needed to be decoded, moving to a consistent naming for families of processors, with Cortex its
initial brand. In addition to illustrating the compatibility across processors, this system removes confu-
sion between architectural version and processor family number; for example, the ARM7TDMI is not
a v7 processor but was based on the v4T architecture.

2A synthesizable core design is available in the form of a hardware description language (HDL) such as Verilog or VHDL
and can be converted into a design netlist using synthesis software.

Table 1.1  ARM Processor Names

Processor Name Architecture Version
Memory Management
Features Other Features

ARM7TDMI ARMv4T
ARM7TDMI-S ARMv4T
ARM7EJ-S ARMv5E DSP, Jazelle
ARM920T ARMv4T MMU
ARM922T ARMv4T MMU
ARM926EJ-S ARMv5E MMU DSP, Jazelle
ARM946E-S ARMv5E MPU DSP
ARM966E-S ARMv5E DSP
ARM968E-S ARMv5E DMA, DSP
ARM966HS ARMv5E MPU (optional) DSP
ARM1020E ARMv5E MMU DSP
ARM1022E ARMv5E MMU DSP
ARM1026EJ-S ARMv5E MMU or MPU DSP, Jazelle
ARM1136J(F)-S ARMv6 MMU DSP, Jazelle
ARM1176JZ(F)-S ARMv6 MMU + TrustZone DSP, Jazelle
ARM11 MPCore ARMv6 MMU + multiprocessor cache

support
DSP, Jazelle

ARM1156T2(F)-S ARMv6 MPU DSP
Cortex-M0 ARMv6-M NVIC
Cortex-M1 ARMv6-M FPGA TCM interface NVIC
Cortex-M3 ARMv7-M MPU (optional) NVIC

71.3  Instruction Set Development

1.3  Instruction Set Development
Enhancement and extension of instruction sets used by the ARM processors has been one of the key
driving forces of the architecture’s evolution (see Figure 1.3).

Historically (since ARM7TDMI), two different instruction sets are supported on the ARM processor:
the ARM instructions that are 32 bits and Thumb instructions that are 16 bits. During program execution,
the processor can be dynamically switched between the ARM state and the Thumb state to use either

Table 1.1  ARM Processor Names  Continued

Processor Name Architecture Version
Memory Management
Features Other Features

Cortex-R4 ARMv7-R MPU DSP
Cortex-R4F ARMv7-R MPU DSP + Floating

point
Cortex-A8 ARMv7-A MMU + TrustZone DSP, Jazelle,

NEON + floating
point

Cortex-A9 ARMv7-A MMU + TrustZone +
multiprocessor

DSP, Jazelle,
NEON + floating
point

Figure 1.3

Instruction Set Enhancement.

v4

ARM

Thumb

v5 v5E v6

Enhanced
DSP

instructions
added

SIMD, v6
memory
support
added

v7

Architecture development

Thumb
instructions
introduced

Thumb-2
technology
introduced

v4T

8 CHAPTER 1  Introduction

one of the instruction sets. The Thumb instruction set provides only a subset of the ARM instructions,
but it can provide higher code density. It is useful for products with tight memory requirements.

As the architecture version has been updated, extra instructions have been added to both ARM
instructions and Thumb instructions. Appendix B provides some information on the change of Thumb
instructions during the architecture enhancements. In 2003, ARM announced the Thumb-2 instruction
set, which is a new superset of Thumb instructions that contains both 16-bit and 32-bit instructions.

The details of the instruction set are provided in a document called The ARM Architecture Reference Man-
ual (also known as the ARM ARM). This manual has been updated for the ARMv5 architecture, the ARMv6
architecture, and the ARMv7 architecture. For the ARMv7 architecture, due to its growth into different pro-
files, the specification is also split into different documents. For the Cortex-M3 instruction set, the complete
details are specified in the ARM v7-M Architecture Application Level Reference Manual [Ref. 2]. Appendix A
of this book also covers information regarding instruction sets required for software development.

1.4  �The Thumb-2 Technology and Instruction
Set Architecture

The Thumb-23 technology extended the Thumb Instruction Set Architecture (ISA) into a highly efficient
and powerful instruction set that delivers significant benefits in terms of ease of use, code size, and per-
formance (see Figure 1.4). The extended instruction set in Thumb-2 is a superset of the previous 16-bit
Thumb instruction set, with additional 16-bit instructions alongside 32-bit instructions. It allows more
complex operations to be carried out in the Thumb state, thus allowing higher efficiency by reducing
the number of states switching between ARM state and Thumb state.

Focused on small memory system devices such as microcontrollers and reducing the size of the proces-
sor, the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) instruction set. Instead of using
ARM instructions for some operations, as in traditional ARM processors, it uses the Thumb-2 instruction
set for all operations. As a result, the Cortex-M3 processor is not backward compatible with traditional

3 Thumb and Thumb-2 are registered trademarks of ARM.

Figure 1.4

The Relationship between the Thumb Instruction Set in Thumb-2 Technology and the Traditional Thumb.

Thumb
instructions

(16 bits)

Thumb-2 technology
32-bit and 16-bit

Thumb instruction set

Cortex-M3

ARMv7-M
architecture

91.5  Cortex-M3 Processor Applications

ARM processors. That is, you cannot run a binary image for ARM7 processors on the Cortex-M3 processor.
Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit Thumb instructions, including all
16-bit Thumb instructions supported on ARM7 family processors, making application porting easy.

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there is no need
to switch the processor between Thumb state (16-bit instructions) and ARM state (32-bit instructions).
For example, in ARM7 or ARM9 family processors, you might need to switch to ARM state if you want
to carry out complex calculations or a large number of conditional operations and good performance is
needed, whereas in the Cortex-M3 processor, you can mix 32-bit instructions with 16-bit instructions
without switching state, getting high code density and high performance with no extra complexity.

The Thumb-2 instruction set is a very important feature of the ARMv7 architecture. Compared
with the instructions supported on ARM7 family processors (ARMv4T architecture), the Cortex-M3
processor instruction set has a large number of new features. For the first time, hardware divide instruc-
tion is available on an ARM processor, and a number of multiply instructions are also available on the
Cortex-M3 processor to improve data-crunching performance. The Cortex-M3 processor also supports
unaligned data accesses, a feature previously available only in high-end processors.

1.5  Cortex-M3 Processor Applications
With its high performance and high code density and small silicon footprint, the Cortex-M3 processor
is ideal for a wide variety of applications:

•	 Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost microcontrollers,
which are commonly used in consumer products, from toys to electrical appliances. It is a highly
competitive market due to the many well-known 8-bit and 16-bit microcontroller products on
the market. Its lower power, high performance, and ease-of-use advantages enable embedded
developers to migrate to 32-bit systems and develop products with the ARM architecture.

•	 Automotive: Another ideal application for the Cortex-M3 processor is in the automotive industry.
The Cortex-M3 processor has very high-performance efficiency and low interrupt latency, allowing
it to be used in real-time systems. The Cortex-M3 processor supports up to 240 external vectored
interrupts, with a built-in interrupt controller with nested interrupt supports and an optional MPU,
making it ideal for highly integrated and cost-sensitive automotive applications.

Data communications•	 : The processor’s low power and high efficiency, coupled with instructions
in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for many communications
applications, such as Bluetooth and ZigBee.

•	 Industrial control: In industrial control applications, simplicity, fast response, and reliability are
key factors. Again, the Cortex-M3 processor’s interrupt feature, low interrupt latency, and enhanced
fault-handling features make it a strong candidate in this area.

•	 Consumer products: In many consumer products, a high-performance microprocessor (or several of
them) is used. The Cortex-M3 processor, being a small processor, is highly efficient and low in power and
supports an MPU enabling complex software to execute while providing robust memory protection.

There are already many Cortex-M3 processor-based products on the market, including low-end
products priced as low as US$1, making the cost of ARM microcontrollers comparable to or lower than
that of many 8-bit microcontrollers.

10 CHAPTER 1  Introduction

1.6  Organization of This Book
This book contains a general overview of the Cortex-M3 processor, with the rest of the contents divided
into a number of sections:

•	 Chapters 1 and 2, Introduction and Overview of the Cortex-M3
•	 Chapters 3 through 6, Cortex-M3 Basics
•	 Chapters 7 through 9, Exceptions and Interrupts
•	 Chapters 10 and 11, Cortex-M3 Programming
•	 Chapters 12 through 14, Cortex-M3 Hardware Features
•	 Chapters 15 and 16, Debug Supports in Cortex-M3
•	 Chapters 17 through 21, Application Development with Cortex-M3

Appendices•	

1.7  Further Reading
This book does not contain all the technical details on the Cortex-M3 processor. It is intended to
be a starter guide for people who are new to the Cortex-M3 processor and a supplemental reference
for people using Cortex-M3 processor-based microcontrollers. To get further detail on the Cortex-M3
processor, the following documents, available from ARM (www.arm.com) and ARM partner web sites,
should cover most necessary details:

•	 The Cortex-M3 Technical Reference Manual (TRM) [Ref. 1] provides detailed information about
the processor, including programmer’s model, memory map, and instruction timing.

•	 The ARMv7-M Architecture Application Level Reference Manual [Ref. 2] contains detailed
information about the instruction set and the memory model.

Refer to datasheets for the Cortex-M3 processor-based microcontroller products; visit the manufacturer •	
web site for the datasheets on the Cortex-M3 processor-based product you plan to use.

•	 Cortex-M3 User Guides are available from MCU vendors. In some cases, this user guide is available
as a part of a complete microcontroller product manual. This document contains a programmer’s
model for the ARM Cortex-M3 processor, and instruction set details, and is customized by each
MCU vendors to match their microcontroller implementations.

Refer to •	 AMBA Specification 2.0 [Ref. 4] for more detail regarding internal AMBA interface bus
protocol details.

C programming tips for Cortex-M3 can be found in the •	 ARM Application Note 179: Cortex-M3
Embedded Software Development [Ref. 7].

This book assumes that you already have some knowledge of and experience with embedded
programming, preferably using ARM processors. If you are a manager or a student who wants to learn
the basics without spending too much time reading the whole book or the TRM, Chapter 2 of this book
is a good one to read because it provides a summary on the Cortex-M3 processor.

www.arm.com

11

CHAPTER

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00005-3

In This Chapter

Fundamentals���11
Registers��12
Operation Modes��14
The Built-In Nested Vectored Interrupt Controller���15
The Memory Map��16
The Bus Interface���17
The MPU��18
The Instruction Set���18
Interrupts and Exceptions��19
Debugging Support�� 21
Characteristics Summary��� 22

Overview of the Cortex-M3 2

2.1  Fundamentals
The Cortex™-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register bank, and 32-bit
memory interfaces (see Figure 2.1). The processor has a Harvard architecture, which means that it has
a separate instruction bus and data bus. This allows instructions and data accesses to take place at the
same time, and as a result of this, the performance of the processor increases because data accesses do
not affect the instruction pipeline. This feature results in multiple bus interfaces on Cortex-M3, each
with optimized usage and the ability to be used simultaneously. However, the instruction and data
buses share the same memory space (a unified memory system). In other words, you cannot get 8 GB
of memory space just because you have separate bus interfaces.

For complex applications that require more memory system features, the Cortex-M3 processor has
an optional Memory Protection Unit (MPU), and it is possible to use an external cache if it’s required.
Both little endian and big endian memory systems are supported.

The Cortex-M3 processor includes a number of fixed internal debugging components. These
components provide debugging operation supports and features, such as breakpoints and watchpoints.

12 CHAPTER 2  Overview of the Cortex-M3

In addition, optional components provide debugging features, such as instruction trace, and various
types of debugging interfaces.

2.2  Registers
The Cortex-M3 processor has registers R0 through R15 (see Figure 2.2). R13 (the stack pointer) is
banked, with only one copy of the R13 visible at a time.

2.2.1  R0–R12: General-Purpose Registers
R0–R12 are 32-bit general-purpose registers for data operations. Some 16-bit Thumb® instructions can
only access a subset of these registers (low registers, R0–R7).

2.2.2  R13: Stack Pointers
The Cortex-M3 contains two stack pointers (R13). They are banked so that only one is visible at a time.
The two stack pointers are as follows:

•	 Main Stack Pointer (MSP): The default stack pointer, used by the operating system (OS) kernel
and exception handlers

•	 Process Stack Pointer (PSP): Used by user application code

The lowest 2 bits of the stack pointers are always 0, which means they are always word aligned.

Figure 2.1

A Simplified View of the Cortex-M3.

Memory interface

Register
bank

ALUIn
st

ru
ct

io
n

fe
tc

h
un

it

D
ec

od
er

In
te

rr
up

t c
on

tr
ol

le
r

(N
V

IC
)

Memory
protection

unit

Memory system
and peripherals

Cortex-M3

Processor core system

Interrupts

Debug

Trace

Instruction bus

T
ra

ce
 in

te
rf

ac
e

Bus interconnect

Optional

Debug
interface

Debug
system

Private
peripherals

Code
memory

Data bus

132.2  Registers

2.2.3  R14: The Link Register
When a subroutine is called, the return address is stored in the link register.

2.2.4  R15: The Program Counter
The program counter is the current program address. This register can be written to control the
program flow.

2.2.5  Special Registers
The Cortex-M3 processor also has a number of special registers (see Figure 2.3). They are as
follows:

Program Status registers (PSRs)•	
Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)•	
Control register (CONTROL)•	

These registers have special functions and can be accessed only by special instructions. They cannot
be used for normal data processing (see Table 2.1).

Figure 2.2

Registers in the Cortex-M3.

Name

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14

R15

R13 (PSP)

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

Main Stack Pointer (MSP), Process Stack Pointer (PSP)

Link Register (LR)

Program Counter (PC)

Low registers

High registers

Functions (and banked registers)

14 CHAPTER 2  Overview of the Cortex-M3

2.3  Operation Modes
The Cortex-M3 processor has two modes and two privilege levels. The operation modes (thread mode
and handler mode) determine whether the processor is running a normal program or running an excep-
tion handler like an interrupt handler or system exception handler (see Figure 2.4). The privilege levels
(privileged level and user level) provide a mechanism for safeguarding memory accesses to critical
regions as well as providing a basic security model.

When the processor is running a main program (thread mode), it can be either in a privileged state
or a user state, but exception handlers can only be in a privileged state. When the processor exits reset,
it is in thread mode, with privileged access rights. In the privileged state, a program has access to all
memory ranges (except when prohibited by MPU settings) and can use all supported instructions.

Software in the privileged access level can switch the program into the user access level using the
control register. When an exception takes place, the processor will always switch back to the privileged
state and return to the previous state when exiting the exception handler. A user program cannot change
back to the privileged state by writing to the control register (see Figure 2.5). It has to go through an
exception handler that programs the control register to switch the processor back into the privileged
access level when returning to thread mode.

The separation of privilege and user levels improves system reliability by preventing system config-
uration registers from being accessed or changed by some untrusted programs. If an MPU is available,

Figure 2.3

Special Registers in the Cortex-M3.

Name

xPSR

PRIMASK

FAULTMASK

BASEPRI

Functions

Program status registers

Interrupt mask
registers

Control registerCONTROL

Special
registers

Table 2.1  Special Registers and Their Functions

Register Function

xPSR Provide arithmetic and logic processing flags (zero flag and carry flag),
execution status, and current executing interrupt number

PRIMASK Disable all interrupts except the nonmaskable interrupt (NMI) and hard fault
FAULTMASK Disable all interrupts except the NMI
BASEPRI Disable all interrupts of specific priority level or lower priority level
CONTROL Define privileged status and stack pointer selection

For more information on these registers, see Chapter 3.

152.4  The Built-In Nested Vectored Interrupt Controller

it can be used in conjunction with privilege levels to protect critical memory locations, such as pro-
grams and data for OSs.

For example, with privileged accesses, usually used by the OS kernel, all memory locations can be
accessed (unless prohibited by MPU setup). When the OS launches a user application, it is likely to be exe-
cuted in the user access level to protect the system from failing due to a crash of untrusted user programs.

2.4  The Built-In Nested Vectored Interrupt Controller
The Cortex-M3 processor includes an interrupt controller called the Nested Vectored Interrupt Control-
ler (NVIC). It is closely coupled to the processor core and provides a number of features as follows:

Nested interrupt support•	
Vectored interrupt support•	
Dynamic priority changes support•	
Reduction of interrupt latency•	
Interrupt masking•	

2.4.1  Nested Interrupt Support
The NVIC provides nested interrupt support. All the external interrupts and most of the system excep-
tions can be programmed to different priority levels. When an interrupt occurs, the NVIC compares

Figure 2.5

Allowed Operation Mode Transitions.

Privileged
handler

User thread

Privileged
thread

Start
(reset)

Exception

Exception
exit

Exception

Exception
exit

Program of
CONTROL

register

Figure 2.4

Operation Modes and Privilege Levels in Cortex-M3.

Handler mode

Thread mode Thread mode

Privileged

When running an exception handler

When not running an exception
handler (e.g., main program)

User

16 CHAPTER 2  Overview of the Cortex-M3

the priority of this interrupt to the current running priority level. If the priority of the new interrupt is
higher than the current level, the interrupt handler of the new interrupt will override the current run-
ning task.

2.4.2  Vectored Interrupt Support
The Cortex-M3 processor has vectored interrupt support. When an interrupt is accepted, the starting
address of the interrupt service routine (ISR) is located from a vector table in memory. There is no need
to use software to determine and branch to the starting address of the ISR. Thus, it takes less time to
process the interrupt request.

2.4.3  Dynamic Priority Changes Support
Priority levels of interrupts can be changed by software during run time. Interrupts that are being ser-
viced are blocked from further activation until the ISR is completed, so their priority can be changed
without risk of accidental reentry.

2.4.4  Reduction of Interrupt Latency
The Cortex-M3 processor also includes a number of advanced features to lower the interrupt latency.
These include automatic saving and restoring some register contents, reducing delay in switching from
one ISR to another, and handling of late arrival interrupts. Details of these optimization features are
covered in Chapter 9.

2.4.5  Interrupt Masking
Interrupts and system exceptions can be masked based on their priority level or masked completely
using the interrupt masking registers BASEPRI, PRIMASK, and FAULTMASK. They can be used to
ensure that time-critical tasks can be finished on time without being interrupted.

2.5  The Memory Map
The Cortex-M3 has a predefined memory map. This allows the built-in peripherals, such as the inter-
rupt controller and the debug components, to be accessed by simple memory access instructions. Thus,
most system features are accessible in C program code. The predefined memory map also allows the
Cortex-M3 processor to be highly optimized for speed and ease of integration in system-on-a-chip
(SoC) designs.

Overall, the 4 GB memory space can be divided into ranges as shown in Figure 2.6.
The Cortex-M3 design has an internal bus infrastructure optimized for this memory usage. In addi-

tion, the design allows these regions to be used differently. For example, data memory can still be put
into the CODE region, and program code can be executed from an external Random Access Memory
(RAM) region.

172.6  The Bus Interface

The system-level memory region contains the interrupt controller and the debug components. These
devices have fixed addresses, detailed in Chapter 5. By having fixed addresses for these peripherals,
you can port applications between different Cortex-M3 products much more easily.

2.6  The Bus Interface
There are several bus interfaces on the Cortex-M3 processor. They allow the Cortex-M3 to carry instruc-
tion fetches and data accesses at the same time. The main bus interfaces are as follows:

Code memory buses•	
System bus•	
Private peripheral bus•	

The code memory region access is carried out on the code memory buses, which physically consist
of two buses, one called I-Code and other called D-Code. These are optimized for instruction fetches
for best instruction execution speed.

The system bus is used to access memory and peripherals. This provides access to the Static Ran-
dom Access Memory (SRAM), peripherals, external RAM, external devices, and part of the system-
level memory regions.

Figure 2.6

The Cortex-M3 Memory Map.

CODE

SRAM

External RAM

External device

Peripherals

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

System level

0xA0000000

0xDFFFFFFF

0xE0000000

0xFFFFFFFF

Mainly used for program
code. Also provides exception
vector table after power up

Mainly used as static RAM

Mainly used as peripherals

Mainly used as external
memory

Mainly used as external
peripherals

Private peripherals including
build-in interrupt controller
(NVIC), MPU control
registers, and debug
components

18 CHAPTER 2  Overview of the Cortex-M3

The private peripheral bus provides access to a part of the system-level memory dedicated to private
peripherals, such as debugging components.

2.7  The MPU
The Cortex-M3 has an optional MPU. This unit allows access rules to be set up for privileged access
and user program access. When an access rule is violated, a fault exception is generated, and the fault
exception handler will be able to analyze the problem and correct it, if possible.

The MPU can be used in various ways. In common scenarios, the OS can set up the MPU to protect
data use by the OS kernel and other privileged processes to be protected from untrusted user programs.
The MPU can also be used to make memory regions read-only, to prevent accidental erasing of data or
to isolate memory regions between different tasks in a multitasking system. Overall, it can help make
embedded systems more robust and reliable.

The MPU feature is optional and is determined during the implementation stage of the microcon-
troller or SoC design. For more information on the MPU, refer to Chapter 13.

2.8  The Instruction Set
The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important features of the
Cortex-M3 processor because it allows 32-bit instructions and 16-bit instructions to be used together
for high code density and high efficiency. It is flexible and powerful yet easy to use.

In previous ARM processors, the central processing unit (CPU) had two operation states: a 32-bit
ARM state and a 16-bit Thumb state. In the ARM state, the instructions are 32 bits and can execute all
supported instructions with very high performance. In the Thumb state, the instructions are 16 bits, so
there is a much higher instruction code density, but the Thumb state does not have all the functionality
of ARM instructions and may require more instructions to complete certain types of operations.

To get the best of both worlds, many applications have mixed ARM and Thumb codes. However, the
mixed-code arrangement does not always work best. There is overhead (in terms of both execution time
and instruction space, see Figure 2.7) to switch between the states, and ARM and Thumb codes might
need to be compiled separately in different files. This increases the complexity of software develop-
ment and reduces maximum efficiency of the CPU core.

With the introduction of the Thumb-2 instruction set, it is now possible to handle all process-
ing requirements in one operation state. There is no need to switch between the two. In fact, the
Cortex-M3 does not support the ARM code. Even interrupts are now handled with the Thumb state.
(Previously, the ARM core entered interrupt handlers in the ARM state.) Since there is no need to
switch between states, the Cortex-M3 processor has a number of advantages over traditional ARM
processors, such as:

No state switching overhead, saving both execution time and instruction space•	
No need to separate ARM code and Thumb code source files, making software development and •	
maintenance easier
It’s easier to get the best efficiency and performance, in turn making it easier to write software, •	
because there is no need to worry about switching code between ARM and Thumb to try to get the
best density/performance

192.9  Interrupts and Exceptions

The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a few
examples:

•	 UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions
•	 UDIV and SDIV: Unsigned and signed divide instructions
•	 WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event; these allow the

processor to enter sleep mode and to handle task synchronization on multiprocessor systems
•	 MSR and MRS: Move to special register from general-purpose register and move special register to

general-purpose register; for access to the special registers

Since the Cortex-M3 processor supports the Thumb-2 instruction set only, existing program code
for ARM needs to be ported to the new architecture. Most C applications simply need to be recompiled
using new compilers that support the Cortex-M3. Some assembler codes need modification and porting
to use the new architecture and the new unified assembler framework.

Note that not all the instructions in the Thumb-2 instruction set are implemented on the Cortex-M3.
The ARMv7-M Architecture Application Level Reference Manual [Ref. 2] only requires a subset of the
Thumb-2 instructions to be implemented. For example, coprocessor instructions are not supported on
the Cortex-M3 (external data processing engines can be added), and Single Instruction–Multiple Data
(SIMD) is not implemented on the Cortex-M3. In addition, a few Thumb instructions are not supported,
such as Branch with Link and Exchange (BLX) with immediate (used to switch processor state from
Thumb to ARM), a couple of change process state (CPS) instructions, and the SETEND (Set Endian)
instructions, which were introduced in architecture v6. For a complete list of supported instructions,
refer to Appendix A.

2.9  Interrupts and Exceptions
The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-M architec-
ture. This exception model differs from the traditional ARM exception model, enabling very efficient

Figure 2.7

Switching between ARM Code and Thumb Code in Traditional ARM Processors Such as the ARM7.

Timing critical code
in ARM state

Main program
in Thumb state

Main program
in Thumb state

Thumb state
(16-bit

instructions)

ARM state
(32-bit

instructions)

Time

Overhead

Branch with
state change
(e.g., BLX)

Return
(e.g., BX LR)

20 CHAPTER 2  Overview of the Cortex-M3

exception handling. It has a number of system exceptions plus a number of external Interrupt Request
(IRQs) (external interrupt inputs). There is no fast interrupt (FIQ) (fast interrupt in ARM7/ARM9/
ARM10/ARM11) in the Cortex-M3; however, interrupt priority handling and nested interrupt support
are now included in the interrupt architecture. Therefore, it is easy to set up a system that supports
nested interrupts (a higher-priority interrupt can override or preempt a lower-priority interrupt handler)
and that behaves just like the FIQ in traditional ARM processors.

The interrupt features in the Cortex-M3 are implemented in the NVIC. Aside from supporting exter-
nal interrupts, the Cortex-M3 also supports a number of internal exception sources, such as system
fault handling. As a result, the Cortex-M3 has a number of predefined exception types, as shown in
Table 2.2.

2.9.1  Low Power and High Energy Efficiency
The Cortex-M3 processor is designed with various features to allow designers to develop low power
and high energy efficient products. First, it has sleep mode and deep sleep mode supports, which can
work with various system-design methodologies to reduce power consumption during idle period.

Table 2.2  Cortex-M3 Exception Types

Exception
Number

Exception Type

Priority (Default to
0 if Programmable)

Description

0 NA NA No exception running
1 Reset -3 (Highest) Reset
2 NMI -2 NMI (external NMI input)
3 Hard fault -1 All fault conditions, if the corresponding

fault handler is not enabled
4 MemManage fault Programmable Memory management fault; MPU

violation or access to illegal locations
5 Bus fault Programmable Bus error (prefetch abort or data abort)
6 Usage fault Programmable Program error
7–10 Reserved NA Reserved
11 SVCall Programmable Supervisor call
12 Debug monitor Programmable Debug monitor (break points,

watchpoints, or external debug request)
13 Reserved NA Reserved
14 PendSV Programmable Pendable request for system service
15 SYSTICK Programmable System tick timer
16 IRQ #0 Programmable External interrupt #0
17 IRQ #1 Programmable External interrupt #1
… … … …
255 IRQ #239 Programmable External interrupt #239

The number of external interrupt inputs is defined by chip manufacturers. A maximum of 240 external interrupt inputs can
be supported. In addition, the Cortex-M3 also has an NMI interrupt input. When it is asserted, the NMI-ISR is executed
unconditionally.

212.10  Debugging Support

Second, its low gate count and design techniques reduce circuit activities in the processor to allow
active power to be reduced. In addition, since Cortex-M3 has high code density, it has lowered the
program size requirement. At the same time, it allows processing tasks to be completed in a short time,
so that the processor can return to sleep modes as soon as possible to cut down energy use. As a result,
the energy efficiency of Cortex-M3 is better than many 8-bit or 16-bit microcontrollers.

Starting from Cortex-M3 revision 2, a new feature called Wakeup Interrupt Controller (WIC) is
available. This feature allows the whole processor core to be powered down, while processor states are
retained and the processor can be returned to active state almost immediately when an interrupt takes
place. This makes the Cortex-M3 even more suitable for many ultra-low power applications that previ-
ously could only be implemented with 8-bit or 16-bit microcontrollers.

2.10  Debugging Support
The Cortex-M3 processor includes a number of debugging features, such as program execution con-
trols, including halting and stepping, instruction breakpoints, data watchpoints, registers and memory
accesses, profiling, and traces.

The debugging hardware of the Cortex-M3 processor is based on the CoreSight™ architecture.
Unlike traditional ARM processors, the CPU core itself does not have a Joint Test Action Group (JTAG)
interface. Instead, a debug interface module is decoupled from the core, and a bus interface called the
Debug Access Port (DAP) is provided at the core level. Through this bus interface, external debuggers
can access control registers to debug hardware as well as system memory, even when the processor is
running. The control of this bus interface is carried out by a Debug Port (DP) device. The DPs currently
available are the Serial-Wire JTAG Debug Port (SWJ-DP) (supports the traditional JTAG protocol as
well as the Serial-Wire protocol) or the SW-DP (supports the Serial-Wire protocol only). A JTAG-DP
module from the ARM CoreSight product family can also be used. Chip manufacturers can choose to
attach one of these DP modules to provide the debug interface.

Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to allow instruction
trace. Trace information is output via the Trace Port Interface Unit (TPIU), and the debug host (usually
a Personal Computer [PC]) can then collect the executed instruction information via external trace-
capturing hardware.

Within the Cortex-M3 processor, a number of events can be used to trigger debug actions. Debug
events can be breakpoints, watchpoints, fault conditions, or external debugging request input signals.
When a debug event takes place, the Cortex-M3 processor can either enter halt mode or execute the
debug monitor exception handler.

The data watchpoint function is provided by a Data Watchpoint and Trace (DWT) unit in the
Cortex-M3 processor. This can be used to stop the processor (or trigger the debug monitor excep-
tion routine) or to generate data trace information. When data trace is used, the traced data can be
output via the TPIU. (In the CoreSight architecture, multiple trace devices can share one single
trace port.)

In addition to these basic debugging features, the Cortex-M3 processor also provides a Flash Patch
and Breakpoint (FPB) unit that can provide a simple breakpoint function or remap an instruction access
from Flash to a different location in SRAM.

22 CHAPTER 2  Overview of the Cortex-M3

An Instrumentation Trace Macrocell (ITM) provides a new way for developers to output data to a
debugger. By writing data to register memory in the ITM, a debugger can collect the data via a trace
interface and display or process them. This method is easy to use and faster than JTAG output.

All these debugging components are controlled via the DAP interface bus on the Cortex-M3 or by a
program running on the processor core, and all trace information is accessible from the TPIU.

2.11  Characteristics Summary
Why is the Cortex-M3 processor such a revolutionary product? What are the advantages of using the
Cortex-M3? The benefits and advantages are summarized in this section.

2.11.1  High Performance
The Cortex-M3 processor delivers high performance in microcontroller products:

Many instructions, including multiply, are single cycle. Therefore, the Cortex-M3 processor •	
outperforms most microcontroller products.
Separate data and instruction buses allow simultaneous data and instruction accesses to be •	
performed.
The Thumb-2 instruction set makes state switching overhead history. There’s no need to spend time •	
switching between the ARM state (32 bits) and the Thumb state (16 bits), so instruction cycles and
program size are reduced. This feature has also simplified software development, allowing faster
time to market, and easier code maintenance.
The Thumb-2 instruction set provides extra flexibility in programming. Many data operations can •	
now be simplified using shorter code. This also means that the Cortex-M3 has higher code density
and reduced memory requirements.
Instruction fetches are 32 bits. Up to two instructions can be fetched in one cycle. As a result, •	
there’s more available bandwidth for data transfer.
The Cortex-M3 design allows microcontroller products to operate at high clock frequency (over •	
100 MHz in modern semiconductor manufacturing processes). Even running at the same frequency
as most other microcontroller products, the Cortex-M3 has a better clock per instruction (CPI)
ratio. This allows more work per MHz or designs can run at lower clock frequency for lower power
consumption.

2.11.2  Advanced Interrupt-Handling Features
The interrupt features on the Cortex-M3 processor are easy to use, very flexible, and provide high inter-
rupt processing throughput:

The built-in NVIC supports up to 240 external interrupt inputs. The vectored interrupt feature •	
considerably reduces interrupt latency because there is no need to use software to determine which
IRQ handler to serve. In addition, there is no need to have software code to set up nested interrupt
support.

232.11  Characteristics Summary

The Cortex-M3 processor automatically pushes registers R0–R3, R12, Link register (LR), PSR, •	
and PC in the stack at interrupt entry and pops them back at interrupt exit. This reduces the IRQ
handling latency and allows interrupt handlers to be normal C functions (as explained later in
Chapter 8).
Interrupt arrangement is extremely flexible because the NVIC has programmable interrupt priority •	
control for each interrupt. A minimum of eight levels of priority are supported, and the priority can
be changed dynamically.
Interrupt latency is reduced by special optimization, including late arrival interrupt acceptance and •	
tail-chain interrupt entry.
Some of the multicycle operations, including Load-Multiple (LDM), Store-Multiple (STM), •	
PUSH, and POP, are now interruptible.
On receipt of an NMI request, immediate execution of the NMI handler is guaranteed unless the •	
system is completely locked up. NMI is very important for many safety-critical applications.

2.11.3  Low Power Consumption
The Cortex-M3 processor is suitable for various low-power applications:

The Cortex-M3 processor is suitable for low-power designs because of the low gate count.•	
It has power-saving mode support (SLEEPING and SLEEPDEEP). The processor can enter sleep •	
mode using WFI or WFE instructions. The design has separated clocks for essential blocks, so
clocking circuits for most parts of the processor can be stopped during sleep.
The fully static, synchronous, synthesizable design makes the processor easy to be manufactured •	
using any low power or standard semiconductor process technology.

2.11.4  System Features
The Cortex-M3 processor provides various system features making it suitable for a large number of
applications:

The system provides bit-band operation, byte-invariant big endian mode, and unaligned data access •	
support.
Advanced fault-handling features include various exception types and fault status registers, making •	
it easier to locate problems.
With the shadowed stack pointer, stack memory of kernel and user processes can be isolated. With the •	
optional MPU, the processor is more than sufficient to develop robust software and reliable products.

2.11.5  Debug Supports
The Cortex-M3 processor includes comprehensive debug features to help software developers design
their products:

Supports JTAG or Serial-Wire debug interfaces•	
Based on the CoreSight debugging solution, processor status or memory contents can be accessed •	
even when the core is running

24 CHAPTER 2  Overview of the Cortex-M3

Built-in support for six breakpoints and four watchpoints•	
Optional ETM for instruction trace and data trace using DWT•	
New debugging features, including fault status registers, new fault exceptions, and Flash Patch •	
operations, make debugging much easier
ITM provides an easy-to-use method to output debug information from test code•	
PC sampler and counters inside the DWT provide code-profiling information•	

25Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00006-5

In This Chapter

Registers... 25
Special Registers.. 29
Operation Mode... 32
Exceptions and Interrupts... 35
Vector Tables.. 36
Stack Memory Operations.. 36
Reset Sequence... 40

CHAPTER

Cortex-M3 Basics 3

3.1  Registers
As we’ve seen, the Cortex™-M3 processor has registers R0 through R15 and a number of special
registers. R0 through R12 are general purpose, but some of the 16-bit Thumb® instructions can only
access R0 through R7 (low registers), whereas 32-bit Thumb-2 instructions can access all these reg-
isters. Special registers have predefined functions and can only be accessed by special register access
instructions.

3.1.1  General Purpose Registers R0 through R7
The R0 through R7 general purpose registers are also called low registers. They can be accessed by all
16-bit Thumb instructions and all 32-bit Thumb-2 instructions. They are all 32 bits; the reset value is
unpredictable.

3.1.2  General Purpose Registers R8 through R12
The R8 through R12 registers are also called high registers. They are accessible by all Thumb-2
instructions but not by all 16-bit Thumb instructions. These registers are all 32 bits; the reset value is
unpredictable (see Figure 3.1).

26 CHAPTER 3  Cortex-M3 Basics

3.1.3  Stack Pointer R13
R13 is the stack pointer (SP). In the Cortex-M3 processor, there are two SPs. This duality allows two
separate stack memories to be set up. When using the register name R13, you can only access the cur-
rent SP; the other one is inaccessible unless you use special instructions to move to special register from
general-purpose register (MSR) and move special register to general-purpose register (MRS). The two
SPs are as follows:

•	 Main Stack Pointer (MSP) or SP_main in ARM documentation: This is the default SP; it is used
by the operating system (OS) kernel, exception handlers, and all application codes that require
privileged access.

•	 Process Stack Pointer (PSP) or SP_process in ARM documentation: This is used by the base-level
application code (when not running an exception handler).

Figure 3.1

Registers in the Cortex-M3.

Name

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14

R15

R13 (PSP)

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

General purpose register

Main Stack Pointer (MSP), Process Stack Pointer (PSP)

Link Register (LR)

Program Counter (PC)

Low registers

High registers

xPSR

PRIMASK

FAULTMASK

BASEPRI

Program status registers

Interrupt mask
registers

Control registerCONTROL

Special
registers

Functions (and banked registers)

273.1  Registers

It is not necessary to use both SPs. Simple applications can rely purely on the MSP. The SPs are used
for accessing stack memory processes such as PUSH and POP.

In the Cortex-M3, the instructions for accessing stack memory are PUSH and POP. The assembly
language syntax is as follows (text after each semicolon [;] is a comment):

PUSH {R0} ; R13=R13-4, then Memory[R13] = R0
POP {R0} ; R0 = Memory[R13], then R13 = R13 + 4

The Cortex-M3 uses a full-descending stack arrangement. (More detail on this subject can be found
in the “Stack Memory Operations” section of this chapter.) Therefore, the SP decrements when new
data is stored in the stack. PUSH and POP are usually used to save register contents to stack memory at
the start of a subroutine and then restore the registers from stack at the end of the subroutine. You can
PUSH or POP multiple registers in one instruction:

subroutine_1
PUSH	 {R0-R7, R12, R14} ; Save registers
...	 ; Do your processing
POP	 {R0-R7, R12, R14} ; Restore registers
BX	 R14 ; Return to calling function

Stack PUSH and POP
Stack is a memory usage model. It is simply part of the system memory, and a pointer register (inside the
processor) is used to make it work as a first-in/last-out buffer. The common use of a stack is to save register
contents before some data processing and then restore those contents from the stack after the processing task
is done.

When doing PUSH and POP operations, the pointer register, commonly called stack pointer, is adjusted
automatically to prevent next stack operations from corrupting previous stacked data. More details on stack
operations are provided on later part of this chapter.

Figure 3.2

Basic Concept of Stack Memory.

Data processing
(original register

contents destroyed)

SP

Memory

Register
contents

PUSH

Memory

POP

Register
contents
restored

Stack PUSH operation to
back up register contents

Stack POP operation to
restore register contents

28 CHAPTER 3  Cortex-M3 Basics

Instead of using R13, you can use SP (for SP) in your program codes. It means the same thing.
Inside program code, both the MSP and the PSP can be called R13/SP. However, you can access a
particular one using special register access instructions (MRS/MSR).

The MSP, also called SP_main in ARM documentation, is the default SP after power-up; it is used
by kernel code and exception handlers. The PSP, or SP_process in ARM documentation, is typically
used by thread processes in system with embedded OS running.

Because register PUSH and POP operations are always word aligned (their addresses must be 0x0,
0x4, 0x8, ...), the SP/R13 bit 0 and bit 1 are hardwired to 0 and always read as zero (RAZ).

3.1.4  Link Register R14
R14 is the link register (LR). Inside an assembly program, you can write it as either R14 or LR. LR is
used to store the return program counter (PC) when a subroutine or function is called—for example,
when you’re using the branch and link (BL) instruction:

main ; Main program
	 ...
	 BL function1 ; Call function1 using Branch with Link instruction.
	 ; PC = function1 and
	 ; LR = the next instruction in main
	 ...
function1
	 ...	 ; Program code for function 1
	 BX LR	 ; Return

Despite the fact that bit 0 of the PC is always 0 (because instructions are word aligned or half word
aligned), the LR bit 0 is readable and writable. This is because in the Thumb instruction set, bit 0 is
often used to indicate ARM/Thumb states. To allow the Thumb-2 program for the Cortex-M3 to work
with other ARM processors that support the Thumb-2 technology, this least significant bit (LSB) is
writable and readable.

3.1.5  Program Counter R15
R15 is the PC. You can access it in assembler code by either R15 or PC. Because of the pipelined nature
of the Cortex-M3 processor, when you read this register, you will find that the value is different than the
location of the executing instruction, normally by 4. For example:

0x1000  : MOV R0, PC ;  R0 = 0x1004

In other instructions like literal load (reading of a memory location related to current PC value), the
effective value of PC might not be instruction address plus 4 due to alignment in address calculation.
But the PC value is still at least 2 bytes ahead of the instruction address during execution.

Writing to the PC will cause a branch (but LRs do not get updated). Because an instruction address
must be half word aligned, the LSB (bit 0) of the PC read value is always 0. However, in branching,
either by writing to PC or using branch instructions, the LSB of the target address should be set to 1
because it is used to indicate the Thumb state operations. If it is 0, it can imply trying to switch to the
ARM state and will result in a fault exception in the Cortex-M3.

293.2  Special Registers

3.2  Special Registers
The special registers in the Cortex-M3 processor include the following (see Figures 3.3 and 3.4):

Program Status registers (PSRs)•	
Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)•	
Control register (CONTROL)•	

Special registers can only be accessed via MSR and MRS instructions; they do not have memory
addresses:

MRS <reg>, <special_reg>; Read special register
MSR <special_reg>, <reg>; write to special register

3.2.1  Program Status Registers
The PSRs are subdivided into three status registers:

Application Program Status register (APSR)•	
Interrupt Program Status register (IPSR)•	
Execution Program Status register (EPSR)•	

The three PSRs can be accessed together or separately using the special register access instructions
MSR and MRS. When they are accessed as a collective item, the name xPSR is used.

You can read the PSRs using the MRS instruction. You can also change the APSR using the MSR
instruction, but EPSR and IPSR are read-only. For example:

MRS    r0, APSR    ; Read Flag state into R0
MRS    r0, IPSR    ; Read Exception/Interrupt state
MRS    r0, EPSR    ; Read Execution state
MSR    APSR, r0    ; Write Flag state

Figure 3.3

Program Status Registers (PSRs) in the Cortex-M3.

31

APSR

IPSR

EPSR

30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

N Z C V Q

Exception number

ICI/IT ICI/ITT

Figure 3.4

Combined Program Status Registers (xPSR) in the Cortex-M3.

31

xPSR

30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

N Z C V Q Exception numberICI/IT ICI/ITT

30 CHAPTER 3  Cortex-M3 Basics

In ARM assembler, when accessing xPSR (all three PSRs as one), the symbol PSR is used:

MRS    r0, PSR    ; Read the combined program status word
MSR    PSR, r0    ; Write combined program state word

The descriptions for the bit fields in PSR are shown in Table 3.1.
If you compare this with the Current Program Status register (CPSR) in ARM7, you might find

that some bit fields that were used in ARM7 are gone. The Mode (M) bit field is gone because
the Cortex-M3 does not have the operation mode as defined in ARM7. Thumb-bit (T) is moved to
bit 24. Interrupt status (I and F) bits are replaced by the new interrupt mask registers (PRIMASKs),
which are separated from PSR. For comparison, the CPSR in traditional ARM processors is shown
in Figure 3.5.

3.2.2  PRIMASK, FAULTMASK, and BASEPRI Registers
The PRIMASK, FAULTMASK, and BASEPRI registers are used to disable exceptions (see
Table 3.2).

The PRIMASK and BASEPRI registers are useful for temporarily disabling interrupts in tim-
ing-critical tasks. An OS could use FAULTMASK to temporarily disable fault handling when a
task has crashed. In this scenario, a number of different faults might be taking place when a task
crashes. Once the core starts cleaning up, it might not want to be interrupted by other faults caused
by the crashed process. Therefore, the FAULTMASK gives the OS kernel time to deal with fault
conditions.

Table 3.1  Bit Fields in Cortex-M3 Program Status Registers

Bit Description

N Negative
Z Zero
C Carry/borrow
V Overflow
Q Sticky saturation flag
ICI/IT Interrupt-Continuable Instruction (ICI) bits, IF-THEN instruction status bit
T Thumb state, always 1; trying to clear this bit will cause a fault exception
Exception number Indicates which exception the processor is handling

Figure 3.5

Current Program Status Registers in Traditional ARM Processors.

31

ARM
(general)

30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

N Z C V Q IT ITJ Reserved E A I F T M[4:0]GE[3:0]

ARM7 TDMI N Z C V Reserved I F T M[4:0]

313.2  Special Registers

To access the PRIMASK, FAULTMASK, and BASEPRI registers, a number of functions are
available in the device driver libraries provided by the microcontroller vendors. For example, the
following:

x = __get_BASEPRI(); // Read BASEPRI register
x = __get_PRIMARK(); // Read PRIMASK register
x = __get_FAULTMASK(); // Read FAULTMASK register
__set_BASEPRI(x); // Set new value for BASEPRI
__set_PRIMASK(x); // Set new value for PRIMASK
__set_FAULTMASK(x); // Set new value for FAULTMASK
__disable_irq(); // Clear PRIMASK, enable IRQ
__enable_irq(); // Set PRIMASK, disable IRQ

Details of these core register access functions are covered in Appendix G. A detailed introduction of
Cortex Microcontroller Software Interface Standard (CMSIS) can be found in Chapter 10.

In assembly language, the MRS and MSR instructions are used. For example:

MRS    r0, BASEPRI ; Read BASEPRI register into R0
MRS    r0, PRIMASK ; Read PRIMASK register into R0
MRS    r0, FAULTMASK ; Read FAULTMASK register into R0
MSR    BASEPRI, r0 ; Write R0 into BASEPRI register
MSR    PRIMASK, r0 ; Write R0 into PRIMASK register
MSR    FAULTMASK, r0 ; Write R0 into FAULTMASK register

The PRIMASK, FAULTMASK, and BASEPRI registers cannot be set in the user access level.

3.2.3  The Control Register
The control register is used to define the privilege level and the SP selection. This register has 2 bits,
as shown in Table 3.3.

CONTROL[1]
In the Cortex-M3, the CONTROL[1] bit is always 0 in handler mode. However, in the thread or base
level, it can be either 0 or 1.

Table 3.2  Cortex-M3 Interrupt Mask Registers

Register Name Description

PRIMASK A 1-bit register, when this is set, it allows nonmaskable interrupt (NMI) and the hard
fault exception; all other interrupts and exceptions are masked. The default value is
0, which means that no masking is set.

FAULTMASK A 1-bit register, when this is set, it allows only the NMI, and all interrupts and fault
handling exceptions are disabled. The default value is 0, which means that no
masking is set.

BASEPRI A register of up to 8 bits (depending on the bit width implemented for priority level).
It defines the masking priority level. When this is set, it disables all interrupts of
the same or lower level (larger priority value). Higher priority interrupts can still be
allowed. If this is set to 0, the masking function is disabled (this is the default).

32 CHAPTER 3  Cortex-M3 Basics

This bit is writable only when the core is in thread mode and privileged. In the user state or handler
mode, writing to this bit is not allowed. Aside from writing to this register, another way to change this
bit is to change bit 2 of the LR when in exception return. This subject is discussed in Chapter 8, where
details on exceptions are described.

CONTROL[0]
The CONTROL[0] bit is writable only in a privileged state. Once it enters the user state, the only way
to switch back to privileged is to trigger an interrupt and change this in the exception handler.

To access the control register in C, the following CMSIS functions are available in CMSIS compli-
ant device driver libraries:

x = __get_CONTROL(); // Read the current value of CONTROL
__set_CONTROL(x); // Set the CONTROL value to x

To access the control register in assembly, the MRS and MSR instructions are used:

MRS    r0, CONTROL ; Read CONTROL register into R0
MSR    CONTROL, r0 ; Write R0 into CONTROL register

3.3  Operation Mode
The Cortex-M3 processor supports two modes and two privilege levels (see Figure 3.6).

When the processor is running in thread mode, it can be in either the privileged or user level, but
handlers can only be in the privileged level. When the processor exits reset, it is in thread mode, with
privileged access rights.

In the user access level (thread mode), access to the system control space (SCS)—a part of the
memory region for configuration registers and debugging components—is blocked. Furthermore,
instructions that access special registers (such as MSR, except when accessing APSR) cannot be used.
If a program running at the user access level tries to access SCS or special registers, a fault exception
will occur.

Software in a privileged access level can switch the program into the user access level using the con-
trol register. When an exception takes place, the processor will always switch to a privileged state and

Table 3.3  Cortex-M3 Control Register

Bit Function

CONTROL[1] Stack status:
1 = Alternate stack is used
0 = Default stack (MSP) is used
If it is in the thread or base level, the alternate stack is the PSP. There is no
alternate stack for handler mode, so this bit must be 0 when the processor is in
handler mode.

CONTROL[0] 0 = Privileged in thread mode
1 = User state in thread mode
If in handler mode (not thread mode), the processor operates in privileged mode.

333.3  Operation Mode

return to the previous state when exiting the exception handler. A user program cannot change back to
the privileged state directly by writing to the control register. It has to go through an exception handler
that programs the control register to switch the processor back into privileged access level when return-
ing to thread mode. (See Figures 3.7).

The support of privileged and user access levels provides a more secure and robust architecture. For
example, when a user program goes wrong, it will not be able to corrupt control registers in the Nested
Vectored Interrupt Controller (NVIC). In addition, if the Memory Protection Unit (MPU) is present, it
is possible to block user programs from accessing memory regions used by privileged processes.

In simple applications, there is no need to separate the privileged and user access levels. In these
cases, there is no need to use user access level and no need to program the control register.

You can separate the user application stack from the kernel stack memory to avoid the possibility of
crashing a system caused by stack operation errors in user programs. With this arrangement, the user
program (running in thread mode) uses the PSP, and the exception handlers use the MSP. The switching
of SPs is automatic upon entering or leaving the exception handlers (see section 3.6.3). This topic is
discussed in more detail in Chapter 8.

The mode and access level of the processor are defined by the control register. When the control reg-
ister bit 0 is 0, the processor mode changes when an exception takes place (see Figures 3.8 and 3.9).

Figure 3.6

Operation Modes and Privilege Levels in Cortex-M3.

Handler mode
(CONTROL[1] 5 0)

Thread mode
(CONTROL[0] 5 0)

Thread mode
(CONTROL[0] 5 1)

When running an exception handler

When not running an exception handler
(e.g., main program)

(not allowed)

CONTROL [1] can be either 0 or 1

Privileged User

Figure 3.7

Switching of Operation Mode by Programming the Control Register or by Exceptions.

Starting
code

Privileged
thread

User thread

Privileged
handler

Switch to user
mode by writing
to CONTROL

register

User
mode

Exception Exception

User
mode

Reprogram
CONTROL

register

Privileged
thread

Exception
handler

Exception
handler

34 CHAPTER 3  Cortex-M3 Basics

When control register bit 0 is 1 (thread running user application), both processor mode and access
level change when an exception takes place (see Figure 3.10).

Control register bit 0 is programmable only in the privileged level (see Figure 2.5). For a user-level
program to switch to privileged state, it has to raise an interrupt (for example, supervisor call [SVC])
and write to CONTROL[0] within the handler.

Figure 3.8

Simple Applications Do Not Require User Access Level in Thread Mode.

Privileged
thread

Privileged
thread

Privileged
thread

Exception
handler

Starting
code

Privileged
thread

User thread

Privileged
handler

ExceptionException

Exception
handler

Figure 3.9

Switching Processor Mode at Interrupt.

Thread mode
(privileged)

Handler mode
(privileged)

Thread mode
(privileged)

Time

Main
program

Interrupt
event

Interrupt service
routine (ISR)

Interrupt
exit

Stacking Unstacking

Figure 3.10

Switching Processor Mode and Privilege Level at Interrupt.

Thread mode
(user)

Handler mode
(privileged)

Thread mode
(user)

Time

Main
program

Interrupt
event

Interrupt service
routine (ISR)

Interrupt
exit

Stacking Unstacking

353.4  Exceptions and Interrupts

3.4  Exceptions and Interrupts
The Cortex-M3 supports a number of exceptions, including a fixed number of system exceptions and
a number of interrupts, commonly called IRQ. The number of interrupt inputs on a Cortex-M3 micro-
controller depends on the individual design. Interrupts generated by peripherals, except System Tick
Timer, are also connected to the interrupt input signals. The typical number of interrupt inputs is 16
or 32. However, you might find some microcontroller designs with more (or fewer) interrupt inputs.

Besides the interrupt inputs, there is also a nonmaskable interrupt (NMI) input signal. The actual
use of NMI depends on the design of the microcontroller or system-on-chip (SoC) product you use. In
most cases, the NMI could be connected to a watchdog timer or a voltage-monitoring block that warns
the processor when the voltage drops below a certain level. The NMI exception can be activated any
time, even right after the core exits reset.

The list of exceptions found in the Cortex-M3 is shown in Table 3.4. A number of the system
exceptions are fault-handling exceptions that can be triggered by various error conditions. The NVIC
also provides a number of fault status registers so that error handlers can determine the cause of the
exceptions.

More details on exception operations in the Cortex-M3 processor are discussed in Chapters 7 to 9.

Table 3.4  Exception Types in Cortex-M3

Exception
Number Exception Type Priority Function

1 Reset −3 (Highest) Reset
2 NMI −2 Nonmaskable interrupt
3 Hard fault −1 All classes of fault, when the corresponding fault

handler cannot be activated because it is currently
disabled or masked by exception masking

4 MemManage Settable Memory management fault; caused by MPU
violation or invalid accesses (such as an instruction
fetch from a nonexecutable region)

5 Bus fault Settable Error response received from the bus system;
caused by an instruction prefetch abort or data
access error

6 Usage fault Settable Usage fault; typical causes are invalid instructions
or invalid state transition attempts (such as trying to
switch to ARM state in the Cortex-M3)

7–10 — — Reserved
11 SVC Settable Supervisor call via SVC instruction
12 Debug monitor Settable Debug monitor
13 — — Reserved
14 PendSV Settable Pendable request for system service
15 SYSTICK Settable System tick timer
16–255 IRQ Settable IRQ input #0–239

36 CHAPTER 3  Cortex-M3 Basics

3.5  Vector Tables
When an exception event takes place on the Cortex-M3 and is accepted by the processor core, the
corresponding exception handler is executed. To determine the starting address of the exception han-
dler, a vector table mechanism is used. The vector table is an array of word data inside the system
memory, each representing the starting address of one exception type. The vector table is relocatable,
and the relocation is controlled by a relocation register in the NVIC (see Table 3.5). After reset, this
relocation control register is reset to 0; therefore, the vector table is located in address 0x0 after reset.

For example, if the reset is exception type 1, the address of the reset vector is 1 times 4 (each word
is 4 bytes), which equals 0x00000004, and NMI vector (type 2) is located in 2 × 4 = 0x00000008. The
address 0x00000000 is used to store the starting value for the MSP.

The LSB of each exception vector indicates whether the exception is to be executed in the Thumb
state. Because the Cortex-M3 can support only Thumb instructions, the LSB of all the exception vec-
tors should be set to 1.

3.6  Stack Memory Operations
In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the stack PUSH and POP
operations are also carried out automatically when entering or exiting an exception/interrupt handler.
In this section, we examine the software stack operations. (Stack operations during exception handling
are covered in Chapter 9.)

Table 3.5  Vector Table Definition after Reset

Exception Type Address Offset Exception Vector

18–255 0x48–0x3FF IRQ #2–239
17 0x44 IRQ #1
16 0x40 IRQ #0
15 0x3C SYSTICK
14 0x38 PendSV
13 0x34 Reserved
12 0x30 Debug monitor
11 0x2C SVC
7–10 0x1C–0x28 Reserved
6 0x18 Usage fault
5 0x14 Bus fault
4 0x10 MemManage fault
3 0x0C Hard fault
2 0x08 NMI
1 0x04 Reset
0 0x00 Starting value of the MSP

373.6  Stack Memory Operations

3.6.1  Basic Operations of the Stack
In general, stack operations are memory write or read operations, with the address specified by an SP.
Data in registers is saved into stack memory by a PUSH operation and can be restored to registers later
by a POP operation. The SP is adjusted automatically in PUSH and POP so that multiple data PUSH
will not cause old stacked data to be erased.

The function of the stack is to store register contents in memory so that they can be restored later,
after a processing task is completed. For normal uses, for each store (PUSH), there must be a cor-
responding read (POP), and the address of the POP operation should match that of the PUSH opera-
tion (see Figure 3.11). When PUSH/POP instructions are used, the SP is incremented/decremented
automatically.

When program control returns to the main program, the R0–R2 contents are the same as before.
Notice the order of PUSH and POP: The POP order must be the reverse of PUSH.

These operations can be simplified, thanks to PUSH and POP instructions allowing multiple load
and store. In this case, the ordering of a register POP is automatically reversed by the processor (see
Figure 3.12).

You can also combine RETURN with a POP operation. This is done by pushing the LR to the stack
and popping it back to PC at the end of the subroutine (see Figure 3.13).

3.6.2  Cortex-M3 Stack Implementation
The Cortex-M3 uses a full-descending stack operation model. The SP points to the last data pushed
to the stack memory, and the SP decrements before a new PUSH operation. See Figure 3.14 for an
example showing execution of the instruction PUSH {R0}.

Figure 3.11

Stack Operation Basics: One Register in Each Stack Operation.

Main program

...
; R0 X, R1 Y, R2 Z
BL function1

; Back to main program
; R0 X, R1 Y, R2 Z
... ; next instructions

function1
PUSH {R0} ; store R0 to stack & adjust SP
PUSH {R1} ; store R1 to stack & adjust SP
PUSH {R2} ; store R2 to stack & adjust SP
... ; Executing task (R0, R1 and R2

; could be changed)
POP {R2} ; restore R2 and SP re adjusted
POP {R1} ; restore R1 and SP re adjusted
POP {R0} ; restore R0 and SP re adjusted
BX LR ; Return

Subroutine

38 CHAPTER 3  Cortex-M3 Basics

Figure 3.12

Stack Operation Basics: Multiple Register Stack Operation.

Main program
...

BL function 1

; Back to main program

... ; next instructions

function 1
PUSH {R0 R2} ; Store R0, R1, R2 to stack
... ; Executing task (R0, R1 and R2

; could be changed)
POP {R0 R2} ; restore R0, R1, R2
BX LR ; Return

Subroutine; R0 X, R1 Y, R2 Z

; R0 X, R1 Y, R2 Z

Figure 3.13

Stack Operation Basics: Combining Stack POP and RETURN.

Main program
...

; R0 X, R1 Y, R2 Z
BL function 1

; Back to main program
; R0 X, R1 Y, R2 Z
... ; next instructions

function 1
PUSH {R0 R2, LR} ; Save registers

; including link register
... ; Executing task (R0, R1 and R2

; could be changed)
POP {R0 R2, PC} ; Restore registers and

; return

Subroutine

Figure 3.14

Cortex-M3 Stack PUSH Implementation.

Last pushed data
-
-

Memory
address

Occupied
Occupied

SP

0x12345678R0

PUSH {R0}

Occupied
0x12345678

-

Occupied
Occupied

SP

Stack
grow

393.6  Stack Memory Operations

For POP operations, the data is read from the memory location pointer by SP, and then, the SP is
incremented. The contents in the memory location are unchanged but will be overwritten when the next
PUSH operation takes place (see Figure 3.15).

Because each PUSH/POP operation transfers 4 bytes of data (each register contains 1 word, or 4 bytes),
the SP decrements/increments by 4 at a time or a multiple of 4 if more than 1 register is pushed or popped.

In the Cortex-M3, R13 is defined as the SP. When an interrupt takes place, a number of registers
will be pushed automatically, and R13 will be used as the SP for this stacking process. Similarly, the
pushed registers will be restored/popped automatically when exiting an interrupt handler, and the SP
will also be adjusted.

3.6.3  The Two-Stack Model in the Cortex-M3
As mentioned before, the Cortex-M3 has two SPs: the MSPS and the PSP. The SP register to be used is
controlled by the control register bit 1 (CONTROL[1] in the following text).

When CONTROL[1] is 0, the MSP is used for both thread mode and handler mode (see Figure 3.16).
In this arrangement, the main program and the exception handlers share the same stack memory region.
This is the default setting after power-up.

When the CONTROL[1] is 1, the PSP is used in thread mode (see Figure 3.17). In this arrangement,
the main program and the exception handler can have separate stack memory regions. This can prevent

Figure 3.15

Cortex-M3 Stack POP Implementation.

POP {R0}

R0

-

-

Memory
address

Occupied
Occupied
Occupied

SP0x12345678
Occupied

0x12345678

0x12345678R0

-

Occupied
Occupied

SP

Figure 3.16

CONTROL[1]=0: Both Thread Level and Handler Use Main Stack.

Thread mode
(use MSP)

Handler mode
(use MSP)

Thread mode
(use MSP)

Time

Main
program

Interrupt
event

Interrupt service
routine (ISR)

Interrupt
exit

Stacking Unstacking

40 CHAPTER 3  Cortex-M3 Basics

a stack error in a user application from damaging the stack used by the OS (assuming that the user
application runs only in thread mode and the OS kernel executes in handler mode).

Note that in this situation, the automatic stacking and unstacking mechanism will use PSP, whereas
stack operations inside the handler will use MSP.

It is possible to perform read/write operations directly to the MSP and PSP, without any confusion
of which R13 you are referring to. Provided that you are in privileged level, you can access MSP and
PSP values:

x = __get_MSP(); // Read the value of MSP
__set_MSP(x); // Set the value of MSP
x = __get_PSP(); // Read the value of PSP
__set_PSP(x); // Set the value of PSP

In general, it is not recommended to change current selected SP values in a C function, as the stack
memory could be used for storing local variables. To access the SPs in assembly, you can use the MRS
and MSR instructions:

MRS R0, MSP ; Read Main Stack Pointer to R0
MSR MSP, R0 ; Write R0 to Main Stack Pointer
MRS R0, PSP ; Read Process Stack Pointer to R0
MSR PSP, R0 ; Write R0 to Process Stack Pointer

By reading the PSP value using an MRS instruction, the OS can read data stacked by the user
application (such as register contents before SVC). In addition, the OS can change the PSP pointer
value—for example, during context switching in multitasking systems.

3.7  Reset Sequence
After the processor exits reset, it will read two words from memory (see Figure 3.18):

Address 0x00000000: Starting value of R13 (the SP)•	

Figure 3.17

CONTROL[1]=1: Thread Level Uses Process Stack and Handler Uses Main Stack.

Thread mode
(use PSP)

Handler mode
(use MSP)

Thread mode
(use PSP)

Time

Main
program

Interrupt
event

Interrupt service
routine (ISR)

Interrupt
exit

Stacking Unstacking

413.7  Reset Sequence

Address 0x00000004: Reset vector (the starting address of program execution; LSB should be set •	
to 1 to indicate Thumb state)

This differs from traditional ARM processor behavior. Previous ARM processors executed program code
starting from address 0x0. Furthermore, the vector table in previous ARM devices was instructions (you
have to put a branch instruction there so that your exception handler can be put in another location).

Figure 3.18

Reset Sequence.

Address5
reset vector

Time

Reset
Address5

0x00000000
Address5

0x00000004

Fetch initial
SP value

Fetch reset
vector

Instruction
fetch

Figure 3.19

Initial Stack Pointer Value and Initial Program Counter Value Example.

Other memory

0x20008000
1st stacked item
2nd stacked item

Other memory

0x20007 FFC
0x20007 FF8

0x20007 C00

Stack
memory

Initial SP value
0x20008000

Stack grows
downwards

0x200080000x00000000
0x00000004 0x00000101

Boot code0x00000100

Reset
vector

Other exception
vectors

Flash

42 CHAPTER 3  Cortex-M3 Basics

In the Cortex-M3, the initial value for the MSP is put at the beginning of the memory map, followed
by the vector table, which contains vector address values. (The vector table can be relocated to another
location later, during program execution.) In addition, the contents of the vector table are address values
not branch instructions. The first vector in the vector table (exception type 1) is the reset vector, which
is the second piece of data fetched by the processor after reset.

Because the stack operation in the Cortex-M3 is a full descending stack (SP decrement before
store), the initial SP value should be set to the first memory after the top of the stack region. For
example, if you have a stack memory range from 0x20007C00 to 0x20007FFF (1 KB), the initial stack
value should be set to 0x20008000.

The vector table starts after the initial SP value. The first vector is the reset vector. Notice that in
the Cortex-M3, vector addresses in the vector table should have their LSB set to 1 to indicate that they
are Thumb code. For that reason, the previous example has 0x101 in the reset vector, whereas the boot
code starts at address 0x100 (see Figure 3.19). After the reset vector is fetched, the Cortex-M3 can then
start to execute the program from the reset vector address and begin normal operations. It is necessary
to have the SP initialized, because some of the exceptions (such as NMI) can happen right after reset,
and the stack memory could be required for the handler of those exceptions.

Various software development tools might have different ways to specify the starting SP value and
reset vector. If you need more information on this topic, it’s best to look at project examples provided
with the development tools. Simple examples are provided in Chapters 10 and 20 for ARM tools and
in Chapter 19 for the GNU tool chain.

43Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00007-7

In This Chapter

Assembly Basics.. 43
Instruction List.. 46
Instruction Descriptions... 52
Several Useful Instructions in the Cortex-M3.. 70

CHAPTER

Instruction Sets 4

This chapter provides some insight into the instruction set in the Cortex™-M3 and examples for a
number of instructions. You’ll also find more information on the instruction set in Appendix A of this
book. For complete details of each instruction, refer to the ARM v7-M Architecture Application Level
Reference Manual [Ref. 2] or user guides from microcontroller vendors.

4.1  Assembly Basics
Here, we introduce some basic syntax of ARM assembly to make it easier to understand the rest of the
code examples in this book. Most of the assembly code examples in this book are based on the ARM
assembler tools, with the exception of those in Chapter 19, which focus on the Gnu’s Not Unix tool
chain.

4.1.1  Assembler Language: Basic Syntax
In assembler code, the following instruction formatting is commonly used:

label
opcode operand1, operand2, ...; Comments

The label is optional. Some of the instructions might have a label in front of them so that the address
of the instructions can be determined using the label. Then, you will find the opcode (the instruction)
followed by a number of operands. Normally, the first operand is the destination of the operation. The
number of operands in an instruction depends on the type of instruction, and the syntax format of the

44 CHAPTER 4  Instruction Sets

operand can also be different. For example, immediate data are usually in the form #number, as shown
here:

MOV R0, #0x12 ; Set R0 = 0x12 (hexadecimal)
MOV R1, #'A' ; Set R1 = ASCII character A

The text after each semicolon (;) is a comment. These comments do not affect the program operation,
but they can make programs easier for humans to understand.

You can define constants using EQU, and then use them inside your program code. For example,

NVIC_IRQ_SETEN0 EQU 0xE000E100
NVIC_IRQ0_ENABLE EQU 0x1

...
LDR R0,=NVIC_IRQ_SETEN0; ; LDR here is a pseudo-instruction that
	 ; convert to a PC relative load by
	 ; assembler.
MOV R1,#NVIC_IRQ0_ENABLE ; Move immediate data to register
STR R1,[R0]	 ; Enable IRQ 0 by writing R1 to address
	 ; in R0

A number of data definition directives are available for insertion of constants inside assembly code.
For example, DCI (Define Constant Instruction) can be used to code an instruction if your assembler
cannot generate the exact instruction that you want and if you know the binary code for the instruction.

DCI 0xBE00 ;  Breakpoint (BKPT 0),  a 16-bit instruction

We can use DCB (Define Constant Byte) for byte size constant values, such as characters, and
Define Constant Data (DCD) for word size constant values to define binary data in your code.

LDR R3,=MY_NUMBER ; Get the memory address value of MY_NUMBER
LDR R4,[R3]	 ; Get the value code 0x12345678 in R4
...
LDR R0,=HELLO_TXT ; Get the starting memory address of
	 ; HELLO_TXT
BL PrintText	 ; Call a function called PrintText to
	 ; display string
...

MY_NUMBER
DCD 0x12345678

HELLO_TXT
DCB "Hello\n",0 ; null terminated string

Note that the assembler syntax depends on which assembler tool you are using. Here, the ARM
assembler tools syntax is introduced. For syntax of other assemblers, it is best to start from the code
examples provided with the tools.

4.1.2  Assembler Language: Use of Suffixes
In assembler for ARM processors, instructions can be followed by suffixes, as shown in Table 4.1.

For the Cortex-M3, the conditional execution suffixes are usually used for branch instructions.
However, other instructions can also be used with the conditional execution suffixes if they are inside
an IF-THEN instruction block. (This concept is introduced in a later part of this chapter.) In those

454.1  Assembly Basics

cases, the S suffix and the conditional execution suffixes can be used at the same time. Fifteen condition
choices are available, as described later in this chapter.

4.1.3  Assembler Language: Unified Assembler Language
To support and get the best out of the Thumb®-2 instruction set, the Unified Assembler Language
(UAL) was developed to allow selection of 16-bit and 32-bit instructions and to make it easier to port
applications between ARM code and Thumb code by using the same syntax for both. (With UAL, the
syntax of Thumb instructions is now the same as for ARM instructions.)

ADD R0, R1 ; R0 = R0 + R1, using Traditional Thumb syntax
ADD R0, R0, R1 ; Equivalent instruction using UAL syntax

The traditional Thumb syntax can still be used. The choice between whether the instructions are
interpreted as traditional Thumb code or the new UAL syntax is normally defined by the directive in
the assembly file. For example, with ARM assembler tool, a program code header with “CODE16”
directive implies the code is in the traditional Thumb syntax, and “THUMB” directive implies the code
is in the new UAL syntax.

One thing you need to be careful with reusing traditional Thumb is that some instructions change
the flags in APSR, even if the S suffix is not used. However, when the UAL syntax is used, whether the
instruction changes the flag depends on the S suffix. For example,

AND R0, R1 ; Traditional Thumb syntax
ANDS R0, R0, R1 ; Equivalent UAL syntax (S suffix is added)

With the new instructions in Thumb-2 technology, some of the operations can be handled by either a
Thumb instruction or a Thumb-2 instruction. For example, R0 = R0 + 1 can be implemented as a 16-bit
Thumb instruction or a 32-bit Thumb-2 instruction. With UAL, you can specify which instruction you
want by adding suffixes:

ADDS R0, #1 ; Use 16-bit Thumb instruction by default
	 ; for smaller size
ADDS.N R0, #1 ; Use 16-bit Thumb instruction (N=Narrow)
ADDS.W R0, #1 ; Use 32-bit Thumb-2 instruction (W=wide)

The .W (wide) suffix specifies a 32-bit instruction. If no suffix is given, the assembler tool can
choose either instruction but usually defaults to 16-bit Thumb code to get a smaller size. Depending on
tool support, you may also use the .N (narrow) suffix to specify a 16-bit Thumb instruction.

Again, this syntax is for ARM assembler tools. Other assemblers might have slightly different syntax.
If no suffix is given, the assembler might choose the instruction for you, with the minimum code size.

Table 4.1  Suffixes in Instructions

Suffix Description

S Update Application Program Status register (APSR) (flags); for example:
ADDS R0, R1 ; this will update APSR

EQ, NE, LT, GT, and
so on

Conditional execution; EQ = Equal, NE = Not Equal, LT = Less Than, GT = Greater
Than, and so forth. For example:
BEQ <Label> ; Branch if equal

46 CHAPTER 4  Instruction Sets

In most cases, applications will be coded in C, and the C compilers will use 16-bit instructions
if possible due to smaller code size. However, when the immediate data exceed a certain range or
when the operation can be better handled with a 32-bit Thumb-2 instruction, the 32-bit instruction will
be used.

The 32-bit Thumb-2 instructions can be half word aligned. For example, you can have a 32-bit
instruction located in a half word location.

0x1000 : LDR r0,[r1] ;a 16-bit instructions (occupy 0x1000-0x1001)
0x1002 : RBIT.W r0 ;a 32-bit Thumb-2 instruction (occupy
	 ; 0x1002-0x1005)

Most of the 16-bit instructions can only access registers R0–R7; 32-bit Thumb-2 instructions do not
have this limitation. However, use of PC (R15) might not be allowed in some of the instructions. Refer
to the ARM v7-M Architecture Application Level Reference Manual [Ref. 2] (section A4.6) if you need
to find out more detail in this area.

4.2  Instruction List
The supported instructions are listed in Tables 4.2 through 4.9. The complete details of each instruction
are available in the ARM v7-M Architecture Application Level Reference Manual [Ref. 2]. There is also
information of the supported instruction sets in Appendix A.

Table 4.2  16-Bit Data Processing Instructions

Instruction Function

ADC Add with carry
ADD Add
ADR Add PC and an immediate value and put the result in a register
AND Logical AND
ASR Arithmetic shift right
BIC Bit clear (Logical AND one value with the logic inversion of another value)
CMN Compare negative (compare one data with two’s complement of another data and

update flags)
CMP Compare (compare two data and update flags)
CPY Copy (available from architecture v6; move a value from one high or low register to

another high or low register); synonym of MOV instruction
EOR Exclusive OR
LSL Logical shift left
LSR Logical shift right
MOV Move (can be used for register-to-register transfers or loading immediate data)
MUL Multiply
MVN Move NOT (obtain logical inverted value)
NEG Negate (obtain two’s complement value), equivalent to RSB

474.2  Instruction List

Table 4.2  16-Bit Data Processing Instructions  Continued

Instruction Function

ORR Logical OR
RSB Reverse subtract
ROR Rotate right
SBC Subtract with carry
SUB Subtract
TST Test (use as logical AND; Z flag is updated but AND result is not stored)
REV Reverse the byte order in a 32-bit register (available from architecture v6)
REV16 Reverse the byte order in each 16-bit half word of a 32-bit register (available from

architecture v6)
REVSH Reverse the byte order in the lower 16-bit half word of a 32-bit register and sign

extends the result to 32 bits (available from architecture v6)
SXTB Signed extend byte (available from architecture v6)
SXTH Signed extend half word (available from architecture v6)
UXTB Unsigned extend byte (available from architecture v6)
UXTH Unsigned extend half word (available from architecture v6)

Table 4.3  16-Bit Branch Instructions

Instruction Function

B Branch
B<cond> Conditional branch
BL Branch with link; call a subroutine and store the return address in LR (this is actually

a 32-bit instruction, but it is also available in Thumb in traditional ARM processors)
BLX Branch with link and change state (BLX <reg> only)1

BX <reg> Branch with exchange state
CBZ Compare and branch if zero (architecture v7)
CBNZ Compare and branch if nonzero (architecture v7)
IT IF-THEN (architecture v7)

1BLX with immediate is not supported because it will always try to change to the ARM state, which is not supported in the
Cortex-M3. Attempts to use BLX <reg> to change to the ARM state will also result in a fault exception.

Table 4.4  16-Bit Load and Store Instructions

Instruction Function

LDR Load word from memory to register
LDRH Load half word from memory to register
LDRB Load byte from memory to register

Continued

48 CHAPTER 4  Instruction Sets

Table 4.4  16-Bit Load and Store Instructions  Continued

Instruction Function

LDRSH Load half word from memory, sign extend it, and put it in register
LDRSB Load byte from memory, sign extend it, and put it in register
STR Store word from register to memory
STRH Store half word from register to memory
STRB Store byte from register to memory
LDM/LDMIA Load multiple/Load multiple increment after
STM/STMIA Store multiple/Store multiple increment after
PUSH Push multiple registers
POP Pop multiple registers

Table 4.5  Other 16-Bit Instructions

Instruction Function

SVC Supervisor call
SEV Send event
WFE Sleep and wait for event
WFI Sleep and wait for interrupt
BKPT Breakpoint; if debug is enabled, it will enter debug mode (halted), or if debug

monitor exception is enabled, it will invoke the debug exception; otherwise, it will
invoke a fault exception

NOP No operation
CPSIE Enable PRIMASK (CPSIE i)/FAULTMASK (CPSIE f) register (set the register to 0)
CPSID Disable PRIMASK (CPSID i)/ FAULTMASK (CPSID f) register (set the register to 1)

Table 4.6  32-Bit Data Processing Instructions

Instruction Function

ADC Add with carry
ADD Add
ADDW Add wide (#immed_12)
ADR Add PC and an immediate value and put the result in a register
AND Logical AND
ASR Arithmetic shift right
BIC Bit clear (logical AND one value with the logic inversion of another value)
BFC Bit field clear
BFI Bit field insert
CMN Compare negative (compare one data with two’s complement of another data and

update flags)

494.2  Instruction List

Table 4.6  32-Bit Data Processing Instructions  Continued

Instruction Function

CMP Compare (compare two data and update flags)
CLZ Count leading zero
EOR Exclusive OR
LSL Logical shift left
LSR Logical shift right
MLA Multiply accumulate
MLS Multiply and subtract
MOV Move
MOVW Move wide (write a 16-bit immediate value to register)
MOVT Move top (write an immediate value to the top half word of destination reg)
MVN Move negative
MUL Multiply
ORR Logical OR
ORN Logical OR NOT
RBIT Reverse bit
REV Byte reverse word
REV16 Byte reverse packed half word
REVSH Byte reverse signed half word
ROR Rotate right
RSB Reverse subtract
RRX Rotate right extended
SBC Subtract with carry
SBFX Signed bit field extract
SDIV Signed divide
SMLAL Signed multiply accumulate long
SMULL Signed multiply long
SSAT Signed saturate
SBC Subtract with carry
SUB Subtract
SUBW Subtract wide (#immed_12)
SXTB Sign extend byte
SXTH Sign extend half word
TEQ Test equivalent (use as logical exclusive OR; flags are updated but result is not

stored)
TST Test (use as logical AND; Z flag is updated but AND result is not stored)
UBFX Unsigned bit field extract
UDIV Unsigned divide
UMLAL Unsigned multiply accumulate long
UMULL Unsigned multiply long
USAT Unsigned saturate

Continued 

50 CHAPTER 4  Instruction Sets

Table 4.6  32-Bit Data Processing Instructions  Continued

Instruction Function

UXTB Unsigned extend byte
UXTH Unsigned extend half word

Table 4.7  32-Bit Load and Store Instructions

Instruction Function

LDR Load word data from memory to register
LDRT Load word data from memory to register with unprivileged access
LDRB Load byte data from memory to register
LDRBT Load byte data from memory to register with unprivileged access
LDRH Load half word data from memory to register
LDRHT Load half word data from memory to register with unprivileged access
LDRSB Load byte data from memory, sign extend it, and put it to register
LDRSBT Load byte data from memory with unprivileged access, sign extend it, and put it to

register
LDRSH Load half word data from memory, sign extend it, and put it to register
LDRSHT Load half word data from memory with unprivileged access, sign extend it, and put

it to register
LDM/LDMIA Load multiple data from memory to registers
LDMDB Load multiple decrement before
LDRD Load double word data from memory to registers
STR Store word to memory
STRT Store word to memory with unprivileged access
STRB Store byte data to memory
STRBT Store byte data to memory with unprivileged access
STRH Store half word data to memory
STRHT Store half word data to memory with unprivileged access
STM/STMIA Store multiple words from registers to memory
STMDB Store multiple decrement before
STRD Store double word data from registers to memory
PUSH Push multiple registers
POP Pop multiple registers

Table 4.8  32-Bit Branch Instructions

Instruction Function

B Branch
B<cond> Conditional branch
BL Branch and link
TBB Table branch byte; forward branch using a table of single byte offset
TBH Table branch half word; forward branch using a table of half word offset

514.2  Instruction List

4.2.1  Unsupported Instructions
A number of Thumb instructions are not supported in the Cortex-M3; they are presented in Table 4.10.

A number of instructions listed in the ARM v7-M Architecture Application Level Reference Manual
are not supported in the Cortex-M3. ARM v7-M architecture allows Thumb-2 coprocessor instruc-
tions, but the Cortex-M3 processor does not have any coprocessor support. Therefore, executing
the coprocessor instructions shown in Table 4.11 will result in a fault exception (Usage Fault with
No-Coprocessor “NOCP” bit in Usage Fault Status Register in NVIC set to 1).

Some of the change process state (CPS) instructions are also not supported in the Cortex-M3 (see
Table 4.12). This is because the Program Status register (PSR) definition has changed, so some bits
defined in the ARM architecture v6 are not available in the Cortex-M3.

Table 4.9  Other 32-Bit Instructions

Instruction Function

LDREX Exclusive load word
LDREXH Exclusive load half word
LDREXB Exclusive load byte
STREX Exclusive store word
STREXH Exclusive store half word
STREXB Exclusive store byte
CLREX Clear the local exclusive access record of local processor
MRS Move special register to general-purpose register
MSR Move to special register from general-purpose register
NOP No operation
SEV Send event
WFE Sleep and wait for event
WFI Sleep and wait for interrupt
ISB Instruction synchronization barrier
DSB Data synchronization barrier
DMB Data memory barrier

Table 4.10  Unsupported Thumb Instructions for Traditional ARM Processors

Unsupported
Instruction Function

BLX label This is branch with link and exchange state. In a format with immediate data, BLX
always changes to ARM state. Because the Cortex-M3 does not support the ARM
state, instructions like this one that attempt to switch to the ARM state will result in a
fault exception called usage fault.

SETEND This Thumb instruction, introduced in architecture v6, switches the endian
configuration during run time. Since the Cortex-M3 does not support dynamic
endian, using the SETEND instruction will result in a fault exception.

52 CHAPTER 4  Instruction Sets

In addition, the hint instructions shown in Table 4.13 will behave as NOP in the Cortex-M3.
All other undefined instructions, when executed, will cause the usage fault exception to take place.

4.3  Instruction Descriptions
Here, we introduce some of the commonly used syntax for ARM assembly code. Some of the instruc-
tions have various options such as barrel shifter; these will not be fully covered in this chapter.

Table 4.11  Unsupported Coprocessor Instructions

Unsupported
Instruction Function

MCR Move to coprocessor from ARM processor
MCR2 Move to coprocessor from ARM processor
MCRR Move to coprocessor from two ARM register
MRC Move to ARM register from coprocessor
MRC2 Move to ARM register from coprocessor
MRRC Move to two ARM registers from coprocessor
LDC Load coprocessor; load memory data from a sequence of consecutive memory

addresses to a coprocessor
STC Store coprocessor; stores data from a coprocessor to a sequence of consecutive

memory addresses

Table 4.12  Unsupported Change Process State Instructions

Unsupported
Instruction

Function

CPS<IE|ID>.W A There is no A bit in the Cortex-M3
CPS.W #mode There is no mode bit in the Cortex-M3 PSR

Table 4.13  Unsupported Hint Instructions

Unsupported
Instruction Function

DBG A hint instruction to debug and trace system
PLD Preload data; this is a hint instruction for cache memory, however, since there is no

cache in the Cortex-M3 processor, this instruction behaves as NOP
PLI Preload instruction; this is a hint instruction for cache memory, however, since there

is no cache in the Cortex-M3 processor, this instruction behaves as NOP
YIELD A hint instruction to allow multithreading software to indicate to hardware that it is

doing a task that can be swapped out to improve overall system performance.

534.3  Instruction Descriptions

4.3.1  Assembler Language: Moving Data
One of the most basic functions in a processor is transfer of data. In the Cortex-M3, data transfers can
be of one of the following types:

Moving data between register and register•	
Moving data between memory and register•	
Moving data between special register and register•	
Moving an immediate data value into a register•	

The command to move data between registers is MOV (move). For example, moving data from register
R3 to register R8 looks like this:

MOV R8, R3

Another instruction can generate the negative value of the original data; it is called MVN (move
negative).

The basic instructions for accessing memory are Load and Store. Load (LDR) transfers data from
memory to registers, and Store transfers data from registers to memory. The transfers can be in different
data sizes (byte, half word, word, and double word), as outlined in Table 4.14.

Multiple Load and Store operations can be combined into single instructions called LDM (Load
Multiple) and STM (Store Multiple), as outlined in Table 4.15.

The exclamation mark (!) in the instruction specifies whether the register Rd should be updated after
the instruction is completed. For example, if R8 equals 0x8000:

STMIA.W R8!, {R0-R3} ; R8 changed to 0x8010 after store
	 ; (increment by 4 words)
STMIA.W R8 , {R0-R3} ; R8 unchanged after store

ARM processors also support memory accesses with preindexing and postindexing. For preindex-
ing, the register holding the memory address is adjusted. The memory transfer then takes place with the
updated address. For example,

LDR.W R0,[R1, #offset]! ; Read memory[R1+offset], with R1
	 ; update to R1+offset

Table 4.14  Commonly Used Memory Access Instructions

Example Description

LDRB Rd, [Rn, #offset] Read byte from memory location Rn + offset
LDRH Rd, [Rn, #offset] Read half word from memory location Rn + offset
LDR Rd, [Rn, #offset] Read word from memory location Rn + offset
LDRD Rd1,Rd2, [Rn, #offset] Read double word from memory location Rn + offset
STRB Rd, [Rn, #offset] Store byte to memory location Rn + offset
STRH Rd, [Rn, #offset] Store half word to memory location Rn + offset
STR Rd, [Rn, #offset] Store word to memory location Rn + offset
STRD Rd1,Rd2, [Rn, #offset] Store double word to memory location Rn + offset

54 CHAPTER 4  Instruction Sets

The use of the “!” indicates the update of base register R1. The “!” is optional; without it, the instruc-
tion would be just a normal memory transfer with offset from a base address. The preindexing memory
access instructions include load and store instructions of various transfer sizes (see Table 4.16).

Postindexing memory access instructions carry out the memory transfer using the base address
specified by the register and then update the address register afterward. For example,

LDR.W R0,[R1], #offset ; Read memory[R1], with R1
	 ; updated to R1+offset

When a postindexing instruction is used, there is no need to use the “!” sign, because all postindex-
ing instructions update the base address register, whereas in preindexing you might choose whether to
update the base address register or not.

Similarly to preindexing, postindexing memory access instructions are available for different trans-
fer sizes (see Table 4.17).

Table 4.15  Multiple Memory Access Instructions

Example Description

LDMIA Rd!,<reg list> Read multiple words from memory location specified by Rd; address
increment after (IA) each transfer (16-bit Thumb instruction)

STMIA Rd!,<reg list> Store multiple words to memory location specified by Rd; address
increment after (IA) each transfer (16-bit Thumb instruction)

LDMIA.W Rd(!),<reg list> Read multiple words from memory location specified by Rd; address
increment after each read (.W specified it is a 32-bit Thumb-2 instruction)

LDMDB.W Rd(!),<reg list> Read multiple words from memory location specified by Rd; address
Decrement Before (DB) each read (.W specified it is a 32-bit Thumb-2
instruction)

STMIA.W Rd(!),<reg list> Write multiple words to memory location specified by Rd; address
increment after each read (.W specified it is a 32-bit Thumb-2 instruction)

STMDB.W Rd(!),<reg list> Write multiple words to memory location specified by Rd; address DB
each read (.W specified it is a 32-bit Thumb-2 instruction)

Table 4.16  Examples of Preindexing Memory Access Instructions

Example Description

LDR.W Rd, [Rn, #offset]!
LDRB.W Rd, [Rn, #offset]!
LDRH.W Rd, [Rn, #offset]!
LDRD.W Rd1, Rd2,[Rn, #offset]!

Preindexing load instructions for various sizes (word, byte, half
word, and double word)

LDRSB.W Rd, [Rn, #offset]!
LDRSH.W Rd, [Rn, #offset]!

Preindexing load instructions for various sizes with sign extend
(byte, half word)

STR.W Rd, [Rn, #offset]!
STRB.W Rd, [Rn, #offset]!
STRH.W Rd, [Rn, #offset]!
STRD.W Rd1, Rd2,[Rn, #offset]!

Preindexing store instructions for various sizes (word, byte, half
word, and double word)

554.3  Instruction Descriptions

Two other types of memory operation are stack PUSH and stack POP. For example,

PUSH {R0, R4-R7, R9} ; Push R0, R4, R5, R6, R7, R9 into
	 ; stack memory
POP {R2,R3}	 ; Pop R2 and R3 from stack

Usually a PUSH instruction will have a corresponding POP with the same register list, but this is not
always necessary. For example, a common exception is when POP is used as a function return:

PUSH {R0-R3, LR} ; Save register contents at beginning of
	 ; subroutine
....	 ; Processing
POP {R0-R3, PC}	 ; restore registers and return

In this case, instead of popping the LR register back and then branching to the address in LR, we
POP the address value directly in the program counter.

As mentioned in Chapter 3, the Cortex-M3 has a number of special registers. To access these regis-
ters, we use the instructions MRS and MSR. For example,

MRS R0, PSR ; Read Processor status word into R0
MSR CONTROL, R1 ; Write value of R1 into control register

Unless you’re accessing the APSR, you can use MSR or MRS to access other special registers only in
privileged mode.

Moving immediate data into a register is a common thing to do. For example, you might want to
access a peripheral register, so you need to put the address value into a register beforehand. For small
values (8 bits or less), you can use MOVS (move). For example,

MOVS R0, #0x12 ; Set R0 to 0x12

For a larger value (over 8 bits), you might need to use a Thumb-2 move instruction. For example,

MOVW.W R0, #0x789A ; Set R0 to 0x789A

Or if the value is 32-bit, you can use two instructions to set the upper and lower halves:

MOVW.W R0,#0x789A ; Set R0 lower half to 0x789A
MOVT.W R0,#0x3456 ; Set R0 upper half to 0x3456. Now
	 ; R0=0x3456789A

Table 4.17  Examples of Postindexing Memory Access Instructions

Example Description

LDR.W Rd, [Rn], #offset
LDRB.W Rd, [Rn], #offset
LDRH.W Rd, [Rn], #offset
LDRD.W Rd1, Rd2,[Rn], #offset

Postindexing load instructions for various sizes (word, byte,
half word, and double word)

LDRSB.W Rd, [Rn], #offset
LDRSH.W Rd, [Rn], #offset

Postindexing load instructions for various sizes with sign
extend (byte, half word)

STR.W Rd, [Rn], #offset
STRB.W Rd, [Rn], #offset
STRH.W Rd, [Rn], #offset
STRD.W Rd1, Rd2,[Rn], #offset

Postindexing store instructions for various sizes (word, byte,
half word, and double word)

56 CHAPTER 4  Instruction Sets

Alternatively, you can also use LDR (a pseudo-instruction provided in ARM assembler). For
example,

LDR R0, =0x3456789A

This is not a real assembler command, but the ARM assembler will convert it into a PC relative
load instruction to produce the required data. To generate 32-bit immediate data, using LDR is recom-
mended rather than the MOVW.W and MOVT.W combination because it gives better readability and
the assembler might be able to reduce the memory being used if the same immediate data are reused in
several places of the same program.

4.3.2  LDR and ADR Pseudo-Instructions
Both LDR and ADR pseudo-instructions can be used to set registers to a program address value. They
have different syntaxes and behaviors. For LDR, if the address is a program address value, the assem-
bler will automatically set the LSB to 1. For example,

LDR R0, =address1 ; R0 set to 0x4001
...

address1 ; address here is 0x4000
MOV R0, R1 ; address1 contains program code
...

You will find that the LDR instruction will put 0x4001 into R1; the LSB is set to 1 to indicate that
it is Thumb code. If address1 is a data address, LSB will not be changed. For example,

LDR R0, =address1 ; R0 set to 0x4000
...

address1 ; address here is 0x4000
DCD 0x0 ; address1 contains data
...

For ADR, you can load the address value of a program code into a register without setting the LSB
automatically. For example,

ADR R0, address1
...

address1 ; (address here is 0x4000)
MOV R0, R1 ; address1 contains program code
...

You will get 0x4000 in the ADR instruction. Note that there is no equal sign (=) in the ADR statement.
LDR obtains the immediate data by putting the data in the program code and uses a PC relative

load to get the data into the register. ADR tries to generate the immediate value by adding or subtract-
ing instructions (for example, based on the current PC value). As a result, it is not possible to create
all immediate values using ADR, and the target address label must be in a close range. However, using
ADR can generate smaller code sizes compared with LDR.

The 16-bit version of ADR requires that the target address must be word aligned (address value is a
multiple of 4). If the target address is not word aligned, you can use the 32-bit version of ADR instruc-
tion “ADR.W.” If the target address is more than ± 4095 bytes of current PC, you can use “ADRL”
pseudo-instruction, which gives ±1 MB range.

574.3  Instruction Descriptions

4.3.3  Assembler Language: Processing Data
The Cortex-M3 provides many different instructions for data processing. A few basic ones are
introduced here. Many data operation instructions can have multiple instruction formats. For example,
an ADD instruction can operate between two registers or between one register and an immediate data
value:

ADD R0, R0, R1 ; R0 = R0 + R1
ADDS R0, R0, #0x12 ; R0 = R0 + 0x12
ADD.W R0, R1, R2 ; R0 = R1 + R2

These are all ADD instructions, but they have different syntaxes and binary coding.
With the traditional Thumb instruction syntax, when 16-bit Thumb code is used, an ADD instruc-

tion can change the flags in the PSR. However, 32-bit Thumb-2 code can either change a flag or keep
it unchanged. To separate the two different operations, the S suffix should be used if the following
operation depends on the flags:

ADD.W R0, R1, R2 ; Flag unchanged
ADDS.W R0, R1, R2 ; Flag change

Aside from ADD instructions, the arithmetic functions that the Cortex-M3 supports include subtract
(SUB), multiply (MUL), and unsigned and signed divide (UDIV/SDIV). Table 4.18 shows some of the
most commonly used arithmetic instructions.

Table 4.18  Examples of Arithmetic Instructions

Instruction Operation

ADD Rd, Rn, Rm ; Rd = Rn + Rm
ADD Rd, Rd, Rm ; Rd = Rd + Rm
ADD Rd, #immed ; Rd = Rd + #immed
ADD Rd, Rn, # immed ; Rd = Rn + #immed

ADD operation

ADC Rd, Rn, Rm ; Rd = Rn + Rm + carry
ADC Rd, Rd, Rm ; Rd = Rd + Rm + carry
ADC Rd, #immed ; Rd = Rd + #immed + carry

ADD with carry

ADDW Rd, Rn,#immed ; Rd = Rn + #immed ADD register with 12-bit immediate value
SUB Rd, Rn, Rm ; Rd = Rn − Rm
SUB Rd, #immed ; Rd = Rd − #immed
SUB Rd, Rn,#immed ; Rd = Rn − #immed

SUBTRACT

SBC Rd, Rm ; Rd = Rd − Rm − borrow
SBC.W Rd, Rn, #immed ; Rd = Rn − #immed − borrow
SBC.W Rd, Rn, Rm ; Rd = Rn − Rm − borrow

SUBTRACT with borrow (not carry)

RSB.W Rd, Rn, #immed ; Rd = #immed –Rn
RSB.W Rd, Rn, Rm ; Rd = Rm − Rn

Reverse subtract

MUL Rd, Rm ; Rd = Rd * Rm
MUL.W Rd, Rn, Rm ; Rd = Rn * Rm

Multiply

UDIV Rd, Rn, Rm ; Rd = Rn/Rm
SDIV Rd, Rn, Rm ; Rd = Rn/Rm

Unsigned and signed divide

58 CHAPTER 4  Instruction Sets

These instructions can be used with or without the “S” suffix to determine if the APSR should be
updated. In most cases, if UAL syntax is selected and if “S” suffix is not used, the 32-bit version of the
instructions would be selected as most of the 16-bit Thumb instructions update APSR.

The Cortex-M3 also supports 32-bit multiply instructions and multiply accumulate instructions that
give 64-bit results. These instructions support signed or unsigned values (see Table 4.19).

Another group of data processing instructions are the logical operations instructions and logical
operations such as AND, ORR (or), and shift and rotate functions. Table 4.20 shows some of the most
commonly used logical instructions. These instructions can be used with or without the “S” suffix
to determine if the APSR should be updated. If UAL syntax is used and if “S” suffix is not used, the
32-bit version of the instructions would be selected as all of the 16-bit logic operation instructions
update APSR.

The Cortex-M3 provides rotate and shift instructions. In some cases, the rotate operation can be
combined with other operations (for example, in memory address offset calculation for load/store
instructions). For standalone rotate/shift operations, the instructions shown in Table 4.21 are pro-
vided. Again, a 32-bit version of the instruction is used if “S” suffix is not used and if UAL syntax
is used.

Table 4.19  32-Bit Multiply Instructions

Instruction Operation

SMULL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} = Rn * Rm
SMLAL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} += Rn * Rm

32-bit multiply instructions for signed
values

UMULL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} = Rn * Rm
UMLAL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} += Rn * Rm

32-bit multiply instructions for
unsigned values

Table 4.20  Logic Operation Instructions

Instruction Operation

AND Rd, Rn ; Rd = Rd & Rn
AND.W Rd, Rn,#immed ; Rd = Rn & #immed
AND.W Rd, Rn, Rm ; Rd = Rn & Rd

Bitwise AND

ORRRd, Rn ; Rd = Rd | Rn
ORR.W Rd, Rn,#immed ; Rd = Rn | #immed
ORR.W Rd, Rn, Rm ; Rd = Rn | Rd

Bitwise OR

BIC Rd, Rn ; Rd = Rd & (~Rn)
BIC.W Rd, Rn,#immed ; Rd = Rn &(~#immed)
BIC.W Rd, Rn, Rm ; Rd = Rn &(~Rd)

Bit clear

ORN.W Rd, Rn,#immed ; Rd = Rn | (~#immed)
ORN.W Rd, Rn, Rm ; Rd = Rn | (~Rd)

Bitwise OR NOT

EOR Rd, Rn ; Rd = Rd ^ Rn
EOR.W Rd, Rn,#immed ; Rd = Rn | #immed
EOR.W Rd, Rn, Rm ; Rd = Rn | Rd

Bitwise Exclusive OR

594.3  Instruction Descriptions

In UAL syntax, the rotate and shift operations can also update the carry flag if the S suffix is used
(and always update the carry flag if the 16-bit Thumb code is used). See Figure 4.1.

If the shift or rotate operation shifts the register position by multiple bits, the value of the carry flag
C will be the last bit that shifts out of the register.

Table 4.21  Shift and Rotate Instructions

Instruction Operation

ASR Rd, Rn,#immed ; Rd = Rn » immed
ASRRd, Rn ; Rd = Rd » Rn
ASR.W Rd, Rn, Rm ; Rd = Rn » Rm

Arithmetic shift right

LSLRd, Rn,#immed ; Rd = Rn « immed
LSLRd, Rn ; Rd = Rd « Rn
LSL.W Rd, Rn, Rm ; Rd = Rn « Rm

Logical shift left

LSRRd, Rn,#immed ; Rd = Rn » immed
LSRRd, Rn ; Rd = Rd » Rn
LSR.W Rd, Rn, Rm ; Rd = Rn » Rm

Logical shift right

ROR Rd, Rn ; Rd rot by Rn
ROR.W Rd, Rn,#immed ; Rd = Rn rot by immed
ROR.W Rd, Rn, Rm ; Rd = Rn rot by Rm

Rotate right

RRX.W Rd, Rn ; {C, Rd} = {Rn, C} Rotate right extended

Figure 4.1

Shift and Rotate Instructions.

Logical Shift Left (LSL)

Logical Shift Right (LSR)

Rotate Right (ROR)

Arithmetic Shift Right (ASR)

Rotate Right eXtended (RRX)

C Register 0

CRegister0

CRegister

CRegister

CRegister

60 CHAPTER 4  Instruction Sets

For conversion of signed data from byte or half word to word, the Cortex-M3 provides the two
instructions shown in Table 4.22. Both 16-bit and 32-bit versions are available. The 16-bit version can
only access low registers.

Another group of data processing instructions is used for reversing data bytes in a register (see
Table 4.23). These instructions are usually used for conversion between little endian and big endian
data. See Figure 4.2. Both 16-bit and 32-bit versions are available. The 16-bit version can only access
low registers.

The last group of data processing instructions is for bit field processing. They include the instruc-
tions shown in Table 4.24. Examples of these instructions are provided in a later part of this chapter.

4.3.4  Assembler Language: Call and Unconditional Branch
The most basic branch instructions are as follows:

B label ; Branch to a labeled address
BX reg ; Branch to an address specified by a register

In BX instructions, the LSB of the value contained in the register determines the next state (Thumb/
ARM) of the processor. In the Cortex-M3, because it is always in Thumb state, this bit should be set
to 1. If it is zero, the program will cause a usage fault exception because it is trying to switch the proces-
sor into ARM state (See Figure 4.2.).

To call a function, the branch and link instructions should be used.

BL label ; Branch to a labeled address and save return
	 ; address in LR

Why Is There Rotate Right But No Rotate Left?
The rotate left operation can be replaced by a rotate right operation with a different rotate offset. For example,
a rotate left by 4-bit operation can be written as a rotate right by 28-bit instruction, which gives the same
result and takes the same amount of time to execute.

Table 4.22  Sign Extend Instructions

Instruction Operation

SXTB Rd, Rm ; Rd = signext(Rm[7:0]) Sign extend byte data into word
SXTH Rd, Rm ; Rd = signext(Rm[15:0]) Sign extend half word data into word

Table 4.23  Data Reverse Ordering Instructions

Instruction Operation

REV Rd, Rn ; Rd = rev(Rn) Reverse bytes in word
REV16 Rd, Rn ; Rd = rev16(Rn) Reverse bytes in each half word
REVSH Rd, Rn ; Rd = revsh(Rn) Reverse bytes in bottom half word and sign extend the

result

614.3  Instruction Descriptions

BLX reg ; Branch to an address specified by a register and
	 ; save return
	 ; address in LR.

With these instructions, the return address will be stored in the link register (LR) and the func-
tion can be terminated using BX LR, which causes program control to return to the calling process.
However, when using BLX, make sure that the LSB of the register is 1. Otherwise the processor will
produce a fault exception because it is an attempt to switch to the ARM state.

You can also carry out a branch operation using MOV instructions and LDR instructions. For example,

MOV R15, R0 ; Branch to an address inside R0
LDR R15, [R0] ; Branch to an address in memory location
	 ; specified by R0

Figure 4.2

Operation of Reverse instructions.

REV.W
(Reverse bytes in word)

Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Bit
[31:24]

REV16.W
(Reverse bytes in half word)

REVSH.W
(Reverse bytes in bottom

half word and sign extend results)

sign extend

Table 4.24  Bit Field Processing and Manipulation Instructions

Instruction Operation

BFC.W Rd, Rn, #<width> Clear bit field within a register
BFI.W Rd, Rn, #<lsb>, #<width> Insert bit field to a register
CLZ.W Rd, Rn Count leading zero
RBIT.W Rd, Rn Reverse bit order in register
SBFX.W Rd, Rn, #<lsb>, #<width> Copy bit field from source and sign extend it
UBFX.W Rd, Rn, #<lsb>, #<width> Copy bit field from source register

62 CHAPTER 4  Instruction Sets

POP {R15}	 ; Do a stack pop operation, and change the
	 ; program counter value
 ; to the result value.

When using these methods to carry out branches, you also need to make sure that the LSB of the
new program counter value is 0x1. Otherwise, a usage fault exception will be generated because it will
try to switch the processor to ARM mode, which is not allowed in the Cortex-M3 redundancy.

4.3.5  Assembler Language: Decisions and Conditional Branches
Most conditional branches in ARM processors use flags in the APSR to determine whether a branch
should be carried out. In the APSR, there are five flag bits; four of them are used for branch decisions
(see Table 4.25).

There is another flag bit at bit[27], called the Q flag. It is for saturation math operations and is not
used for conditional branches.

Save the LR if You Need to Call a Subroutine
The BL instruction will destroy the current content of your LR. So, if your program code needs the LR later, you
should save your LR before you use BL. The common method is to push the LR to stack in the beginning of
your subroutine. For example,

main
...
BL functionA
...

functionA
PUSH {LR} ; Save LR content to stack
...
BL functionB
...
POP {PC} ; Use stacked LR content to return to main

functionB
PUSH {LR}
...
POP {PC} ; Use stacked LR content to return to functionA

In addition, if the subroutine you call is a C function, you might also need to save the contents in R0–R3
and R12 if these values will be needed at a later stage. According to AAPCS [Ref. 5], the contents in these
registers could be changed by a C function.

Table 4.25  Flag Bits in APSR that Can Be Used for Conditional Branches

Flag PSR Bit Description

N 31 Negative flag (last operation result is a negative value)
Z 30 Zero (last operation result returns a zero value)
C 29 Carry (last operation returns a carry out or borrow)
V 28 Overflow (last operation results in an overflow)

634.3  Instruction Descriptions

With combinations of the four flags (N, Z, C, and V ), 15 branch conditions are defined (see
Table 4.26). Using these conditions, branch instructions can be written as, for example,

BEQ label ; Branch to address 'label' if Z flag is set

You can also use the Thumb-2 version if your branch target is further away. For example,

BEQ.W label ; Branch to address 'label' if Z flag is set

Flags in ARM Processors
Often, data processing instructions change the flags in the PSR. The flags might be used for branch decisions,
or they can be used as part of the input for the next instruction. The ARM processor normally contains at least
the Z, N, C, and V flags, which are updated by execution of data processing instructions.

Z (Zero) flag: This flag is set when the result of an instruction has a zero value or when a comparison of two •	
data returns an equal result.
N (Negative) flag: This flag is set when the result of an instruction has a negative value (bit 31 is 1).•	
C (Carry) flag: This flag is for unsigned data processing—for example, in add (ADD) it is set when an •	
overflow occurs; in subtract (SUB) it is set when a borrow did not occur (borrow is the invert of carry).
V (Overflow) flag: This flag is for signed data processing; for example, in an add (ADD), when two positive •	
values added together produce a negative value, or when two negative values added together produce a
positive value.

These flags can also have special results when used with shift and rotate instructions. Refer to the ARM v7-M
Architecture Application Level Reference Manual [Ref. 2] for details.

Table 4.26  Conditions for Branches or Other Conditional Operations

Symbol Condition Flag

EQ Equal Z set
NE Not equal Z clear
CS/HS Carry set/unsigned higher or same C set
CC/LO Carry clear/unsigned lower C clear
MI Minus/negative N set
PL Plus/positive or zero N clear
VS Overflow V set
VC No overflow V clear
HI Unsigned higher C set and Z clear
LS Unsigned lower or same C clear or Z set
GE Signed greater than or equal N set and V set, or N clear and V clear (N == V)
LT Signed less than N set and V clear, or N clear and V set (N != V)
GT Signed greater than Z clear, and either N set and V set, or N clear and

V clear (Z == 0, N == V)
LE Signed less than or equal Z set, or N set and V clear, or N clear and V set

(Z == 1 or N != V)
AL Always (unconditional) —

64 CHAPTER 4  Instruction Sets

The defined branch conditions can also be used in IF-THEN-ELSE structures. For example,

CMP R0, R1 ; Compare R0 and R1
ITTEE GT ; If R0 > R1 Then
	 ; if true, first 2 statements execute,
	 ; if false, other 2 statements execute
MOVGT R2, R0 ; R2 = R0
MOVGT R3, R1 ; R3 = R1
MOVLE R2, R0 ; Else R2 = R1
MOVLE R3, R1 ; R3 = R0

APSR flags can be affected by the following:

Most of the 16-bit •	 ALU instructions
32-bit (Thumb-2) ALU instructions with the •	 S suffix; for example, ADDS.W
Compare (e.g., CMP) and Test (e.g., TST, TEQ)•	
Write to APSR/xPSR directly•	

Most of the 16-bit Thumb arithmetic instructions affect the N, Z, C, and V flags. With 32-bit Thumb-2
instructions, the ALU operation can either change flags or not change flags. For example,

ADDS.W R0, R1, R2 ; This 32-bit Thumb instruction updates flag
ADD.W R0, R1, R2 ; This 32-bit Thumb instruction does not
	 ; update flag

Be careful when reusing program code from old projects. If the old project is in tradition Thumb
syntax; for example, “CODE16” directive is used with ARM assembler, then

ADD R0, R1 ; This 16-bit Thumb instruction updates flag
ADD R0, #0x1 ; This 16-bit Thumb instruction updates flag

However, if you used the same code in UAL syntax; that is “THUMB” directive is used with ARM
assembler, then

ADD R0, R1 ; This 16-bit Thumb instruction does not
	 ; update flag
ADD R0, #0x1 ; This will become a 32-bit Thumb instruction
	 ; that does not update flag

To make sure that the code works correctly with different tools, you should always use the S suffix
if the flags need to be updated for conditional operations such as conditional branches.

The compare (CMP) instruction subtracts two values and updates the flags (just like SUBS), but the
result is not stored in any registers. CMP can have the following formats:

CMP R0, R1 ; Calculate R0 – R1 and update flag
CMP R0, #0x12 ; Calculate R0 – 0x12 and update flag

A similar instruction is the CMN (compare negative). It compares one value to the negative (two’s
complement) of a second value; the flags are updated, but the result is not stored in any registers:

CMN R0, R1 ; Calculate R0 – (-R1) and update flag
CMN R0, #0x12 ; Calculate R0 – (-0x12) and update flag

The TST (test) instruction is more like the AND instruction. It ANDs two values and updates the
flags. However, the result is not stored in any register. Similarly to CMP, it has two input formats:

654.3  Instruction Descriptions

TST R0, R1 ; Calculate R0 AND R1 and update flag
TST R0, #0x12 ; Calculate R0 AND 0x12 and update flag

4.3.6  Assembler Language: Combined Compare and Conditional Branch
With ARM architecture v7-M, two new instructions are provided on the Cortex-M3 to supply a simple
compare with zero and conditional branch operations. These are CBZ (compare and branch if zero) and
CBNZ (compare and branch if nonzero).

The compare and branch instructions only support forward branches. For example,

i = 5;
while (i != 0){
func1(); ; call a function
i−−;
}

This can be compiled into the following:

 MOV R0, #5 ; Set loop counter
loop1 CBZ R0,loop1exit ; if loop counter = 0 then exit the loop

 BL func1 ; call a function
 SUB R0, #1 ; loop counter decrement
 B loop1 ; next loop

loop1exit

The usage of CBNZ is similar to CBZ, apart from the fact that the branch is taken if the Z flag is not
set (result is not zero). For example,

status = strchr(email_address, '@');
if (status == 0){//status is 0 if @ is not in email_address

 show_error_message();
 exit(1);
 }

This can be compiled into the following:

...
BL strchr
CBNZ R0, email_looks_okay ; Branch if result is not zero
BL show_error_message
BL exit

email_looks_okay
...

The APSR value is not affected by the CBZ and CBNZ instructions.

Assembler Language: Conditional Execution Using IT Instructions
The IT (IF-THEN) block is very useful for handling small conditional code. It avoids branch penalties
because there is no change to program flow. It can provide a maximum of four conditionally executed
instructions.

In IT instruction blocks, the first line must be the IT instruction, detailing the choice of
execution, followed by the condition it checks. The first statement after the IT command must be

66 CHAPTER 4  Instruction Sets

TRUE‑THEN‑EXECUTE, which is always written as ITxyz, where T means THEN and E means
ELSE. The second through fourth statements can be either THEN (true) or ELSE (false):

IT<x><y><z> <cond> ; IT instruction (<x>, <y>,
	 ; <z> can be T or E)
instr1<cond> <operands> ; 1st instruction (<cond>
	 ; must be same as IT)
instr2<cond or not cond> <operands> ; 2nd instruction (can be
	 ; <cond> or <!cond>
instr3<cond or not cond> <operands> ; 3rd instruction (can be
	 ; <cond> or <!cond>
instr4<cond or not cond> <operands> ; 4th instruction (can be
	 ; <cond> or <!cond>

If a statement is to be executed when <cond> is false, the suffix for the instruction must be the
opposite of the condition. For example, the opposite of EQ is NE, the opposite of GT is LE, and so on.
The following code shows an example of a simple conditional execution:

if (R1<R2) then
   R2=R2−R1
   R2=R2/2
else
   R1=R1−R2
   R1=R1/2

In assembly,

CMP R1, R2 ; If R1 < R2 (less then)
ITTEE LT ; then execute instruction 1 and 2
	 ; (indicated by T)
	 ; else execute instruction 3 and 4
	 ; (indicated by E)
SUBLT.W R2,R1 ; 1st instruction
LSRLT.W R2,#1 ; 2nd instruction
SUBGE.W R1,R2 ; 3rd instruction (notice the GE is
	 ; opposite of LT)
LSRGE.W R1,#1 ; 4th instruction

You can have fewer than four conditionally executed instructions. The minimum is 1. You need to
make sure the number of T and E occurrences in the IT instruction matches the number of conditionally
executed instructions after the IT.

If an exception occurs during the IT instruction block, the execution status of the block will be
stored in the stacked PSR (in the IT/Interrupt-Continuable Instruction [ICI] bit field). So, when the
exception handler completes and the IT block resumes, the rest of the instructions in the block can con-
tinue the execution correctly. In the case of using multicycle instructions (for example, multiple load
and store) inside an IT block, if an exception takes place during the execution, the whole instruction is
abandoned and restarted after the interrupt process is completed.

674.3  Instruction Descriptions

4.3.7  Assembler Language: Instruction Barrier and Memory Barrier Instructions
The Cortex-M3 supports a number of barrier instructions. These instructions are needed as memory
systems get more and more complex. In some cases, if memory barrier instructions are not used, race
conditions could occur.

For example, if the memory map can be switched by a hardware register, after writing to the mem-
ory switching register you should use the DSB instruction. Otherwise, if the write to the memory
switching register is buffered and takes a few cycles to complete, and the next instruction accesses the
switched memory region immediately, the access could be using the old memory map. In some cases,
this might result in an invalid access if the memory switching and memory access happen at the same
time. Using DSB in this case will make sure that the write to the memory map switching register is
completed before a new instruction is executed.

The following are the three barrier instructions in the Cortex-M3:

DMB•	
DSB•	
ISB•	

These instructions are described in Table 4.27.
The memory barrier instructions can be accessed in C using Cortex Microcontroller Software Inter-

face Standard (CMSIS) compliant device driver library as follows:

void __DMB(void); // Data Memory Barrier
void __DSB(void); // Data Synchronization Barrier
void __ISB(void); // Instruction Synchronization Barrier

The DSB and ISB instructions can be important for self-modifying code. For example, if a program
changes its own program code, the next executed instruction should be based on the updated program.
However, since the processor is pipelined, the modified instruction location might have already been
fetched. Using DSB and then ISB can ensure that the modified program code is fetched again.

Architecturally, the ISB instruction should be used after updating the value of the CONTROL regis-
ter. In the Cortex-M3 processor, this is not strictly required. But if you want to make sure your applica-
tion is portable, you should ensure an ISB instruction is used after updating to CONTROL register.

DMB is very useful for multi-processor systems. For example, tasks running on separate processors
might use shared memory to communicate with each other. In these environments, the order of memory
accesses to the shared memory can be very important. DMB instructions can be inserted between accesses
to the shared memory to ensure that the memory access sequence is exactly the same as expected.

Table 4.27  Barrier Instructions

Instruction Description

DMB Data memory barrier; ensures that all memory accesses are completed before
new memory access is committed

DSB Data synchronization barrier; ensures that all memory accesses are completed
before next instruction is executed

ISB Instruction synchronization barrier; flushes the pipeline and ensures that all
previous instructions are completed before executing new instructions

68 CHAPTER 4  Instruction Sets

More details about memory barriers can be found in the ARM v7-M Architecture Application Level
Reference Manual [Ref. 2].

4.3.8  Assembly Language: Saturation Operations
The Cortex-M3 supports two instructions that provide signed and unsigned saturation operations: SSAT
and USAT (for signed data type and unsigned data type, respectively). Saturation is commonly used
in signal processing—for example, in signal amplification. When an input signal is amplified, there is
a chance that the output will be larger than the allowed output range. If the value is adjusted simply
by removing the unused MSB, an overflowed result will cause the signal waveform to be completely
deformed (see Figure 4.3).

The saturation operation does not prevent the distortion of the signal, but at least the amount of
distortion is greatly reduced in the signal waveform.

The instruction syntax of the SSAT and USAT instructions is outlined here and in Table 4.28.

Figure 4.3

Signed Saturation Operation.

Amplify

Without
saturation

With
signed

saturation

Dynamic
range 0

0

Table 4.28  Saturation Instructions

Instruction Description

SSAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for signed value
USAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for a signed value into an unsigned value

Rn: Input value
Shift: Shift operation for input value before saturation; optional, can be #LSL N or #ASR N
Immed: Bit position where the saturation is carried out
Rd: Destination register

694.3  Instruction Descriptions

Besides the destination register, the Q-bit in the APSR can also be affected by the result. The Q
flag is set if saturation takes place in the operation, and it can be cleared by writing to the APSR (see
Table 4.29). For example, if a 32-bit signed value is to be saturated into a 16-bit signed value, the fol-
lowing instruction can be used:

SSAT.W R1, #16, R0

Similarly, if a 32-bit unsigned value is to saturate into a 16-bit unsigned value, the following instruc-
tion can be used:

USAT.W R1, #16, R0

This will provide a saturation feature that has the properties shown in Figure 4.4.
For the preceding 16-bit saturation example instruction, the output values shown in Table 4.30 can

be observed.
Saturation instructions can also be used for data type conversions. For example, they can be used

to convert a 32-bit integer value to 16-bit integer value. However, C compilers might not be able to
directly use these instructions, so intrinsic function or assembler functions (or embedded/inline assem-
bler code) for the data conversion could be required.

Table 4.29  Examples of Signed Saturation Results

Input (R0) Output (R1) Q Bit

0x00020000 0x00007FFF Set
0x00008000 0x00007FFF Set
0x00007FFF 0x00007FFF Unchanged
0x00000000 0x00000000 Unchanged
0xFFFF8000 0xFFFF8000 Unchanged
0xFFFF7FFF 0xFFFF8000 Set
0xFFFE0000 0xFFFF8000 Set

Amplify
Dynamic

range

0 0 0

With
unsigned
saturation

Figure 4.4

Unsigned Saturation Operation.

70 CHAPTER 4  Instruction Sets

4.4  Several Useful Instructions In the Cortex-M3
Several useful Thumb-2 instructions from the architecture v7 and v6 are introduced here.

4.4.1  MSR and MRS
These two instructions provide access to the special registers in the Cortex-M3. Here is the syntax of
these instructions:

MRS <Rn>, <SReg> ; Move from Special Register
MSR <SReg>, <Rn> ; Write to Special Register

where <SReg> could be one of the options shown in Table 4.31.
For example, the following code can be used to set up the process stack pointer:

LDR R0,=0x20008000 ; new value for Process Stack Pointer (PSP)
MSR PSP, R0

Unless accessing the APSR, the MRS and MSR instructions can be used in privileged mode only. Oth-
erwise the operation will be ignored, and the returned read data (if MRS is used) will be zero.

After updating the value of the CONTROL register using MSR instruction, it is recommended to
add an ISB instruction to ensure that the effect of the update takes place immediately. On the Cor-
tex-M3 processor this is not strictly required, but for software portability (if the software code is to be
used on other ARM processor) this is needed.

4.4.2  More on the IF-THEN Instruction Block
The IF-THEN instruction was introduced briefly in an earlier section in this chapter “Conditional Exe-
cution Using IT instruction.” In here, we will cover more details about this instruction.

The IF-THEN (IT) instructions allow up to four succeeding instructions (called an IT block) to be
conditionally executed. They are in the following formats as shown in Table 4.32, where,

<•	 x> specifies the execution condition for the second instruction
<•	 y> specifies the execution condition for the third instruction
<•	 z> specifies the execution condition for the fourth instruction
<•	 cond> specifies the base condition of the instruction block; the first instruction following IT
executes if <cond> is true

Table 4.30  Examples of Unsigned Saturation Results

Input (R0) Output (R1) Q Bit

0x00020000 0x0000FFFF Set
0x00008000 0x00008000 Unchanged
0x00007FFF 0x00007FFF Unchanged
0x00000000 0x00000000 Unchanged
0xFFFF8000 0x00000000 Set
0xFFFF8001 0x00000000 Set
0xFFFFFFFF 0x00000000 Set

714.4  Several Useful Instructions in the Cortex-M3

The <cond> part uses the same condition symbols as conditional branch. If “AL” is used as <cond>,
then you cannot use “E” in the condition control as it implies the instruction should never get executed.

Each of <x>, <y>, and <z> can be either T (THEN) or E (ELSE), which refers to the base condition
<cond>, whereas <cond> uses traditional syntax such as EQ, NE, GT, or the like.

Table 4.31  Special Register Names for MRS and MSR Instructions

Symbol Description

IPSR Interrupt status register
EPSR Execution status register (read as zero)
APSR Flags from previous operation
IEPSR A composite of IPSR and EPSR
IAPSR A composite of IPSR and APSR
EAPSR A composite of EPSR and APSR
PSR A composite of APSR, EPSR, and IPSR
MSP Main stack pointer
PSP Process stack pointer
PRIMASK Normal exception mask register
BASEPRI Normal exception priority mask register
BASEPRI_MAX Same as normal exception priority mask register, with conditional write (new

priority level must be higher than the old level)
FAULTMASK Fault exception mask register (also disables normal interrupts)
CONTROL Control register

Table 4.32  Various Length of IT Instruction Block

IT Block (each of <x>, <y> and <z>
can either be T [true] or E [else]) Examples

Only one conditional
instruction

IT <cond>
instr1<cond>

IT EQ
ADDEQ R0, R0, R1

Two conditional
instructions

IT<x> <cond>
instr1<cond>
instr2<cond or ~(cond)>

ITE GE
ADDGE R0, R0, R1
ADDLT R0, R0, R3

Three conditional
instructions

IT<x><y> <cond>
instr1<cond>
instr2<cond or ~(cond)>
instr3<cond or ~(cond)>

ITET GT
ADDGT R0, R0, R1
ADDLE R0, R0, R3
ADDGT R2, R4, #1

Four conditional
instructions

IT<x><y><z> <cond>
instr1<cond>
instr2<cond or ~(cond)>
instr3<cond or ~(cond)>
instr4<cond or ~(cond)>

ITETT NE
ADDNE R0, R0, R1
ADDEQ R0, R0, R3
ADDNE R2, R4, #1
MOVNE R5, R3

72 CHAPTER 4  Instruction Sets

Here is an example of IT use:

if (R0 equal R1) then {
 R3 = R4 + R5
 R3 = R3/2
 } else {
 R3 = R6 + R7
 R3 = R3/2
 }

This can be written as follows:

CMP R0, R1 ; Compare R0 and R1
ITTEE EQ ; If R0 equal R1, Then-Then-Else-Else
ADDEQ R3, R4, R5 ; Add if equal
ASREQ R3, R3, #1 ; Arithmetic shift right if equal
ADDNE R3, R6, R7 ; Add if not equal
ASRNE R3, R3, #1 ; Arithmetic shift right if not equal

Aside from using the IT instruction directly, the IT instruction also helps porting of assembly appli-
cation codes from ARM7TDMI to Cortex-M3. When ARM assembler (including KEIL RealView
Microcontroller Development Kit, which is covered in Chapter 20) is used, and if a conditional execu-
tion instruction is used in assembly code without IT instruction, the assembler can insert the required
IT instruction automatically. An example is shown in Table 4.33. This feature allows existing assembly
code to be reused on Cortex-M3 without modifications.

Note that 16-bit data processing instructions does not update APSR if they are used inside an IT
instruction block. If you add the S suffix in the conditional executed instruction, the 32-bit version of
the instruction would be used by the assembler.

4.4.3  SDIV and UDIV
The syntax for signed and unsigned divide instructions is as follows:

SDIV.W <Rd>, <Rn>, <Rm>
UDIV.W <Rd>, <Rn>, <Rm>

The result is Rd = Rn/Rm. For example,

LDR R0,=300 ; Decimal 300
MOV R1,#5
UDIV.W R2, R0, R1

This will give you an R2 result of 60 (0x3C).

Table 4.33  Automatic Insertion of IT Instruction in ARM Assembler

Original Assembly Code Disassembled Assembly Code from Generated
Object File

CMP R1, #2
ADDEQ R0, R1, #1
...

CMP R1, #2
IT EQ
ADDEQ R0, R1, #1

734.4  Several Useful Instructions in the Cortex-M3

You can set up the DIVBYZERO bit in the NVIC Configuration Control Register so that when a
divide by zero occurs, a fault exception (usage fault) takes place. Otherwise, <Rd> will become 0 if a
divide by zero takes place.

4.4.4  REV, REVH, and REVSH
REV reverses the byte order in a data word, and REVH reverses the byte order inside a half word. For
example, if R0 is 0x12345678, in executing the following:

REV R1, R0
REVH R2, R0

R1 will become 0x78563412, and R2 will be 0x34127856. REV and REVH are particularly useful for
converting data between big endian and little endian.

REVSH is similar to REVH except that it only processes the lower half word, and then it sign
extends the result. For example, if R0 is 0x33448899, running:

REVSH R1, R0

R1 will become 0xFFFF9988.

4.4.5  Reverse Bit
The RBIT instruction reverses the bit order in a data word. The syntax is as follows:

RBIT.W <Rd>, <Rn>

This instruction is very useful for processing serial bit streams in data communications. For exam-
ple, if R0 is 0xB4E10C23 (binary value 1011_0100_1110_0001_0000_1100_0010_0011), executing:

RBIT.W R0, R1

R0 will become 0xC430872D (binary value 1100_0100_0011_0000_1000_0111_0010_1101).

4.4.6  SXTB, SXTH, UXTB, and UXTH
The four instructions SXTB, SXTH, UXTB, and UXTH are used to extend a byte or half word data into
a word. The syntax of the instructions is as follows:

SXTB <Rd>, <Rn>
SXTH <Rd>, <Rn>
UXTB <Rd>, <Rn>
UXTH <Rd>, <Rn>

For SXTB/SXTH, the data are sign extended using bit[7]/bit[15] of Rn. With UXTB and UXTH,
the value is zero extended to 32-bit.

For example, if R0 is 0x55AA8765:

SXTB R1, R0 ; R1 = 0x00000065
SXTH R1, R0 ; R1 = 0xFFFF8765
UXTB R1, R0 ; R1 = 0x00000065
UXTH R1, R0 ; R1 = 0x00008765

74 CHAPTER 4  Instruction Sets

4.4.7  Bit Field Clear and Bit Field Insert
Bit Field Clear (BFC) clears 1–31 adjacent bits in any position of a register. The syntax of the instruc-
tion is as follows:

BFC.W <Rd>, <#lsb>, <#width>

For example,

LDR R0,=0x1234FFFF
BFC.W R0, #4, #8

This will give R0 = 0x1234F00F.
Bit Field Insert (BFI) copies 1–31 bits (#width) from one register to any location (#lsb) in another

register. The syntax is as follows:

BFI.W <Rd>, <Rn>, <#lsb>, <#width>

For example,

LDR R0,=0x12345678
LDR R1,=0x3355AACC
BFI.W R1, R0, #8, #16 ; Insert R0[15:0] to R1[23:8]

This will give R1 = 0x335678CC.

4.4.8  UBFX and SBFX
UBFX and SBFX are the unsigned and signed bit field extract instructions. The syntax of the instruc-
tions is as follows:

UBFX.W <Rd>, <Rn>, <#lsb>, <#width>
SBFX.W <Rd>, <Rn>, <#lsb>, <#width>

UBFX extracts a bit field from a register starting from any location (specified by #lsb) with any
width (specified by #width), zero extends it, and puts it in the destination register. For example,

LDR R0,=0x5678ABCD
UBFX.W R1, R0, #4, #8

This will give R1 = 0x000000BC.
Similarly, SBFX extracts a bit field, but its sign extends it before putting it in a destination register.

For example,

LDR R0,=0x5678ABCD
SBFX.W R1, R0, #4, #8

This will give R1 = 0xFFFFFFBC.

4.4.9  LDRD and STRD
The two instructions LDRD and STRD transfer two words of data from or into two registers. The syn-
tax of the instructions is as follows:

LDRD.W <Rxf>, <Rxf2>, [Rn, #+/−offset]{!} ; Pre-indexed

754.4  Several Useful Instructions in the Cortex-M3

LDRD.W <Rxf>, <Rxf2>, [Rn], #+/−offset ; Post-indexed
STRD.W <Rxf>, <Rxf2>, [Rn, #+/−offset]{!} ; Pre-indexed
STRD.W <Rxf>, <Rxf2>, [Rn], #+/−offset ; Post-indexed

where <Rxf> is the first destination/source register and <Rxf2> is the second destination/source regis-
ter. Avoid using same register for <Rn> and <Rxf> when using LDRD because of an erratum in Cortex-
M3 revision 0 to 2.

For example, the following code reads a 64-bit value located in memory address 0x1000 into R0
and R1:

LDR R2,=0x1000
LDRD.W R0, R1, [R2] ; This will gives R0 = memory[0x1000],
 ; R1 = memory[0x1004]

Similarly, we can use STRD to store a 64-bit value in memory. In the following example, preindexed
addressing mode is used:

LDR R2,=0x1000 ; Base address
STRD.W R0, R1, [R2, #0x20] ; This will gives memory[0x1020] = R0,
 ; memory[0x1024] = R1

4.4.10  Table Branch Byte and Table Branch Halfword
Table Branch Byte (TBB) and Table Branch Halfword (TBH) are for implementing branch tables. The
TBB instruction uses a branch table of byte size offset, and TBH uses a branch table of half word offset.
Since the bit 0 of a program counter is always zero, the value in the branch table is multiplied by two
before it’s added to PC. Furthermore, because the PC value is the current instruction address plus four,
the branch range for TBB is (2 × 255) + 4 = 514, and the branch range for TBH is (2 × 65535) + 4 =
131074. Both TBB and TBH support forward branch only.

TBB has this general syntax:

TBB.W [Rn, Rm]

where Rn is the base memory offset and Rm is the branch table index. The branch table item for
TBB is located at Rn + Rm. Assuming we used PC for Rn, we can see the operation as shown in
Figure 4.5.

For TBH instruction, the process is similar except the memory location of the branch table item is
located at Rn + 2 x Rm and the maximum branch offset is higher. Again, we assume that Rn is set to
PC, as shown in Figure 4.6.

If Rn in the table branch instruction is set to R15, the value used for Rn will be PC + 4 because of the
pipeline in the processor. These two instructions are more likely to be used by a C compiler to generate
code for switch (case) statements. Because the values in the branch table are relative to the current pro-
gram counter, it is not easy to code the branch table content manually in assembler as the address offset
value might not be able to be determined during assembly/compile stage, especially if the branch target
is in a separate program code file. The coding syntax for calculating TBB/TBH branch table content
could be dependent on the development tool. In ARM assembler (armasm), the TBB branch table can
be created in the following way:

TBB.W [pc, r0] ; when executing this instruction, PC equal
 ; branchtable

76 CHAPTER 4  Instruction Sets

branchtable
DCB ((dest0 − branchtable)/2) ; Note that DCB is used because
 ; the value is 8-bit
DCB ((dest1 − branchtable)/2)
DCB ((dest2 − branchtable)/2)
DCB ((dest3 − branchtable)/2)

dest0
... ; Execute if r0 = 0

dest1
... ; Execute if r0 = 1

dest2
... ; Execute if r0 = 2

dest3
... ; Execute if r0 = 3

Figure 4.5

TBB Operation.

TBB [PC, Rm]PC

Rn 5 (PC 1 4)

VAL_N[7:0]Rn 1 Rm

Program
flow

New PC 5 (PC 1 4) 1 2 3 VAL_N[7:0]

VAL_0[7:0]

VAL_1[7:0]

Rm 5 N

Figure 4.6

TBH Operation.

New PC 5 (PC 1 4) 1 2 3 VAL_N[15:0]

TBH [PC, Rm, LSL #1]PC

Rn 5 (PC 1 4)

VAL_N[15:0]Rn 1 2 3 Rm

Program
flow

VAL_0[15:0]

VAL_1[15:0]

Rm 5 N

774.4  Several Useful Instructions in the Cortex-M3

When the TBB instruction is executed, the current PC value is at the address labeled as branchtable
(because of the pipeline in the processor). Similarly, for TBH instructions, it can be used as follows:

TBH.W [pc, r0, LSL #1]
branchtable

DCI ((dest0 − branchtable)/2) ; Note that DCI is used because
 ; the value is 16-bit
DCI ((dest1 − branchtable)/2)
DCI ((dest2 − branchtable)/2)
DCI ((dest3 − branchtable)/2)

dest0
... ; Execute if r0 = 0

dest1
... ; Execute if r0 = 1

dest2
... ; Execute if r0 = 2

dest3
... ; Execute if r0 = 3

79

CHAPTER

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00008-9

In This Chapter

Memory System Features Overview��79
Memory Maps���79
Memory Access Attributes���82
Default Memory Access Permissions���83
Bit-Band Operations��84
Unaligned Transfers��92
Exclusive Accesses��93
Endian Mode��95

Memory Systems 5

5.1  Memory System Features Overview
The Cortex™-M3 processor has different memory architecture from that of traditional ARM proces-
sors. First, it has a predefined memory map that specifies which bus interface is to be used when a
memory location is accessed. This feature also allows the processor design to optimize the access
behavior when different devices are accessed.

Another feature of the memory system in the Cortex-M3 is the bit-band support. This provides
atomic operations to bit data in memory or peripherals. The bit-band operations are supported only in
special memory regions. This topic is covered in more detail later in this chapter.

The Cortex-M3 memory system also supports unaligned transfers and exclusive accesses. These
features are part of the v7-M architecture. Finally, the Cortex-M3 supports both little endian and big
endian memory configuration.

5.2  Memory Maps
The Cortex-M3 processor has a fixed memory map (see Figure 5.1). This makes it easier to port soft-
ware from one Cortex-M3 product to another. For example, components described in previous sections,
such as Nested Vectored Interrupt Controller (NVIC) and Memory Protection Unit (MPU), have the

80 CHAPTER 5  Memory Systems

same memory locations in all Cortex-M3 products. Nevertheless, the memory map definition allows
great flexibility so that manufacturers can differentiate their Cortex-M3-based product from others.

Some of the memory locations are allocated for private peripherals such as debugging components.
They are located in the private peripheral memory region. These debugging components include the
following:

Fetch Patch and Breakpoint Unit (FPB)•	
Data Watchpoint and Trace Unit (DWT)•	

Figure 5.1

Cortex-M3 Predefined Memory Map.

ROM table

External private peripheral bus

ETM

TPIU

Reserved

NVIC

Reserved

FPB

DWT

ITM

Vendor specific

Private peripheral bus:
Debug/external

Private peripheral bus:
Internal

External device

External RAM

Peripherals

SRAM

Code

0.5 GB

0.5 GB

1 GB

0.5 GB

1 GB

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

0xA0000000

0xDFFFFFFF

0xE0000000

0xE003FFFF

0xE0040000

0xE00FFFFF

0xE0100000

0xE0000000

0xE0001000

0xE0002000

0xE0003000

0xE000E000

0xE000F000

Bit-band alias

32 MB

Bit-band region

31 MB

1 MB

Bit-band alias

32 MB

Bit-band region

31 MB

1 MB

0xE000DFFF

0xE003FFFF

0xFFFFFFFF

0xE0040000

0xE0041000

0xE0042000

0xE00FF000

0xE00FEFFF

0x40000000

0x40100000

0x41FFFFFF

0x42000000

0x43FFFFFF

0x20000000

0x20100000

0x21FFFFFF

0x22000000

0x23FFFFFF

815.2  Memory Maps

Instrumentation Trace Macrocell (ITM)•	
Embedded Trace Macrocell (ETM)•	
Trace Port Interface Unit (TPIU)•	
ROM table•	

The details of these components are discussed in later chapters on debugging features.
The Cortex-M3 processor has a total of 4 GB of address space. Program code can be located in the

code region, the Static Random Access Memory (SRAM) region, or the external RAM region. How-
ever, it is best to put the program code in the code region because with this arrangement, the instruction
fetches and data accesses are carried out simultaneously on two separate bus interfaces.

The SRAM memory range is for connecting internal SRAM. Access to this region is carried out
via the system interface bus. In this region, a 32-MB range is defined as a bit-band alias. Within the
32-bit‑band alias memory range, each word address represents a single bit in the 1-MB bit-band
region. A data write access to this bit-band alias memory range will be converted to an atomic READ-
MODIFY-WRITE operation to the bit-band region so as to allow a program to set or clear individual
data bits in the memory. The bit-band operation applies only to data accesses not instruction fetches.
By putting Boolean information (single bits) in the bit-band region, we can pack multiple Boolean data
in a single word while still allowing them to be accessible individually via bit-band alias, thus saving
memory space without the need for handling READ-MODIFY-WRITE in software. More details on
bit-band alias can be found later in this chapter.

Another 0.5-GB block of address range is allocated to on-chip peripherals. Similar to the SRAM
region, this region supports bit-band alias and is accessed via the system bus interface. However,
instruction execution in this region is not allowed. The bit-band support in the peripheral region makes
it easy to access or change control and status bits of peripherals, making it easier to program peripheral
control.

Two slots of 1-GB memory space are allocated for external RAM and external devices. The differ-
ence between the two is that program execution in the external device region is not allowed, and there
are some differences with the caching behaviors.

The last 0.5-GB memory is for the system-level components, internal peripheral buses, external
peripheral bus, and vendor-specific system peripherals. There are two segments of the private periph-
eral bus (PPB):

Advanced High-Performance Bus (AHB) PPB, for Cortex-M3 internal AHB peripherals only; this •	
includes NVIC, FPB, DWT, and ITM

•	 Advance Peripheral Bus (APB) PPB, for Cortex-M3 internal APB devices as well as external
peripherals (external to the Cortex-M3 processor); the Cortex-M3 allows chip vendors to add
additional on-chip APB peripherals on this private peripheral bus via an APB interface

The NVIC is located in a memory region called the system control space (SCS) (see Figure 5.2).
Besides providing interrupt control features, this region also provides the control registers for SYS-
TICK, MPU, and code debugging control.

The remaining unused vendor-specific memory range can be accessed via the system bus interface.
However, instruction execution in this region is not allowed.

The Cortex-M3 processor also comes with an optional MPU. Chip manufacturers can decide
whether to include the MPU in their products.

82 CHAPTER 5  Memory Systems

What we have shown in the memory map is merely a template; individual semiconductor vendors
provide detailed memory maps including the actual location and size of ROM, RAM, and peripheral
memory locations.

5.3  Memory Access Attributes
The memory map shows what is included in each memory region. Aside from decoding which memory
block or device is accessed, the memory map also defines the memory attributes of the access. The
memory attributes you can find in the Cortex-M3 processor include the following:

•	 Bufferable: Write to memory can be carried out by a write buffer while the processor continues on
next instruction execution.

•	 Cacheable: Data obtained from memory read can be copied to a memory cache so that next time it
is accessed the value can be obtained from the cache to speed up the program execution.

•	 Executable: The processor can fetch and execute program code from this memory region.
•	 Sharable: Data in this memory region could be shared by multiple bus masters. Memory system

needs to ensure coherency of data between different bus masters in shareable memory region.

The Cortex-M3 bus interfaces output the memory access attributes information to the memory
system for each instruction and data transfer. The default memory attribute settings can be overridden
if MPU is present and the MPU region configurations are programmed differently from the default.
Though the Cortex-M3 processor does not have a cache memory or cache controller, a cache unit can
be added on the microcontroller which can use the memory attribute information to define the memory
access behaviors. In addition, the cache attributes might also affect the operation of memory control-
lers for on-chip memory and off-chip memory, depending on the memory controllers used by the chip
manufacturers.

The memory access attributes for each memory region are as follows:

•	 Code memory region (0x00000000–0x1FFFFFFF): This region is executable, and the cache
attribute is write through (WT). You can put data memory in this region as well. If data operations
are carried out for this region, they will take place via the data bus interface. Write transfers to this
region are bufferable.

Figure 5.2

The System Control Space.

System level

0xE0000000

0xFFFFFFFF

0xE00FFFFF
0xE0000000

0xE003FFFF

0xE0040000

0xE00FFFFF

Internal
PPB

External
PPB

Private
peripheral bus

System
control space

0xE000E000

0xE000EFFF

NVIC, CPU
ID,

SYSTICK,
MPU, core
debug, etc.

835.4  Default Memory Access Permissions

•	 SRAM memory region (0x20000000–0x3FFFFFFF): This region is intended for on-chip RAM.
Write transfers to this region are bufferable, and the cache attribute is write back, write allocated
(WB-WA). This region is executable, so you can copy program code here and execute it.

•	 Peripheral region (0x40000000–0x5FFFFFFF): This region is intended for peripherals. The
accesses are noncacheable. You cannot execute instruction code in this region (Execute Never, or
XN in ARM documentation, such as the Cortex-M3 TRM).

•	 External RAM region (0x60000000–0x7FFFFFFF): This region is intended for either on-chip or
off-chip memory. The accesses are cacheable (WB-WA), and you can execute code in this region.

•	 External RAM region (0x80000000–0x9FFFFFFF): This region is intended for either on-chip or
off-chip memory. The accesses are cacheable (WT), and you can execute code in this region.

•	 External devices (0xA0000000–0xBFFFFFFF): This region is intended for external devices and/or
shared memory that needs ordering/nonbuffered accesses. It is also a nonexecutable region.

•	 External devices (0xC0000000–0xDFFFFFFF): This region is intended for external devices and/or
shared memory that needs ordering/nonbuffered accesses. It is also a nonexecutable region.

•	 System region (0xE0000000–0xFFFFFFFF): This region is for private peripherals and vendor-specific
devices. It is nonexecutable. For the PPB memory range, the accesses are strongly ordered (noncacheable,
nonbufferable). For the vendor-specific memory region, the accesses are bufferable and noncacheable.

Note that from Revision 1 of the Cortex-M3, the code region memory attribute export to external
memory system is hardwired to cacheable and nonbufferable. This cannot be overridden by MPU con-
figuration. This update only affects the memory system outside the processor (e.g., level 2 cache and
certain types of memory controllers with cache features). Within the processor, the internal write buffer
can still be used for write transfers accessing the code region.

5.4  Default Memory Access Permissions
The Cortex-M3 memory map has a default configuration for memory access permissions. This prevents user
programs (non-privileged) from accessing system control memory spaces such as the NVIC. The default
memory access permission is used when either no MPU is present or MPU is present but disabled.

If MPU is present and enabled, the access permission in the MPU setup will determine whether user
accesses are allowed.

The default memory access permissions are shown in Table 5.1.

Table 5.1  Default Memory Access Permissions

Memory Region Address Access in User Program

Vendor specific 0xE0100000–0xFFFFFFFF Full access
ROM table 0xE00FF000–0xE00FFFFF Blocked; user access results in bus fault
External PPB 0xE0042000–0xE00FEFFF Blocked; user access results in bus fault
ETM 0xE0041000–0xE0041FFF Blocked; user access results in bus fault

Continued

84 CHAPTER 5  Memory Systems

5.5  Bit-Band Operations
Bit-band operation support allows a single load/store operation to access (read/write) to a single data
bit. In the Cortex-M3, this is supported in two predefined memory regions called bit-band regions. One
of them is located in the first 1 MB of the SRAM region, and the other is located in the first 1 MB of the
peripheral region. These two memory regions can be accessed like normal memory, but they can also
be accessed via a separate memory region called the bit-band alias (see Figure 5.3). When the bit-band
alias address is used, each individual bit can be accessed separately in the least significant bit (LSB) of
each word-aligned address.

For example, to set bit 2 in word data in address 0x20000000, instead of using three instructions
to read the data, set the bit, and then write back the result, this task can be carried out by a single
instruction (see Figure 5.4). The assembler sequence for these two cases could be like the one shown
in Figure 5.5.

Similarly, bit-band support can simplify application code if we need to read a bit in a memory loca-
tion. For example, if we need to determine bit 2 of address 0x20000000, we use the steps outlined in
Figure 5.6. The assembler sequence for these two cases could be like the one shown in Figure 5.7.

Bit-band operation is not a new idea; in fact, a similar feature has existed for more than 30 years on
8-bit microcontrollers such as the 8051. Although the Cortex-M3 does not have special instructions for
bit operation, special memory regions are defined so that data accesses to these regions are automati-
cally converted into bit-band operations.

Note that the Cortex-M3 uses the following terms for the bit-band memory addresses:

•	 Bit-band region: This is a memory address region that supports bit-band operation.
•	 Bit-band alias: Access to the bit-band alias will cause an access (a bit-band operation) to the

bit-band region. (Note: A memory remapping is performed.)

Table 5.1  Default Memory Access Permissions  Continued

Memory Region Address Access in User Program

TPIU 0xE0040000–0xE0040FFF Blocked; user access results in bus fault
Internal PPB 0xE000F000–0xE003FFFF Blocked; user access results in bus fault
NVIC 0xE000E000–0xE000EFFF Blocked; user access results in bus fault, except

Software Trigger Interrupt Register that can be
programmed to allow user accesses

FPB 0xE0002000–0xE0003FFF Blocked; user access results in bus fault
DWT 0xE0001000–0xE0001FFF Blocked; user access results in bus fault
ITM 0xE0000000–0xE0000FFF Read allowed; write ignored except for stimulus

ports with user access enabled
External device 0xA0000000–0xDFFFFFFF Full access
External RAM 0x60000000–0x9FFFFFFF Full access
Peripheral 0x40000000–0x5FFFFFFF Full access
SRAM 0x20000000–0x3FFFFFFF Full access
Code 0x00000000–0x1FFFFFFF Full access

When a user access is blocked, the fault exception takes place immediately.

85

Within the bit-band region, each word is represented by an LSB of 32 words in the bit-band alias
address range. What actually happens is that when the bit-band alias address is accessed, the address
is remapped into a bit-band address. For read operations, the word is read and the chosen bit location
is shifted to the LSB of the read return data. For write operations, the written bit data are shifted to the
required bit position, and a READ-MODIFY-WRITE is performed.

5.5  Bit-Band Operations

Figure 5.3

Bit Accesses to Bit-Band Region via the Bit-Band Alias.

0x20000000

0x20000004

0x20000008

0x200FFFFC
031

0x220000000x2200002C

0x22000080

0x22000010

81624

Bit-band
region

address

Bit-band alias
address

Bit

Figure 5.4

Write to Bit-Band Alias.

Read 0x20000000
to register

Set bit 2 in register

Write register to
0x20000000

Without bit-band With bit-band

Write 1 to
0x22000008

Read data from
0x20000000 to

buffer

Write to
0x20000000 from

buffer with bit 2 set

Mapped to 2
bus transfers

Figure 5.5

Example Assembler Sequence to Write a Bit with and without Bit-Band.

LDR R0,=0x20000000 ; Setup address
LDR R1, [R0] ; Read
ORR.W R1, #0x4 ; Modify bit
STR R1, [R0] ; Write back result

With bit-band

LDR R0,=0x22000008 ; Setup add
MOV R1, #1 ; Setup dat
STR R1, [R0] ; Write

Without bit-band

86 CHAPTER 5  Memory Systems

There are two regions of memory for bit-band operations:

0x20000000–0x200FFFFF (SRAM, 1 MB)•	
0x40000000–0x400FFFFF (peripherals, 1 MB)•	

For the SRAM memory region, the remapping of the bit-band alias is shown in Table 5.2.
Similarly, the bit-band region of the peripheral memory region can be accessed via bit-band aliased

addresses, as shown in Table 5.3.

Figure 5.6

Read from the Bit-Band Alias.

Read 0x20000000
to register

Shift bit 2 to LSB
and mask other bits

Without bit-band With bit-band

Read from
0x22000008

Mapped to 1
bus transfers

Read data from
0x20000000, and

extract bit 2 to
register

Figure 5.7

Read from the Bit-Band Alias.

LDR R0,=0x20000000 ; Setup address
LDR R1, [R0] ; Read
UBFX.W R1, R1, #2, #1 ; Extract bit[2]

With bit-band

LDR R0,=0x22000008 ; Setup address
LDR R1, [R0] ; Read

Without bit-band

Table 5.2  Remapping of Bit-Band Addresses in SRAM Region

Bit-Band Region Aliased Equivalent

0x20000000 bit[0] 0x22000000 bit[0]
0x20000000 bit[1] 0x22000004 bit[0]
0x20000000 bit[2] 0x22000008 bit[0]
… …
0x20000000 bit[31] 0x2200007C bit[0]
0x20000004 bit[0] 0x22000080 bit[0]
… …
0x20000004 bit[31] 0x220000FC bit[0]
… …
0x200FFFFC bit[31] 0x23FFFFFC bit[0]

875.5  Bit-Band Operations

Here’s a simple example:

Set address 0x20000000 to a value of 0x3355AACC.1.	
Read address 0x22000008. This read access is remapped into read access to 0x20000000. The 2.	
return value is 1 (bit[2] of 0x3355AACC).
Write 0x0 to 0x22000008. This write access is remapped into a READ-MODIFY-WRITE to 3.	
0x20000000. The value 0x3355AACC is read from memory, bit 2 is cleared, and a result of
0x3355AAC8 is written back to address 0x20000000.
Now, read 0x20000000. That gives you a return value of 0x3355AAC8 (bit[2] cleared).4.	

When you access bit-band alias addresses, only the LSB (bit[0]) in the data is used. In addition,
accesses to the bit-band alias region should not be unaligned. If an unaligned access is carried out to
bit-band alias address range, the result is unpredictable.

5.5.1  Advantages of Bit-Band Operations
So, what are the uses of bit-band operations? We can use them to, for example, implement serial data
transfers in general-purpose input/output (GPIO) ports to serial devices. The application code can be
implemented easily because access to serial data and clock signals can be separated.

Bit-band operation can also be used to simplify branch decisions. For example, if a branch should
be carried out based on 1 single bit in a status register in a peripheral, instead of

Reading the whole register•	
Masking the unwanted bits•	
Comparing and branching•	

Table 5.3  Remapping of Bit-Band Addresses in Peripheral Memory Region

Bit-Band Region Aliased Equivalent

0x40000000 bit[0] 0x42000000 bit[0]
0x40000000 bit[1] 0x42000004 bit[0]
0x40000000 bit[2] 0x42000008 bit[0]
… …
0x40000000 bit[31] 0x4200007C bit[0]
0x40000004 bit[0] 0x42000080 bit[0]
… …
0x40000004 bit[31] 0x420000FC bit[0]
… …
0x400FFFFC bit[31] 0x43FFFFFC bit[0]

Bit-Band versus Bit-Bang
In the Cortex-M3, we use the term bit-band to indicate that the feature is a special memory band (region) that
provides bit accesses. Bit-bang commonly refers to driving I/O pins under software control to provide serial
communication functions. The bit-band feature in the Cortex-M3 can be used for bit-banging implementations,
but the definitions of these two terms are different.

88 CHAPTER 5  Memory Systems

you can simplify the operations to

Reading the status bit via the bit-band alias (get 0 or 1)•	
Comparing and branching•	

Besides providing faster bit operations with fewer instructions, the bit-band feature in the Cortex-M3
is also essential for situations in which resources are being shared by more than one process. One of the
most important advantages or properties of a bit-band operation is that it is atomic. In other words, the
READ-MODIFY-WRITE sequence cannot be interrupted by other bus activities. Without this behav-
ior in, for example, using a software READ-MODIFY-WRITE sequence, the following problem can
occur: consider a simple output port with bit 0 used by a main program and bit 1 used by an interrupt
handler. A software-based READ-MODIFY-WRITE operation can cause data conflicts, as shown in
Figure 5.8.

With the Cortex-M3 bit-band feature, this kind of race condition can be avoided because the READ-
MODIFY-WRITE is carried out at the hardware level and is atomic (the two transfers cannot be pulled
apart) and interrupts cannot take place between them (see Figure 5.9).

Similar issues can be found in multitasking systems. For example, if bit 0 of the output port is
used by Process A and bit 1 is used by Process B, a data conflict can occur in software-based READ-
MODIFY-WRITE (see Figure 5.10).

Figure 5.8

Data Are Lost When an Exception Handler Modifies a Shared Memory Location.

Without bit-band operation

Output port
read to
register

Output port
read to
register

Bit 0 set
by main
program

Bit 0 clear
by main
program

Write to
output port

Write to
output port

Main program

Interrupt handler

Output port
read

Bit 1 modified
by interrupt

handler

Write to
output port

Time

0x00 0x01 0x03 0x00

Thread mode

Handler mode

Change made by
interrupt handler lost

Output port
value

895.5  Bit-Band Operations

Figure 5.9

Data Loss Prevention with Locked Transfers Using the Bit-Band Feature.

With bit-band operation

Main program

Interrupt handler

Time

Output port
value

0x00 0x01 0x00 0x02

Thread mode

Handler mode

Locked read-
modify-write

Write to
output port via
bit-band alias

Locked read-
modify-write

Locked read-
modify-write

Bit 0 set by main program
by write to bit-band alias

Bit 1 modified by interrupt
handler by write to bit-band

alias

Figure 5.10

Data Are Lost When a Different Task Modifies a Shared Memory Location.

Without bit-band operation

Output port
read to register

Output port
read to register

Bit 0 set by
task A

Write to
output port

Bit 0 clear by
task A

Write to
output port

Task A

Task B

Output port
read

Bit 1 modified
by task B

Write to
output port

Time

Output port
 value

0x00 0x01 0x03 0x00

Current task

Change made by
task B is lost

Task A Task B Task A Task B Task A

90 CHAPTER 5  Memory Systems

Again, the bit-band feature can ensure that bit accesses from each task are separated so that no data
conflicts occur (see Figure 5.11).

Besides I/O functions, the bit-band feature can be used for storing and handling Boolean data in the
SRAM region. For example, multiple Boolean variables can be packed into one single memory location
to save memory space, whereas the access to each bit is still completely separated when the access is
carried out via the bit-band alias address range.

For system-on-chip (SoC) designers designing a bit-band-capable device, the device’s memory
address should be located within the bit-band memory, and the lock (HMASTLOCK) signal from the
AHB interface must be checked to make sure that writable register contents will not be changed except
by the bus when a locked transfer is carried out.

5.5.2  Bit-Band Operation of Different Data Sizes
Bit-band operation is not limited to word transfers. It can be carried out as byte transfers or half word
transfers as well. For example, when a byte access instruction (LDRB/STRB) is used to access a
bit-band alias address range, the accesses generated to the bit-band region will be in byte size. The
same applies to half word transfers (LDRH/STRH). When you use nonword transfers to bit-band alias
addresses, the address value should still be word aligned.

5.5.3  Bit-Band Operations in C Programs
There is no native support of bit-band operation in most C compilers. For example, C compilers do
not understand that the same memory can be accessed using two different addresses, and they do not
know that accesses to the bit-band alias will only access the LSB of the memory location. To use the

Figure 5.11

Data Loss Prevention with Locked Transfers Using the Bit-Band Feature.

With bit-band operation

Task A

Task B

Time

Output port
value 0x00 0x01 0x00 0x02

Locked read-
modify-write

Write to
output port via
bit-band alias

Locked read-
modify-write

Locked read-
modify-write

Bit 0 set by task A by write
to bit-band alias

Bit 1 modified by task B by
write to bit-band alias

Current task Task A Task B Task A Task B Task A

915.5  Bit-Band Operations

bit-band feature in C, the simplest solution is to separately declare the address and the bit-band alias of
a memory location. For example:

#define  DEVICE_REG0     *((volatile unsigned long *)  (0x40000000))
#define  DEVICE_REG0_BIT0  *((volatile unsigned long *)  (0x42000000))
#define  DEVICE_REG0_BIT1  *((volatile unsigned long *)  (0x42000004))
...
DEVICE_REG0 = 0xAB; // Accessing the hardware register by normal
	 // address
...
DEVICE_REG0 = DEVICE_REG0 | 0x2; // Setting bit 1 without using
	 // bitband feature
...
DEVICE_REG0_BIT1 = 0x1; // Setting bit 1 using bitband feature
	 // via the bit band alias address

It is also possible to develop C macros to make accessing the bit-band alias easier. For example, we
could set up one macro to convert the bit-band address and the bit number into the bit-band alias address
and set up another macro to access the memory location by taking the address value as a pointer:

// Convert bit band address and bit number into
// bit band alias address
#define BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x2000000+((addr &
 0xFFFFF)<<5)+(bitnum <<2))
// Convert the address as a pointer
#define MEM_ADDR(addr) *((volatile unsigned long *) (addr))

Based on the previous example, we rewrite the code as follows:

#define DEVICE_REG0 0x40000000
#define BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x02000000+((addr &
 0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *) (addr))
...
MEM_ADDR(DEVICE_REG0) = 0xAB; // Accessing the hardware
	 // register by normal address
...
// Setting bit 1 without using bitband feature
MEM_ADDR(DEVICE_REG0) = MEM_ADDR(DEVICE_REG0) | 0x2;
...
// Setting bit 1 with using bitband feature
MEM_ADDR(BITBAND(DEVICE_REG0,1)) = 0x1;

Note that when the bit-band feature is used, the variables being accessed might need to be declared
as volatile. The C compilers do not know that the same data could be accessed in two different addresses,
so the volatile property is used to ensure that each time a variable is accessed, the memory location is
accessed instead of a local copy of the data inside the processor.

Starting from ARM RealView Development Suite version 4.0 and Keil MDK-ARM 3.80, bit band
support is provided by __attribute__((bitband)) language extension and __bitband command
line option (see reference 6). You can find further examples of bit-band accesses with C macros using
ARM RealView Compiler Tools in the ARM Application Note 179 [Ref. 7].

92 CHAPTER 5  Memory Systems

5.6  Unaligned Transfers
The Cortex-M3 supports unaligned transfers on single accesses. Data memory accesses can be defined
as aligned or unaligned. Traditionally, ARM processors (such as the ARM7/ARM9/ARM10) allow
only aligned transfers. That means in accessing memory, a word transfer must have address bit[1] and
bit[0] equal to 0, and a half word transfer must have address bit[0] equal to 0. For example, word data
can be located at 0x1000 or 0x1004, but it cannot be located in 0x1001, 0x1002, or 0x1003. For half
word data, the address can be 0x1000 or 0x1002, but it cannot be 0x1001.

So, what does an unaligned transfer look like? Figures 5.12 through 5.16 show some examples.
Assuming that the memory infrastructure is 32-bit (4 bytes) wide, an unaligned transfer can be any word
size read/write such that the address is not a multiple of 4, as shown in Figures 5.12–5.14, or when the
transfer is in half word size, and the address is not a multiple of 2, as shown in Figures 5.15 and 5.16.

All the byte-size transfers are aligned on the Cortex-M3 because the minimum address step is 1 byte.

Figure 5.12

Unaligned Transfer Example 1.

Address N
Address N14

Byte
3

Byte
2

Byte
1

Byte
0

[23:16] [15:8] [7:0]
[31:24] Unaligned word data

at address N11

Figure 5.13

Unaligned Transfer Example 2.

Address N
Address N�4

Byte
3

Byte
2

Byte
1

Byte
0

[15:8] [7:0]
[31:24] Unaligned word data

at address N�2
[23:16]

Figure 5.14

Unaligned Transfer Example 3.

Byte
3

Byte
2

Byte
1

Byte
0

[7:0]
[31:24] Unaligned word data

at address N�3
[23:16] [15:8]

Address N
Address N�4

Figure 5.15

Unaligned Transfer Example 4.

Byte
3

Byte
2

Byte
1

Byte
0

[7:0]
Unaligned half word data
at address N�1[15:8]Address N

Address N�4

935.7  Exclusive Accesses

In the Cortex-M3, unaligned transfers are supported in normal memory accesses (such as LDR,
LDRH, STR, and STRH instructions). There are a number of limitations:

Unaligned transfers are not supported in Load/Store multiple instructions.•	
Stack operations (PUSH/POP) must be aligned.•	
Exclusive accesses (such as LDREX or STREX) must be aligned; otherwise, a fault exception •	
(usage fault) will be triggered.
Unaligned transfers are not supported in bit-band operations. Results will be unpredictable if you •	
attempt to do so.

When unaligned transfers are used, they are actually converted into multiple aligned transfers by the
processor’s bus interface unit. This conversion is transparent, so application programmers do not have
to worry about it. However, when an unaligned transfer takes place, it is broken into separate transfers,
and as a result, it takes more clock cycles for a single data access and might not be good for situations
in which high performance is required. To get the best performance, it’s worth making sure that data
are aligned properly.

It is also possible to set up the NVIC so that an exception is triggered when an unaligned transfer
takes place. This is done by setting the UNALIGN_TRP (unaligned trap) bit in the configuration con-
trol register in the NVIC (0xE000ED14). In this way, the Cortex-M3 generates usage fault exceptions
when unaligned transfers take place. This is useful during software development to test whether an
application produces unaligned transfers.

5.7  Exclusive Accesses
You might have noticed that the Cortex-M3 has no SWP instruction (swap), which was used for sema-
phore operations in traditional ARM processors like ARM7TDMI. This is now being replaced by
exclusive access operations. Exclusive accesses were first supported in architecture v6 (for example,
in the ARM1136).

Semaphores are commonly used for allocating shared resources to applications. When a shared
resource can only service one client or application processor, we also call it Mutual Exclusion
(MUTEX). In such cases, when a resource is being used by one process, it is locked to that process
and cannot serve another process until the lock is released. To set up a MUTEX semaphore, a memory
location is defined as the lock flag to indicate whether a shared resource is locked by a process. When
a process or application wants to use the resource, it needs to check whether the resource has been
locked first. If it is not being used, it can set the lock flag to indicate that the resource is now locked. In
traditional ARM processors, the access to the lock flag is carried out by the SWP instruction. It allows

Figure 5.16

Unaligned Transfer Example 5.

Byte
3

Byte
2

Byte
1

Byte
0

[7:0]
Unaligned half word data
at address N�3

[15:8]
Address N
Address N�4

94 CHAPTER 5  Memory Systems

the lock flag read and write to be atomic, preventing the resource from being locked by two processes
at the same time.

In newer ARM processors, the read/write access can be carried out on separated buses. In such
situations, the SWP instructions can no longer be used to make the memory access atomic because
the read and write in a locked transfer sequence must be on the same bus. Therefore, the locked
transfers are replaced by exclusive accesses. The concept of exclusive access operation is quite
simple but different from SWP; it allows the possibility that the memory location for a semaphore
could be accessed by another bus master or another process running on the same processor (see
Figure 5.17).

To allow exclusive access to work properly in a multiple processor environment, an additional
hardware called “exclusive access monitor” is required. This monitor checks the transfers toward
shared address locations and replies to the processor if an exclusive access is success. The processor
bus interface also provides additional control signals1 to this monitor to indicate if the transfer is an
exclusive access.

If the memory device has been accessed by another bus master between the exclusive read and the
exclusive write, the exclusive access monitor will flag an exclusive failed through the bus system when
the processor attempts the exclusive write. This will cause the return status of the exclusive write to
be 1. In the case of failed exclusive write, the exclusive access monitor also blocks the write transfer
from getting to the exclusive access address.

1Exclusive access signals are available on the system bus and the D-Code bus of the Cortex-M3 processor. They are EXREQD
and EXRESPD for the D-Code bus and EXREQS and EXRESPS for the system bus. The I-Code bus that is used for instruc-
tion fetch cannot generate exclusive accesses.

Exclusive Read
(e.g., LDREX)

Exclusive Write
(e.g., STREX)

Read lock bit

Check lock bit set?

Set lock bit

Yes

Yes
No

No

Failed: Lock bit already set,
indicates the requested
resource is used by another
process or processor

Failed: Memory region
where the lock bit is could
have been accessed by
another process or another
processor

Success. The lock bit is set
and the processor can have
access to the shared
resource

Return status
from exclusive

write 5 0
(success)?

Figure 5.17

Using Exclusive Access in MUTEX Semaphores.

955.8  Endian Mode

Exclusive access instructions in the Cortex-M3 include LDREX (word), LDREXB (byte), LDREXH
(half word), STREX (word), STREXB (byte), and STREXH (half word). A simple example of the syn-
tax is as follows:

LDREX  <Rxf>, [Rn, #offset]
STREX  <Rd>, <Rxf>,[Rn, #offset]

Where Rd is the return status of the exclusive write (0 = success and 1 = failure).
Example code for exclusive accesses can be found in Chapter 10. You can also access exclusive

access instructions in C using intrinsic functions provided in Cortex Microcontroller Software Inter-
face Standard (CMSIS) compliant device driver libraries from microcontroller vendors: __LDREX,
__LEDEXH, __LDREXB, __STREX, __STREXH, __STREXB. More details of these functions are
covered in Appendix G.

When exclusive accesses are used, the internal write buffers in the Cortex-M3 bus interface will
be bypassed, even when the MPU defines the region as bufferable. This ensures that semaphore infor-
mation on the physical memory is always up to date and coherent between bus masters. SoC design-
ers using Cortex-M3 on multiprocessor systems should ensure that the memory system enforces data
coherency when exclusive transfers occur.

5.8  Endian Mode
The Cortex-M3 supports both little endian and big endian modes. However, the supported memory
type also depends on the design of the rest of the microcontroller (bus connections, memory control-
lers, peripherals, and so on). Make sure that you check your microcontroller datasheets in detail before
developing your software. In most cases, Cortex-M3-based microcontrollers will be little endian. With
little endian mode, the first byte of a word size data is stored in the least significant byte of the 32-bit
memory location (see Table 5.4).

There are some microcontrollers that use big endian mode. In such a case, the first byte of a word
size data is stored in the most significant byte of the 32-bit address memory location (see Table 5.5).

The definition of big endian in the Cortex-M3 is different from the ARM7. In the ARM7TDMI, the big
endian scheme is called word-invariant big endian, also referred as BE-32 in ARM documentation, whereas
in the Cortex-M3, the big endian scheme is called byte-invariant big endian, also referred as BE-8 (byte-
invariant big endian is supported on ARM architecture v6 and v7). The memory view of both schemes is the
same, but the byte lane usage on the bus interface during data transfers is different (see Tables 5.6 and 5.7).

Note that the data transfer on the AHB bus in BE-8 mode uses the same data byte lanes as in little
endian. However, the data byte inside the half word or word data is reversely ordered compared to little
endian (see Table 5.8).

Table 5.4  The Cortex-M3 Little Endian Memory View Example

Address Bits 31 – 24 Bits 23 – 16 Bits 15 – 8 Bits 7 – 0

0x1003 – 0x1000 Byte – 0x1003 Byte – 0x1002 Byte – 0x1001 Byte – 0x1000
0x1007 – 0x1004 Byte – 0x1007 Byte – 0x1006 Byte – 0x1005 Byte – 0x1004
… Byte – 4xN+3 Byte – 4xN+2 Byte – 4xN+1 Byte – 4xN

96 CHAPTER 5  Memory Systems

Table 5.5  The Cortex-M3 Big Endian Memory View Example

Address Bits 31 – 24 Bits 23 – 16 Bits 15 – 8 Bits 7 – 0

0x1003 – 0x1000 Byte – 0x1000 Byte – 0x1001 Byte – 0x1002 Byte – 0x1003
0x1007 – 0x1004 Byte – 0x1004 Byte – 0x1005 Byte – 0x1006 Byte – 0x1007
… Byte – 4xN Byte – 4xN+1 Byte – 4xN+2 Byte – 4xN+3

Table 5.6  The Cortex-M3 (Byte-Invariant Big Endian, BE-8)—Data on the AHB Bus

Address, Size Bits 31 – 24 Bits 23 – 16 Bits 15 – 8 Bits 7 – 0

0x1000, word Data bit [7:0] Data bit [15:8] Data bit [23:16] Data bit [31:24]
0x1000, half word — — Data bit [7:0] Data bit [15:8]
0x1002, half word Data bit [7:0] Data bit [15:8] — —
0x1000, byte — — — Data bit [7:0]
0x1001, byte — — Data bit [7:0] —
0x1002, byte — Data bit [7:0] — —
0x1003, byte Data bit [7:0] — — —

Table 5.7  ARM7TDMI (Word-Invariant Big Endian, BE-32)—Data on the AHB Bus

Address, Size Bits 31 – 24 Bits 23 – 16 Bits 15 – 8 Bits 7 – 0

0x1000, word Data bit [7:0] Data bit [15:8] Data bit [23:16] Data bit [31:24]
0x1000, half word Data bit [7:0] Data bit [15:8] — —
0x1002, half word — — Data bit [7:0] Data bit [15:8]
0x1000, byte Data bit [7:0] — — —
0x1001, byte — Data bit [7:0] — —
0x1002, byte — — Data bit [7:0] —
0x1003, byte — — — Data bit [7:0]

Table 5.8  The Cortex-M3 Little Endian—Data on the AHB Bus

Address, Size Bits 31 – 24 Bits 23 – 16 Bits 15 – 8 Bits 7 – 0

0x1000, word Data bit [31:24] Data bit [23:16] Data bit [15:8] Data bit [7:0]
0x1000, half word — — Data bit [15:8] Data bit [7:0]
0x1002, half word Data bit [15:8] Data bit [7:0] — —
0x1000, byte — — — Data bit [7:0]
0x1001, byte — — Data bit [7:0] —
0x1002, byte — Data bit [7:0] — —
0x1003, byte Data bit [7:0] — — —

975.8  Endian Mode

In the Cortex-M3 processor, the endian mode is set when the processor exits reset. The endian mode
cannot be changed afterward. (There is no dynamic endian switching, and the SETEND instruction is
not supported.) Instruction fetches are always in little endian as are data accesses in the system control
memory space (such as NVIC and FPB) and the external PPB memory range (memory range from
0xE0000000 to 0xE00FFFFF is always little endian).

In case your SoC does not support big endian but one or some of the peripherals you are using con-
tain big endian data, you can easily convert the data between little endian and big endian using some of
the data type conversion instructions in the Cortex-M3. For example, REV and REV16 are very useful
for this kind of conversion.

99Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00009-0

In This Chapter

The Pipeline.. 99
A Detailed Block Diagram.. 101
Bus Interfaces on the Cortex-M3.. 104
Other Interfaces on the Cortex-M3.. 105
The External PPB... 105
Typical Connections... 106
Reset Types and Reset Signals... 107

Cortex-M3 Implementation
Overview 6

This chapter is mainly written for system-on-chip (SoC) designers who are interested in using the
Cortex™-M3 processor in their project. Normal microcontroller users do not need to learn these
details. However, for those who are interested in understanding the internal operations of the Cortex-
M3 processor, this chapter provides a good overview of the design.

6.1  The Pipeline
The Cortex-M3 processor has a three-stage pipeline. The pipeline stages are instruction fetch, instruc-
tion decode, and instruction execution (see Figure 6.1).

Some people might argue that there are four stages because of the pipeline behavior in the bus
interface when it accesses memory, but this stage is outside the processor, so the processor itself still
has only three stages.

When running programs with mostly 16-bit instructions, you will find that the processor might not
fetch instructions in every cycle. This is because the processor fetches up to two instructions (32-bit)
in one go, so after one instruction is fetched, the next one is already inside the processor. In this case,
the processor bus interface may try to fetch the instruction after the next or, if the buffer is full, the
bus interface could be idle. Some of the instructions take multiple cycles to execute; in this case, the
pipeline will be stalled.

In executing a branch instruction, the pipeline will be flushed. The processor will have to fetch
instructions from the branch destination to fill up the pipeline again. However, the Cortex-M3 processor

CHAPTER

100 CHAPTER 6  Cortex-M3 Implementation Overview

supports a number of instructions in v7-M architecture, so some of the short-distance branches can be
avoided by replacing them with conditional execution codes.1

Because of the pipeline nature of the processor and to ensure that the program is compatible with
Thumb® codes, the read value will be the address of the instruction plus 4, when the program counter
is read during instruction execution. If the program counter is used for address generation for memory
accesses, the word aligned value of the instruction address plus 4 would be used. This offset is constant,
independent of the combination of 16-bit Thumb instructions and 32-bit Thumb-2 instructions. This
ensures consistency between Thumb and Thumb-2.

Inside the instruction prefetch unit of the processor core, there is also an instruction buffer (see
Figure 6.2). This buffer allows additional instructions to be queued before they are needed. This buffer

1For more information, refer to the “IF-THEN Instructions” section of Chapter 4.

Figure 6.1

The Three-Stage Pipeline in the Cortex-M3.

Instruction N

Instruction N�1

Instruction N�2

Instruction N�3

Fetch Decode

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Execute

Figure 6.2

Use of a Buffer in the Instruction Fetch Unit to Improve 32-Bit Instruction Handling.

Instruction
fetch

(Inst C2 & D)

Decode
(Inst B)

Execute
(Inst A)

Instruction
buffer

(Inst C1)

Instruction

B1 A2

C1 B2

D

A1

C2

Instruction
memory

N

N 1 4

N 1 8

N 1 0xC

Byte

0123

Executing

Decoding

Fetching

Pipeline stage

Unaligned 32-bit Thumb-2
instruction in memory

1016.2  A Detailed Block Diagram

prevents the pipeline being stalled when the instruction sequence contains 32-bit Thumb-2 instructions
that are not word aligned. However, this buffer does not add an extra stage to the pipeline, so it does not
increase the branch penalty.

6.2  A Detailed Block Diagram
The Cortex-M3 processor contains not only the processor core but also a number of components for system
management, as well as debugging support components (see Figure 6.3). These components are linked
together using an Advanced High-Performance Bus (AHB), and an Advanced Peripheral Bus (APB). The
AHB and APB are part of the Advanced Microcontroller Bus Architecture (AMBA) standards [Ref. 4].

Note that the MPU, WIC, and ETM blocks are optional blocks that can be included in the microcon-
troller system at the time of implementation. A number of new components are shown in Table 6.1.

The Cortex-M3 processor is released as a processor subsystem (see Figure 6.3). The CPU core itself
is closely coupled to the interrupt controller (NVIC) and various debug logic blocks:

•	 CM3Core: The Cortex-M3 core contains the registers, ALU, data path, and bus interface.

•	 NVIC: The NVIC is a built-in interrupt controller. The number of interrupts is customized by chip
manufacturers. The NVIC is closely coupled to the CPU core and contains a number of system

Figure 6.3

The Cortex-M3 Processor System Block Diagram.

CM3CoreNMI

Interrupts

MPU

Instruction bus Data bus

AHB interconnect
(Internal BusMatrix)

Connection to AHB slaves

Connection to AHB masters

AHB-APSWJ-DP/
SW-DP

interface

Debug
interface

AHB to
APB

bridge

Instruction bus
(I.Code)

Data bus
(D.Code)

System
bus

Private peripheral
bus (PPB)

DWT

FPB

Internal private
peripheral bus

(APB)

Internal private
peripheral bus

(AHB)

ITM

TPIU
NVIC

Trace
output

SYSTICK

WIC

ROM
Table

ETM

Trigger

102 CHAPTER 6  Cortex-M3 Implementation Overview

control registers. It supports the nested interrupt handling, which means that with the Cortex-M3,
nested interrupt handling is very simple. It also comes with a vectored interrupt feature so that
when an interrupt occurs, it can enter the corresponding interrupt handler routine directly, without
using a shared handler to determine which interrupt has occurred.

•	 SYSTICK Timer: The System Tick (SYSTICK) Timer is a basic countdown timer that can be used
to generate interrupts at regular time intervals, even when the system is in sleep mode. It makes
OS porting between Cortex-M3 devices much easier because there is no need to change the OS’s
system timer code. The SYSTICK Timer is implemented as part of the NVIC.

•	 WIC: A module interface with NVIC but separated from the main processor design to allow the
system to wake up from interrupt events while the processor (including the NVIC) is completely
stopped or powered down. This module is new from the Cortex-M3 revision 2 and is optional.

•	 MPU: The MPU block is optional. This means that some versions of the Cortex-M3 might have
the MPU and some might not. If it is included, the MPU can be used to protect memory contents
by, for example, making memory regions read-only or preventing user applications from accessing
privileged applications data.

•	 BusMatrix: A BusMatrix is used as the heart of the Cortex-M3 internal bus system. It is an AHB
interconnection network, allowing transfer to take place on different buses simultaneously unless
both bus masters are trying to access the same memory region. The BusMatrix also provides

Table 6.1  Block Diagram Acronyms and Definitions

Name Description

CM3Core Central processing core of the Cortex-M3 processor
NVIC Nested Vectored Interrupt Controller
SYSTICK timer A simple timer that can be used by the operating system
WIC Wakeup Interrupt Controller (optional)
MPU Memory Protection Unit (optional)
BusMatrix Internal AHB interconnection
AHB to APB Bus bridge to convert AHB to APB
SW-DP/SWJ-DP interface Serial Wire/Serial Wire Joint Test Action Group (JTAG) debug port (DP)

interface; debug interface connection implemented using either Serial Wire
Protocol or traditional JTAG Protocol (for SWJ-DP)

AHB-AP AHB Access Port; converts commands from SW/SWJ interface into AHB
transfers

ETM Embedded Trace Macrocell; a module to handle instruction trace for debug
(optional)

DWT Data Watchpoint and Trace unit; a module to handle the data watchpoint
function for debug

ITM Instrumentation Trace Macrocell
TPIU Trace Port Interface Unit; an interface block to send debug data to external

trace capture hardware
FPB Flash Patch and Breakpoint unit
ROM table A small lookup table that stores configuration information

1036.2  A Detailed Block Diagram

additional data transfer management, including a write buffer as well as bit-oriented operations
(bit-band).

•	 AHB to APB: An AHB-to-APB bus bridge is used to connect a number of APB devices such as
debugging components to the private peripheral bus in the Cortex-M3 processor. In addition, the
Cortex-M3 allows chip manufacturers to attach additional APB devices to the external private
peripheral bus (PPB) using this APB bus.

The rest of the components in the block diagram are for debugging support and normally should not be
used by application code.

•	 SW-DP/SWJ-DP: The Serial Wire Debug Port (SW-DP)/Serial Wire JTAG Debug Port (SWJ-DP)
work together with the AHB Access Port (AHB-AP) so that external debuggers can generate AHB
transfers to control debug activities. There is no JTAG scan chain inside the processor core of the
Cortex-M3; most debugging functions are controlled by the NVIC registers through AHB accesses.
SWJ-DP supports both the Serial Wire Protocol and the JTAG Protocol, whereas SW-DP can
support only the Serial Wire Protocol.

•	 AHB-AP: The AHB-AP provides access to the whole Cortex-M3 memory through a few registers.
This block is controlled by the SW-DP/SWJ-DP through a generic debug interface called the
Debug Access Port (DAP). To carry out debugging functions, the external debugging hardware
needs to access the AHB-AP through the SW-DP/SWJ-DP to generate the required AHB
transfers.

•	 ETM: The ETM is an optional component for instruction trace, so some Cortex-M3 products might
not have real-time instruction trace capability. Trace information is output to the trace port through
TPIU. The ETM control registers are memory mapped, which can be controlled by the debugger
through the DAP.

•	 DWT: The DWT allows data watchpoints to be set up. When a data address or data value match
is found, the match hit event can be used to generate watchpoint events to activate the debugger,
generate data trace information, or activate the ETM.

•	 ITM: The ITM can be used in several ways. Software can write to this module directly to output
information to TPIU, or the DWT matching events can be used to generate data trace packets
through ITM for output into a trace data stream.

•	 TPIU: The TPIU is used to interface with external trace hardware such as trace port analyzers.
Internal to the Cortex-M3, trace information is formatted as Advanced Trace Bus (ATB) packets,
and the TPIU reformats the data to allow data to be captured by external devices.

•	 FPB: The FPB is used to provide Flash Patch and Breakpoint functionalities. Flash Patch means
that if an instruction access by the CPU matches a certain address, the address can be remapped to
a different location so that a different value is fetched. Alternatively, the matched address can be
used to trigger a breakpoint event. The Flash Patch feature is very useful for testing, such as adding
diagnosis program code to a device that cannot be used in normal situations unless the FPB is used
to change the program control.

•	 ROM table: A small ROM table is provided. This is simply a small lookup table to provide memory
map information for various system devices and debugging components. Debugging systems use
this table to locate the memory addresses of debugging components. In most cases, the memory map

104 CHAPTER 6  Cortex-M3 Implementation Overview

should be fixed to the standard memory location, as documented in the Cortex-M3 Technical Reference
Manual (TRM) [Ref. 1], but because some of the debugging components are optional and additional
components can be added, individual chip manufacturers might want to customize their chip’s
debugging features. In this case, the ROM table must be customized and used for debugging software
to determine the correct memory map and hence detect the type of debugging components available.

6.3  Bus Interfaces on the Cortex-M3
Unless you are designing an SoC product using the Cortex-M3 processor, it is unlikely that you can
directly access the bus interface signals described here. Normally, the chip manufacturer will hook up
all the bus signals to memory blocks and peripherals, and in a few cases, you might find that the chip
manufacturer connected the bus to a bus bridge and allows external bus systems to be connected off-
chip. The bus interfaces on the Cortex-M3 processor are based on AHB-Lite and APB protocols, which
are documented in the AMBA Specification [Ref. 4].

6.3.1  The I-Code Bus
The I-Code bus is a 32-bit bus based on the AHB-Lite bus protocol for instruction fetches in memory
regions from 0x00000000 to 0x1FFFFFFF. Instruction fetches are performed in word size, even for
16-bit Thumb instructions. Therefore, during execution, the CPU core could fetch up to two Thumb
instructions at a time.

6.3.2  The D-Code Bus
The D-Code bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for data access in
memory regions from 0x00000000 to 0x1FFFFFFF. Although the Cortex-M3 processor supports
unaligned transfers, you won’t get any unaligned transfer on this bus, because the bus interface on the
processor core converts the unaligned transfers into aligned transfers for you. Therefore, devices (such
as memory) that attach to this bus need only support AHB-Lite (AMBA 2.0) aligned transfers.

6.3.3  The System Bus
The system bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for instruction fetch and
data access in memory regions from 0x20000000 to 0xDFFFFFFF and 0xE0100000 to 0xFFFFFFFF.
Similar to the D-Code bus, all the transfers on the system bus are aligned.

6.3.4  The External PPB
The External PPB is a 32-bit bus based on the APB bus protocol. This is intended for private periph-
eral accesses in memory regions 0xE0040000 to 0xE00FFFFF. However, since some part of this APB
memory is already used for TPIU, ETM, and the ROM table, the memory region that can be used for
attaching extra peripherals on this bus is only 0xE0042000 to 0xE00FF000. Transfers on this bus are
word aligned.

1056.5  The External PPB

6.3.5  The DAP Bus
The DAP bus interface is a 32-bit bus based on an enhanced version of the APB specification. This is
for attaching debug interface blocks such as SWJ-DP or SW-DP. Do not use this bus for other purposes.
More information on this interface can be found in Chapter 15, or in the ARM document CoreSight
Technology System Design Guide [Ref. 3].

6.4  Other Interfaces on the Cortex-M3
Apart from bus interfaces, the Cortex-M3 processor has a number of other interfaces for various pur-
poses. These signals are unlikely to appear on the pins of the silicon chip, because they are mostly for
connecting to various parts of the SoC or are unused. The details of the signals are contained in the
Cortex-M3 Technical Reference Manual [Ref. 1]. Table 6.2 contains a short summary of some of them.

6.5  The External PPB
The Cortex-M3 processor has an External PPB interface. The External PPB interface is based on
the APB protocol in AMBA specification 2.0 (for Cortex-M3 revision 0 and revision 1) or 3.0 (for
Cortex-M3 revision 2). It is intended for system devices that should not be shared, such as debugging
components.

Table 6.2  Miscellaneous Interface Signals

Signal Group Function

Multiprocessor communication (TXEV, RXEV) Simple task synchronization signals between multiple
processors

Sleep signals (SLEEPING, SLEEPDEEP) Sleep status for power management
Interrupt status signals (ETMINTNUM,
ETMINTSTATE, CURRPRI)

Status of interrupt operation, for ETM operation and
debug usage

Reset request (SYSRESETREQ) Resets request output from NVIC
Lockup2 and Halted status (LOCKUP, HALTED) Indicate that the processor core has entered a lockup

state (caused by error conditions within hard fault handler
or Nonmaskable Interrupt handler) or a halted state (for
debug operations)

Endian input (ENDIAN) Sets the endian of the Cortex-M3 when the core is reset
ETM interface Connects to ETM for instruction trace
ITM’s ATB interface ATB is a bus protocol in ARM’s CoreSight debug

architecture for trace data transfer; here this interface
provides trace data output from Cortex-M3’s ITM, which
is connected to the TPIU

2More information on lockup is included in Chapter 12.

106 CHAPTER 6  Cortex-M3 Implementation Overview

This bus interface supports the use of CoreSight compliant debug components. To achieve this,
this interface is slightly different from normal APB—it contains an extra signal called PADDR31 that
indicates the source of a transfer. If this signal is 0, it means that the transfer is generated from soft-
ware running on the Cortex-M3. If this signal is 1, it means that the transfer is generated by debugging
hardware. Based on this signal, a peripheral can be designed so that only a debugger can use it, or when
being used by software, only some of the features are allowed.

This bus is not intended for general use, as in peripherals. Although there is nothing to stop
chip designers from designing and attaching general peripherals on this bus, users might find it a
problem for programming later, because of privileged access-level management—for example, to
program the device in the user state or to separate the devices from other memory regions when the
MPU is used.

The External PPB does not support unaligned accesses. Because the data width of the bus is 32-bit
and APB based, when you’re designing peripherals for this memory region, it is necessary to make sure
that all register addresses in the peripheral are word aligned. In addition, when writing software access-
ing devices in this region, it is recommended that you make sure that all the accesses are in word size.
The PPB accesses are always in little endian.

6.6  Typical Connections
Because there are a number of bus interfaces on the Cortex-M3 processor, you might find it confusing
to see how it will connect with other devices such as memory or peripherals. Figure 6.4 shows a simpli-
fied example.

Since the Code memory region can be accessed by the instruction bus (if it is an instruction fetch)
and from the data bus (if it is a data access), an AHB bus switch called the BusMatrix3 or an AHB
bus multiplexer is needed. With the BusMatrix, the Flash memory and the additional Static Random
Access Memory (SRAM) (if implemented) can be accessed by either bus interface. The BusMatrix is
available from ARM in the AMBA Design Kit4 (ADK). When both data bus and instruction bus are
trying to access the same memory device at the same time, the data bus access could be given higher
priority for best performance.

Using the AHB BusMatrix, if the instruction bus and the data bus are accessing different memory
devices at the same time (for example, an instruction fetch from fetch and a data bus reading data from
the additional SRAM), the transfers can be carried out simultaneously. If a bus multiplexer is used,
however, the transfers cannot take place at the same time, but the circuit size would be smaller. Com-
mon Cortex-M3 microcontroller designs use system bus for SRAM connection.

The main SRAM block should be connected through the system bus interface, using the SRAM
memory address region. This allows data access to be carried out at the same time as instruction access.
It also allows setting up of Boolean data types by using the bit-band feature.

Some microcontrollers might have an external memory interface. That requires an external memory
controller because you cannot connect off chip memory devices directly to AHB. The external memory

4ADK is a collection of AMBA components and example systems in VHDL/Verilog.

3The BusMatrix required here is different from the internal BusMatrix inside the Cortex-M3 shown in Figure 6.4. The
Cortex-M3 internal BusMatrix is specially designed and is different from standard AMBA Design Kit (ADK) version.

1076.7  Reset Types and Reset Signals

controller can be connected to the system bus of the Cortex-M3. Additional AHB devices can also be
easily connected to the system bus without the need for a BusMatrix.

Simple peripherals can be connected to the Cortex-M3 through an AHB-to-APB bridge. This allows
the use of the simpler bus protocol APB for peripherals.

The diagram shown in Figure 6.4 is just a very simple example; chip designers might choose
different bus connection designs. For software/firmware development, you will only need to know the
memory map.

Design blocks shown in the diagram, such as the BusMatrix, AHB-to-APB bus bridge, memory
controller, I/O interface, timer, and universal asynchronous receiver/transmitter (UART), are all avail-
able from ARM and a number of Internet Protocol providers. Because microcontrollers can have dif-
ferent providers for the peripherals, you need to access your microcontroller’s datasheet for the correct
programmer model when you’re developing software for Cortex-M3 systems.

6.7  Reset Types and Reset Signals
There are a number of different reset types on a Cortex-M3 system. Some Cortex-M3 product might
have more reset types depending on the design of reset circuitry on the Cortex-M3 microcontroller or
SoC (see Figure 6.5). In general, there are at least three types of reset as shown in Table 6.3.

Figure 6.4

The Cortex-M3 Processor System Block Diagram.

Cortex-M3

Bus multiplexer
or

AHB BusMatrix

Flash
memory

Additional
static RAM
(optional)

Static
RAM

External
memory

controller

Device
#1

Device
#2

AHB to
APB

bridge

System bus (AHB)

Peripheral bus (APB)

I/O UART Timer

Additional
debug

components

External private
peripheral bus

System
bus

Data
bus

Instruction
bus

External RAM

108 CHAPTER 6  Cortex-M3 Implementation Overview

The details of the reset signals on the processor can be found in the Cortex-M3 Technical Reference
Manual [Ref. 1]. The reset signals on the processors are connected to the reset generator inside the
microcontroller or SoC. Externally you may find only one or two reset signals.

Table 6.3  Common Reset Types on Cortex-M3 Microcontrollers

Reset Type
Reset Signal on the
Cortex-M3 Processor Description

Power on reset PORESETn Reset that should be asserted when the device is
powered up; resets processor core, peripherals, and
debugging system
Activate by power up sequence of the device

System reset SYSRESETn System reset; affects the whole system including
processor core, NVIC (except debug control registers),
MPU, peripherals but not the debugging system;
activate by power up sequence of the device, reset
request from debugger through NVIC register “AIRCR”

Processor reset VECTRESET bit in
the NVIC AIRCR
register

Reset processor core only; affect the processor system
including processor core, NVIC (except debug control
registers), MPU, but not the debugging system;
activate reset request from debugger through NVIC
register “AIRCR”—intended to be used by debugger

JTAG reset nTRST Reset for JTAG tap controller (only if JTAG interface is
available)

Figure 6.5

Generation of Internal Reset Signals in a Typical Cortex-M3 Microcontroller.

Built-in
debug system

Optional
debug system

Processor core

Cortex-M3

Reset
generator

External
reset signal

Debug
interface

SYSRESETn

PORESETn

nTRST
(from JTAG)

Microcontroller /SoC

System
reset

request

109Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00010-7

CHAPTER

In This Chapter

Exception Types... 109
Definitions of Priority... 111
Vector Tables.. 117
Interrupt Inputs and Pending Behavior.. 118
Fault Exceptions.. 120
Supervisor Call and Pendable Service Call... 126

Exceptions 7

7.1  Exception Types
The Cortex™-M3 provides a feature-packed exception architecture that supports a number of system
exceptions and external interrupts. Exceptions are numbered 1–15 for system exceptions and 16 and
above for external interrupt inputs. Most of the exceptions have programmable priority, and a few have
fixed priority.

Cortex-M3 chips can have different numbers of external interrupt inputs (from 1 to 240) and dif-
ferent numbers of priority levels. This is because chip designers can configure the Cortex-M3 design
source code for different needs.

Exception types 1–15 are system exceptions (there is no exception type 0), as outlined in Table 7.1.
Exceptions of type 16 or above are external interrupt inputs (see Table 7.2).

The value of the current running exception is indicated by the special register Interrupt Program
Status register (IPSR), or from the Nested Vectored Interrupt Controllers (NVICs) Interrupt Control
State register (the VECTACTIVE field).

Note that here the interrupt number (e.g., Interrupt #0) refers to the interrupt inputs to the Cortex-
M3 NVIC. In actual microcontroller products or system-on-chips (SoCs), the external interrupt input
pin number might not match the interrupt input number on the NVIC. For example, some of the first
few interrupt inputs might be assigned to internal peripherals, and external interrupt pins could be
assigned to the next couple of interrupt inputs. Therefore, you need to check the chip manufacturer’s
datasheets to determine the numbering of the interrupts.

110 CHAPTER 7  Exceptions

Table 7.1  List of System Exceptions

Exception
Number

Exception Type

Priority

Description

1 Reset −3 (Highest) Reset
2 NMI −2 Nonmaskable interrupt (external NMI input)
3 Hard fault −1 All fault conditions if the corresponding fault

handler is not enabled
4 MemManage fault Programmable Memory management fault; Memory

Protection Unit (MPU) violation or access
to illegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7–10 Reserved NA —
11 SVC Programmable Supervisor Call
12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or

external debug requests)
13 Reserved NA —
14 PendSV Programmable Pendable Service Call
15 SYSTICK Programmable System Tick Timer

Table 7.2  List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable
17 External Interrupt #1 Programmable
… … …

255 External Interrupt #239 Programmable

When an enabled exception occurs but cannot be carried out immediately (for instance, if a higher-pri-
ority interrupt service routine is running or if the interrupt mask register is set), it will be pended (except
for some fault exceptions1). This means that a register (pending status) will hold the exception request
until the exception can be carried out. This is different from traditional ARM processors. Previously, the

1There are a few exceptions for the exception-pending behavior. If a fault takes place and the corresponding fault handler
cannot be executed immediately because a higher-priority handler is running, the hard fault handler (highest priority fault
handler) might be executed instead. More details on this topic are covered later in this chapter, where we look at fault excep-
tions; full details can be found in the ARM v7-M Architecture Application Level Reference Manual.

1117.2  Definitions of Priority

devices that generate interrupts, such as interrupt request (IRQ)/fast interrupt request (FIQ), must hold
the request until they are served. Now, with the pending registers in the NVIC, an occurred interrupt will
be handled even if the source requesting the interrupt deasserts its request signal.

7.2  Definitions of Priority
In the Cortex-M3, whether and when an exception can be carried out can be affected by the priority
of the exception. A higher-priority (smaller number in priority level) exception can preempt a lower-
priority (larger number in priority level) exception; this is the nested exception/interrupt scenario.
Some of the exceptions (reset, NMI, and hard fault) have fixed priority levels. They are negative num-
bers to indicate that they are of higher priority than other exceptions. Other exceptions have program-
mable priority levels.

The Cortex-M3 supports three fixed highest-priority levels and up to 256 levels of programmable
priority (a maximum of 128 levels of preemption). However, most Cortex-M3 chips have fewer sup-
ported levels—for example, 8, 16, 32, and so on. When a Cortex-M3 chip or SoC is being designed,
designers can customize it to obtain the number of levels required. This reduction of levels is imple-
mented by cutting out the Least Significant Bit (LSB) part of the priority configuration registers.

For example, if only 3 bits of priority level are implemented in the design, a priority-level configu-
ration register will look like Figure 7.1.

Because bit 4 to bit 0 are not implemented, they are always read as zero, and writes to these bits will
be ignored. With this setup, we have possible priority levels of 0x00 (high priority), 0x20, 0x40, 0x60,
0x80, 0xA0, 0xC0, and 0xE0 (the lowest).

Similarly, if 4 bits of priority level are implemented in the design, a priority-level configuration
register will look like Figure 7.2.

Figure 7.1

A Priority Level Register with 3 Bits Implemented.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented Not implemented

Figure 7.2

A Priority Level Register with 4 Bits Implemented.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented Not implemented

112 CHAPTER 7  Exceptions

If more bits are implemented, more priority levels will be available (see Figure 7.3). However, more
priority bits can also increase gate counts and hence the power consumption. For the Cortex-M3, the
minimum number of implemented priority register widths is 3 bits (eight levels).

The reason for removing the LSB of the register instead of the Most Significant Bit (MSB) is to
make it easier to port software from one Cortex-M3 device to another. In this way, a program written
for devices with 4-bit priority configuration registers is likely to be able to run on devices with 3-bit
priority configuration registers. If the MSB is removed instead of the LSB, you might get an inversion
of priority arrangement when porting an application from one Cortex-M3 chip to another. For example,
if an application uses priority level 0x05 for IRQ #0 and level 0x03 for IRQ #1, IRQ #1 should have
higher priority. But when MSB bit 2 is removed, IRQ #0 will become level 0x01 and have a higher
priority than IRQ #1.

Figure 7.3

Available Priority Levels with 3-Bit or 4-Bit Priority Width.

Programmable
exceptions

0

21

22

23

21

22

23

21

22

23

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0xFF

Highest priority

Lowest priority

Reset

NMI

Hard fault

Implemented levels
for Cortex-M3 with
3 bits priority width

Implemented levels
for Cortex-M3 with
4 bits priority width

0

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0x30

0x50

0x70

0x90

0xB0

0xD0

0xF0

0x10

113

Examples of available exception priority levels for devices with 3-bit, 5-bit, and 8-bit priority reg-
isters are shown in Table 7.3.

Some readers might wonder whether, if the priority level configuration registers are 8 bits wide,
why there are only 128 preemption levels? This is because the 8-bit register is further divided into two
parts: preempt priority and subpriority.

Using a configuration register in the NVIC called Priority Group (a part of the Application
Interrupt and Reset Control register in the NVIC, see Table 7.4), the priority-level configuration
registers for each exception with programmable priority levels is divided into two halves. The
upper half (left bits) is the preempt priority, and the lower half (right bits) is the subpriority (see
Table 7.5).

Table 7.3  Available Priority Levels for Devices with 3-Bit, 5-Bit, and 8-Bit Priority Level Registers

Priority Level Exception Type

Devices with
3-Bit Priority
Configuration
Registers

Devices with
5-Bit Priority
Configuration
Registers

Devices with
8-Bit Priority
Configuration
Registers

−3 (Highest) Reset −3 −3 −3
−2 NMI −2 −2 −2
−1 Hard fault −1 −1 −1
0, 1, … 0xFF Exceptions with

programmable
priority level

0x00, 0x20, …
0xE0

0x00, 0x08, …
0xF8

0x00, 0x01, 0x02,
0x03, … 0xFE,
0xFE

Table 7.4  Application Interrupt and Reset Control Register (Address 0xE000ED0C)

Bits Name Type Reset Value Description

31:16 VECTKEY R/W — Access key; 0x05FA must be written to this field
to write to this register, otherwise the write will
be ignored; the read-back value of the upper half
word is 0xFA05

15 ENDIANNESS R — Indicates endianness for data: 1 for big endian
(BE8) and 0 for little endian; this can only change
after a reset

10:8 PRIGROUP R/W 0 Priority group
2 SYSRESETREQ W — Requests chip control logic to generate a reset
1 VECTCLRACTIVE W — Clears all active state information for exceptions;

typically used in debug or OS to allow system to
recover from system error (Reset is safer)

0 VECTRESET W — Resets the Cortex-M3 processor (except debug
logic), but this will not reset circuits outside the
processor

7.2  Definitions of Priority

114 CHAPTER 7  Exceptions

The preempt priority level defines whether an interrupt can take place when the processor is already
running another interrupt handler. The subpriority level value is used only when two exceptions with
the same preempt priority level occurred at the same time. In this case, the exception with higher sub-
priority (lower value) will be handled first.

As a result of the priority grouping, the maximum width of preempt priority is 7, so there can be
128 levels. When the priority group is set to 7, all exceptions with a programmable priority level will
be in the same level, and no preemption between these exceptions will take place, except that hard fault,
NMI, and reset, which have priority of -1, -2, and −3, respectively, can preempt these exceptions.

When deciding the effective preempt priority level and subpriority level, you must take the follow-
ing factors into account:

Implemented priority-level configuration registers•	
Priority group setting•	

For example, if the width of the configuration registers is 3 (bit 7 to bit 5 are available) and priority
group is set to 5, you can have four levels of preempt priority levels (bit 7 to bit 6), and inside each
preempt level there are two levels of subpriority (bit 5).

With the setting as shown in Figure 7.4, the available priority levels are illustrated in Figure 7.5. For
the same design, if the priority group is set to 0x1, there can be only eight preempt priority levels and
no further subpriority levels inside each preempt level. (Bit [1:0] of preempt priority is always 0.) The
definition of the priority level configuration registers is shown in Figure 7.6, and the available priority
levels are illustrated in Figure 7.7.

Table 7.5  Definition of Preempt Priority Field and Subpriority Field in a Priority Level Register
in Different Priority Group Settings

Priority Group Preempt Priority Field Subpriority Field

0 Bit [7:1] Bit [0]
1 Bit [7:2] Bit [1:0]
2 Bit [7:3] Bit [2:0]
3 Bit [7:4] Bit [3:0]
4 Bit [7:5] Bit [4:0]
5 Bit [7:6] Bit [5:0]
6 Bit [7] Bit [6:0]
7 None Bit [7:0]

Figure 7.4

Definition of Priority Fields in a 3-Bit Priority Level Register with Priority Group Set to 5.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not implemented
Preempt
priority

Sub-
priority

115

If a Cortex-M3 device has implemented all 8 bits in the priority-level configuration registers, the
maximum number of preemption levels it can have is only 128, using a priority group setting of 0. The
priority fields definition is shown in Figure 7.8.

Figure 7.5

Available Priority Levels with 3-Bit Priority Width and Priority Group Set to 5.

Programmable
exceptions

0

21

22

23

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0xFF

Highest priority

Lowest priority

Reset

NMI

Hard fault

Implemented levels
for Cortex-M3 with
3-bits priority width

Preempt levels
with priority group

set to 5

0

21

22

23

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0

21

22

23

0x40

0x80

0xC0

Subpriority levels

0

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

7.2  Definitions of Priority

Figure 7.6

Definition of Priority Fields in an 8-Bit Priority Level Register with Priority Group Set to 1.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt priority [5:3]
Preempt priority [2:0]

(always 0)

Sub-
priority [1:0]
(always 0)

116 CHAPTER 7  Exceptions

When two interrupts are asserted at the same time with exactly the same preempt priority level as
well as subpriority level, the interrupt with the smaller exception number has higher priority. (IRQ #0
has higher priority than IRQ #1.)

To avoid unexpected changes of priority levels for interrupts, be careful when writing to the
Application Interrupt and Reset Control register (address 0xE000ED0C). In most cases, after the

Figure 7.7

Available Priority Levels with 3-Bit Priority Width and Priority Group Set to 1.

Programmable
exceptions

0

21

22

23

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0xFF

Highest priority

Lowest priority

Reset

NMI

Hard fault

Implemented levels
for Cortex-M3 with
3-bits priority width

Preempt levels
with priority group

set to 1

0

21

22

23

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0

21

22

23

Subpriority levels

0

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

0x20

0x40

0x60

0x80

0xA0

0xC0

0xE0

Figure 7.8

Definition of Priority Fields in an 8-Bit Priority Level Register with Priority Group Set to 0.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt priority Subpriority

1177.3  Vector Tables

priority group is configured, there is no need to use this register except to generate a reset (see
Table 7.4).

7.3  Vector Tables
When an exception takes place and is being handled by the Cortex-M3, the processor will need to
locate the starting address of the exception handler. This information is stored in the vector table in the
memory. By default, the vector table starts at memory address 0, and the vector address is arranged
according to the exception number times four (see Table 7.6).

Since the address 0x0 should be boot code, usually it will be either Flash memory or ROM devices,
and the value cannot be changed at run time. However, the vector table can be relocated to other
memory locations in the code or Random Access Memory (RAM) region where the RAM is so that
we can change the handlers during run time. This is done by setting a register in the NVIC called the
vector table offset register (address 0xE000ED08). The address offset should be aligned to the vector
table size, extended to the next larger power of 2. For example, if there are 32 IRQ inputs, the total
number of exceptions will be 32 + 16 (system exceptions) = 48. Extending it to the power of 2 makes
it 64. Multiplying it by 4 (4 bytes per vector) makes it 256 bytes (0x100). Therefore, the vector table
offset can be programmed as 0x0, 0x100, 0x200, and so on. The vector table offset register contains the
items shown in Table 7.7.

In applications where you want to allow dynamic changing of exception handlers, in the beginning
of the boot image, you need to have the following (at a minimum):

Initial main stack pointer value•	
Reset vector•	
NMI vector•	
Hard fault vector•	

Table 7.6  Exception Vector Table After Power Up

Address Exception Number Value (Word Size)

0x00000000 — MSP initial value
0x00000004 1 Reset vector (program counter initial value)
0x00000008 2 NMI handler starting address
0x0000000C 3 Hard fault handler starting address
… … Other handler starting address

Table 7.7  Vector Table Offset Register (Address 0xE000ED08)

Bits Name Type Reset Value Description

29 TBLBASE R/W 0 Table base in code (0) or RAM (1)
28:7 TBLOFF R/W 0 Table offset value from code

region or RAM region

118 CHAPTER 7  Exceptions

These are required because the NMI and hard fault can potentially occur during your boot process.
Other exceptions cannot take place until they are enabled.

When the booting process is done, you can define a part of your Static Random Access Memory as
the new vector table and relocate the vector table to the new one, which is writable.

7.4  Interrupt Inputs and Pending Behavior
This section describes the behavior of IRQ inputs and pending behavior. It also applies to NMI input,
except that an NMI will be executed immediately in most cases, unless the core is already executing an
NMI handler, halted by a debugger, or locked up because of some serious system error.

When an interrupt input is asserted, it will be pended, which means it is put into a state of waiting
for the processor to process the request. Even if the interrupt source deasserts the interrupt, the pended
interrupt status will still cause the interrupt handler to be executed when the priority is allowed. Once the
interrupt handler is started, the pending status is cleared automatically. This is shown in Figure 7.9.

However, if the pending status is cleared before the processor starts responding to the pended inter-
rupt (for example, the interrupt was not taken immediately because PRIMASK/FAULTMASK is set
to 1, and the pending status was cleared by software writing to NVIC interrupt control registers), the
interrupt can be cancelled (Figure 7.10). The pending status of the interrupt can be accessed in the
NVIC and is writable, so you can clear a pending interrupt or use software to pend a new interrupt by
setting the pending register.

Figure 7.9

Interrupt Pending.

Interrupt
request

Interrupt
pending status

Processor
mode

Thread
mode

Handler mode

Figure 7.10

Interrupt Pending Cleared Before Processor Takes Action.

Interrupt
request

Interrupt
pending status

Processor
mode

Thread
mode

Pending status
cleared by software

1197.4  Interrupt Inputs and Pending Behavior

When the processor starts to execute an interrupt, the interrupt becomes active and the pending bit
will be cleared automatically (Figure 7.11). When an interrupt is active, you cannot start processing
the same interrupt again, until the interrupt service routine is terminated with an interrupt return (also
called an exception exit, as discussed in Chapter 9). Then the active status is cleared, and the interrupt
can be processed again if the pending status is 1. It is possible to repend an interrupt before the end of
the interrupt service routine.

If an interrupt source continues to hold the interrupt request signal active, the interrupt will be
pended again at the end of the interrupt service routine as shown in Figure 7.12. This is just like the
traditional ARM7TDMI.

If an interrupt is pulsed several times before the processor starts processing it, it will be treated as
one single interrupt request as illustrated in Figure 7.13. If an interrupt is deasserted and then pulsed
again during the interrupt service routine, it will be pended again as shown in Figure 7.14.

Figure 7.11

Interrupt Active Status Set as Processor Enters Handler.

Interrupt
request

Interrupt
pending status

Processor
mode

Thread
mode

Handler mode

Interrupt
active status

Interrupt request
clear by software

Interrupt return

Figure 7.12

Continuous Interrupt Request Pends Again After Interrupt Exit.

Interrupt
request

Interrupt
pending status

Processor
mode

Thread
mode

Handler mode

Interrupt
active status

Interrupt request stay active

Interrupt return

Interrupt reentered

120 CHAPTER 7  Exceptions

Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can then trigger
the interrupt sequence when the enable is set later. As a result, before enabling an interrupt, it could be useful
to check whether the pending register has been set. The interrupt source might have been activated previously
and have set the pending status. If necessary, you can clear the pending status before you enable an interrupt.

7.5  Fault Exceptions
A number of system exceptions are useful for fault handling. There are several categories of faults:

Bus faults•	
Memory management faults•	
Usage faults•	
Hard faults•	

Figure 7.13

Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler.

Interrupt
request

Interrupt
pending status

Processor
mode

Thread
mode

Handler mode

Interrupt
active status

Interrupt return

Multiple interrupt pulses
before entering ISR

Figure 7.14

Interrupt Pending Occurs Again during the Handler.

Interrupt
request

Interrupt
pending status

Processor
mode

Thread
mode

Handler mode

Interrupt
active status

Interrupt return

Interrupt request
pulsed again

Interrupt reentered

Interrupt pended

again

1217.5  Fault Exceptions

7.5.1  Bus Faults
Bus faults are produced when an error response is received during a transfer on the AHB interfaces. It
can happen at these stages:

Instruction fetch, commonly called •	 prefetch abort
Data read/write, commonly called •	 data abort

In the Cortex-M3, bus faults can also occur during the following:

Stack PUSH in the beginning of interrupt processing, called a •	 stacking error
Stack POP at the end of interrupt processing, called an •	 unstacking error
Reading of an interrupt vector address (vector fetch) when the processor starts the interrupt-•	
handling sequence (a special case classified as a hard fault)

When these types of bus faults (except vector fetches) take place and if the bus fault handler is
enabled and no other exceptions with the same or higher priority are running, the bus fault handler will
be executed. If the bus fault handler is enabled but at the same time the core receives another exception
handler with higher priority, the bus fault exception will be pending. Finally, if the bus fault handler is
not enabled or when the bus fault happens in an exception handler that has the same or higher priority
than the bus fault handler, the hard fault handler will be executed instead. If another bus fault takes
place when running the hard fault handler, the core will enter a lockup state.2

To enable the bus fault handler, you need to set the BUSFAULTENA bit in the System Handler
Control and State register in the NVIC. Before doing that, make sure that the bus fault handler starting
address is set up in the vector table if the vector table has been relocated to RAM.

Hence, how do you find out what went wrong when the processor entered the bus fault handler?
The NVIC has a number of Fault Status registers (FSRs). One of them is the Bus Fault Status register
(BFSR). From this register, the bus fault handler can find out if the fault was caused by data/instruction
access or an interrupt stacking or unstacking operation.

For precise bus faults, the offending instruction can be located by the stacked program counter,
and if the BFARVALID bit in BFSR is set, it is also possible to determine the memory location that
caused the bus fault. This is done by reading another NVIC register called the Bus Fault Address

2More information on the lockup state is covered in Chapter 12.

What Can Cause AHB Error Responses?
Bus faults occur when an error response is received on the AHB bus. The common causes are as follows:

Attempts to access an invalid memory region (for example, a memory location with no memory attached)•	
The device is not ready to accept a transfer (for example, trying to access SDRAM without initializing the •	
SDRAM controller)
Attempts to carry out a transfer with a transfer size not supported by the target device (for example, doing a •	
byte access to a peripheral register that must be accessed as a word)
The device does not accept the transfer for various reasons (for example, a peripheral that can only be •	
programmed at the privileged access level)

122 CHAPTER 7  Exceptions

register (BFAR). However, the same information is not available for imprecise bus faults because by
the time the processor receives the error, the processor could have already executed a number of other
instructions.

The programmer’s model for BFSR is as follows: It is 8 bits wide and can be accessed through
byte transfer to address 0xE000ED29 or with a word transfer to address 0xE000ED28 with BFSR in
the second byte (see Table 7.8). The error indication bit is cleared when a 1 is written to it.

7.5.2  Memory Management Faults
Memory management faults can be caused by memory accesses that violate the setup in the MPU or
by certain illegal accesses (for example, trying to execute code from nonexecutable memory regions),
which can trigger the fault, even if no MPU is presented.

Some of the common MPU faults include the following:

Access to memory regions not defined in MPU setup•	
Writing to read-only regions•	
An access in the user state to a region defined as privileged access only•	

When a memory management fault occurs and if the memory management handler is enabled,
the memory management fault handler will be executed. If the fault occurs at the same time a higher-
priority exception takes place, the other exceptions will be handled first and the memory management
fault will be pended. If the processor is already running an exception handler with the same or higher

Table 7.8  Bus Fault Status Register (0xE000ED29)

Bits Name Type Reset Value Description

7 BFARVALID — 0 Indicates BFAR is valid
6:5 — — — —
4 STKERR R/Wc 0 Stacking error
3 UNSTKERR R/Wc 0 Unstacking error
2 IMPRECISERR R/Wc 0 Imprecise data access violation
1 PRECISERR R/Wc 0 Precise data access violation
0 IBUSERR R/Wc 0 Instruction access violation

Precise and Imprecise Bus Faults
Bus faults caused by data accesses can be further classified as precise or imprecise. In imprecise bus faults,
the fault is caused by an already completed operation (such as a buffered write) that might have occurred
a number of clock cycles ago. Precise bus faults are caused by the last completed operation—for example,
a memory read is precise on the Cortex-M3 because the instruction cannot be completed until it receives
the data.

123

priority or if the memory management fault handler is not enabled, the hard fault handler will be
executed instead. If a memory management fault takes place inside the hard fault handler or the NMI
handler, the processor will enter the lockup state.

Like the bus fault handler, the memory management fault handler needs to be enabled. This is done
by the MEMFAULTENA bit in the System Handler Control and State register in the NVIC. If the vec-
tor table has been relocated to RAM, the memory management fault handler starting address should be
set up in the vector table first.

The NVIC contains a Memory Management Fault Status register (MFSR) to indicate the cause
of the memory management fault. If the status register indicates that the fault is a data access viola-
tion (DACCVIOL bit) or an instruction access violation (IACCVIOL bit), the offending code can be
located by the stacked program counter. If the MMARVALID bit in the MFSR is set, it is also possible
to determine the memory address location that caused the fault from the Memory Management Address
register (MMAR) in the NVIC.

The programmer’s model for the MFSR is shown in Table 7.9. It is 8 bits wide and can be accessed
through byte transfer or with a word transfer to address 0xE000ED28, with the MFSR in the lowest
byte. As with other FSRs, the fault status bit can be cleared by writing 1 to the bit.

7.5.3  Usage Faults
Usage faults can be caused by a number of things:

Undefined instructions•	
Coprocessor instructions (the Cortex-M3 processor does not support a coprocessor, but it is •	
possible to use the fault exception mechanism to run software compiled for other Cortex processors
through coprocessor emulation)
Trying to switch to the ARM state (software can use this faulting mechanism to test whether the •	
processor it is running on supports the ARM code; because the Cortex-M3 does not support the
ARM state, a usage fault takes place if there’s an attempt to switch)
Invalid interrupt return (link register contains invalid/incorrect values)•	
Unaligned memory accesses using multiple load or store instructions•	

7.5  Fault Exceptions

Table 7.9  Memory Management Fault Status Register (0xE000ED28)

Bits Name Type Reset Value Description

7 MMARVALID — 0 Indicates the MMAR is
valid

6:5 — — — —

4 MSTKERR R/Wc 0 Stacking error

3 MUNSTKERR R/Wc 0 Unstacking error

2 — — — —
1 DACCVIOL R/Wc 0 Data access violation
0 IACCVIOL R/Wc 0 Instruction access violation

124 CHAPTER 7  Exceptions

It is also possible, by setting up certain control bits in the NVIC, to generate usage faults for the
following:

Divide by zero•	
Any unaligned memory accesses•	

When a usage fault occurs and if the usage fault handler is enabled, normally the usage fault handler
will be executed. However, if at the same time a higher-priority exception takes place, the usage fault
will be pended. If the processor is already running an exception handler with the same or higher priority
or if the usage fault handler is not enabled, the hard fault handler will be executed instead. If a usage fault
takes place inside the hard fault handler or the NMI handler, the processor will enter the lockup state.

The usage fault handler is enabled by setting the USGFAULTENA bit in the System Handler Control
and State register in the NVIC. If the vector table has been relocated to RAM, the usage fault handler
starting address should be set up in the vector table first.

The NVIC provides a Usage Fault Status register (UFSR) for the usage fault handler to determine
the cause of the fault. Inside the handler, the program code that causes the error can also be located
using the stacked program counter value.

The UFSR is shown in Table 7.10. It occupies 2 bytes and can be accessed by half word transfer to
address 0xE000ED2A, or as a word transfer to address 0xE000ED28 with the UFSR in the upper half
word. As with other FSRs, the fault status bit can be cleared by writing 1 to the bit.

Table 7.10  Usage Fault Status Register (0xE000ED2A)

Bits Name Type Reset Value Description

9 DIVBYZERO R/Wc 0 Indicates a divide by zero has taken place
(can be set only if DIV_0_TRP is set)

8 UNALIGNED R/Wc 0 Indicates that an unaligned access fault has
taken place

7:4 — — — —
3 NOCP R/Wc 0 Attempts to execute a coprocessor instruction
2 INVPC R/Wc 0 Attempts to do an exception with a bad value

in the EXC_RETURN number
1 INVSTATE R/Wc 0 Attempts to switch to an invalid state (e.g.,

ARM)
0 UNDEFINSTR R/Wc 0 Attempts to execute an undefined instruction

Accidentally Switching to the ARM State
One of the most common causes of usage faults is accidentally trying to switch the processor to ARM mode.
This can happen if you load a new value to PC with the LSB equal to 0—for example, if you try to branch to
an address in a register using the BX or BLX instruction without setting the LSB of the target address, have
zero in the LSB of a vector in the exception vector table, or the stacked PC value to be read by POP {PC} is
modified manually, leaving the LSB cleared. When these situations happen, the usage fault exception will take
place with the INVSTATE bit in the UFSR set.

125

7.5.4  Hard Faults
The hard fault handler can be caused by usage faults, bus faults, and memory management faults if their
handler cannot be executed. In addition, it can also be caused by a bus fault during vector fetch (reading
of a vector table during exception handling). In the NVIC, there is a hard fault status register that can
be used to determine whether the fault was caused by a vector fetch. If not, the hard fault handler will
need to check the other FSRs to determine the cause of the hard fault.

Details of the Hard Fault Status register (HFSR) are shown in Table 7.11. As with other FSRs, the
fault status bit can be cleared by writing 1 to the bit.

7.5.5  Dealing with Faults
During software development, we can use the FSRs to determine the causes of errors in the program
and correct them. A troubleshooting guide is included in Appendix E of this book for common causes
of various faults. In a real running system, the situation is different. After the cause of a fault is deter-
mined, the software will have to decide what to do next. In systems that run an OS, the offending tasks
or applications could be terminated. In some other cases, the system might need a reset. The require-
ments of fault recovery depend on the target application. Doing it properly could make the product
more robust, but it is best to prevent the faults from happening in the first place. The following are some
fault-handling methods:

•	 Reset: This can be carried out using the SYSRESETREQ control bit in the Application Interrupt
and Reset Control register in the NVIC. This will reset most parts of the system apart from the
debug logic. Depending on the application, if you do not want to reset the whole system, you could
reset just the processor using the VECTRESET bit.

•	 Recovery: In some cases, it might be possible to resolve the problem that caused the fault
exception. For example, in the case of coprocessor instructions, the problem can be resolved using
coprocessor emulation software.

•	 Task termination: For systems running an OS, it is likely that the task that caused the fault will be
terminated and restarted if needed.

The FSRs retain their status until they are cleared manually. Fault handlers should clear the fault
status bit they have dealt with. Otherwise, the next time another fault takes place, the fault handler will

Table 7.11  Hard Fault Status Register (0xE000ED2C)

Bits Name Type Reset Value Description

31 DEBUGEVT R/Wc 0 Indicates hard fault is triggered by debug event
30 FORCED R/Wc 0 Indicates hard fault is taken because of bus fault,

memory management fault, or usage fault
29:2 — — — —
1 VECTBL R/Wc 0 Indicates hard fault is caused by failed vector

fetch
0 — — — —

7.5  Fault Exceptions

126 CHAPTER 7  Exceptions

be invoked again and could mistake that the first fault still exists and so will try to deal with it again.
The FSRs use a write-to-clear mechanism (clear by writing 1 to the bits that need to be cleared).

Chip manufacturers can also include an auxiliary FSR in the chip to indicate other fault situations.
The implementation of an AFSR depends on individual chip design requirements.

7.6  Supervisor Call and Pendable Service Call
Supervisor Call (SVC) and Pendable Service Call (PendSV) are two exceptions targeted at software and
operating systems. SVC is for generating system function calls. For example, instead of allowing user
programs to directly access hardware, an operating system may provide access to hardware through
an SVC. So when a user program wants to use certain hardware, it generates the SVC exception using
SVC instructions, and then the software exception handler in the operating system is executed and
provides the service the user application requested. In this way, access to hardware is under the control
of the OS, which can provide a more robust system by preventing the user applications from directly
accessing the hardware.

SVC can also make software more portable because the user application does not need to know
the programming details of the hardware. The user program will only need to know the application
programming interface (API) function ID and parameters; the actual hardware-level programming is
handled by device drivers (see Figure 7.15).

SVC exception is generated using the SVC instruction. An immediate value is required for this
instruction, which works as a parameter-passing method. The SVC exception handler can then extract
the parameter and determine what action it needs to perform. For example,

SVC #0x3 ; Call SVC function 3

The traditional syntax for SVC is also acceptable (without the “#”):

SVC 0x3 ; Call SVC function 3

For C language development, the SVC instruction can be generated using __svc function (for ARM
RealView C Compiler or KEIL Microcontroller Development Kit for ARM), or using inline assembly
in other C compilers.

Figure 7.15

SVC as a Gateway for OS Functions.

SVC

Unprivileged

Privileged

User
program

Operating system

API
Device
drivers

Peripherals

Hardware
Kernel

127

When the SVC handler is executed, you can determine the immediate data value in the SVC instruc-
tion by reading the stacked program counter value, then reading the instruction from that address and
masking out the unneeded bits. If the system uses a Process Stack Pointer for user applications, you
might need to determine which stack was used first. This can be determined from the link register
value when the handler is entered. (This topic is covered in more depth in Chapter 8).

Because of the interrupt priority model in the Cortex-M3, you cannot use SVC inside an SVC han-
dler (because the priority is the same as the current priority). Doing so will result in a usage fault. For
the same reason, you cannot use SVC in an NMI handler or a hard fault handler.

PendSV (Pendable Service Call) works with SVC in the OS. Although SVC (by SVC instruction)
cannot be pended (an application calling SVC will expect the required task to be done immediately),
PendSV can be pended and is useful for an OS to pend an exception so that an action can be performed
after other important tasks are completed. PendSV is generated by writing 1 to the PENDSVSET bit in
the NVIC Interrupt Control State register.

A typical use of PendSV is context switching (switching between tasks). For example, a system
might have two active tasks, and context switching can be triggered by the following:

Calling an SVC function•	
The system timer (SYSTICK)•	

Let’s look at a simple example of having only two tasks in a system, and a context switch is trig-
gered by SYSTICK exceptions (see Figure 7.16).

If an interrupt request takes place before the SYSTICK exception, the SYSTICK exception will
preempt the IRQ handler. In this case, the OS should not carry out the context switching. Otherwise the

7.6  Supervisor Call and Pendable Service Call

SVC and Software Interrupt Instruction (ARM7)
If you have used traditional ARM processors (such as the ARM7), you might know that they have a software
interrupt instruction (SWI). The SVC has a similar function, and in fact the binary encoding of SVC instructions
is the same as SWI in ARM7. However, since the exception model has changed, this instruction is renamed to
make sure that programmers will properly port software code from ARM7 to the Cortex-M3.

Figure 7.16

A Simple Scenario Using SYSTICK to Switch between Two Tasks.

Task A Task B

OS

Priority

OS

Task A

OSOSSYSTICK

Thread

IRQ

Context
switching

Context
switching

Context
switching

Time

128 CHAPTER 7  Exceptions

IRQ handler process will be delayed, and for the Cortex-M3, a usage fault could be generated if the OS
tries to switch to thread mode when an interrupt is active (see Figure 7.17).

To avoid the problem of delaying the IRQ processing, some OS implementations carry out only
context switching if they detect that none of the IRQ handlers are being executed. However, this can
result in a very long delay for task switching, especially if the frequency of an interrupt source is close
to that of the SYSTICK exception.

Figure 7.17

Problem with Context Switching at the IRQ.

Task A Task B

OS

Priority

OS

Task A

OSSYSTICK

Thread

IRQ

Context
switching Context switching

Time

IRQ processing
delayed

IRQ

Usage fault: return to
Thread with active interrupt

IRQ

Figure 7.18

Example Context Switching with PendSV.

Priority

SYSTICK

Interrupt

SVC &
PendSV

Thread

Time

Task ATask BTask A

[1]

[3] [4]

[2] [5]

[6]

[7]

[8]

[9]

[10]

Context switch
in PendSV

ISR continueISR started

SYSTICK (OS)

SVC (OS) pend
PendSV

Context
switch in
PendSV

ISR completed

Interrupt
occurred

129

The PendSV exception solves the problem by delaying the context-switching request until all other
IRQ handlers have completed their processing. To do this, the PendSV is programmed as the lowest
priority exception. If the OS detects that an IRQ is currently active (IRQ handler running and preempted
by SYSTICK), it defers the context switching by pending the PendSV exception. Figure 7.18 illustrates
a context switching example with the following event sequence:

Task A calls SVC for task switching (for example, waiting for some work to complete).1.	
The OS receives the request, prepares for context switching, and pends the PendSV exception.2.	
When the CPU exits SVC, it enters PendSV immediately and does the context switch.3.	
When PendSV finishes and returns to the thread level, it executes Task B.4.	
An interrupt occurs and the interrupt handler is entered.5.	
While running the interrupt handler routine, a SYSTICK exception (for OS tick) takes place.6.	
The OS carries out the essential operation, then pends the PendSV exception and gets ready for 7.	
the context switch.
When the SYSTICK exception exits, it returns to the interrupt service routine.8.	
When the interrupt service routine completes, the PendSV starts and does the actual context 9.	
switch operations.
When PendSV is complete, the program returns to the thread level; this time it returns to Task A 10.	
and continues the processing.

7.6  Supervisor Call and Pendable Service Call

131Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00011-9

In This Chapter

Nested Vectored Interrupt Controller Overview.. 131
The Basic Interrupt Configuration... 132
Example Procedures in Setting Up an Interrupt... 138
Software Interrupts.. 140
The SYSTICK Timer.. 141

8.1  Nested Vectored Interrupt Controller Overview
As we’ve seen, the Nested Vectored Interrupt Controller (NVIC) is an integrated part of the Cortex™-M3
processor. It is closely linked to the Cortex-M3 CPU core logic. Its control registers are accessible
as memory-mapped devices. Besides control registers and control logic for interrupt processing, the
NVIC unit also contains control registers for the SYSTICK Timer, and debugging controls. In this
chapter, we’ll examine the control logic for interrupt processing. Memory Protection Unit and debug-
ging control logic are discussed in later chapters.

The NVIC supports 1–240 external interrupt inputs (commonly known as interrupt request [IRQs]).
The exact number of supported interrupts is determined by the chip manufacturers when they develop
their Cortex-M3 chips. In addition, the NVIC also has a Nonmaskable Interrupt (NMI) input. The
actual function of the NMI is also decided by the chip manufacturer. In some cases, this NMI cannot
be controlled from an external source.

The NVIC can be accessed in the System Control Space (SCS) address range, which is memory
location 0xE000E000. Most of the interrupt control/status registers are accessible only in privileged
mode, except the Software Trigger Interrupt register (STIR), which can be set up to be accessible in
user mode. The interrupt control/status register can be accessed in word, half word, or byte transfers.

In addition, a few other interrupt-masking registers are also involved in the interrupts. They
are the “special registers” covered in Chapter 3 and are accessed through special registers access
instructions: move special register to general-purpose register (MRS) and move to special register
from general-purpose register (MSR) instructions.

The Nested Vectored Interrupt
Controller and Interrupt Control 8

CHAPTER

132 CHAPTER 8  The Nested Vectored Interrupt Controller and Interrupt Control

8.2  The Basic Interrupt Configuration
Each external interrupt has several registers associated with it.

Enable and Clear Enable registers•	
Set-Pending and Clear-Pending registers•	
Priority level•	
Active status•	

In addition, a number of other registers can also affect the interrupt processing:

Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)•	
Vector Table Offset register•	
STIR•	
Priority group•	

8.2.1  Interrupt Enable and Clear Enable
The Interrupt Enable register is programmed through two addresses. To set the enable bit, you need to
write to the SETENA register address; to clear the enable bit, you need to write to the CLRENA register
address. In this way, enabling or disabling an interrupt will not affect other interrupt enable states. The
SETENA/CLRENA registers are 32 bits wide; each bit represents one interrupt input.

As there could be more than 32 external interrupts in the Cortex-M3 processor, you might find
more than one SETENA and CLRENA register—for example, SETENA0, SETENA1, and so on (see
Table 8.1). Only the enable bits for interrupts that exist are implemented. So, if you have only 32 inter-
rupt inputs, you will only have SETENA0 and CLRENA0. The SETENA and CLRENA registers can
be accessed as word, half word, or byte. As the first 16 exception types are system exceptions, external
Interrupt #0 has a start exception number of 16 (see Table 7.2).

8.2.2  Interrupt Set Pending and Clear Pending
If an interrupt takes place but cannot be executed immediately (for instance, if another higher-priority
interrupt handler is running), it will be pended. The interrupt-pending status can be accessed through
the Interrupt Set Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) registers. Similarly to
the enable registers, the pending status controls might contain more than one register if there are more
than 32 external interrupt inputs.

The values of pending status registers can be changed by software, so you can cancel a current
pended exception through the CLRPEND register, or generate software interrupts through the SET-
PEND register (see Table 8.2).

8.2.3  Priority Levels
Each external interrupt has an associated priority-level register, which has a maximum width of 8 bits
and a minimum width of 3 bits. As described in the previous chapter, each register can be further
divided into preempt priority level and subpriority level based on priority group settings. The priority-
level registers can be accessed as byte, half word, or word. The number of priority-level registers
depends on how many external interrupts the chip contains (see Table 8.3). The priority level configura-
tion registers details can be found in Appendix D, Table D.19.

1338.2  The Basic Interrupt Configuration

Table 8.1  Interrupt Set Enable Registers and Interrupt Clear Enable Registers
(0xE000E100-0xE000E11C, 0xE000E180-0xE000E19C)

Address Name Type Reset Value Description

0xE000E100 SETENA0 R/W 0 Enable for external Interrupt #0–31
bit[0] for Interrupt #0 (exception #16)
bit[1] for Interrupt #1 (exception #17)
…
bit[31] for Interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

0xE000E104 SETENA1 R/W 0 Enable for external Interrupt #32–63
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

0xE000E108 SETENA2 R/W 0 Enable for external Interrupt #64–95
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

… — — — —
0xE000E180 CLRENA0 R/W 0 Clear enable for external Interrupt #0–31

bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31
Write 1 to clear bit to 0;
write 0 has no effect
Read value indicates the current enable status

0xE000E184 CLRENA1 R/W 0 Clear enable for external Interrupt #32–63
Write 1 to clear bit to 0; write 0 has no effect
Read value indicates the current enable status

0xE000E188 CLRENA2 R/W 0 Clear enable for external Interrupt #64–95
Write 1 to clear bit to 0; write 0 has no effect
Read value indicates the current enable status

… — — — —

Table 8.2  Interrupt Set-Pending Registers and Interrupt Clear-Pending Registers
(0xE000E200-0xE000E21C, 0xE000E280-0xE000E29C)

Address Name Type Reset Value Description

0xE000E200 SETPEND0 R/W 0 Pending for external Interrupt #0–31
bit[0] for Interrupt #0 (exception #16)
bit[1] for Interrupt #1 (exception #17)
…
bit[31] for Interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

0xE000E204 SETPEND1 R/W 0 Pending for external Interrupt #32–63
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

Continued

134 CHAPTER 8  The Nested Vectored Interrupt Controller and Interrupt Control

8.2.4  Active Status
Each external interrupt has an active status bit. When the processor starts the interrupt handler, the bit
is set to 1 and cleared when the interrupt return is executed. However, during an Interrupt Service Rou-
tine (ISR) execution, a higher-priority interrupt might occur and cause preemption. During this period,
although the processor is executing another interrupt handler, the previous interrupt is still defined as
active. The active registers are 32 bit but can also be accessed using half word or byte-size transfers. If
there are more than 32 external interrupts, there will be more than one active register. The active status
registers for external interrupts are read-only (see Table 8.4).

Table 8.2  Interrupt Set-Pending Registers and Interrupt Clear-Pending Registers
(0xE000E200-0xE000E21C, 0xE000E280-0xE000E29C)  Continued

Address Name Type Reset Value Description

0xE000E208 SETPEND2 R/W 0 Pending for external Interrupt #64–95
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

… — — — —
0xE000E280 CLRPEND0 R/W 0 Clear pending for external Interrupt #0–31

bit[0] for Interrupt #0 (exception #16)
bit[1] for Interrupt #1 (exception #17)
…
bit[31] for Interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect
Read value indicates the current pending status

0xE000E284 CLRPEND1 R/W 0 Clear pending for external Interrupt #32–63
Write 1 to clear bit to 0; write 0 has no effect
Read value indicates the current pending status

0xE000E288 CLRPEND2 R/W 0 Clear pending for external Interrupt #64–95
Write 1 to clear bit to 0; write 0 has no effect
Read value indicates the current pending status

… — — — —

Table 8.3  Interrupt Priority-Level Registers (0xE000E400-0xE000E4EF)

Address Name Type Reset Value Description

0xE000E400 PRI_0 R/W 0 (8 bit) Priority-level external Interrupt #0
0xE000E401 PRI_1 R/W 0 (8 bit) Priority-level external Interrupt #1
… — — — —
0xE000E41F PRI_31 R/W 0 (8 bit) Priority-level external Interrupt #31
… — — — —

1358.2  The Basic Interrupt Configuration

8.2.5  PRIMASK and FAULTMASK Special Registers
The PRIMASK register is used to disable all exceptions except NMI and hard fault. It effectively
changes the current priority level to 0 (highest programmable level). In C programming, you can use
the intrinsic functions provided in Cortex Microcontroller Software Interface Standard (CMSIS) com-
pliant device driver libraries or provided in the compiler to set and clear PRIMASK:

void __enable_irq(); // Clear PRIMASK
void __disable_irq(); // Set PRIMASK
void __set_PRIMASK(uint32_t priMask); // Set PRIMASK to value
uint32_t __get_PRIMASK(void); // Read the PRIMASK value

For assembly language users, you can change the current status of PRIMASK using Change Pro-
cess State (CPS) instructions:

CPSIE I ; Clear PRIMASK (Enable interrupts)
CPSID I ; Set PRIMASK (Disable interrupts)

This register is also programmable using MRS and MSR instructions. For example,

MOV	 R0, #1
MSR	 PRIMASK, R0 ; Write 1 to PRIMASK to disable all
	 ; interrupts

and

MOV	 R0, #0
MSR	 PRIMASK, R0 ; Write 0 to PRIMASK to allow interrupts

PRIMASK is useful for temporarily disabling all interrupts for critical tasks. When PRIMASK is set,
if a fault takes place, the hard fault handler will be executed.

FAULTMASK is just like PRIMASK except that it changes the effective current priority level
to 21, so that even the hard fault handler is blocked. Only the NMI can be executed when FAULT-
MASK is set. It can be used by fault handlers to raise its priority to 21, so that they can have access
to some features for hard fault exception (more information on this is provided in Chapter 12). In C
programming with CMSIS compliant driver libraries, you can use the intrinsic functions provided in
device driver libraries to set and clear FAULTMASK as follows:

void __set_FAULTMASK(uint32_t faultMask);
uint32_t __get_FAULTMASK(void);

Table 8.4  Interrupt Active Status Registers (0xE000E300-0xE000E31C)

Address Name Type Reset Value Description

0xE000E300 ACTIVE0 R 0 Active status for external Interrupt #0–31
bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31

0xE000E304 ACTIVE1 R 0 Active status for external Interrupt #32–63
… — — — —

136 CHAPTER 8  The Nested Vectored Interrupt Controller and Interrupt Control

For assembly language users, you can change the current status of FAULTMASK using CPS
instructions as follows:

CPSIE F ; Clear FAULTMASK
CPSID F ; Set FAULTMASK

You can also access the FAULTMASK register using MRS and MSR instructions.
FAULTMASK is cleared automatically upon exiting the exception handler except return from NMI

handler. Both FAULTMASK and PRIMASK registers cannot be set in the user state.

8.2.6  The BASEPRI Special Register
In some cases, you might want to disable interrupts only with priority lower than a certain level. In this
case, you could use the BASEPRI register. To do this, simply write the required masking priority level
to the BASEPRI register. For example, if you want to block all exceptions with priority level equal to
or lower than 0x60, you can write the value to BASEPRI:

__set_BASEPRI(0x60); // Disable interrupts with priority
	 // 0x60-0xFF using CMSIS

Or in assembly language:

MOV	 R0, #0x60
MSR	 BASEPRI, R0 ; Disable interrupts with priority
	 ; 0x60-0xFF

You can also read back the value of BASEPRI:

x = __get_BASEPRI(void); // Read value of BASEPRI

Or in assembly language:

MRS	 R0, BASEPRI

To cancel the masking, just write 0 to the BASEPRI register:

__set_BASEPRI(0x0); // Turn off BASEPRI masking

Or in assembly language:

MOV	 R0, #0x0
MSR	 BASEPRI, R0 ; Turn off BASEPRI masking

The BASEPRI register can also be accessed using the BASEPRI_MAX register name. It is actually
the same register, but when you use it with this name, it will give you a conditional write operation.
(As far as hardware is concerned, BASEPRI and BASEPRI_MAX are the same register, but in the
assembler code they use different register name coding.) When you use BASEPRI_MAX as a register,
the processor hardware automatically compares the current value and the new value and only allows
the update if it is to be changed to a higher priority level; it cannot be changed to lower priority levels.
For example, consider the following instruction sequence:

MOV	 R0, #0x60
MSR	 BASEPRI_MAX, R0 ; Disable interrupts with priority
	 ; 0x60, 0x61,..., etc

1378.2  The Basic Interrupt Configuration

MOV	 R0, #0xF0
MSR	 BASEPRI_MAX, R0 ; This write will be ignored because
	 ; it is lower
	 ; level than 0x60
MOV	 R0, #0x40
MSR	 BASEPRI_MAX, R0 ; This write is allowed and change the
	 ; masking level to 0x40

To change to a lower masking level or disable the masking, the BASEPRI register name should be
used. The BASEPRI/ BASEPRI_MAX register cannot be set in the user state.

As with other priority-level registers, the formatting of the BASEPRI register is affected
by the number of implemented priority register widths. For example, if only 3 bits are imple-
mented for priority-level registers, BASEPRI can be programmed as 0x00, 0x20, 0x40 … 0xC0,
and 0xE0.

8.2.7  Configuration Registers for Other Exceptions
Usage faults, memory management faults, and bus fault exceptions are enabled by the System Handler
Control and State register (0xE000ED24). The pending status of faults and active status of most system
exceptions are also available from this register (see Table 8.5).

Table 8.5  The System Handler Control and State Register (0xE000ED24)

Bits Name Type Reset Value Description

18 USGFAULTENA R/W 0 Usage fault handler enable
17 BUSFAULTENA R/W 0 Bus fault handler enable
16 MEMFAULTENA R/W 0 Memory management fault handler enable
15 SVCALLPENDED R/W 0 SVC pended; SVC was started but was replaced

by a higher-priority exception
14 BUSFAULTPENDED R/W 0 Bus fault pended; bus fault handler was started

but was replaced by a higher-priority exception
13 MEMFAULTPENDED R/W 0 Memory management fault pended; memory

management fault started but was replaced by a
higher-priority exception

12 USGFAULTPENDED R/W 0 Usage fault pended; usage fault started but was
replaced by a higher-priority exception

11 SYSTICKACT R/W 0 Read as 1 if SYSTICK exception is active
10 PENDSVACT R/W 0 Read as 1 if PendSV exception is active
 8 MONITORACT R/W 0 Read as 1 if debug monitor exception is active
 7 SVCALLACT R/W 0 Read as 1 if SVC exception is active
 3 USGFAULTACT R/W 0 Read as 1 if usage fault exception is active
 1 BUSFAULTACT R/W 0 Read as 1 if bus fault exception is active
 0 MEMFAULTACT R/W 0 Read as 1 if memory management fault is active

Note: Bit 12 (USGFAULTPENDED) is not available on revision 0 of Cortex-M3.

138 CHAPTER 8  The Nested Vectored Interrupt Controller and Interrupt Control

Be cautious when writing to this register; make sure that the active status bits of system exceptions
are not changed accidentally. Otherwise, if an activated system exception has its active state cleared by
accident, a fault exception will be generated when the system exception handler generates an excep-
tion exit.

Pending for NMI, the SYSTICK Timer, and PendSV is programmable through the Interrupt Control
and State register. In this register, quite a number of the bit fields are for debugging purposes. In most
cases, only the pending bits would be useful for application development (see Table 8.6).

8.3  Example Procedures In Setting Up an Interrupt
For most simple applications, the application is stored in ROM and there is no need to change the
exception handlers, we can have the whole vector table coded in the beginning of ROM in the Code
region (0x00000000). This way, the vector table offset will always be 0 and the interrupt vector is
already in ROM. The only steps required to set up an interrupt will be as follows:

Set up the priority group setting. This step is optional. By default priority group setting is zero—1.	
only bit 0 of the priority level register is used for subpriority.
Set up the priority level of the interrupt. This step is optional. By default, all interrupts are at 2.	
priority level 0 (highest).
Enable the interrupt.3.	

Here is a simple example procedure for setting up an interrupt:

NVIC_SetPriorityGrouping(5);
NVIC_SetPriority(7, 0xC0); // Set IRQ#7 priority level to 0xC0
NVIC_EnableIRQ(7);

Table 8.6  Interrupt Control and State Register (0xE000ED04)

Bits Name Type Reset Value Description

31 NMIPENDSET R/W 0 NMI pended
28 PENDSVSET R/W 0 Write 1 to pend system call

Read value indicates pending status
27 PENDSVCLR W 0 Write 1 to clear PendSV pending status
26 PENDSTSET R/W 0 Write 1 to pend SYSTICK exception

Read value indicates pending status
25 PENDSTCLR W 0 Write 1 to clear SYSTICK pending status
23 ISRPREEMPT R 0 Indicates that a pending interrupt is going to be

active in the next step (for debug)
22 ISRPENDING R 0 External interrupt pending (excluding system

exceptions such as NMI for fault)
21:12 VECTPENDING R 0 Pending ISR number
11 RETTOBASE R 0 Set to 1 when the processor is running an

exception handler; will return to thread level if
interrupt return and no other exceptions pending

9:0 VECTACTIVE R 0 Current running ISR

1398.3  Example Procedures in Setting Up an Interrupt

In addition, make sure that you have enough stack memory if you allow a large number of nested inter-
rupt levels. Because exception handlers always use the Main Stack Pointer, the main stack memory
should contain enough space for the largest number of nesting interrupts.

If the interrupt handlers need to be changed at different stage of the application, we might need to
relocate the vector table to Static Random Access Memory (SRAM), so that we can modify the excep-
tion vectors. In this case, the following extra steps would be required:

When the system boots up, the priority group register might need to be set up. By default, the 1.	
priority group 0 is used (bit[7:1] of priority level is the preemption level and bit[0] is the subpriority
level).
Copy the hard fault, NMI handlers and other required vector to a new vector table location in 2.	
SRAM.
Set up the Vector Table Offset register (3.	 Table 7.7) to point to the new vector table.
Set up the interrupt vector for the interrupt in the new vector table.4.	
Set up the priority level for the interrupt.5.	
Enable the interrupt.6.	

For example, this can be done in C programming with a CMSIS compliant device driver library,
assume the starting address of the new vector table is defined as "NEW_VECT_TABLE":

// HW_REG is a macro to convert address value to pointer
#define HW_REG(addr) (*((volatile unsigned long *)(addr)))
#define NEW_VECT_TABLE 0x20008000 // An SRAM region for vector table
	 NVIC_SetPriorityGrouping(5);
	 ...
	 HW_REG((NEW_VECT_TABLE +0x8)) = HW_REG(0x8); // Copy NMI vector
	 HW_REG((NEW_VECT_TABLE +0xC)) = HW_REG(0xC); // Copy HardFault
	 ...
	 SCB->VTOR = NEW_VECT_TABLE; // Relocate vector table to SRAM
	 ...
	 HW_REG(4*(7+16)) = (unsigned) IRQ7_Handler; // Setup vector
	 ...
	 NVIC_SetPriority(7, 0xC0); // Set IRQ#7 priority level to 0xC0
	 ...
	 NVIC_EnableIRQ(7);

The program in assembly might be something like this:

LDR R0, =0xE000ED0C	 ; Application Interrupt and Reset
	 ; Control Register
LDR R1, =0x05FA0500	 ; Priority Group 5 (2/6)
STR R1, [R0]	 ; Set Priority Group
...
MOV R4,#8	 ; Vector Table in ROM
LDR R5,=(NEW_VECT_TABLE+8)
LDMIA R4!,{R0-R1}	 ; Read vectors address for NMI and
	 ; Hard Fault
STMIA R5!,{R0-R1}	 ; Copy vectors to new vector table
...
LDR R0,=0xE000ED08	 ; Vector Table Offset Register
LDR R1,=NEW_VECT_TABLE

140 CHAPTER 8  The Nested Vectored Interrupt Controller and Interrupt Control

STR R1,[R0] 	 ; Set vector table to new location
...
LDR R0,=IRQ7_Handler	 ; Get starting address of IRQ#7 handler
LDR R1,=0xE000ED08	 ; Vector Table Offset Register
LDR R1,[R1]
ADD R1, R1, #(4*(7+16))	 ; Calculate IRQ#7 handler vector
	 ; address
STR R0,[R1]	 ; Setup vector for IRQ#7
...
LDR R0,=0xE000E400	 ; External IRQ priority base
MOV R1, #0x0
STRB R1,[R0,#7] 	 ; Set IRQ#7 priority to 0x0
...
LDR R0,=0xE000E100	 ; SETEN register
MOV R1,#(1<<7)	 ; IRQ#7 enable bit (value 0x1 shifted
	 ; by 7 bits)
STR R1,[R0] 	 ; Enable the interrupt

In cases where the software needs to be able to run on a number of hardware devices, it might be
necessary to determine the following:

The number of interrupts supported in the design•	
The number of bits in priority-level registers•	

The Cortex-M3 has an Interrupt Controller Type register that gives the number of interrupt inputs
supported, in granularities of 32 (see Table 8.7). Alternatively, you can detect the exact number of
external interrupts by performing a read/write test to interrupt configuration registers such as SETEN
or priority registers.

To determine the number of bits implemented for interrupt priority-level registers, you can write
0xFF to one of the priority-level registers, then read it back and see how many bits are set. The mini-
mum number is three. In that case you should get a read-back value of 0xE0.

8.4  Software Interrupts
Software interrupts can be generated in more than one way. The first one is to use the SETPEND reg-
ister; the second solution is to use the STIR, outlined in Table 8.8.

For example, you can generate Interrupt #3 by writing the following code in C:

NVIC->STIR = 3; /* NVIC->STIR is defined in CMSIS compliant device driver
	 library */

This is functionally equivalent to using SETPEND register using CMSIS function:

NVIC_SetPendingIRQ(3);

System exceptions (NMI, faults, PendSV, and so on) cannot be pended using this register. By default,
a user program cannot write to the NVIC; however, if it is necessary for a user program to write to this
register, the bit 1 (USERSETMPEND) of the NVIC Configuration Control register (0xE000ED14) can
be set to allow user access to the NVIC’s STIR.

1418.5  The SYSTICK Timer

8.5  The SYSTICK Timer
The SYSTICK Timer is integrated with the NVIC and can be used to generate a SYSTICK exception
(exception type #15). In many operating systems, a hardware timer is used to generate interrupts so that
the OS can carry out task management—for example, to allow multiple tasks to run at different time
slots and to make sure that no single task can lock up the whole system. To do that, the timer needs to
be able to generate interrupts, and if possible, it should be protected from user tasks so that user appli-
cations cannot change the timer behavior.

The Cortex-M3 processor includes a simple timer. Because all Cortex-M3 chips have the same
timer, porting software between different Cortex-M3 products is simplified. The timer is a 24-bit down
counter. It can use the internal free running processor clock signal on the Cortex-M3 processor or an
external reference clock (documented as the STCLK signal on the Cortex-M3 TRM). However, the
source of the STCLK will be decided by chip designers, so the clock frequency might vary between
products. You should check the chip’s datasheet carefully when selecting a clock source.

The SYSTICK Timer can be used to generate interrupts. It has a dedicated exception type and
exception vector. It makes porting operating systems and software easier because the process will be
the same across different Cortex-M3 products. The SYSTICK Timer is controlled by four registers,
shown in Tables 8.9–8.12.

The Calibration Value register provides a solution for applications to generate the same SYS-
TICK interrupt interval when running on various Cortex-M3 products. To use it, just write the value
in TENMS to the reload value register. This will give an interrupt interval of about 10 ms. For other
interrupt timing intervals, the software code will need to calculate a new suitable value from the cali-
bration value. However, the TENMS field might not be available in all Cortex-M3 products (the cali-
bration input signals to the Cortex-M3 might have been tied low), so check with your manufacturer’s
datasheets before using this feature.

Aside from being a system tick timer for operating systems, the SYSTICK Timer can be used in
a number of ways: as an alarm timer, for timing measurement, and more. Note that the SYSTICK

Table 8.7  Interrupt Controller Type Register (0xE000E004)

Bits Name Type Reset Value Description

4:0 INTLINESNUM R — Number of interrupt inputs in step of 32
0 = 1 to 32
1 = 33 to 64
…

Table 8.8  Software Trigger Interrupt Register (0xE000EF00)

Bits Name Type Reset Value Description

8:0 INTID W — Writing the interrupt number sets the
pending bit of the interrupt; for example,
write 0 to pend external Interrupt #0

142 CHAPTER 8  The Nested Vectored Interrupt Controller and Interrupt Control

Table 8.9  SYSTICK Control and Status Register (0xE000E010)

Bits Name Type Reset Value Description

16 COUNTFLAG R 0 Read as 1 if counter reaches 0 since last time
this register is read; clear to 0 automatically when
read or when current counter value is cleared

 2 CLKSOURCE R/W 0 0 = External reference clock (STCLK)
1 = Use processor free running clock

 1 TICKINT R/W 0 1 = Enable SYSTICK interrupt generation when
SYSTICK Timer reaches 0
0 = Do not generate interrupt

 0 ENABLE R/W 0 SYSTICK Timer enable

Table 8.10  SYSTICK Reload Value Register (0xE000E014)

Bits Name Type Reset Value Description

23:0 RELOAD R/W 0 Reload value when timer reaches 0

Table 8.11  SYSTICK Current Value Register (0xE000E018)

Bits Name Type Reset Value Description

23:0 CURRENT R/Wc 0 Read to return current value of the timer.
Write to clear counter to 0. Clearing of current
value also clears COUNTFLAG in SYSTICK
Control and Status register

Table 8.12  SYSTICK Calibration Value Register (0xE000E01C)

Bits Name Type Reset Value Description

31 NOREF R — 1 = No external reference clock (STCLK not
available)
0 = External reference clock available

30 SKEW R — 1 = Calibration value is not exactly 10 ms
0 = Calibration value is accurate

23:0 TENMS R/W 0 Calibration value for 10 ms; chip designer should
provide this value through Cortex-M3 input
signals. If this value is read as 0, calibration value
is not available

1438.5  The SYSTICK Timer

Timer stops counting when the processor is halted during debugging. Depending on the design of the
microcontroller, the SysTick Timer could also be stopped when the processor enters certain type of
sleep modes.

To set up the SysTick Timer, the recommended programming sequence is as follows:

Disable •	 SysTick by writing 0 to the SYSTICK Control and Status register.
Write new reload value to the SYSTICK Reload Value register.•	
Write to the SYSTICK Current Value register to clear the current value to 0.•	
Write to the SYSTICK Control and Status register to start the •	 SysTick timer.

This programming sequence can be used on all Cortex-M3 processors. More details of the SysTick
setup is covered in Chapter 14.

145Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00012-0

In This Chapter

Interrupt/Exception Sequences... 145
Exception Exits.. 147
Nested Interrupts... 148
Tail-Chaining Interrupts.. 148
Late Arrivals.. 149
More on the Exception Return Value... 149
Interrupt Latency... 152
Faults Related to Interrupts.. 152

9.1  Interrupt/Exception Sequences
When an exception takes place, a number of things happen, such as

Stacking (pushing eight registers’ contents to stack)•	
Vector fetch (reading the exception handler starting address from the vector table)•	
Update of the stack pointer, link register (LR), and program counter (PC)•	

9.1.1  Stacking
When an exception takes place, the registers R0–R3, R12, LR, PC, and Program Status (PSR) are
pushed to the stack. If the code that is running uses the Process Stack Pointer (PSP), the process stack
will be used; if the code that is running uses the Main Stack Pointer (MSP), the main stack will be used.
Afterward, the main stack will always be used during the handler, so all nested interrupts will use the
main stack.

The block of eight words of data being pushed to the stack is commonly called a stack frame. Prior
to Cortex™-M3 revision 2, the stack frame was started in any word address by default. In Cortex-M3
revision 2, the stack frame is aligned to double word address by default, although the alignment feature
can be turned off by programming the STKALIGN bit in Nested Vectored Interrupt Controller (NVIC)

CHAPTER

Interrupt Behavior 9

146 CHAPTER 9  Interrupt Behavior

Configuration Control register to zero. The stack frame feature is also available in Cortex-M3 revision
1, but it needs to be enabled by writing 1 to the STKALIGN bit. More details on this register can be
found in Chapter 12.

The data arrangement inside an exception stack frame is shown in Figure 9.1. The order of stack-
ing is shown in Figure 9.2 (assuming that the stack pointer [SP] value is N after the exception). Due to
the pipeline nature of the Advanced High-Performance Bus (AHB) interface, the address and data are
offset by one pipeline state.

The values of PC and PSR are stacked first so that instruction fetch can be started early (which
requires modification of PC) and the Interrupt Program Status register (IPSR) can be updated early.
After stacking, SP will be updated, and the stacked data arrangement in the stack memory will look
like Figure 9.1.

The reason the registers R0–R3, R12, LR, PC, and PSR are stacked is that these are caller-saved
registers, according to C standards (C/C++ standard Procedure Call Standard for the ARM Architecture,

Figure 9.1

Exception Stack Frame.

xPSR (with bit 9 equal 0)

PC

LR

R12

R3

R2

R1

R0New SP
location

Free
stack
space

Previous SP
location

New SP
location

Previous SP
location

Previous
stacked
data

Previous stack point at double word
address or STKALIGN is 0

xPSR (with bit 9 equal 1)

PC

LR

R12

R3

R2

R1

R0

Free
stack
space

Previous
stacked
data

Previous stack point not at double
word address and STKALIGN is 1

Not used

Stack align adjustment not required Stack align adjustment required

Address Address

Figure 9.2

Stacking Sequence.

N124Address bus

PC

N128

PSR

N

R0

N14

R1

N18

R2

N112

R3

N116

R12

N120

LRData bus

Time

1479.2  Exception Exits

AAPCS [Ref. 5]). This arrangement allows the interrupt handler to be a normal C function because reg-
isters that could be changed by the exception handler are saved in the stack.

The general registers (R0–R3 and R12) are located at the end of the stack frame so that they can be
easily accessed using SP-related addressing. As a result, it’s easy to pass parameters to software inter-
rupts using stacked registers.

9.1.2  Vector Fetches
Although the data bus is busy stacking the registers, the instruction bus carries out another important
task of the interrupt sequence: It fetches the exception vector (the starting address of the exception
handler) from the vector table. Since the stacking and vector fetch are performed on separate bus inter-
faces, they can be carried out at the same time.

9.1.3  Register Updates
After the stacking and vector fetch are completed, the exception vector will start to execute. On entry
of the exception handler, a number of registers will be updated. They are as follows:

•	 SP: The SP (either the MSP or the PSP) will be updated to the new location during stacking. During
execution of the interrupt service routine, the MSP will be used if the stack is accessed.

•	 PSR: The IPSR (the lowest part of the PSR) will be updated to the new exception number.

•	 PC: This will change to the vector handler as the vector fetch completes and starts fetching
instructions from the exception vector.

•	 LR: The LR will be updated to a special value called EXC_RETURN.1 This special value drives the
interrupt return operation. The last 4 bits of the LR is used to provide exception return information.
This is covered later in this chapter.

A number of other NVIC registers will also be updated. For example, the pending status of the
exception will be cleared and the active bit of the exception will be set.

9.2  Exception Exits
At the end of the exception handler, an exception exit (known as an interrupt return in some proces-
sors) is required to restore the system status so that the interrupted program can resume normal execu-
tion. There are three ways to trigger the interrupt return sequence; all of them use the special value
stored in the LR in the beginning of the handler (see Table 9.1).

Some microprocessor architectures use special instructions for interrupt returns (for example, reti
in 8051). In the Cortex-M3, a normal return instruction is used so that the whole interrupt handler can
be implemented as a C subroutine.

When the interrupt return instruction is executed, the unstacking and the NVIC registers update
processes that are listed in Table 9.1 are carried out.

1EXC_RETURN has bit 31 to 4 all set to one (i.e., 0xfffffffx). The last 4 bits define the return information. More information
on the EXC_RETURN value is covered later in this chapter.

148 CHAPTER 9  Interrupt Behavior

1.	 Unstacking: The registers pushed to the stack will be restored. The order of the POP will be the
same as in stacking. The stack pointer will also be changed back.

2.	 NVIC register update: The active bit of the exception will be cleared. For external interrupts, if the
interrupt input is still asserted, the pending bit will be set again, causing it to reenter the interrupt
handler.

9.3  Nested Interrupts
Nested interrupt support is built into the Cortex-M3 processor core and the NVIC. There is no need to
use assembler wrapper code to enable nested interrupts. In fact, you do not have to do anything apart
from setting up the appropriate priority level for each interrupt source. First, the NVIC in the Cortex-
M3 processor sorts out the priority decoding for you. So when the processor is handling an exception,
all other exceptions with the same or lower priority will be blocked. Second, the automatic hardware
stacking and unstacking allow the nested interrupt handler to execute without risk of losing data in
registers.

However, one thing needs to be taken care of: Make sure that there is enough space in the main
stack if several nested interrupts are allowed. Since each exception level will use eight words of stack
space and the exception handler code might require extra stack space, it might end up using more stack
memory than expected.

Reentrant exceptions are not allowed in the Cortex-M3. Since each exception has a priority level
assigned and, during exception handling, exceptions with the same or lower priority will be blocked,
the same exception cannot be carried out until the handler is ended. For this reason, Supervisor Call
(SVC) instructions cannot be used inside an SVC handler, since doing so will cause a fault exception.

9.4  Tail-Chaining Interrupts
The Cortex-M3 uses a number of methods to improve interrupt latency. The first one we’ll look at is
tail chaining (see Figure 9.3).

When an exception takes place but the processor is handling another exception of the same or higher
priority, the exception will enter pending state. When the processor has finished executing the current

Table 9.1  Instructions That Can Be Used for Triggering Exception Return

Return Instruction Description

BX reg If the EXC_RETURN value is still in LR, we can use the BX LR
instruction to perform the interrupt return.

POP {PC}, or POP {..., PC} Very often the value of LR is pushed to the stack after entering the
exception handler. We can use the POP instruction, either a single
POP or multiple POPs, to put the EXC_RETURN value to the program
counter. This will cause the processor to perform the interrupt return.

Load (LDR) or Load multiple (LDM) It is possible to produce an interrupt return using the LDR or LDM
instruction with PC as the destination register.

1499.6  More on the Exception Return Value

exception handler, it can then process the pended interrupt. Instead of restoring the registers back from
the stack (unstacking) and then pushing them onto the stack again (stacking), the processor skips the
unstacking and stacking steps and enters the exception handler of the pended exception as soon as pos-
sible. In this way, the timing gap between the two exception handlers is considerably reduced.

9.5  Late Arrivals
Another feature that improves interrupt performance is late arrival exception handling. When an
exception takes place and the processor has started the stacking process, and if during this delay a new
exception arrives with higher preemption priority, the late arrival exception will be processed first.

For example, if Exception #1 (lower priority) takes place a few cycles before Exception #2 (higher
priority), the processor will behave as shown in Figure 9.4, such that Handler #2 is executed as soon
as the stacking completes.

9.6  More on the Exception Return Value
When entering an exception handler, the LR is updated to a special value called EXC_RETURN, with
the upper 28 bits all set to 1. This value, when loaded into the PC at the end of the exception handler
execution, will cause the processor to perform an exception return sequence.

The instructions that can be used to generate exception returns are as follows:

POP/LDM•	
LDR with PC as a destination•	
BX with any register•	

The EXC_RETURN value has bit (31:4) all set to 1, and bit (3:0) provides information required by
the exception return operation (see Table 9.2). When the exception handler is entered, the LR value is
updated automatically, so there is no need to generate these values manually.

Figure 9.3

Tail Chaining of Exceptions.

Interrupt #1

Interrupt #2

Main program

Processor
state

Interrupt service
routine #1

Interrupt service
routine #2

Main program

Interrupt
event #1 Interrupt exit Interrupt exit

Stacking Unstacking

Thread mode Handler mode Handler mode Thread mode

150 CHAPTER 9  Interrupt Behavior

Bit 0 indicates the process state being used after the exception return. Since the Cortex-M3 supports
only the Thumb® state, bit 0 must be 1. The valid values (for the Cortex-M3) are shown in Table 9.3.

If the thread is using the MSP (main stack), the value of LR will be set to 0xFFFFFFF9 when it
enters an exception, and 0xFFFFFFF1 when a nested exception is entered, as shown in Figure 9.5. If
the thread is using PSP (process stack), the value of LR would be 0xFFFFFFFD when entering the first
exception and 0xFFFFFFF1 for entering a nested exception, as shown in Figure 9.6.

As a result of the EXC_RETURN number format, you cannot perform interrupt returns to an address
in the 0xFFFFFFF0–0xFFFFFFFF memory range. However, since this address is in a nonexecutable
region anyway, it is not a problem.

Table 9.2  Description of Bit Fields in EXC_RETURN Value

Bits 31:4 3 2 1 0

Descriptions 0xFFFFFFF Return mode
(thread/handler)

Return stack Reserved;
must be 0

Process state
(Thumb/ARM)

Table 9.3  Allowed EXC_RETURN Values on Cortex-M3

Value Condition

0xFFFFFFF1 Return to handler mode
0xFFFFFFF9 Return to thread mode and on return use the main stack
0xFFFFFFFD Return to thread mode and on return use the process stack

Figure 9.4

Late Arrival Exception Behavior.

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Processor
state

Thread Handler #2Exception sequence

Data bus Stacking

Instruction
bus

Thread

Vector fetch

Handler instruction fetch

1519.6  More on the Exception Return Value

Figure 9.5

LR Set to EXC_RETURN at Exception (Main Stack Used in Thread Mode).

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Main program

Interrupt exit

Interrupt
exit

Unstacking

Interrupt service
routine #2

Interrupt service
routine #1

Stacking

Execution
status

Interrupt
event #1

Thread mode
Handler
mode

Handler
mode

Handler
mode

Thread mode

LR 5 0xFFFFFFF9 LR 5 0xFFFFFFF1

Main stackMain stack Main stack

Figure 9.6

LR Set to EXC_RETURN at Exception (Process Stack Used in Thread Mode).

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Main program

Interrupt exit

Interrupt
exit

Unstacking

Interrupt service
routine #2

Interrupt service
routine #1

Stacking

Execution
status

Interrupt
event #1

Thread mode
Handler
mode

Handler
mode

Handler
mode

Thread mode

LR 5 0xFFFFFFFD LR 5 0xFFFFFFF1

Main stackProcess stack Process stack

152 CHAPTER 9  Interrupt Behavior

9.7  Interrupt Latency
The term interrupt latency refers to the delay from the start of the interrupt request to the start of
interrupt handler execution. In the Cortex-M3 processor, if the memory system has zero latency, and
provided that the bus system design allows vector fetch and stacking to happen at the same time, the
interrupt latency can be as low as 12 cycles. This includes stacking the registers, vector fetch, and fetch-
ing instructions for the interrupt handler. However, this depends on memory access wait states and a
few other factors.

For tail-chaining interrupts, since there is no need to carry out stacking operations, the latency of
switching from one exception handler to another exception handler can be as low as six cycles.

When the processor is executing a multicycle instruction, such as divide, the instruction could be
abandoned and restarted after the interrupt handler completes. This also applies to load double (LDRD)
and store double (STRD) instructions.

To reduce exception latency, the Cortex-M3 processor allows exceptions in the middle of Mul-
tiple Load and Store instructions (LDM/STM). If the LDM/STM instruction is executing, the current
memory accesses will be completed, and the next register number will be saved in the stacked xPSR
(Interrupt-Continuable Instruction [ICI] bits). After the exception handler completes, the multiple load/
store will resume from the point at which the transfer stopped. There is a corner case: If the multiple
load/store instruction being interrupted is part of an IF-THEN (IT) instruction block, the load/store
instruction will be cancelled and restarted when the interrupt is completed. This is because the ICI bits
and IT execution status bits share the same space in the Execution Program Status Register (EPSR).

In addition, if there is an outstanding transfer on the bus interface, such as a buffered write, the
processor will wait until the transfer is completed. This is necessary to ensure that a bus fault handler
preempts the correct process.

Of course, the interrupt could be blocked if the processor is already executing another exception
handler of the same or higher priority or if the Interrupt Mask register was masking the interrupt request.
In these cases, the interrupt will be pended and will not be processed until the blocking is removed.

9.8  Faults Related to Interrupts
Various faults can be caused by exception handling. Let’s take a look at these now.

9.8.1  Stacking
If a bus fault takes place during stacking, the stacking sequence will be terminated and the bus fault
exception will be triggered or pended. If the bus fault is disabled, the hard fault handler will be executed.
Otherwise, if the bus fault handler has higher priority than the original exception, the bus fault handler
will be executed; if not, it will be pended until the original exception is completed. This scenario, called
a stacking error, is indicated by the STKERR (bit 4) in the Bus Fault Status register (0xE000ED29).

If the stacking error is caused by a Memory Protection Unit (MPU) violation, the memory man-
agement fault handler will be executed and the MSTKERR (bit 4) in the Memory Management Fault
Status register (0xE000ED28) will be set to indicate the problem. If the memory management fault is
disabled, the hard fault handler will be executed.

1539.8  Faults Related to Interrupts

9.8.2  Unstacking
If a bus fault takes place during unstacking (an interrupt return), the unstacking sequence will be termi-
nated and the bus fault exception will be triggered or pended. If the bus fault is disabled, the hard fault
handler will be executed. Otherwise, if the bus fault handler has higher priority than the current priority
of the executing task (the core could already be executing another exception in a nested interrupt case),
the bus fault handler will be executed. This scenario, called an unstacking error, is indicated by the
UNSTKERR (bit 3) in the Bus Fault Status register (0xE000ED29).

Similarly, if the stacking error is caused by an MPU violation, the memory management fault han-
dler will be executed and the MUNSTKERR (bit 3) in the Memory Management Fault Status register
(0xE000ED28) will be set to indicate the problem. If the memory management fault is disabled, the
hard fault handler will be executed.

9.8.3  Vector Fetches
If a bus fault or memory management fault takes place during a vector fetch, the hard fault handler will
be executed. This is indicated by VECTTBL (bit 1) in the Hard Fault Status register (0xE000ED2C).

9.8.4  Invalid Returns
If the EXC_RETURN number is invalid or does not match the state of the processor (as in using
0xFFFFFFF1 to return to thread mode), it will trigger the usage fault. If the usage fault handler is not
enabled, the hard fault handler will be executed instead. The INVPC bit (bit 2) or INVSTATE (bit 1)
bit in the Usage Fault Status register (0xE000ED2A) will be set, depending on the actual cause of the
fault.

155Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00013-2

CHAPTER

In This Chapter

Overview... 155
A Typical Development Flow... 155
Using C... 156
CMSIS... 164
Using Assembly... 169
Using Exclusive Access for Semaphores... 177
Using Bit Band for Semaphores.. 179
Working with Bit Field Extract and Table Branch... 181

10.1  Overview
The Cortex™-M3 can be programmed using either assembly language, C language, or other high-level
languages like National Instruments LabVIEW. For most embedded applications using the Cortex-M3
processor, the software can be written entirely in C language. There are of course some people who pre-
fer to use assembly language or a combination of C and assembly language in their projects. The pro-
cedure of building and downloading the resultant image files to the target device is largely dependent
on the tool chain used. Although this is not the main focus of this book, some simple examples showing
how to use the Gnu’s Not Unix (GNU) and Keil tool chains are provided in Chapters 19 and 20, and an
introduction of using LabVIEW on Cortex-M3 is covered in Chapter 21.

10.2  A Typical Development Flow
Various software programs are available for developing Cortex-M3 applications. The concepts of code
generation flow in terms of these tools are similar. For the most basic uses, you will need assembler, a
C compiler, a linker, and binary file generation utilities. For ARM solutions, the RealView Develop-
ment Suite (RVDS) or RealView Compiler Tools (RVCT) provide a file generation flow, as shown in

Cortex-M3 Programming 10

156 CHAPTER 10  Cortex-M3 Programming

Figure 10.1. The scatter-loading script is optional but often required when the memory map becomes
more complex.

Besides these basic tools, RVDS also contains a large number of utilities, including an Integrated
Development Environment (IDE) and debuggers. Please visit the ARM web site (www.arm.com) for
details.

10.3  Using C
For beginners in embedded programming, using C language for software development on the Cortex-M3
processor is the best choice. Programming in C with the Cortex-M3 processor is made even easier as
most microcontroller vendors provide device driver libraries written in C to control peripherals. These
can then be included into your project. Since modern C compilers can generate very efficient code, it
is better to program in C than spending a lot of time to try to develop complex routines in assembly
language, which is error prone and less portable.

In this chapter, we will have a quick look at a simple example of using C language to create a simple
program image. Then, we will have a look at some C language development areas including using
device driver libraries and the Cortex Microcontroller Software Interface Standard (CMSIS).

C has the advantage of being portable and easier for implementing complex operations, compared
with assembly language. Since it’s a generic computer language, C does not specify how the processor
is initialized. For these areas, tool chains can have different approaches. The best way to get started is to
look at example codes. For users of ARM C compiler products, such as RVDS or Keil RealView Micro-
controller Development Kit (MDK-ARM), a number of Cortex-M3 program examples are already
included in the installation. For users of the GNU tool chain, Chapter 19 provides a simple C example
based on the CodeSourcery GNU tool chain for ARM.

Figure 10.1

Example Flow Using ARM Development Tools.

C files (.c)

armcc
(compiler)

Object files (.o)

Assembly files (.s)

armasm
(compiler)

Object files (.o)

Scatter loading script

Executable
image file
(.axf /.elf)

Armlink
(linker)

fromelf

fromelf

Binary
program

image (.bin)

Disassembled
code (.txt)

Memory
layout

www.arm.com

15710.3  Using C

10.3.1  Example of a Simple C Program Using RealView Development Site
A normal program for the Cortex-M3 contains at least the “main” program and a vector table. Let’s
start with the most basic main program that toggles an Light Emitting Diode (LED):

#define LED *((volatile unsigned int *)(0xDFFF000C))

int main (void)
{
int i; /* loop counter for delay function */
volatile int j; /* dummy volatile variable to prevent
 C compiler from optimize the delay away */

 while (1) {
 LED = 0x00; /* toogle LED */
 for (i=0;i<10;i++) {j=0;} /* delay */
 LED = 0x01; /* toogle LED */
 for (i=0;i<10;i++) {j=0;} /* delay */
 }
 return 0;
}

This file is named “blinky.c.” For the vector table, we create a separate C program called “vectors.c.”
The file “vectors.c” contains the vector table, as well as a number of dummy exception handlers (these
can be customized for target application later on):

typedef void(* const ExecFuncPtr)(void) __irq;
extern int __main(void);

/*
 * Dummy handlers Exception Handlers
 */
__irq void NMI_Handler(void)
{ while(1); }
__irq void HardFault_Handler(void)
{ while(1); }
__irq void SVC_Handler(void)
{ while(1); }
__irq void DebugMon_Handler(void)
{ while(1); }
__irq void PendSV_Handler(void)
{ while(1); }
__irq void SysTick_Handler(void)
{ while(1); }
__irq void ExtInt0_IRQHandler(void)
{ while(1); }
__irq void ExtInt1_IRQHandler(void)
{ while(1); }
__irq void ExtInt2_IRQHandler(void)
{ while(1); }
__irq void ExtInt3_IRQHandler(void)
{ while(1); }

#pragma arm section rodata="exceptions_area"

158 CHAPTER 10  Cortex-M3 Programming

ExecFuncPtr exception_table[] = { /* vector table */
(ExecFuncPtr)0x20002000,
(ExecFuncPtr)__main,
NMI_Handler, /* NMI */
HardFault_Handler,
0, /* MemManage_Handler in Cortex-M3 */
0, /* BusFault_Handler in Cortex-M3 */
0, /* UsageFault_Handler in Cortex-M3 */

0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
SVC_Handler,
0, /* DebugMon_Handler in Cortex-M3 */
0, /* Reserved */
PendSV_Handler,
SysTick_Handler,

/* External Interrupts*/
ExtInt0_IRQHandler,
ExtInt1_IRQHandler,
ExtInt2_IRQHandler,
ExtInt3_IRQHandler

};
#pragma arm section

Assuming you are using RVDS, you can compile the program using the following command line:

$> armcc –c –g –W blinky.c –o blinky.o
$> armcc –c –g –W vectors.c –o vectors.o

Then the linker can be used to generate the program image. A scatter loading file “led.scat” is used to
tell the linker the memory layout and to put the vector table in the starting of the program image. The
“led.scat” is

#define HEAP_BASE 0x20001000
#define STACK_BASE 0x20002000
#define HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
#define STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

LOAD_REGION 0x00000000 0x00200000
{
VECTORS 0x0 0xC0
{
; Provided by the user in vectors.c
* (exceptions_area)

}

CODE 0xC0 FIXED
{
* (+RO)

}

DATA 0x20000000 0x00010000
{
* (+RW, +ZI)

}

15910.3  Using C

;; Heap starts at 4KB and grows upwards
ARM_LIB_HEAP HEAP_BASE EMPTY HEAP_SIZE
{
}

;; Stack starts at the end of the 8KB of RAM
;; And grows downwards for 2KB
ARM_LIB_STACK STACK_BASE EMPTY -STACK_SIZE
{
}

}

And the command line for the linker is

�$> armlink –scatter led.scat "--keep=vectors.o(exceptions_area)"
  blinky.o vectors.o –o blinky.elf

The executable image blinky.elf is now generated. We can convert it to binary file and disassem-
bly file using fromelf.

/* create binary file */
$> fromelf –-bin blinky.elf –output blinky.bin
/* Create disassembly output */
$> fromelf –c blinky.elf > list.txt

Previously in ARM processors, because there is a Thumb® state and an ARM state, the code for differ-
ent states has to be compiled differently. In the Cortex-M3, there is no such need because everything is
in the Thumb state, and project file management is much simpler.

When you’re developing applications in C, it is recommended that you use the double word
stack alignment function (configured by the STKALIGN bit in the Nested Vectored Interrupt
Controller [NVIC] Configuration Control register). For users of Cortex-M3 revision 2 or future
products, the STKALIGN bit is set by default at reset so there is no need to set up this bit in the
software. Users of Cortex-M3 revision 1 can enable this feature by setting this bit in the beginning
of their applications, for example. The details of STKALIGN feature are covered in Chapter 9.

SCB->CCR = SCB->CCR | 0x200; /* Set STKALIGN */
/* SCB->CCR is defined in device driver library. */

If you are not using a CMSIS compliant device driver, you can use the following code instead.

#define NVIC_CCR *((volatile unsigned long *)(0xE000ED14))
NVIC_CCR = NVIC_CCR | 0x200; /* Set STKALIGN */

Using this feature ensures that the system conforms to Procedure Call Standards for the ARM
Architecture (AAPCS). Additional information on this subject is covered in Chapter 12.

10.3.2  Compile the Same Example Using Keil MDK-ARM
For users of Keil MDK-ARM, it is possible to compile the same program as in RVDS. However, the
command line options and a few symbols in the linker script (scatter loading file) have to be modified.
Based on the example in Section 10.3.1, scatter loading file “led.scat” needed to be modified to

160 CHAPTER 10  Cortex-M3 Programming

#define HEAP_BASE 0x20001000
#define STACK_BASE 0x20002000
#define HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
#define STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

LOAD_REGION 0x00000000 0x00200000
{
VECTORS 0x0 0xC0
{

; Provided by the user in vectors.c
* (exceptions_area)

}

CODE 0xC0 FIXED
{

* (+RO)
}

DATA 0x20000000 0x00010000
{

* (+RW, +ZI)
}

;; Heap starts at 4KB and grows upwards
Heap_Mem HEAP_BASE EMPTY HEAP_SIZE
{
}

;; Stack starts at the end of the 8KB of RAM
;; And grows downwards for 2KB
Stack_Mem STACK_BASE EMPTY -STACK_SIZE
{
}

}

And the compile sequence can be created in a DOS batch file

SET PATH=C:\Keil\ARM\BIN40\;%PATH%
SET RVCT40INC=C:\Keil\ARM\RV31\INC
SET RVCT40LIB=C:\Keil\ARM\RV31\LIB
SET CPU_TYPE=Cortex-M3
SET CPU_VENDOR=ARM
SET UV2_TARGET=Target 1
SET CPU_CLOCK=0x00000000
C:\Keil\ARM\BIN40\armcc -c -O3 -W -g -Otime --device DLM vectors.c
C:\Keil\ARM\BIN40\armcc -c -O3 -W -g -Otime --device DLM blinky.c
�C:\Keil\ARM\BIN40\armlink --device DLM "--keep=Startup.o(RESET)"
  "--first=Startup.o(RESET)" -scatter led.scat --map vectors.o
  blinky.o -o blinky.elf
C:\Keil\ARM\BIN40\fromelf --bin blinky.elf -o blinky.bin

In general, it is much easier to use the μVision IDE to create and compile projects rather than using
command lines. Chapter 20 is ideal for beginners who want to start using the Cortex-M3 microcon-
trollers with the Keil Microcontroller Development Kit for ARM (MDK-ARM).

16110.3  Using C

10.3.3  Accessing Memory-Mapped Registers in C
There are various ways to access memory-mapped peripheral registers in C language. For illustration,
we will use the System Tick (SYSTICK) Timer in the Cortex-M3 as an example peripheral to demon-
strate different access methods in C language. The SYSTICK is a 24-bit timer which contains only four
registers. The functionality of the SYSTICK will be covered in Chapter 14. In the previous examples,
we have already illustrated the easiest method—defining each register as a pointer. To apply the same
solution to the SYSTICK, we can define each register separately. This is illustrated in Figure 10.2.

Based on the same method, we can define a macro to convert address values to C pointer. The
C-code looks a bit different, but the generated code is the same as previous implementation. This is
illustrated in Figure 10.3.

Method 2 is to define the registers as a data structure, and then define a pointer of the defined structure.
This is the method used in CMSIS compliant device driver libraries. This is illustrated in Figure 10.4.

Method 3 also uses data structure, but the base address of the peripheral is defined using a scatter
loading file (or linker script) during linking stage. This is illustrated in Figure 10.5.

Figure 10.2

Accessing Peripheral Registers as Pointers.

#define SYSTICK_CTRL (*((volatile unsigned long *)(0xE000E010)))
#define SYSTICK_LOAD (*((volatile unsigned long *)(0xE000E014)))
#define SYSTICK_VAL (*((volatile unsigned long *)(0xE000E018)))
#define SYSTICK_CALIB (*((volatile unsigned long *)(0xE000E01C)))

/* Setup SYSTICK */
SYSTICK_LOAD 5 0xFFFF; // Set reload value
SYSTICK_VAL 5 0x0; // Clear current value
SYSTICK_CTRL 5 0x5; // Enable SYSTICK and select core clock

CTRL

RELOAD

VALUE

CALIB

SYSTICK
Timer

registers

0xE000E010

0xE000E014

0xE000E018

0xE000E01C

Figure 10.3

Alternative Way of Accessing Peripheral Registers as Pointers.

#define HW_REG(addr) (*((volatile unsigned long *)(addr)))
#define SYSTICK_CTRL 0xE000E010
#define SYSTICK_LOAD 0xE000E014
#define SYSTICK_VAL 0xE000E018
#define SYSTICK_CALIB 0xE000E01C

/* Setup SysTick */
HW_REG(SYSTICK_LOAD) 5 0xFFFF; // Set reload value
HW_REG(SYSTICK_VAL) 5 0x0; // Clear current value
HW_REG(SYSTICK_CTRL) 5 0x5; // Enable SYSTICK and select core clock CTRL

RELOAD

VALUE

CALIB

SYSTICK
Timer

registers

0xE000E010

0xE000E014

0xE000E018

0xE000E01C

162 CHAPTER 10  Cortex-M3 Programming

In this case (method is shown in Figure 10.5), the program code using the peripheral has to define
the peripheral as a C pointer in an external object. The code for accessing the register is the same as in
the second method.

Method 1 (shown in Figures 10.2 and 10.3) is the simplest, however, it can result in less efficient
code compared with the others as the address value for the registers are stored separately as constant.
As a result, the code size can be larger and might be slower as it requires more accesses to the program
memory to set up the address values. However, for peripheral control code that only access to one
register, the efficiency of method 1 is identical to others.

Method 2 (using data structure and a pointer defined in the C-code) is possibly the most com-
monly used. It allows the registers in a peripheral to share just one constant for base address value.
The immediate offset address mode can be used for access of each register. This is the method used in
CMSIS, which will be covered later in this chapter.

Figure 10.5

Defining Peripheral-Based Address Using Scatter Loading File.

__attribute__ ((zero_init)) struct {
 volatile unsigned long CTRL; /* systick control */

volatile unsigned long RELOAD; /* systick reload */
volatile unsigned long VAL; /* systick value */
volatile unsigned long CALIB; /* systick calibration */

} systick_struct;

In the C file, define the data structure as

LOAD_FLASH 0x0000
{
 :

SYSTICK 0xE000E010 UNINIT
{

systick_reg.o (1ZI)
}

:
}

Then create a scatter loading file to place the data structure
to specific address CTRL

RELOAD

VALUE

CALIB

SYSTICK
Timer

registers

0xE000E010

0xE000E014

0xE000E018

0xE000E01C

SYSTICK_struct

Figure 10.4

Accessing Peripheral Registers as Pointers to Elements in a Data Structure.

typedef struct
{

volatile unsigned long CTRL; /* SysTick Control and Status register */
 volatile unsigned long LOAD; /* SysTick Reload Value register */
 volatile unsigned long VAL; /* SysTick Current Value register */
 volatile unsigned long CALIB; /* SysTick Calibration register */

} SysTick_Type;

#define SysTick ((SysTick_Type *) 0xE000E010) /* SysTick struct */

/* Setup SysTick */
SysTick->LOAD 5 0xFFFF; // Set reload value
SysTick->VAL 5 0x0; // Clear current value
SysTick->CTRL 5 0x5; // Enable SYSTICK and select core clock

CTRL

RELOAD

VALUE

CALIB
SYSTICK

Timer
registers

0xE000E010

0xE000E014

0xE000E018

0xE000E01C

SYSTICK_Type

16310.3  Using C

Method 3 (using scatter loading file or linker script, as shown in figure 10.5) has the same efficiency
as method 2, but it is less portable due to the use of a scatter loading file (scatter loading file syntax is tool
chain specific). Method 3 is required when you are developing a device driver library for a peripheral that
is used in multiple devices, and the base address of the peripheral is not known until in the linking stage.

10.3.4  Intrinsic Functions
Use of the C language can often speed up application development, but in some cases, we need to
use some instructions that cannot be generated using normal C-code. Some C compilers provide
intrinsic functions for accessing these special instructions. Intrinsic functions are used just like normal
C functions. For example, ARM compilers (including RealView C Compilers and Keil MDK-ARM)
provide the intrinsic functions listed in Table 10.1 for commonly used instructions.

10.3.5  Embedded Assembler and Inline Assembler
As an alternative to using intrinsic functions, we can also directly access assembly instructions in
C-code. This is often necessary in low-level system control or when you need to implement a timing
critical routine and decide to implement it in assembly for the best performance. Most ARM C compil-
ers allow you to include assembly code in form of inline assembler.

Table 10.1  Intrinsic Functions Provided in ARM Compilers

Assembly Instructions ARM Compiler Intrinsic Functions

CLZ unsigned char __clz(unsigned int val)
CLREX void __clrex(void)
CPSID I void __disable_irq(void)
CPSIE I void __enable_irq(void)
CPSID F void __disable_fiq(void)
CPSIE F void __enable_fiq(void)
LDREX/LDREXB/LDREXH unsigned int __ldrex(volatile void *ptr)
LDRT/LDRBT/LDRSBT/LDRHT/LDRSHT unsigned int __ldrt(const volatile void *ptr)
NOP void __nop(void)
RBIT unsigned int __rbit(unsigned int val)
REV unsigned int __rev(unsigned int val)
ROR unsigned int __ror(unsigned int val, unsigned int shift)
SSAT int __ssat(int val, unsigned int sat)
SEV void __sev(void)
STREX/STREXB/STREXH int __strex(unsigned int val, volatile void *ptr)
STRT/STRBT/STRHT void int __strt(unsigned int val, const volatile void *ptr)
USAT int __usat(unsigned int val, unsigned int sat)
WFE void __wfe(void)
WFI void __wfi(void)
BKPT void __breakpoint(int val)

164 CHAPTER 10  Cortex-M3 Programming

In the ARM compiler, you can add assembly code inside the C program. Traditionally, inline
assembler is used, but the inline assembler in RealView C Compiler does not support instructions in
Thumb-2 technology. Starting with RealView C Compiler version 3.0, a new feature called the Embed-
ded Assembler is included, and it supports the instruction set in Thumb-2. For example, you can insert
assembly functions in your C programs this way:

__asm void SetFaultMask(unsigned int new_value)
{
// Assembly code here
MSR FAULTMASK, new_value // Write new value to FAULTMASK
BX LR // Return to calling program

}

Detailed descriptions of Embedded Assembler in RealView C Compiler can be found in the RVCT
4.0 Compilation Tools Compiler Guide [Ref. 6].

For the Cortex-M3, Embedded Assembler is useful for tasks, such as direct manipulation of the
stacks and timing critical processing task (codec software).

10.4  CMSIS
10.4.1  Background of CMSIS
The Cortex-M3 microcontrollers are gaining momentum in the embedded application market, as more
and more products based on the Cortex-M3 processor and software that support the Cortex-M3 proces-
sor are emerging. At the end of 2008, there were more than five C compiler vendors, and more than
15 embedded Operating Systems (OS) supporting the Cortex-M3 processor. There are also a num-
ber of companies providing embedded software solutions, including codecs, data processing libraries,
and various software and debug solutions. The CMSIS was developed by ARM to allow users of the
Cortex-M3 microcontrollers to gain the most benefit from all these software solutions and to allow
them to develop their embedded application quickly and reliably (see Figure 10.6).

Figure 10.6

CMSIS Provides a Standardized Access Interface for Embedded Software Products.

Device driver library

CMSIS

Microcontroller
hardware

Cortex-M3/
Cortex-M0/
Cortex-M1

Software

Embedded
OS

Application
software

Middleware

16510.4  CMSIS

The CMSIS was started in 2008 to improve software usability and inter-operability of ARM micro-
controller software. It is integrated into the driver libraries provided by silicon vendors, providing a
standardized software interface for the Cortex-M3 processor features, as well as a number of common
system and I/O functions. The library is also supported by software companies including embedded OS
vendors and compiler vendors.

The aims of CMSIS are to:

improve software portability and reusability•	
enable software solution suppliers to develop products that can work seamlessly with device •	
libraries from various silicon vendors
allow embedded developers to develop software quicker with an easy-to-use and standardized •	
software interface
allow embedded software to be used on multiple compiler products•	
avoid device driver compatibility issues when using software solutions from multiple sources•	

The first release of CMSIS was available from fourth quarter of 2008 and has already become part of
the device driver library from microcontroller vendors. The CMSIS is also available for Cortex-M0.

10.4.2  Areas of Standardization
The scope of CMSIS involves standardization in the following areas:

•	 Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This includes standardized
register definitions for NVIC, System Control Block registers, SYSTICK register, MPU registers,
and a number of NVIC and core feature access functions.

•	 Standardized system exception names: This allows OS and middleware to use system exceptions
easily without compatibility issues.

•	 Standardized method of header file organization: This makes it easier for users to learn new Cortex
microcontroller products and improve software portability.

•	 Common method for system initialization: Each Microcontroller Unit (MCU) vendor provides a SystemInit()
function in their device driver library for essential setup and configuration, such as initialization of clocks.
Again, this helps new users to start to use Cortex-M microcontrollers and aids software portability.

•	 Standardized intrinsic functions: Intrinsic functions are normally used to produce instructions
that cannot be generated by IEC/ISO C.* By having standardized intrinsic functions, software
reusability and portability are considerably improved.

•	 Common access functions for communication: This provides a set of software interface functions
for common communication interfaces including universal asynchronous receiver/transmitter
(UART), Ethernet, and Serial Peripheral Interface (SPI). By having these common access functions
in the device driver library, reusability and portability of embedded software are improved. At the
time of writing this book, it is still under development.

•	 Standardized way for embedded software to determine system clock frequency: A software variable
called SystemFrequency is defined in device driver code. This allows embedded OS to set up the
SYSTICK unit based on the system clock frequency.

*C/C++ features are specified in a standard document “ISO/IEC 14882” prepared by the International Organization for
Standards (ISO) and the International Electrotechnical Commission (IEC).

166 CHAPTER 10  Cortex-M3 Programming

The CMSIS defines the basic requirements to achieve software reusability and portability. MCU
vendors can include additional functions for each peripheral to enrich the features of their software
solution. So using CMSIS does not limit the capability of the embedded products.

10.4.3  Organization of CMSIS
The CMSIS is divided into multiple layers as follows:

Core Peripheral Access Layer
Name definitions, address definitions, and helper functions to access core registers and core peripherals•	

Middleware Access Layer
Common method to access peripherals for the software industry (work in progress)•	
Targeted communication interfaces include Ethernet, UART, and SPI.•	
Allows portable software to perform communication tasks on any Cortex microcontrollers that •	
support the required communication interface

Device Peripheral Access Layer (MCU specific)
Name definitions, address definitions, and driver code to access peripherals•	

Access Functions for Peripherals (MCU specific)
Optional additional helper functions for peripherals•	

The role of these layers is summarized in Figure 10.7.

Figure 10.7

CMSIS Structure.

User Application code

Real-time
kernelRTOS

Middleware
components

CMSIS

Peripheral registers and interrupt/exception vector definitions

Core peripheral
functions

Middleware
access functions

Device
peripheral
functions

MCU
Other

peripherals

Cortex-M processor

NVIC
Nested Vector

Interrupt
Controller

SYSTICK
RTOS kernel

timer

Debug/trace
interface

Processor
core

16710.4  CMSIS

10.4.4  Using CMSIS
Since the CMSIS is incorporated inside the device driver library, there is no special setup requirement
for using CMSIS in projects. For each MCU device, the MCU vendor provides a header file, which
pulls in additional header files required by the device driver library, including the Core Peripheral
Access Layer defined by ARM (see Figure 10.8).

The file core_cm3.h contains the peripheral register definitions and access functions for the
Cortex-M3 processor peripherals like NVIC, System Control Block registers, and SYSTICK registers.
The core_cm3.h file also contains declaration of CMSIS intrinsic functions to allow C applications to
access instructions that cannot be generated using IEC/ISO C language. In addition, this file also con-
tains a function for outputting a debug message via the Instrumentation Trace Module (ITM).

Note that in some cases, the intrinsic functions in CMSIS could have similar names compared with
the intrinsic functions provided in the C compilers, whereas the CMSIS intrinsic functions are compiler
independent.

The file core_cm3.c contains implementation of CMSIS intrinsic functions that cannot be imple-
mented in core_cm3.h using simple definitions.

The system_<device>.h file contains microcontroller specific interrupt number definitions, and
peripheral register definitions. The system_<device>.c file contains a microcontroller specific function
called SystemInit for system initialization.

In addition, CMSIS compliant device drivers also contain start-up code (which contains the vector
table) for various supported compilers, and CMSIS version of intrinsic functions to allow embedded
software access to all processor core features on different C compiler products.

Examples of using CMSIS can be found on the microcontroller vendor’s web site. You might also
find examples in the device driver libraries itself. Alternatively, you can download the ARM CMSIS

Figure 10.8

CMSIS Files.

<device>.h

core_cm3.h

system_<device>.c

Core peripheral
access layer

System functions
including initialization

Other header files

Device peripheral
access layer and
additional access

functions

system_<device>.h
Interrupt number and
peripheral registers

definitions

core_cm3.c
Core intrinsic function

implementations

Different startup code for
different tool chain

Startup code files

168 CHAPTER 10  Cortex-M3 Programming

package from www.onarm.com, which contains examples and documentation. Documentation of the
common functions can also be found in this package.

A simple example of using CMSIS in your application development is shown in Figure 10.9. To use
the CMSIS to set up interrupts and exceptions, you need to use the exception/interrupt constants defined
in the system_<device>.h. These exception and interrupt constants are different from the exception
number used in the core internal registers (e.g., Interrupt Program Status Register [IPSR]). For CMSIS,
negative numbers are for system exceptions and positive numbers are for peripheral interrupts.

For development of portable code, you should use the core access functions to access core function-
alities and middleware access functions to access peripheral. This allows the porting of software to be
minimized between different Cortex microcontrollers.

Details of common CMSIS access functions and intrinsic functions can be found in Appendix G.

10.4.5  Benefits of CMSIS
So what does CMSIS mean to end users?

The main advantage is much better software portability and reusability. Besides easy migration
between different Cortex-M3 microcontrollers, it also allows software to be quickly ported between
Cortex-M3 and other Cortex-M processors, reducing time to market.

For embedded OS vendors and middleware providers, the advantages of the CMSIS are signifi-
cant. By using the CMSIS, their software products can become compatible with device drivers from
multiple microcontroller vendors, including future microcontroller products that are yet to be released
(see Figure 10.10). Without the CMSIS, the software vendors either have to include a small library for

Figure 10.9

CMSIS Example.

#include "vendor_device.h" // For example,
// lm3s_cmsis.h for LuminaryMicro devices
// LPC17xx.h for NXP devices
// stm32f10x.h for ST devices

void main(void) {
SystemInit();
…
NVIC_SetPriority(UART1_IRQn, 0x0);
NVIC_EnableIRQ(UART1_IRQn);
…

}
void UART1_IRQHandler {
...

}

void SysTick_Handler(void) {
…
}

Common name for
system initialization code

(from CMSIS v1.30, this function
is called from startup code)

Interrupt numbers defined in
system_<device>.h

NVIC setup by core access
functions

System exception handler
names are common to all
Cortex microcontrollers

Peripheral interrupt names are
device specific, define in device

specific startup code

www.onarm.com

16910.5  Using Assembly

Cortex-M3 core functions or develop multiple configurations of their product so that it can work with
device libraries from different microcontroller vendors.

The CMSIS has a small memory footprint (less than 1 KB for all core access functions and a few
bytes of RAM). It also avoids overlapping of core peripheral driver code when reusing software code
from other projects.

Since CMSIS is supported by multiple compiler vendors, embedded software can compile and
run with different compilers. As a result, embedded OS and middleware can be MCU vendor inde-
pendent and compiler tool vendor independent. Before availability of CMSIS, intrinsic functions
were generally compiler specific and could cause problems in retargetting the software in a different
compiler.

Since all CMSIS compliant device driver libraries have a similar structure, learning to use different
Cortex-M3 microcontrollers is even easier as the software interface has similar look and feel (no need
to relearn a new application programming interface).

CMSIS is tested by multiple parties and is Motor Industry Software Reliability Association (MISRA)
compliant, thus reducing the validation effort required for developing your own NVIC or core feature
access functions.

10.5  Using Assembly
For small projects, it is possible to develop the whole application in assembly language. However, this
is often much harder for beginners. Using assembler, you might be able to get the best optimization
you want, though it might increase your development time, and it could be easy to make mistakes. In
addition, handling complex data structures or function library management can be extremely difficult

Figure 10.10

CMSIS Avoids Overlapping Driver Code.

Driver library from
OS/middleware

vendor

Driver library from
microcontroller

vendors

Embedded OS/
middlewareApplication

Peripherals
Processor

core

Embedded
OS/

middleware
Application

Peripherals
Processor

core

Driver library from
microcontroller vendors with CMSIS

Without CMSIS, embedded OS or
middleware needs to include processor

core access functions and might
need to include a few peripheral drivers

With CMSIS, embedded OS or
middleware can use standardized

core access functions in the driver library

170 CHAPTER 10  Cortex-M3 Programming

in assembler. Yet even when the C language is used in a project, in some situations part of the program
is implemented in assembly language as follows:

Functions that cannot be implemented in C, such as direct manipulation of stack data or special •	
instructions that cannot be generated by the C compiler in normal C-code
Timing-critical routines•	
Tight memory requirements, causing part of the program to be written in assembly to get the •	
smallest memory size

10.5.1  The Interface between Assembly and C
In various situations, assembly code and the C program interact. For example,

When embedded assembly (or inline assembler, in the case of the GNU tool chain) is used in C •	
program code
When C program code calls a function or subroutine implemented in assembler in a separate file•	
When an assembly program calls a C function or subroutine•	

In these cases, it is important to understand how parameters and return results are passed between the
calling program and the function being called. The mechanisms of these interactions are specified in
the ARM Architecture Procedure Call Standard [AAPCS, [Ref. 5]].

For simple cases, when a calling program needs to pass parameters to a subroutine or function, it
will use registers R0–R3, where R0 is the first parameter, R1 is the second, and so on. Similarly, R0
is used for returning a value at the end of a function. R0–R3 and R12 can be changed by a function or
subroutine whereas the contents of R4–R11 should be restored to the previous state before entering the
function, usually handled by stack PUSH and stack POP.

To make them easier to understand, the examples in this book do not strictly follow AAPCS prac-
tices. If a C function is called by an assembly code, the effect of a possible register change to R0–R3
and R12 will need to be taken into account. If the contents of these registers are needed at a later stage,
these registers might need to be saved on the stack and restored after the C function completes. Since
the example codes mostly only call assembly functions or subroutines that affect a few registers or
restore the register contents at the end, it’s not necessary to save registers R0–R3 and R12.

10.5.2  The First Step in Assembly Programming
This chapter reviews a few examples in assembly language. In most cases, you will be programming
in C, but by looking into some assembler examples, we can gain a better understanding of how to use
the Cortex-M3 processor. The examples here are based on ARM assembler tools (armasm) in RVDS.
For users of Keil MDK-ARM, the command line options are slightly different. For other assembler
tools, the file format and instruction syntax will also need to be modified. In addition, some develop-
ment tools will actually do the startup code for you, so you might not need to worry about creating your
assembly startup code.

The first simple program can be something like this

STACK_TOP EQU 0x20002000; constant for SP starting value

AREA |Header Code |, CODE
DCD STACK_TOP ; Stack top

17110.5  Using Assembly

DCD Start ; Reset vector
ENTRY ; Indicate program execution start here

Start ; Start of main program
; initialize registers
MOV r0, #10 ; Starting loop counter value
MOV r1, #0 ; starting result
; Calculated 10+9+8+...+1

loop
ADD r1, r0 ; R1 = R1 + R0
SUBS r0, #1 ; Decrement R0, update flag ("S" suffix)
BNE loop ; If result not zero jump to loop
; Result is now in R1

deadloop
B deadloop ; Infinite loop
END ; End of file

This simple program contains the initial stack pointer (SP) value, the initial program counter (PC)
value, and setup registers and then does the required calculation in a loop.

Assuming you are using ARM RealView compilation tools, this program can be assembled
using

$> armasm --cpu cortex-m3 -o test1.o test1.s

The -o option specifies the output file name. The test1.o is an object file. We then need to use a linker
to create an executable image (ELF). This can be done by

$> armlink --rw_base 0x20000000 --ro_base 0x0 --map -o test1.elf test1.o

Here, --ro-base 0x0 specifies that the read-only region (program ROM) starts at address 0x0; --rw-
base specifies that the read/write region (data memory) starts at address 0x20000000. (In this example
test1.s, we did not have any RAM data defined.) The --map option creates an image map, which is use-
ful for understanding the memory layout of the compiled image.

Finally, we need to create the binary image

$> fromelf --bin --output test1.bin test1.elf

For checking that the image looks like what we wanted, we can also generate a disassembled code list
file by

$> fromelf -c --output test1.list test1.elf

If everything works fine, you can then load your ELF image or binary image into your hardware or
instruction set simulator for testing.

10.5.3  Producing Outputs
It is always more fun when you can connect your microcontroller to the outside world. The simplest
way to do that is to turn on/off the LEDs. However, this practice is quite limiting because it can only rep-
resent very limited information. One of the most common output methods is to send text messages to a
console. In embedded product development, this task is often handled by a UART interface connecting

172 CHAPTER 10  Cortex-M3 Programming

to a personal computer. For example, a computer running a Windows1 system with the Hyper-Terminal
program acting as a console can be a handy way to produce outputs (see Figure 10.11).

The Cortex-M3 processor does not contain a UART interface, but most Cortex-M3 microcontrollers
come with UART provided by the chip manufacturers. The specification of the UART can differ among
various devices, so we won’t attempt to cover the topic in this book. Our next example assumes that a
UART is available and has a status flag to indicate whether the transmit buffer is ready for sending out
new data. A level shifter is needed in the connection because RS-232 has a different voltage level than
the microcontroller I/O pins.

UART is not the only solution to output text messages. A number of features are implemented on
the Cortex-M3 processor to help output debugging messages:

•	 Semihosting: Depending on the debugger and code library support, semihosting (outputting printf
messages via a debug probe device) can be done via debug register in the NVIC. More information
on this topic is covered in Chapter 15. In these cases, you can use printf within your C program,
and the output will be displayed on the console/standard output (STDOUT) of the debugger
software.

•	 Instrumentation trace: If the Cortex-M3 microcontroller provides a trace port and an external Trace
Port Analyzer (TPA) is available, instead of using UART to output messages, we can use the ITM.
The trace port works much faster than UART and can offer more data channels.

•	 Instrumentation trace via Serial-Wire Viewer (SWV): Alternatively, the Cortex-M3 processor
(revision 1 and later) also provides an SWV operation mode on the Trace Port Interface Unit
(TPIU). This interface allows outputs from ITM to be captured using low-cost hardware instead of
a TPA. However, the bandwidth provided with the SWV mode is limited, so it is not ideal for large
amounts of data (e.g., instruction trace operation).

10.5.4  The “Hello World” Example
Before we try to write a “Hello world” program, we should figure out how to send one character
through the UART. The code used to send a character can be implemented as a subroutine, which can

1Windows and Hyper-Terminal are trademarks of Microsoft Corporation.

Figure 10.11

A Low-Cost Test Environment for Outputting Text Messages.

Cortex-M3
microcontroller

Level
shifter

Hyper-Terminal
running on
windows

RS-232
serial cable

17310.5  Using Assembly

be called by other message output codes. If the output device changes, we only need to change this
subroutine and all the text messages can be output by a different device. This modification is usually
called retargetting.

A simple routine to output a character could be something like this

UART0_BASE EQU 0x4000C000
UART0_FLAG EQU UART0_BASE+0x018
UART0_DATA EQU UART0_BASE+0x000

Putc 	 ; Subroutine to send a character via UART
	 ; Input R0 = character to send
	 PUSH {R1,R2, LR} ; Save registers
	 LDR R1,=UART0_FLAG

PutcWaitLoop
	 LDR R2,[R1] ; Get status flag
	 TST R2, #0x20 ; Check transmit buffer full flag

	 ; bit
	 BNE PutcWaitLoop ; If busy then loop
	 LDR R1,=UART0_DATA ; otherwise
	 STRB R0, [R1] ; Output data to transmit buffer
	 POP {R1,R2, PC} ; Return

The register addresses and bit definitions here are just examples; you might need to change the value
for your device. In addition, some UART might require a more complex status-checking process before
the character is output to the transmit buffer. Furthermore, another subroutine call (Uart0Initialize in
the following example) is required to initialize the UART, but this depends on the UART specification
and will not be covered in this chapter. An example of UART initialization in C for Luminary Micro
LM3S811 devices is covered in Chapter 20.

Now, we can use this subroutine to build a number of functions to display messages:

Puts	 ; Subroutine to send string to UART
	 ; Input R0 = starting address of string.
	 ; The string should be null terminated
	 PUSH {R0 ,R1, LR} ; Save registers
	 MOV R1, R0	 ; Copy address to R1, because R0 will
	 ; be used

PutsLoop ; as input for Putc
	 LDRB R0,[R1],#1	 ; Read one character and increment

	 ; address
	 CBZ R0, PutsLoopExit ; if character is null, goto end
	 BL Putc ; Output character to UART
	 B PutsLoop ; Next character

PutsLoopExit
	 POP {R0, R1, PC}	 ; Return

With this subroutine, we are ready for our first “Hello world” program:

STACK_TOP EQU 0x20002000; constant for SP starting value
UART0_BASE EQU 0x4000C000
UART0_FLAG EQU UART0_BASE+0x018
UART0_DATA EQU UART0_BASE+0x000

174 CHAPTER 10  Cortex-M3 Programming

	 AREA | Header Code|, CODE
	 DCD STACK_TOP ; Stack Pointer initial value
	 DCD Start ; Reset vector
	 ENTRY

Start	 ; Start of main program
	 MOV r0, #0 ; initialize registers
	 MOV r1, #0
	 MOV r2, #0
	 MOV r3, #0
	 MOV r4, #0
	 BL Uart0Initialize ; Initialize the UART0
	 LDR r0,=HELLO_TXT ; Set R0 to starting address of string
	 BL Puts

deadend
	 B deadend ; Infinite loop
	 ;--------------------------------
	 ; subroutines
	 ;--------------------------------

Puts	 ; Subroutine to send string to UART
	 ;Input R0 = starting address of string.
	 ; The string should be null terminated
	 PUSH {R0 ,R1, LR} ; Save registers
	 MOV R1, R0 ; Copy address to R1, because R0 will

	 ; be used
PutsLoop ; as input for Putc

	 LDRB R0,[R1],#1 ; Read one character and increment
	 ; address

	 CBZ R0, PutsLoopExit ; if character is null, goto end
	 BL Putc ; Output character to UART
	 B PutsLoop ; Next character

PutsLoopExit
	 POP {R0, R1, PC} ; Return
	 ;--------------------------------

Putc	 ; Subroutine to send a character via UART
	 ; Input R0 = character to send
	 PUSH {R1,R2, LR} ; Save registers
	 LDR R1,=UART0_FLAG

PutcWaitLoop
	 LDR R2,[R1] ; Get status flag
	 TST R2, #0x20 ; Check transmit buffer full flag bit
	 BNE PutcWaitLoop ; If busy then loop
	 LDR R1,=UART0_DATA ; otherwise
	 STR R0, [R1] ; Output data to transmit buffer
	 POP {R1,R2, PC} ; Return
	 ;--------------------------------

Uart0Initialize
	 ; Device specific, not shown here
	 BX LR ; Return

	 ;--------------------------------
HELLO_TXT

	 DCB "Hello world\n",0 ; Null terminated Hello
	 ; world string
	 END ; End of file

17510.5  Using Assembly

The only thing you need to add to this code is the details for the Uart0Initialize subroutine and modify
the UART register address constants at the top of the file.

It will also be useful to have subroutines that output register values as well. To make things easier,
they can all be based on Putc and Puts subroutines we have already done. The first subroutine is to
display hexadecimal values.

PutHex ; Output register value in hexadecimal format
	 ; Input R0 = value to be displayed

PUSH {R0-R3,LR}
MOV R3, R0 ; Save register value to R3 because R0 is used
 ; for passing input parameter
 MOV R0,#'0' ; Starting the display with "0x"
 BL Putc
 MOV R0,#'x'
 BL Putc
 MOV R1, #8 ; Set loop counter
 MOV R2, #28 ; Rotate offset

PutHexLoop
ROR R3, R2 ; Rotate data value left by 4 bits
 ; (right 28)
AND R0, R3,#0xF ; Extract the lowest 4 bit
CMP R0, #0xA ; Convert to ASCII
ITE GE
ADDGE R0, #55 ; If larger or equal 10, then convert
 ; to A-F
ADDLT R0, #48 ; otherwise convert to 0-9
BL Putc ; Output 1 hex character
SUBS R1, #1 ; decrement loop counter
BNE PutHexLoop ; if all 8 hexadecimal character been
 ; display then
POP {R0-R3,PC} ; return, otherwise process next 4-bit

This subroutine is useful for outputting register values. However, sometimes we also want to output
register values in decimal. This sounds like a rather complex operation, but in the Cortex-M3 it is easy
because of the hardware multiply and divide instructions. One of the other main problems is that during
calculation, we will get output characters in reverse order, so we need to put the output results in a text
buffer first, wait until the whole text is ready to display, and then use the Puts function to display the
whole result. In this example, a part of the stack memory is used as the text buffer:

PutDec ; Subroutine to display register value in decimal
	 ; Input R0 = value to be displayed.
	 ; Since it is 32 bit, the maximum number of character
	 ; in decimal format, including null termination is 11
	 PUSH {R0-R5, LR} ; Save register values
	 MOV R3, SP ; Copy current Stack Pointer to R3
	 SUB SP, SP, #12 ; Reserved 12 bytes as text buffer
	 MOV R1, #0 ; Null character
	 STRB R1,[R3, #-1]!; Put null character at end of text

	 ; buffer,pre-indexed
	 MOV R5, #10 ; Set divide value

PutDecLoop
	 UDIV R4, R0, R5 ; R4 = R0 / 10

176 CHAPTER 10  Cortex-M3 Programming

	 MUL R1, R4, R5 ; R1 = R4 * 10
	 SUB R2, R0, R1 ; R2 = R0 - (R4 * 10) = remainder
	 ADD R2, #48 ; convert to ASCII (R2 can only be 0-9)
	 STRB R2,[R3, #-1]! ; Put ascii character in text

	 ; buffer, pre-indexed
	 MOVS R0, R4 ; Set R0 = Divide result and set Z flag

	 ; if R4=0
	 BNE PutDecLoop ; If R0(R4) is already 0, then there

	 ; is no more digit
	 MOV R0, R3 ; Put R0 to starting location of text

	 ; buffer
	 BL Puts ; Display the result using Puts
	 ADD SP, SP, #12 ; Restore stack location
	 POP {R0-R5, PC} ; Return

With various features in the Cortex-M3 instruction set, the processing to convert values into deci-
mal format display can be implemented in a very short subroutine.

10.5.5  Using Data Memory
Back to our first example: When we were doing the linking stage, we specified the read/write memory
region. How do we put data there? The method is to define a data region in your assembly file. Using
the same example from the beginning, we can store the data in the data memory at 0x20000000 (the
SRAM region). The location of the data section is controlled by a command-line option when you run
the linker:

STACK_TOP EQU 0x20002000 ; constant for SP starting value
	 AREA | Header Code|, CODE
	 DCD STACK_TOP ; SP initial value
	 DCD Start ; Reset vector
	 ENTRY

Start	 ; Start of main program
	 ; initialize registers
	 MOV r0, #10 ; Starting loop counter value
	 MOV r1, #0 ; starting result
	 ; Calculated 10+9+8+…+1

loop
	 ADD r1, r0 ; R1 = R1 + R0
	 SUBS r0, #1 ; Decrement R0, update flag ("S"

	 ; suffix)
	 BNE loop ; If result not zero jump to loop
	 ; Result is now in R1
	 LDR r0,=MyData1 ; Put address of MyData1 into R0
	 STR r1,[r0] ; Store the result in MyData1

deadloop
	 B deadloop ; Infinite loop
	 AREA | Header Data|, DATA
	 ALIGN 4

MyData1	 DCD 0 ; Destination of calculation result
MyData2	 DCD 0

	 END ; End of file

17710.6  Using Exclusive Access for Semaphores

During the linking stage, the linker will put the DATA region into read/write memory, so the address
for MyData1 will be 0x20000000 in this case.

10.6  Using Exclusive Access for Semaphores
Exclusive access instructions are used for semaphore operations—for example, a MUTEX (Mutual
Exclusion) to make sure that a resource is used by only one task. For instance, let’s say that a data vari-
able DeviceALocked in memory can be used to indicate that Device A is being used. If a task wants
to use Device A, it should check the status by reading the variable DeviceALocked. If it is zero, it can
write a 1 to DeviceALocked to lock the device. After it’s finished using the device, it can then clear the
DeviceALocked to zero so that other tasks can use it.

What will happen if two tasks try to access Device A at the same time? In that case, possibly both
tasks will read the variable DeviceALocked, and both will get zero. Then both of them will try writing
back 1 to the variable DeviceALocked to lock the device, and we’ll end up with both tasks believing
that they have exclusive access to Device A. That is where exclusive accesses are used. The STREX
instruction has a return status, which indicates whether the exclusive store has been successful. If two
tasks try to lock a device at the same time, the return status will be 1 (exclusive failed) and the task can
then know that it needs to retry the lock.

Chapter 5 provided some background on the use of exclusive accesses. The flowchart in that earlier
discussion is shown in Figure 10.12.

Figure 10.12

Using Exclusive Access for Semaphore Operations.

Exclusive Read
(e.g., LDREX)

Exclusive Write
(e.g., STREX)

Read lock bit

Check lock bit set?

Set lock bit

Yes

Yes
No

No

Failed. Lock bit already set
indicates the requested resource is
used by another process or
processor

Failed. The memory region where
the lock bit could have been
accessed by another process or
another processor

Success. The lock bit is set and
the processor can have access to
the shared resource

Return status from
exclusive write 5 0

(success)?

178 CHAPTER 10  Cortex-M3 Programming

The operation can be carried out by the following C-code using intrinsic functions from CMSIS.
Note that the data write operation of STREX will not be carried out if the exclusive monitor returns a
fail status, preventing a lock bit being set when the exclusive access fails:

volatile unsigned int DeviceALocked; // lock variable

int LockDeviceA(void){
unsigned int status; // variable to hold STREX status
// Get the lock status and see if it is already locked

if (__LDREXW(&DeviceALocked) = 0) {
// if not locked, try set lock to 1
status = __STREXW(1, &DeviceALocked);
if (status!=0) return (1); // return fail status
else return(0); // return success status

} else {
return(1); // return fail status
}

}

The same operation can also be carried out by the following assembly code:

LockDeviceA
	 ; A simple function to try to lock Device A
	 ; Output R0 : 0 = Success, 1 = failed
	 If successful, value of 1 will be written to variable
	 ; DeviceALocked
	 PUSH {R1, R2, LR}

TryToLockDeviceA
	 LDR R1,=DeviceALocked ; Get the lock status
	 LDREX R2,[R1]
	 CMP R2,#0	 ; Check if it is locked
	 BNE LockDeviceAFailed

DeviceAIsNotLocked
	 MOV R0,#1	 ; Try to write 1 to

	 ; DeviceALocked
	 STREX R2,R0,[R1]	 ; Exclusive write
	 CMP R2, #0
	 BNE LockDeviceAFailed 	 ; STREX Failed

LockDeviceASucceed
	 MOV R0,#0 	 ; Return success status
	 POP {R1, R2, PC} 	 ; Return

LockDeviceAFailed
	 MOV R0,#1	 ; Return fail status
	 POP {R1, R2, PC}	 ; Return

If the return status of this function is 1 (exclusive failed), the application tasks should wait a bit and
retry later. In single-processor systems, the common cause of an exclusive access failing is an Interrupt
occurring between the exclusive load and the exclusive store. If the code is run in privileged mode, this
situation can be prevented by setting an Interrupt Mask register, such as PRIMASK, for a short time to
increase the chance of getting the resource locked successfully.

In multiprocessor systems, aside from interrupts, the exclusive store could also fail if another
processor has accessed the same memory region. To detect memory accesses from different processors,

17910.7  Using Bit Band for Semaphores

the bus infrastructure requires exclusive access monitor hardware to detect whether there is an access
from a different bus master to a memory between the two exclusive accesses. However, in most low-cost
Cortex-M3 microcontrollers, there is only one processor, so this monitor hardware is not required.

With this mechanism, we can be sure that only one task can have access to certain resources. If the
application cannot gain the lock to the resource after a number of times, it might need to quit with a
timeout error. For example, a task that locked a resource might have crashed and the lock remained set.
In these situations, the OS should check which task is using the resource. If the task has completed or
terminated without clearing the lock, the OS might need to unlock the resource.

If the process has started an exclusive access using LDREX and then found that the exclusive
access is no longer needed, it can use the CLREX instruction to clear the local record in the exclusive
access monitor. This can be done with CMSIS function:

void __CLREX(void);

If assembly language is used, the CLREX instruction can be used:

CLREX

or

CLREX.W

For the Cortex-M3 processor, all exclusive memory transfers must be carried out sequentially.
However, if the exclusive access control code has to be reused on other ARM Cortex processors, the
Data Memory Barrier (DMB) instruction might need to be inserted between exclusive transfers to
ensure correct ordering of the memory accesses. Example code of using barrier instructions with exclu-
sive accesses can be found in Section 14.3, Multiprocessor Communication.

10.7  Using Bit Band for Semaphores
It is possible to use the bit-band feature to carry semaphore operations, provided that the memory
system supports locked transfers or only one bus master is present on the memory bus. With bit band,
it is possible to carry out the semaphore in normal C-code, but the operation is different from using
exclusive access. To use bit band as a resource allocation control, a memory location (such as word
data) with a bit-band memory region is used, and each bit of this variable indicates that the resource is
used by a certain task.

Since the bit-band alias writes are locked READ-MODIFY-WRITE transfers (the bus master can-
not be switched to another one between the transfers), provided that all tasks only change the lock bit
representing themselves, the lock bits of other tasks will not be lost, even if two tasks try to write to the
same memory location at the same time. Unlike using exclusive accesses, it is possible for a resource to
be “locked” simultaneously by two tasks for a short period of time until one of them detects the conflict
and releases the lock (see Figure 10.13).

Using bit band for semaphores can work only if all the tasks in the system change only the lock bit
they are assigned to using the bit-band alias. If any of the tasks change the lock variable using a normal
write, the semaphore can fail because another task sets a lock bit just before the write to the lock vari-
able, the previous lock bit set by the other task will be lost.

180 CHAPTER 10  Cortex-M3 Programming

Figure 10.13

Mutex Implemented Using Bit Band as a Semaphore Control.

Read whole word of the
resource lock variable

Value is
zero N

Resource is already
locked by one of the

tasks. Retry later.

Try to lock the resource by setting
one bit (bit[1]), using bit-band alias

Read back whole word again to
check if resource is locked by another

task at the same time.

N

Another bit has
also been set,

resource has been
locked by another

task/processor

Only the bit set
by the task
itself is 1

(value 5 0x2)

Clear the lock bit for the
task itself (bit[1]), using

bit-band alias

Y

Y

Resource has been
locked sucessfully

Each bit in the word
represents the resource
used by a particular task.
One of the bits represents
this task itself (e.g., Task 1).

Resource lock variable

Task 3
Task 2
Task 1
Task 0

Figure 10.14

Bit Field Decoder: Example Use of UBFX and TBB Instructions.

A[7:0]

A[7:6] 5 00

A[7:6] 5 01 A[7:6] 5 10

A[7:6] 5 11

Branch
to P2 Branch

to P3
Branch
to P4

Branch
to P1

Branch
to P5

Branch
to P6

A[4:3] 5 00

A[4:3] 5 01 A[4:3] 5 1x

Branch
to P0

A[2] 5 0
A[2] 5 1

18110.8  Working with Bit Field Extract and Table Branch

10.8  Working with Bit Field Extract and Table Branch
We examined the unsigned bit field extract (UBFX) and Table Branch (TBB/TBH) instructions in
Chapter 4. These two instructions can work together to form a very powerful branching tree. This
capability is very useful in data communication applications where the data sequence can have differ-
ent meanings with different headers. For example, let’s say that the following decision tree based on
Input A is to be coded in assembler (see Figure 10.14).

DecodeA
 LDR R0,=A ; Get the value of A from memory
 LDR R0,[R0]
 UBFX R1, R0, #6, #2 ; Extract bit[7:6] into R1
 TBB [PC, R1]

BrTable1
 DCB ((P0 	 -BrTable1)/2) ; Branch to P0 if A[7:6] = 00
 DCB ((DecodeA1-BrTable1)/2) ; Branch to DecodeA1 if A[7:6] = 01
 DCB ((P1 	 -BrTable1)/2) ; Branch to P1 if A[7:6] = 10
 DCB ((DecodeA2-BrTable1)/2) ; Branch to DecodeA1 if A[7:6] = 11

DecodeA1
 UBFX R1, R0, #3, #2 ; Extract bit[4:3] into R1
 TBB [PC, R1]

BrTable2
 DCB ((P2 -BrTable2)/2) ; Branch to P2   if A[4:3] = 00
 DCB ((P3 -BrTable2)/2) ; Branch to P3   if A[4:3] = 01
 DCB ((P4 -BrTable2)/2) ; Branch to P4   if A[4:3] = 10
 DCB ((P4 -BrTable2)/2) ; Branch to P4   if A[4:3] = 11

DecodeA2
 TST R0, #4 ; Only 1 bit is tested, so no need to use UBFX
 BEQ P5
 B P6

P0 ... ; Process 0
P1 ... ; Process 1
P2 ... ; Process 2
P3 ... ; Process 3
P4 ... ; Process 4
P5 ... ; Process 5
P6 ... ; Process 6

This code completes the decision tree in a short assembler code sequence. If the branch target
addresses are at a larger offset, some of the TBB instructions would have to be replaced by TBH
instructions.

183

CHAPTER

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00014-4

In This Chapter

Using Interrupts��183
Exception/Interrupt Handlers���188
Software Interrupts���189
Example of Vector Table Relocation���190
Using SVC��193
SVC Example: Use for Text Message Output Functions... 194
Using SVC with C... 197

11.1  Using Interrupts
Interrupts are used in almost all embedded applications. In the Cortex™-M3 processor, the interrupt
controller Nested Vectored Interrupt Controller (NVIC) handles a number of processing tasks for you,
including priority checking and stacking/unstacking of registers. However, a number of tasks have to
be prepared before interrupts can be used:

Stack setup•	
Vector table setup•	
Interrupt priority setup•	
Enable the interrupt•	

11.1.1  Stack Setup
For simple application development, you can use the Main Stack Pointer (MSP) for the whole program.
That way you need to reserve memory that’s just large enough and set the MSP to the top of the stack.
When determining the stack size required, besides checking the stack level that could be used by the
software, you also need to check how many levels of nested interrupts can occur.

For each level of nested interrupts, you need at least eight words of stack. The processing inside
interrupt handlers might need extra stack space as well.

Exception Programming 11

184 CHAPTER 11  Exception Programming

Because the stack operation in the Cortex-M3 is full descending, it is common to put the stack
initial value at the end of the static memory so that the free space in the Static Random Access Memory
(SRAM) is not fragmented (see Figure 11.1).

For applications that use separate stacks for user code and kernel code, the main stack should have
enough memory for the nested interrupt handlers as well as the stack memory used by the kernel code.
The process stack should have enough memory for the user application code plus one level of stack-
ing space (eight words). This is because stacking from the user thread to the first level of the interrupt
handler uses the process stack.

11.1.2  Vector Table Setup
For simple applications that have fixed interrupt handlers, the vector table can be coded in Flash or
ROM. In this case, there is no need to set up the vector table during run time. However, in some appli-
cations, it is necessary to change the interrupt handlers for different situations. Then, you will need to
relocate the vector table to writable memory.

Before the vector table is relocated, you might need to copy the existing vector table content to the
new vector table location. This includes vector addresses for fault handlers, the nonmaskable interrupt
(NMI), system calls, and so on. Otherwise, invalid vector addresses will be fetched by the processor if
these exceptions take place after the vector table relocation.

After the necessary vector table items are set up and the vector table is relocated, we can add new vectors
to the vector table. For users of Cortex Microcontroller Software Interface Standard (CMSIS) compliant driver
libraries, the vector table offset register can be accessed by “SCB->VTOR” in the core peripheral definition.

�void SetVector(unsigned int ExcpType, unsigned int VectorAddress)
�{ // Calculate vector location = VTOR + (Exception_Type * 4)

Figure 11.1

A Simple Memory Usage Example.

SRAM

Flash

Peripherals

Memory
address

Stack
pointer

initial value

Program

Data

Stack

18511.1  Using Interrupts

*((volatile unsigned int *) (SCB->VTOR + (ExcpType << 2))) =
 VectorAddress | 0x1;
 // LSB of vector set to 1 to indicate Thumb
return;

}

For users who prefer programming in assembly, this can be done by the following code example:

; Subroutine for setting vector of an exception based on
; exception type
; (For IRQs add 16 : IRQ #0 = exception type 16)

SetVector
; Input R0 = exception type
; Input R1 = vector address value
PUSH {R2, LR}
LDR R2,=0xE000ED08 ; Vector table offset register
LDR R2, [R2]
ORR R1, R1, #1 ; Set LSB of vector to indicate Thumb
STR R1, [R2, R0, LSL #2] ; Write vector to VectTblOffset+

		 ; ExcpType*4
POP {R2, PC} ; Return

The setting of least significant bit (LSB) to 1 in the vector is not necessary in most case, as the
compiler or assembler should recognize the address as a Thumb® instruction address and set it
automatically.

11.1.3  Interrupt Priority Setup
By default, after a reset, all exceptions with programmable priority are in priority level 0. For hard fault
exceptions and NMI, the priority levels are -1 and -2, respectively. For users of CMSIS compliant
device driver libraries, you can use the CMSIS function to set priority level value. For example, to set
the priority of interrupt request (IRQ) #4 to 0xC0, you can use

NVIC_SetPriority(IRQ4_IRQn, 0xC); // This function
// automatically shifts the priority value to implemented bits
// in the priority level registers

The constant IRQ4_IRQn above is just an example of an interrupt identifier. When using CMSIS
interrupt control functions, it is recommended to use the interrupt identifiers defined in the header file
(device.h as shown in Figure 10.8) to help readability and portability.

You can use the NVIC_SetPriority function with another CMSIS function that calculates the prior-
ity level value based on the preempt priority, subpriority and priority group setting:

 NVIC_SetPriority(IRQ4_IRQn, NVIC_EncodePriority(PriorityGroup,
	 PreemptPriority, SubPriority));

Additional details on these functions are described in Appendix G.
If you are programming in assembly language, to program priority-level registers, we can take

advantage of the fact that the registers are byte addressable, making the coding easier. For example:

; Setting IRQ #4 priority to 0xC0
LDR R0, =0xE000E400 ; External Interrupt Priority Reg starting
 ; address

186 CHAPTER 11  Exception Programming

LDR R1, =0xC0 ; Priority level
STRB R1, [R0, #4] ; Set IRQ #4 priority (Byte write)

In the Cortex-M3, the width of the interrupt priority configuration registers is specified by chip
manufacturers. The minimum width is 3 bits, and the maximum width is 8 bits. In a CMSIS compliant
device driver, the width of a priority level register is specified by __NVIC_PRIO_BITS. You can deter-
mine the implemented width by writing 0xFF to one of the priority configuration registers and reading
it back. For example, you can do it in assembly with the following code:

; Determine the implemented priority width
LDR R0,=0xE000E400	; Priority Configuration register for
	 ; external interrupt #0
LDR R1,=0xFF
STRB R1,[R0]	 ; Write 0xFF (note : byte size write)
LDRB R1,[R0]	 ; Read back (e.g. 0xE0 for 3-bits)
RBIT R2, R1	 ; Bit reverse R2 (e.g. 0x07000000 for
	 ; 3-bits)
CLZ R1, R2	 ; Count leading zeros (e.g. 0x5 for 3-bits)
MOV R2, #8
SUB R2, R2, R1	 ; Get implemented width of priority
	 ; (e.g. 8−5=3 for 3-bits)
MOV R1, #0x0
STRB R1,[R0]	 ; Restore to reset value (0x0)

If your application needs to be portable, it is best to use priority levels 0x00, 0x20, 0x40, 0x60,
0x80, 0xA0, 0xC0, and 0xE0 only. This is because all Cortex-M3 devices have these priority levels.

Do not forget to set up the priority for system exceptions and fault handler exceptions as well. If it
is necessary for some of the important interrupts to have higher priority than other system exceptions or
fault handlers, you will need to reduce the priority level of these system exceptions and fault handlers
so that the important interrupts can preempt these handlers.

11.1.4  Enable the Interrupt
After the vector table and interrupt priority are set up, it’s time to enable the interrupt. However, two
steps might be required before you actually enable the interrupt:

If the vector table is located in a memory region that is write buffered, a Data Synchronization 1.	
Barrier (DSB) instruction might be needed to ensure that the vector table memory is updated. In

Accessing NVIC Interrupt Registers
For best software compatibility, CMSIS core peripheral access functions should be used for accessing the NVIC
registers including interrupt configurations. Details of the CMSIS core peripheral access function are covered in
Appendix G.

You can also develop your own NVIC interrupt control function if necessary; selecting the right transfer size
can make your program development easier. For the Cortex-M3 processor, most registers in the NVIC can be
accessed using word, half word, or byte transfers. For example, priority-level registers are best programmed with
byte transfers. In this way, there is no need to worry about accidentally changing the priority of other exceptions.
However, this method will not work with Cortex-M0 because the NVIC registers in Cortex-M0 only accept word
size transfers.

18711.1  Using Interrupts

most cases, the memory write should be completed within a few clock cycles. However, if your
software needs to be portable between different ARM processors, this step ensures that the core
will get the updated vector if the interrupt takes place immediately after being enabled.

An interrupt might already be pended or asserted beforehand, so it might be needed to clear the 2.	
pending status. For example, signal glitches during power-up might have accidentally triggered
some interrupt generation logic. In addition, in some peripherals such as a universal asynchronous
receiver/transmitter (UART), noise from the UART receiver before connection might be mistaken
as data and can cause an interrupt to be pended. Therefore, it can be safer to check and clear the
pending status of an interrupt before enabling it. Depending on the peripheral design, the peripheral
might also need some reinitialization if the pending status was set already.

Inside the NVIC, two separate register addresses are used for enabling and disabling interrupts. This
duality ensures that each interrupt can be enabled or disabled without affecting or losing the other inter-
rupt enable status. Otherwise, through software-based READ-MODIFY-WRITE, changes in enable
register status carried out by interrupt handlers could be lost. To set an enable, the software needs to
compute the correct bit location in the SETEN registers in the NVIC and write 1 to it. Similarly, to clear
an interrupt, the software needs to write a 1 to the corresponding bit in the CLREN registers:

For users of CMSIS compliant driver libraries, the interrupt enable/disable feature can be accessed
by the “NVIC_EnableIRQ” and “NVIC_DisableIRQ” functions. For example:

NVIC_EnableIRQ(UART1_IRQn); // Enable UART#1 interrupt
 // UART1_IRQn is MCU specific and is defined
 // in the device driver library

NVIC_DisableIRQ(UART1_IRQn); // Disable UART#1 interrupt

Details of these functions are described in Appendix G.
Assembly language users can create an assembly function to carry out the same operation:

; A subroutine to enable an IRQ based on IRQ number
EnableIRQ

; Input R0 = IRQ number
PUSH {R0–R2, LR}
AND.W R1, R0, #0x1F ; Generate enable bit pattern for
 ; the IRQ
MOV R2, #1
LSL R2, R2, R1 ; Bit pattern = (0x1 << (N & 0x1F))
AND.W R1, R0, #0xE0 ; Generate address offset if IRQ number

	 ; is above 31
LSR R1, R1, #3 ; Address offset = (N/32)*4 (Each word
	 ; has 32 IRQ enable)
LDR R0,=0xE000E100 ; SETEN register for external interrupt
	 ; #31–#0
STR R2, [R0, R1]	 ; Write bit pattern to SETEN register
POP {R0–R2, PC}	 ; Restore registers and Return

Likewise, we can write another subroutine for disabling IRQ:

; A subroutine to disable an IRQ based on IRQ number
DisableIRQ

; Input R0 = IRQ number

188 CHAPTER 11  Exception Programming

PUSH {R0–R2, LR}
AND.W R1, R0, #0x1F ; Generate Disable bit pattern for
 ; the IRQ
MOV R2, #1
LSL R2, R2, R1 ; Bit pattern = (0x1 << (N & 0x1F))
AND. W R1, R0, #0xE0 ; Generate address offset if IRQ number
 ; is above 31
LSR R1, R1, #3 ; Address offset = (N/32)*4 (Each word
 ; has 32 IRQ enable)
LDR R0,=0xE000E180 ; CLREN register for external interrupt
 ; #31–#0
STR R2, [R0, R1] ; Write bit pattern to CLREN register
POP {R0–R2, PC} ; Restore registers and Return

Similar subroutines can be developed for setting and clearing IRQ pending status registers.

11.2  Exception/Interrupt Handlers
In the Cortex-M3, interrupt handlers can be programmed completely in C, whereas in ARM7, an
assembly handler is commonly used to ensure that all registers are saved, and in cases of systems with
nested interrupt support, the processor needs to switch to a different mode to prevent losing informa-
tion. These steps are not required in the Cortex-M3, making programming much easier.

In C language, an interrupt handler could be like

void UART1_Handler(void) {
   ... // processing task for the peripheral
   return;
}

For users of the CMSIS compliant device driver library, the interrupt handler name should match the
interrupt handler name defined by the Microcontroller Unit (MCU) vendor to ensure that the vector is set
up in the vector table correctly. You can find the handler function name in the vector table inside the start-
up codes. For example, for a Keil Microcontroller Development Kit user, the file is startup_<device>.s.

For users of ARM RealView Compilers or the Keil Microcontroller Development Kit, for clarity,
you can add the optional __irq keyword. For example:

__irq void UART1_Handler(void) {
   ... // process IRQ request for the peripheral
   ... // Deassert IRQ request in peripheral
   return;
}

In assembler, a simple exception handler might look like this:

irq1_handler
	 ; Process IRQ request
	 ...
	 ; Deassert IRQ request in peripheral
	 ...
	 ; Interrupt return
	 BX  LR

18911.3  Software Interrupts

The deassertion of an IRQ inside the interrupt service routine depends on the peripheral design. If
the peripheral generates IRQs in the form of pulses, this step is not required. With the Cortex-M3, if a
peripheral generates IRQs in the form of pulses, the NVIC can store the request as a pending request
status. Once the processor enters the exception handler, the pending status is cleared automatically.
This is different from traditional ARM processors that a peripheral has to maintain its IRQ until it is
served because the interrupt controllers designed for previous ARM cores like ARM7TDMI do not
have the pending memory.

In some cases, where the peripheral can generate multiple IRQs in a short period, the deassertion of
the IRQ in the peripheral might have to be done conditionally to ensure that no requests are missed.

In many cases, the interrupt handler requires more than R0–R3 and R12 to process the interrupt, so we
might need to save some other registers as well. For C language users, there is no need to worry about this,
as the C function saves additional registers automatically if required. For assembly language users, their
interrupt handlers have to perform stack PUSH and POP to ensure the values of R4–R11 are preserved.

The following example saves all registers that are not saved during the stacking process, but if some
of the registers are not used by the exception handler, they can be omitted from the saved register list:

irq1_handler
	 PUSH {R4–R11, LR} ; Save all registers that are not saved
 ; during stacking
	 ; Process IRQ request
	 ...
	 ; Deassert IRQ request in peripheral (optional)
	 ...
	 POP {R4–R11, PC} ; Restore registers and Interrupt return

Because POP is one of the instructions that can start interrupt returns, we can combine the register
restore and interrupt return in the same instruction.

Depending on the design of a peripheral, it might be necessary for an exception handler to program
the peripheral to deassert the exception request. If the exception request from the peripheral to the
NVIC is a pulse signal, then there is no need for the exception handler to clear the exception request.
Otherwise, the exception handler needs to clear the exception request so that it won’t be pending again
immediately after exception exits. In traditional ARM processors, a peripheral has to maintain its IRQ
until it is served because the interrupt controllers designed for previous ARM cores do not have the
pending memory.

With the Cortex-M3, if a peripheral generates IRQs in the form of pulses, the NVIC can store the
request as a pending request status. Once the processor enters the exception handler, the pending status
is cleared automatically. In this way, the exception handler does not have to program the peripheral to
clear the IRQ.

11.3  Software Interrupts
There are various ways to trigger an interrupt:

External interrupt input•	
Setting an interrupt pending register in the NVIC (see •	 Chapter 8)
Via the Software Trigger Interrupt register (STIR) in the NVIC (see •	 Chapter 8)

190 CHAPTER 11  Exception Programming

In most cases, some of the interrupts are unused and can be used as software interrupts. Soft-
ware interrupts can work similar to supervisor call (SVC), allowing accesses to system services.
However, by default, user programs cannot access the NVIC; they can only access the NVIC’s STIR
if the USERSETMPEND bit in the NVIC Configuration Control register is set (see Table D.18 in
Appendix D).

Unlike the SVC, software interrupts are not precise. In other words, the interrupt preemption does
not necessarily happen immediately, even when there is no blocking from Interrupt Mask registers or
other interrupt service routines. As a result, if the instruction immediately following the write to the
NVIC STIR depends on the result of the software interrupt, the operation could fail because the soft-
ware interrupt could invoke after the instruction is executed.

To solve this problem, use the DSB instruction. For example, users of CMSIS compliant device
driver libraries can use the following code:

	 NVIC_SetPendingIRQ(SOFTWARE_INTERRUPT_NUMBER);
	 __DSB();

For assembly language users:

	 MOV R0, #SOFTWARE_INTERRUPT_NUMBER
	 LDR R1,=0xE000EF00  ; NVIC Software Interrupt Trigger
	 ; Register address
	 STR R0, [R1]	 ; Trigger software interrupt
	 DSB	 ; Data synchronization barrier
	 ...

However, there is still another possible problem. If the Interrupt Mask register is set or if the pro-
gram code generating the software interrupt is an exception handler itself, there could be a chance that
the software interrupt cannot execute. Therefore, the program code generating the software interrupt
should check to see whether the software interrupt has been executed. This can be done by having a
software flag set by the software interrupt handler.

Finally, setting USERSETMPEND can lead to another problem. After this is set, user programs can
trigger any software interrupt except system exceptions. As a result, if the USERSETMPEND is used
and the system contains untrusted user programs, exception handlers need to check whether the excep-
tion is allowed because it could have been triggered from user programs. Ideally, if a system contains
untrusted user programs, it is best to provide system services only via SVC.

11.4  Example of Vector Table Relocation
In Chapter 7, we mentioned that the starting vector table should contain a reset vector, an NMI vector,
and a hard fault vector because the NMI and hard fault handler can take place without any exception
enabling. After the program starts, we can then relocate the vector table to a different place in the
SRAM if necessary. In most simple applications, there is no need to relocate the vector table.

If it is necessary to relocate the vector table, then the following steps would be required:

Reserve a memory space for the new vector table•	 : You might need to use linker scripts to reserve
the memory space. The vector table address should be aligned to the vector table size, extended to
the next larger power of 2.

19111.4  Example of Vector Table Relocation

•	 Copy the existing vector table to the new vector table: Before relocating the vector table, you
need to ensure that the new vector table contains valid vector entries for all required exceptions
including NMI, hard fault, and all enabled exceptions.

•	 Write the new exception vector into the new vector table and write to Vector Table Offset Register
to relocate the vector table.

An example of relocating the vector table is covered in Chapter 8. In the following assembly exam-
ple, we demonstrate reservation of memory space for the vector table in the beginning of SRAM and
then the other data variables following it:

STACK_TOP	 EQU 0x20002000	 ; constant for the SP starting value
NVIC_SETEN	 EQU 0xE000E100	 ; NVIC Interrupt Set Enable Registers
	 ; base address
NVIC_VECTTBL	 EQU 0xE000ED08	 ; Vector Table Offset Register
NVIC_AIRCR	 EQU 0xE000ED0C	 ; Application Interrupt and Reset
	 ; Control Register
NVIC_IRQPRI	 EQU 0xE000E400	 ; Interrupt Priority Level register

	 AREA	 | Header Code	 |, CODE
	 DCD	 STACK_TOP	 ; SP initial value
	 DCD	 Start	 ; Reset vector
	 DCD	 Nmi_Handler	 ; NMI handler
	 DCD	 Hf_Handler	 ; Hard fault handler
	 ENTRY
Start	; Start of main program
	 ; initialize registers
	 MOV r0, #0	 ; initialize registers
	 MOV r1, #0
	 ...

; Copy old vector table to new vector table
LDR	 r0,=0
LDR	 r1,=VectorTableBase
LDMIA	 r0!,{r2–r5}    ; Copy 4 words
STMIA	 r1!,{r2–r5}

DSB	 ; Data synchronization barrier.

; Set vector table offset register
LDR	 r0,=NVIC_VECTTBL
LDR	 r1,=VectorTableBase
STR	 r1,[r0]

...
; Setup Priority group register
LDR	 r0,=NVIC_AIRCR
LDR	 r1,=0x05FA0500	; Priority group 5
STR	 R1,[r0]

; Setup IRQ 0 vector
MOV	 r0, #0	 ; IRQ#0
LDR	 r1, =Irq0_Handler
BL	 SetupIrqHandler

192 CHAPTER 11  Exception Programming

; Setup priority
LDR	 r0,=NVIC_IRQPRI
LDR	 r1,=0xC0	 ; IRQ#0 priority
STRB	 r1,[r0,#0]	 ; Set IRQ0 priority at offset=0.

	 ; Note : Byte store
	 ;(IRQ#1 will have offset = 1)

DSB ; Data synchronization barrier. Make sure
	 ; everything ready before enabling interrupt
MOV r0, #0    ; select IRQ#0
BL EnableIRQ

...
;------------------------
; functions

SetupIrqHandler
; Input R0 = IRQ number
; R1 = IRQ handler
PUSH {R0, R2, LR}
LDR R2,=NVIC_VECTTBL ; Get vector table offset
LDR R2,[R2]
ADD R0, #16 ; Exception number = IRQ number + 16
LSL R0, R0, #2 ; Times 4 (each vector is 4 bytes)
ADD R2, R0 ; Find vector address
STR R1,[R2] ; store vector handler
POP {R0, R2, PC} ; Return

EnableIRQ
	 ; Input R0 = IRQ number
	 PUSH {R0 – R3, LR}
	 AND R1, R0, #0x1F ; Get lower 5 bit to find bit pattern
	 MOV R2, #1
	 LSL R2, R2, R1 ; Bit pattern in R2
	 BIC R0, #0x1F
	 LSR  R0, #3 ; word offset. (IRQ number can be
	    ; higher than 32)
	 LDR R1, =NVIC_SETEN
	 STR R2,[R1, R0] ; Set enable bit
	 POP {R0 – R3, PC} ; Return
	 ;------------------------
	 ; Exception handlers
Hf_Handler
	 ...  ; insert your code here
	 BX   LR ; Return
Nmi_Handler
	 ...  ; insert your code here
	 BX   LR ; Return
Irq0_Handler
	 ...  ; insert your code here
	 BX   LR ; Return
	 ;------------------------
	 AREA | Header Data|, DATA
	 ALIGN 4
	 ; Relocated vector table
VectorTableBase SPACE 256 ; Number of bytes

19311.5  Using SVC

VectorTableEnd ; (256 / 4 = up to 64 exceptions)
MyData1 DCD 0 ; Variables
MyData2 DCD 0

  END ; End of file

This is a slightly long example. Let’s start from the end, the data region, first.
In the data memory region (almost the end of the program), we define a space of 256 bytes as a

vector table (SPACE 256). This allows up to 64 exception vectors to be stored here. You might want to
change the size if you want less or more space for the vector table. The other software variables follow
the vector table space, so the variable MyData1 is now in address 0x20000100.

At the beginning of the code, we defined a number of address constants for the rest of the program. So,
instead of using numbers, we can use these constant names to make the program easier to understand.

The initial vector table now contains the reset vector, the NMI vector, and the hard fault handler
vector. The preceding example code illustrates how to set up the exception vectors and does not contain
actual NMI, hard fault, or IRQ handlers. Depending on the actual application, these handlers will have
to be developed. The example uses branch with exchange state (BX) Link register (LR) as the excep-
tion return, but that could be replaced by other valid exception return instructions.

After the initialization of registers, we copy the vector handlers to the new vector table in the
SRAM. This is done by one multiple load and one multiple store instruction. If more vectors need to be
copied, we can simply add extra load/store multiple instructions or increase the number of words to be
copied for each pair of load and store instructions.

After the vector table is ready, we can relocate the vector table to the new one in the SRAM. How-
ever, to ensure that the transfer of the vector handler is complete, the DSB instruction is used.

We then need to set up the rest of the interrupt setting. The first one is the priority group setup. This
needs to be done only once. In the example, two subroutines called SetupIrqHandler and EnableIRQ
have been developed to make it easier to set up interrupts. Using the same code and simply changing
the NVIC_SETEN to NVIC_CLREN, we can also add a similar function called DisableIRQ. After the
handler and priority level have been set up, the IRQ can then be enabled.

11.5  Using SVC
SVC is a common way to allow user applications to access the application programming interface
(API) in an OS. This is because the user applications only need to know what parameters to pass to the
OS; they don’t need to know the memory address of API functions.

SVC instructions contain a parameter, which is 8-bit immediate data inside the instruction. The
value is required for using the SVC instruction. For example:

SVC #3 ; Call system service number 3

The alternative syntax can also be used (without the “#”):

SVC 3 ; Call system service number 3

Inside the SVC handler, the parameter can be extracted back from the instruction by locating the
executed SVC instruction from the stacked PC. To do this, the procedures illustrated in Figure 11.2 can
be used.

194 CHAPTER 11  Exception Programming

Here’s some simple assembly code to do this:

svc_handler
	 TST	 LR, #0x4	 ; Test EXC_RETURN number in LR bit 2
	 ITE	 EQ	 ; if zero (equal) then
	 MRSEQ	 R0, MSP	 ; Main Stack was used, put MSP in R0
	 MRSNE	 R0, PSP	 ; else, Process Stack was used, put PSP
			 ; in   R0
	 LDR	 R1,[R0,#24]	 ; Get stacked PC from stack
	 LDRB	 R0,[R1,# −2]	 ; Get the immediate data from the
			 ; instruction
	 ; Now the immediate data is in R0
	 ...
	 BX  LR		 ; Return to calling function

Once the calling parameter of the SVC is determined, the corresponding SVC function can be exe-
cuted. An efficient way to branch into the correct SVC service code is to use table branch instructions
such as Table Branch Byte (TBB) and Table Branch Halfword (TBH). However, if the table branch
instruction is used, unless it is certain that the SVC calling parameter contains a correct value, you
should do a value check on the parameter to prevent invalid SVC calling from crashing the system.

Note that passing of parameters to the SVC handler and the return value from the SVC handler has
to be carried out via stack frame. The reason for this is covered in the next section.

Because an SVC cannot request another SVC service via the exception mechanism, the SVC han-
dler should directly call another SVC function (for example, BL).

11.6  SVC Example: Use for Text Message Output Functions
Previously we developed various subroutines for output functions. Sometimes it is not good enough
to use BL to call the subroutines—for example, when the software code is running in nonprivileged
access level and the text output I/O need privileged accesses. In these cases, we might want to use

Figure  11.2

One Way to Extract the SVC Parameter.

Determine which stack
was used in calling

process using the LR
value (bit[2])

Locate stacked
PC using MSP

Locate stacked
PC using PSP

Extract immediate
value from stacked PC

Bit 2 5 0

Bit 2 5 1

19511.6  SVC Example: Use for Text Message Output Functions

SVC to act as an entry point for the output functions. For example, a user program can use SVC with
different parameters to access different services:

LDR   R0,=HELLO_TXT
SVC   #0 ; Display string pointed to by R0
MOV   R0,#'A'
SVC   #1 ; Display character in R0
LDR   R0,=0xC123456
SVC   #2 ; Display hexadecimal value in R0
MOV   R0,#1234
SVC   #3 ; Display decimal value in R0

To use SVC, we might need to set up the SVC handler if the vector table is relocated to SRAM.
We can modify the function that we have created to handle the interrupt (SetupIrqHandler function in
previous section). The only difference is that this function takes an exception type as input (SVC is
exception type 11). In addition, this time we have further optimized the code to use the 32-bit Thumb
instruction features:

SetupExcpHandler	 ; Setup vector in relocated vector table in SRAM
	 ;Input R0 = Exception number
	 ;	 R1 = Exception handler
	 PUSH	 {R0, R2, LR}
	 LDR	 R2,=NVIC_VECTTBL ; Get vector table offset
	 LDR	 R2,[R2]
	 STR.W	 R1,[R2, R0, LSL #2] ; store vector handler in [R2+R0<<2]
	 POP	 {R0, R2, PC} ; Return

For svc_handler, the SVC calling number can be extracted as in the previous example, and the
parameter passed to the SVC can be accessed by reading from the stack. In addition, the decision
branches to reach various functions are added:

svc_handler
TST LR, #0x4 ; Test EXC_RETURN number in LR bit 2
ITTEE EQ ; if zero (equal) then
MRSEQ R1, MSP ; Main Stack was used, put MSP in R1
MRSNE R1, PSP ; else, Process Stack was used, put PSP
 ; in R1
LDR R0,[R1,#0] ; Get stacked R0 from stack
LDR R1,[R1,#24] ; Get stacked PC from stack
LDRB R1,[R1,#−2] ; Get the immediate data from the
 ; instruction
; Now the immediate data is in R1, input parameter is in R0
PUSH {LR} ; Store LR to stack
CBNZ R1,svc_handler_1
BL Puts ; Branch to Puts
B svc_handler_end

svc_handler_1
CMP R1,#1
BNE svc_handler_2
BL Putc ; Branch to Putc
B svc_handler_end

196 CHAPTER 11  Exception Programming

svc_handler_2
CMP R1,#2
BNE svc_handler_3
BL PutHex ; Branch to PutHex
B svc_handler_end

svc_handler_3
CMP R1,#3
BNE svc_handler_4
BL PutDec ; Branch to PutDec
B svc_handler_end

svc_handler_4
B error ; input not known
...

svc_handler_end
POP {PC} ; Return

The svc_handler code should be put close together with the outputting functions so that we can
ensure that they are within the allowed branch range.

Notice that instead of the current contents of the register bank, the stacked register contents
are used for parameter passing. This is because if a higher-priority interrupt takes place when the
SVC is executed, the SVC starts immediately after other interrupt handlers (tail chaining), and the
contents of R0–R3 and R12 might be changed by the executed interrupt handler. This is caused
by the characteristic that unstacking is not carried out if there is tail chaining of interrupts. For
example:

A parameter is put in R0.1.	

SVC is executed at the same time as a higher-priority interrupt takes place.2.	

Stacking is carried out, and R0–R3, R12, LR, PC, and xPSR are saved to the stack.3.	

The interrupt handler is executed. R0–R3 and R12 can be changed by the handler. This is acceptable 4.	
because these registers will be restored by hardware unstacking.
The SVC handler tail chains the interrupt handler. When SVC is entered, the contents in R0–R3 and 5.	
R12 can be different from the value when SVC is called. However, the correct parameter is stored
in the stack and can be accessed by the SVC handler.

Make the Most of the Addressing Modes
From the code examples of the SetupIrqHandler and SetupExcpHandler routines, we find that the code can be
shortened a lot if we use the addressing mode feature in the Cortex-M3. In SetupIrqHandler, the destination
address of the IRQ vector is calculated, and then, the store is carried out:

SetupIrqHandler /* R0 = IRQ number, R1 = handler address */
PUSH {R0, R2, LR}
LDR R2,=NVIC_VECTTBL ; Get vector table offset  ; Step 1
LDR R2,[R2]  ; Step 2
ADD R0, #16 ; Exception number = IRQ number + 16  ; Step 3
LSL R0, R0, #2  ; Times 4 (each vector is 4 bytes) ; Step 4
ADD R2, R0  ; Find vector address ; Step 5
STR R1,[R2]  ; store vector handler ; Step 6
POP {R0, R2, PC}  ; Return

19711.7  Using SVC with C

11.7  Using SVC with C
In most cases, an assembler handler code is needed for parameter passing to SVC functions. This is
because the parameters should be passed by the stack, not by registers, as explained earlier. If the SVC
handler is to be developed in C, a simple assembly wrapper code can be used to obtain the stacked
register location and pass it on to the SVC handler. The SVC handler can then extract the SVC number
and parameters from the stack pointer information. Assuming that the RealView Development Suite
(RVDS) or Keil Microcontroller Development Kit for ARM (MDK-ARM) is used, the assembler wrap-
per can be implemented with an Embedded Assembler:

// Assembler wrapper for extracting stack frame starting location.
// Starting address of stack frame is put into R0 and then branch
// to the actual SVC handler.
__asm void svc_handler_wrapper(void)
{
  TST LR, #4
  ITE EQ
  MRSEQ R0, MSP
  MRSNE R0, PSP
  B __cpp(svc_handler)
} // No need to add return (BX LR) at the end of this wrapper
 // because return of svc_handler will return execution to where
 // SVC is called from

The rest of the SVC handler can then be implemented in C using R0 as input (stack frame starting
location), which is used to extract the SVC number and passing parameters (R0–R3):

In SetupExcpHandler, the operation Steps 4–6 are reduced to just one step:

SetupExcpHandler /* R0 = exception number, R1 = handler address */
PUSH {R0, R2, LR}
LDR R2,=NVIC_VECTTBL ; Get vector table offset
LDR R2,[R2]
STR.W R1,[R2, R0, LSL #2] ; store vector handler in
	 ; [R2+R0<<2]
POP {R0, R2, PC}  ; Return

In general, we can reduce the number of instructions required if the data address is like one of these:

Rn + (2^N) × Rm•	
Rn +/– immediate_offset•	

For the SetupIrqHandler routine, the shortest code we can get is this:

SetupIrqHandler
PUSH {R0, R2, LR}
LDR R2,=NVIC_VECTTBL ; Get vector table offset ; Step 1
LDR R2,[R2] ; Step 2
ADD R2, #(16*4) ; Get IRQ vector start ; Step 3
STR.W R1,[R2, R0, LSL #2] ; Store vector handler ; Step 4
POP {R0, R2, PC} ; Return

198 CHAPTER 11  Exception Programming

// SVC handler in C, with stack frame location as an input parameter
// used as a memory pointer to an array of arguments.
// svc_args[0] = R0 , svc_args[1] = R1
// svc_args[2] = R2 , svc_args[3] = R3
// svc_args[4] = R12, svc_args[5] = LR
// svc_args[6] = Return address (Stacked PC)
// svc_args[7] = xPSR
void svc_handler(unsigned int * svc_args)
{
 unsigned int svc_number;
 unsigned int svc_r0;
 unsigned int svc_r1;
 unsigned int svc_r2;
 unsigned int svc_r3;

 svc_number = ((char *) svc_args[6])[-2]; // Memory[(Stacked PC)-2]
 svc_r0 = ((unsigned long) svc_args[0]);
 svc_r1 = ((unsigned long) svc_args[1]);
 svc_r2 = ((unsigned long) svc_args[2]);
 svc_r3 = ((unsigned long) svc_args[3]);
 printf ("SVC number = %xn", svc_number);
 printf ("SVC parameter 0 = %x\n", svc_r0);
 printf ("SVC parameter 1 = %x\n", svc_r1);
 printf ("SVC parameter 2 = %x\n", svc_r2);
 printf ("SVC parameter 3 = %x\n", svc_r3);
 return;
}

Note that SVC cannot return results to the calling program in the same way as in normal C functions.
Normal C functions return values by defining the function with a data type such as unsigned int func()
and use return to pass the return value, which actually puts the value in register R0. If an SVC handler
put return values in register R0–R3 when exiting the handler, the register values would be overwritten
by the unstacking sequence. Therefore, if an SVC has to return results to a calling program, it must
directly modify the stack frame so that the value can be loaded into the register during unstacking.

To call an SVC inside a C program for ARM RVDS or Keil MDK-ARM, we can use the _ _svc
compiler keyword. For example, if four variables are to be passed to an SVC function number 3, an
SVC named call_svc_3 can be declared as

void __svc(0x03) call_svc_3(unsigned long svc_r0, unsigned long
svc_r1, unsigned long svc_r2, unsigned long svc_r3);

This will then allow the C program code to call the SVC function by

int main(void)
{
 unsigned long p0, p1, p2, p3; // parameters to pass to SVC handler
 ...
 call_svc_3(p0, p1, p2, p3); // call SVC number 3, with parameters
 // p0, p1, p2, p3 pass to the SVC
 ...
 return;
}

19911.7  Using SVC with C

Detailed information on using the _ _svc keyword in RVDS or RealView C Compiler can be found
in the RVCT 4.0 Compilation Tools Compiler Reference Guide [Ref. 8].

For users of the Gnu’s Not Unix (GNU) tool chain, because there is no _ _svc keyword in GNU
C Compiler (GCC), the SVC has to be accessed by an inline assembler. For example, if the SVC call
number 3 is needed with one input variable and it returns one variable via register R0 (according to the
AAPCS [Ref. 5], the first passing variable uses register R0), the following inline assembler code can
be used to call the SVC:

int MyDataIn = 0x123;
__asm __volatile ("mov R0, %0\n"
	 "svc 3 \n" : "" : ""r" (MyDataIn));

This inline assembler code can be broken down into the following parts, with input data specified by r
(MyDataIn) and no output field (indicated as "" in the preceding code):

__asm (assembler_code : output_list : input_list)

More examples using inline assembler in the GNU tool chain can be found in Chapter 19.
For complete details on passing parameters to or from inline assembler, refer to the GNU tool chain
documentation.

201Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00015-6

In This Chapter

Running a System with Two Separate Stacks.. 201
Double-Word Stack Alignment.. 204
Nonbase Thread Enable... 205
Performance Considerations... 206
Lockup Situations.. 208
FAULTMASK... 210

12.1  Running a System with Two Separate Stacks
One of the important features of ARMv7-M architecture is the capability to allow the user application
stack to be separated from the privileged/kernel stack. If the optional Memory Protection Unit (MPU)
is implemented, it could be used to block user applications from accessing kernel stack memory so that
they cannot crash the kernel by memory corruption.

Typically, a robust system based on the Cortex™-M3 has the following properties:

Exception handlers using Main Stack Pointer (MSP)•	
Kernel code invoked by a System Tick (SYSTICK) exception at regular intervals, running in the •	
privileged access level for task scheduling and system management
User applications running as threads with the user access level (nonprivileged); these applications •	
use Process Stack Pointer (PSP)
Stack memory for kernel and exception handlers is pointed to by the MSP, and the stack memory •	
is restricted to privileged accesses only, if the MPU is available
Stack memory for user applications is pointed to by the PSP•	

Assume that the system memory has a Static Random Access Memory (SRAM) memory and a
Memory Protection Unit (MPU), we could set up the MPU so that the SRAM is divided into two
regions for user and privileged access (see Figure 12.1). Each region is used by application data, as well
as by stack memory space. Since stack operation in the Cortex-M3 is full descending, the initial value
of stack pointers needs to be pointed to the top of the regions.

Advanced Programming
Features and System
Behavior 12

CHAPTER

202 CHAPTER 12  Advanced Programming Features and System Behavior

After power-up, only the MSP is initialized (by fetching address 0x0 in the power-up sequence).
Additional steps are required to set up a completely robust two-stack system. For applications in assem-
bly code, it can simply be

; Start at privileged level (this code locates in user
; accessible memory)
BL	 MpuSetup	 ; Setup MPU regions and enable memory
 	 ; protection
LDR	 R0,=PSP_TOP	 ; Setup Process SP to top of process stack
MSR PSP, R0
BL	 SystickSetup	 ; Setup Systick and systick exception to
 	 ; invoke OS kernel at regular intervals
MOV	 R0, #0x3	 ; Setup CONTROL register so that user
 	 ; program use PSP,
MSR	 CONTROL, R0 ; and switch current access level to user
ISB	 ; Instruction Synchronization Barrier
B	 UserApplicationStart ; Now we are in user access
 				 ; level. Start user code

This arrangement is fine for assembler, but for C programs, switching stack pointers in the middle
of a C function can cause loss of local variables (because in C functions or subroutines, local variables
may be put onto stack memory). The Cortex-M3 Technical Reference Manual (TRM) [Ref. 1] suggests
that we use an interrupt service routine (ISR) like Supervisor Call (SVC) to invoke the kernel, and then
change the stack pointer by modifying the EXC_RETURN value (see Figure 12.2).

In most cases, EXC_RETURN modification and stack switching are included in the operating
system (OS). After the user application starts, the SYSTICK exception can be used regularly to invoke
the OS for system management and possibly arrange context switching, if needed (see Figure 12.3).

Figure 12.1

Example Memory Use with Privileged Data and User Application Data.

User accessible

Memory
address

Main stack pointer
initial value

Privileged
data

Privileged
stack

Privileged
access only

SRAM

User data

User stack

Process stack
pointer initial value

20312.1  Running a System with Two Separate Stacks

Note that context switching is carried out in PendSV (a low-priority exception) to prevent context
switching at the middle of an interrupt handler.

However, many applications do not require an OS, but it is still helpful to use separate stacks for
different sections of application code as a way to improve reliability. One possible way to handle this is
to start Cortex-M3 with the MSP pointed to a process stack region. This way the initialization is done
with the process stack region but using MSP. Before starting the user application, the following code
is executed:

; Start at privileged level, MSP point to User stack
MpuSetup();	 // Setup MPU regions and enable memory protection
SystickSetup();	 // Setup Systick and systick exception for routine
	 // system management code
SwitchStackPointer();	 // Call an assembly subroutine to switch SP
 	 /*; ------Inside SwitchStackPointer -----
 	 PUSH {R0, R1, LR}

Figure 12.2

Initialization of Multiple Stacks in a Simple OS.

Initialization

OS
initialization

Setup PSP and
create user
stack frame
(PC, xPSR)

Modify
EXC_RETURN
to 0xFFFFFFFD

and return

User
application

Operating system

User stack
frame load to
registers

SVC

EXC_RETURN
� 0xFFFFFFF9

Privileged
handler

Privileged
thread

User thread

Figure 12.3

Context Switching in a Simple OS.

OS
system

management

Set PendSV
to carry out

context switch
later

Save PSP for
application #1,
and set PSP to
stack frame for
application #2

User
application #2

User
application #1

SYSTICK

User stack
frame #2 load

to registers

SYSTICK
exception

PendSV

Register
contents

saved to stack
frame #1

Exception
return

EXC_RETURN
� 0xFFFFFFFD

Privileged
handler

Privileged
thread

User thread

204 CHAPTER 12  Advanced Programming Features and System Behavior

 	 MRS R0, MSP 	 ; Save current stack pointer
 	 LDR R1, =MSP_TOP 	 ; Change MSP to new location
 	 MSR MSP, R1
 	 MSR PSP, R0 	 ; Store current stack pointer in PSP
 	 MOV R0, #0x3
 	 MSR CONTROL, R0 	 ; Switch to user mode, and use PSP as
	 ; current stack
 	 POP {R0, R1, PC} 	 ; Return
 	 ; ------ Back to C program -----*/
	; Now we are in User mode, using PSP and the local variables
	; still here
	UserApplicationStart();	 // Start application code in user mode

12.2  Double-Word Stack Alignment
In applications that conform to AAPCS1, it is necessary to ensure that the stack pointer value at function
entry should be aligned to the double word address. To achieve this requirement, the stacking address
of registers at exception handling is adjusted accordingly. This is a configurable option on the Cortex-
M3 processor. To enable this feature, the STKALIGN bit in the Nested Vectored Interrupt Controller
(NVIC) Configuration Control register needs to be set (see Table D.18 in Appendix D). For example, if
CMSIS compliant device driver is used in C language project

SCB->CCR = SCB->CCR | 0x200;

If the project is in C but CMSIS is not used,

#define NVIC_CCR *((volatile unsigned long *) (0xE000ED14))
NVIC_CCR = NVIC_CCR | 0x200; /* Set STKALIGN in NVIC */

This can also be done in assembly language

LDR	 R0,=0xE000ED14	 ; Set R0 to be address of NVIC CCR
LDR	 R1, [R0]
ORR.W	 R1, R1, #0x200	 ; Set STKALIGN bit
STR	 R1, [R0]	 ; Write to NVIC CCR

When the STKALIGN bit is set during exception stacking, bit 9 of the stacked xPSR (combined
Program Status Register) is used to indicate whether a stack pointer adjustment has been made to align
the stacking. When unstacking, the stack pointer (SP) adjustment checks bit 9 of the stacked xPSR and
adjusts the SP accordingly.

To prevent stack data corruption, the STKALIGN bit must not be changed within an exception
handler. This can cause a mismatch of stack pointer location before and after the exception.

This feature is available from Cortex-M3 revision 1 onward. Early Cortex-M3 products based on
revision 0 do not have this feature. In Cortex-M3 revision 2, this feature is enabled by default whereas
in revision 1, this needs to be turned on by software.

This feature should be used if the AAPCS conformation is required.

1Procedure Call Standard for the ARM Architecture (AAPCS) [Ref. 5]. An advisory note has been published on the ARM web
site regarding SP alignment and AAPCS; see http://infocenter.arm.com/help/topic/com.arm.doc.ihi0046a/IHI0046A_ABI_
Advisory_1.pdf.

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0046a/IHI0046A_ABI_

20512.3  Nonbase Thread Enable

12.3  Nonbase Thread Enable
In the Cortex-M3, it is possible to switch a running interrupt handler from privileged level to user
access level. This is needed when the interrupt handler code is part of a user application and should
not be allowed to have privileged access. This feature is enabled by the Nonbase Thread Enable
(NONBASETHRDENA) bit in the NVIC Configuration Control register.

To use this feature, an exception handler redirection is involved. The vector in the vector table
points to a handler running in privileged mode but located in user mode accessible memory

redirect_handler
 	 PUSH	 {LR}
 	 SVC	 0	 ; A SVC function to change from privileged to
 	 ; user mode
 	 BL User_IRQ_Handler
 	 SVC	 1	 ; A SVC function to change back from user to
 	 ; privileged mode
 	 POP	 {PC}	 ; Return

The SVC handler is divided into three parts as follows:

Determine the parameter when calling SVC.•	
SVC service #0 enables the NONBASETHRDENA, adjusts the user stack and EXC_RETURN •	
value, and returns to the redirect handler in user mode, using the process stack.
SVC service #1 disables the NONBASETHRDENA, restores the user stack pointer position, and •	
returns to the redirect handler in privileged mode, using the main stack.

svc_handler
	 TST	 LR,  #0x4	 ; Test EXC_RETURN bit 2
	 ITE	 EQ	 ; if zero then
	 MRSEQ	 R0,  MSP	 ; Get correct stack pointer to R0
	 MRSNE	 R0,  PSP
	 LDR	 R1,[R0, #24]	 ; Get stacked PC
	 LDRB	 R0,[R1, #−2]	 ; Get parameter at stacked PC – 2
	 CBZ	 r0, svc_service_0
	 CMP	 r0,  #1
	 BEQ	 svc_service_1
	 B.W	 Unknown_SVC_Request

svc_service_0	 ; Service to switch handler from privileged mode to
 	 ; user mode
	 MRS	 R0,  PSP	 ; Adjust PSP

Use This Feature with Caution
Because of the need to manually adjust the stack and modify the stacked data, this feature should be avoided
in normal application programming. If it is necessary to use this feature, it must be done very carefully, and
the system designer must ensure that the interrupt service routine is terminated correctly. Otherwise, it could
cause some interrupts with the same or lower priority levels to be masked.

206 CHAPTER 12  Advanced Programming Features and System Behavior

	 SUB	 R0,  R0, #0x20	 ; PSP = PSP - 0x20
	 MSR	 PSP,  R0
	 MOV	 R1, #0x20	 ; Copy stack frame from main stack to
	 ; process stack

svc_service_0_copy_loop
	 SUBS	 R1, R1, #4
	 LDR	 R2,[SP, R1]
	 STR	 R2,[R0, R1]
	 CMP	 R1, #0
	 BNE	 svc_service_0_copy_loop
	 STRB	 R1,[R0, #0x1C]	 ; Clear stacked IPSR of user stack to 0
	 LDR	 R0, =0xE000ED14	 ; Set Non-base thread enable in CCR
	 LDR	 r1,[r0]
	 ORR	 r1, #1
	 STR	 r1,[r0]
	 ORR	 LR, #0xC	 ; Change LR to return to thread, using PSP
	 BX	 LR

svc_service_1	 ; Service to switch handler back from user mode to
	 ; privileged mode
	 MRS	 R0, PSP	 ; Update stacked PC in privileged
	 ; stack so that it
	 LDR	 R1,[R0, #0x18]	 ; return to the instruction after 2nd
	 ; SVC in redirect
	 STR	 R1,[SP, #0x18]	 ; handler
	 MRS	 R0, PSP	 ; Adjust PSP back to what it was
	 ; before 1st SVC
	 ADD	 R0, R0, #0x20
	 MSR	 PSP, R0
	 LDR	 R0, =0xE000ED14	 ; Clear Non-base thread enable in CCR
	 LDR	 r1,[r0]
	 BIC	 r1, #1
	 STR	 r1,[r0]
	 BIC	 LR, #0xC	 ; Return to handler mode, using main
	 ; stack
	 BX	 LR

The SVC services are used because the only way you can change the Interrupt Status register
(IPSR) is via an exception return. Other exceptions, such as software-triggered interrupts, could be
used, but they are not recommended because they are imprecise and could be masked, which means
that there is a possibility that the required stack copying and switch operation is not carried out imme-
diately. The sequence of the code is illustrated in Figure 12.4, which shows the stack pointer changes
and the current exception priority.

In this figure, the manual adjustment of the PSP inside the SVC services is highlighted by circles
indicated by dotted lines.

12.4  Performance Considerations
To get the best out of the Cortex-M3, a few aspects need to be considered. First, we need to avoid
memory wait states. During the design stage of the microcontroller or SoC, the designer should

20712.4  Performance Considerations

optimize the memory system design to allow instruction and data accesses to be carried out at
the same time, and use 32-bit memories, if possible. For developers, the memory map should be
arranged so that program code is executed from the code region and the majority of data accesses is
done via the system bus. This way data accesses can be carried out at the same time as instruction
fetches.

Second, the interrupt vector table should also be put into the code region, if possible. Thus, vector
fetch and stacking can be carried out at the same time. If the vector table is located in the SRAM, extra
clock cycles might result in interrupt latency because both vector fetch and stacking could share the
same system bus (unless the stack is located in the code region, which uses a D-Code bus).

If possible, avoid using unaligned transfers. An unaligned transfer might take two or more Advanced
High-Performance Bus (AHB) transfers to complete and will slow program performance, so plan your
data structure carefully. In assembly language with ARM tools, you can use the ALIGN directive to
ensure that a data location is aligned.

Most of you might be using C language for development, but for those who are using assembly, you
can use a few tricks to speed up parts of the program.

Figure 12.4

Operation of NONBASETHRDENA.

Main stack
pointer
(MSP)

Process stack
pointer
(PSP)

Processor state
IPSR

Thread Handler Handler

Memory
address

User IRQ
handler

Interrupt SVC 0 SVC 1
SVC 0
return

SVC 1
return

Stack frame
copied to

process stack

Thread Handler Handler Thread

Interrupt
return

0 IRQ number 11 (SVC) 0 11 (SVC) IRQ num 0

PSP
manually
adjusted

PSP
manually
adjusted

Priority level

Interrupt

Privileged
thread

User thread

IRQ active

SVC

208 CHAPTER 12  Advanced Programming Features and System Behavior

Use memory access instruction with offset. When multiple memory locations in a small region are 1.	
to be accessed, instead of writing

LDR	 R0, =0xE000E400	 ; Set interrupt priority #3,#2,#1,#0
LDR	 R1, =0xE0C02000	 ; priority levels
STR	 R1,[R0]
LDR	 R0, =0xE000E404	 ; Set interrupt priority #7,#6,#5,#4
LDR	 R1, =0xE0E0E0E0	 ; priority levels
STR	 R1,[R0]
you can reduce the program code to the following:
LDR	 R0, =0xE000E400	 ; Set interrupt priority #3,#2,#1,#0
LDR	 R1, =0xE0C02000	 ; priority levels
STR	 R1,[R0]
LDR	 R1,=0xE0E0E0E0	 ; priority levels
STR	 R1,[R0,#4]	 ; Set interrupt priority #7,#6,#5,#4

The second store uses an offset of the first address and hence reduces the number of instructions.

Combine multiple memory accesses into Load/Store Multiple instructions (LDM/STM). The 2.	
preceding example can be further reduced by using STM instruction as follows:

LDR	 R0,=0xE000E400	 ; Set interrupt priority base
LDR	 R1,=0xE0C02000	 ; priority levels #3,#2,#1,#0
LDR	 R2,=0xE0E0E0E0	 ; priority levels #7,#6,#5,#4
STMIA	 R0, {R1, R2}

Use IF-THEN (IT) instruction blocks to replace small conditional branches. Since the Cortex-M3 is 3.	
a pipelined processor, a branch penalty happens when a branch operation is taken. If the conditional
branch operation is used to skip a few instructions, this can be replaced by the IT instruction block,
which might save a few clock cycles.

If an operation can be carried out by either two Thumb4.	 ® instructions or a single Thumb-2 instruction,
the Thumb-2 instruction method should be used because it gives a shorter execution time, despite
the fact that the memory size is the same.

12.5  Lockup Situations
When an error condition occurs, the corresponding fault handler will be triggered. If another fault takes
place inside the usage fault/bus fault/memory management fault handler, the hard fault handler will be
triggered. However, what if we get another fault inside the hard fault handler? In this case, a lockup
situation will take place (see Figure 12.5).

12.5.1  What Happens During Lockup?
During lockup, the program counter will be forced to 0xFFFFFFFX and will keep fetching from that
address. In addition, an output signal called LOCKUP from the Cortex-M3 will be inserted to indicate
the situation. Chip designers might use this signal to trigger a reset at the system reset generator.

20912.5  Lockup Situations

Lockup can take place when

Faults occur inside the hard fault handler (double fault)•	
Faults occur inside the nonmaskable interrupt (NMI) handler•	
Bus faults occur during the reset sequence (initial SP or program counter (PC) fetch)•	

For double-fault situations, it is still possible for the core to respond to an NMI and execute the NMI
handler. But after the handler completes, it will return to the lockup state, with the program counter
restored to 0xFFFFFFFX. In this case, the system locks up and the current priority level is held at -1.
If an NMI occurs, the processor will still preempt and execute the NMI handler because the NMI has
a higher priority (-2) than the current priority level (-1). When the NMI is complete and returns to the
lockup state, the current exception priority is returned to -1.

Normally, the best way to exit a lockup is to perform a reset. Alternatively, for a system with a
debugger attached, it is possible to halt the core, change the PC to a different value, and start the pro-
gram execution from there. In most cases this might not be a good idea, since a number of registers,
including the interrupt system, might need reinitialization before the system can be returned to normal
operation.

You might wonder why we do not simply reset the core when a lockup takes place. You might want
to do that in a live system, but during software development, we should first try to find out the cause
of the problem. If we reset the core immediately, we might not be able to analyze what went wrong
because registers will be reset and hardware status will be changed. In most Cortex-M3 microcon-
trollers, a watchdog timer can be used to reset the core if it enters the lockup state.

Note that a bus fault that occurs during stack when entering a hard fault handler or NMI handler
does not cause lockup, but the bus fault handler will be pended.

Figure 12.5

Only a Fault Occurring During a Hard Fault or NMI Handler Will Cause Lockup.

21/22

0 to 255

Priority

Hard fault or NMI handler

Stacking Unstacking

Faults that take place here cause
LOCKUP Faults that take place

here do not cause
LOCKUP

Faults that take place
here do not cause

LOCKUP

Time

210 CHAPTER 12  Advanced Programming Features and System Behavior

12.5.2  Avoiding Lockup
It is important to take extra care to prevent lockup problems when you’re developing an NMI or hard
fault handler. For example, we can avoid unnecessary stack accesses in a hard fault handler unless we
know that the memory is functioning correctly and the stack pointer is still valid. In developing com-
plex systems, one of the possible causes of a bus fault or memory fault is stack pointer corruption. If
we start the hard fault handler with something like this

hard_fault_handler
	 PUSH	 {R4-R7,LR}	 ; Bad idea unless you are sure that the
 	 ; stack is safe to use!
	 . . .

and if the fault was caused by a stack error, we could enter lockup in our hard fault handler straight
away. In general, when programming hard fault, bus fault, and memory management fault handlers, it
might be worth checking whether the stack pointer is in a valid range before we carry out more stack
operations. For coding NMI handlers, we can try to reduce risk caused by stack operation by using
R0–R3 and R12 only, since they are already stacked.

One approach for developing hard fault and NMI handlers is to carry out only the essential tasks
inside the handlers, and the rest of the tasks, such as error reporting, can be pended using a separate
exception, such as PendSV or a software interrupt. This helps to ensure that the hard fault handler or
NMI is small and robust.

Furthermore, we should ensure that the NMI and hard fault handler code will not try to use SVC instruc-
tions. Since SVC always has lower priority than hard fault and NMI, using SVC in these handlers will cause
lockup. This might look simple, but when your application is complex and you call functions from different
files in your NMI and hard fault handler, you might accidentally call a function that contains an SVC instruc-
tion. Therefore, before you develop your software, you need to carefully plan the SVC implementation.

12.6  FAULTMASK
FAULTMASK is used to escalate a configurable fault handler (bus fault, usage fault or memory man-
agement fault) to hard fault level without the need to invoke hard fault by a real fault. This allows the
configurable fault handler to pretend to be the hard fault handler. By doing this, the fault handler can
have the ability to

Mask bus fault by setting HFHFNMIGN in Configuration Control register. It can be used to probe 1.	
the bus system without causing lockup. For example, for checking if a bus bridge is working
correctly.
Bypass the MPU. This allows the fault handler to access an MPU protected memory location 2.	
without reprogramming the MPU just to carry out a few transfers to fix faults.

The FAULTMASK usage is different from PRIMASK. PRIMASK is generally used in timing
critical code, but it doesn’t have the ability to mask bus fault or bypass MPU. With PRIMASK set, all
configurable faults will be escalated to hard fault handler. FAULTMASK is used to allow a configurable
fault handler to solve memory-related problems by using features normally only available for a hard
fault handler. However, when FAULTMASK is set, faults such as incorrect undefined instruction, or
using SVC in the wrong priority level, can still cause lockup.

211

CHAPTER

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00016-8

In This Chapter

Overview... 211
MPU Registers... 212
Setting Up the MPU... 218
Typical Setup.. 225

The Memory Protection Unit 13

13.1  Overview
The Cortex™-M3 design includes an optional Memory Protection Unit (MPU). Including the MPU in
the microcontrollers or system-on-chip (SoC) products provides memory protection features, which can
make the developed products more robust. The MPU needs to be programmed and enabled before use.
If the MPU is not enabled, the memory system behavior is the same as though no MPU is present.

The MPU can improve the reliability of an embedded system by

Preventing user applications from corrupting data used by the operating system•	
Separating data between processing tasks by blocking tasks from accessing others’ data•	
Allowing memory regions to be defined as read-only so that vital data can be protected•	
Detecting unexpected memory accesses (for example, stack corruption)•	

In addition, the MPU can also be used to define memory access characteristics such as caching and
buffering behaviors for different regions.

The MPU sets up the protection by defining the memory map as a number of regions. Up to eight
regions can be defined, but it is also possible to define a default background memory map for privileged
accesses. Accesses to memory locations that are not defined in the MPU regions or not permitted by the
region settings will cause the memory management fault exception to take place.

MPU regions can be overlapped. If a memory location falls on two regions, the memory access
attributes and permission will be based on the highest-numbered region. For example, if a trans-
fer address is within the address range defined for region 1 and region 4, the region 4 settings will
be used.

212 CHAPTER 13  The Memory Protection Unit

13.2  MPU Registers
The MPU contains a number of registers. The first one is the MPU Type register. The MPU Type
register can be used to determine whether the MPU is fitted. If the DREGION field is read as 0, the
MPU is not implemented (see Table 13.1).

The MPU is controlled by a number of registers. The first one is the MPU Control register (see
Table 13.2). This register has three control bits. After reset, the reset value of this register is zero, which
disables the MPU. To enable the MPU, the software should set up the settings for each MPU regions,
and then, set the ENABLE bit in the MPU Control register.

By using PRIVDEFENA and if no other regions are set up, privileged programs will be able to
access all memory locations, and only user programs will be blocked. However, if other MPU regions
are programmed and enabled, they can override the background region. For example, for two systems
with similar region setups but only one with PRIVDEFENA set to 1 (the right-hand side in Figure 13.1),
the one with PRIVDEFENA set to 1 will allow privileged access to background regions.

Setting the enable bit in the MPU Control register is usually the last step in the MPU setup code.
Otherwise, the MPU might generate faults by accident before the region configuration is done. In some
situations, it might be worth clearing the MPU Enable at the start of the MPU configuration routine to
make sure that the MPU faults won’t be triggered by accident during setup of MPU regions.

Table 13.1  MPU Type Register (0xE000ED90)

Bits Name Type
Reset
Value Description

23:16 IREGION R 0 Number of instruction regions supported by this MPU;
because ARMv7-M architecture uses a unified MPU, this is
always 0

15:8 DREGION R 0 or 8 Number of regions supported by this MPU; in the Cortex-
M3, this is either 0 (MPU not present) or 8 (MPU present)

0 SEPARATE R 0 This is always 0, as the MPU is unified

Table 13.2  MPU Control Register (0xE000ED94)

Bits Name Type
Reset
Value Description

2 PRIVDEFENA R/W 0 Privileged default memory map enable; when set to 1 and if
the MPU is enabled, the default memory map will be used
for privileged accesses as a background region. If this bit is
not set, the background region is disabled and any access
not covered by any enabled region will cause a fault.

1 HFNMIENA R/W 0 If set to 1, it enables the MPU during the hard fault handler
and nonmaskable interrupt (NMI) handler; otherwise, the
MPU is not enabled (bypassed) for the hard fault handler
and NMI.

0 ENABLE R/W 0 It enables the MPU if set to 1.

21313.2  MPU Registers

The next MPU control register is the MPU Region Number register (see Table 13.3), before each
region is set up, write to this register to select the region to be programmed.

The starting address of each region is defined by the MPU Region Base Address register (see Table
13.4). Using the VALID and REGION fields in this register, we can skip the step of programming the
MPU Region Number register. This might reduce the complexity of the program code, especially if the
whole MPU setup is defined in a lookup table.

We also need to define the properties of each region. This is controlled by the MPU Region Base
Attribute and Size register (see Table 13.5).

The REGION SIZE field (5 bits) in the MPU Region Base Attribute and Size register determines
the size of the region (see Table 13.6).

Table 13.3  MPU Region Number Register (0xE000ED98)

Bits Name Type
Reset
Value Description

7:0 REGION R/W — Select the region that is being programmed. Because eight
regions are supported in the Cortex-M3 MPU, only bit [2:0]
of this register is implemented.

Figure 13.1

The Effect of PRIVDEFENA.

PRIVDEFENA 5 0 PRIVDEFENA 5 1

0

4 GB

Region 0

Region 1

Region 2

Access not
allowed

Region 2
permission

Region 1
permission

Region 0
permission

Region 3
permission

override
region 2

Access not
allowed

0

4 GB

Region 0
permission

Privileged
accesses only

Region 1
permission

Region 2
permission

Region 3
permission

override
region 2

Privileged
accesses only

Region 3

Region 1

Region 0

Region 1

Region 1

Region 2

Region 3

214 CHAPTER 13  The Memory Protection Unit

Table 13.4  MPU Region Base Address Register (0xE000ED9C)

Bits Name Type
Reset
Value Description

31:N ADDR R/W — Base address of the region; N is dependent on the region
size—for example, a 64 KB size region will have a base
address field of [31:16].

4 VALID R/W — If this is 1, the REGION defined in bit [3:0] will be used in
this programming step; otherwise, the region selected by
the MPU Region Number register is used.

3:0 REGION R/W — This field overrides the MPU Region Number register if VALID
is 1; otherwise, it is ignored. Because eight regions are
supported in the Cortex-M3 MPU, the region number override
is ignored if the value of the REGION field is larger than 7.

Table 13.5  MPU Region Base Attribute and Size Register (0xE000EDA0)

Bits Name Type Reset
Value

Description

31:29 Reserved — — —
28 XN R/W — Instruction Access Disable (1 = disable instruction fetch

from this region; an attempt to do so will result in a memory
management fault)

27 Reserved — — —
26:24 AP R/W — Data Access Permission field
23:22 Reserved — — —
21:19 TEX R/W — Type Extension field
18 S R/W — Shareable
17 C R/W — Cacheable
16 B R/W — Bufferable
15:8 SRD R/W — Subregion disable
7:6 Reserved — — —
5:1 REGION SIZE R/W — MPU Protection Region size
0 ENABLE R/W — Region enable

Table 13.6  Encoding of REGION Field for Different Memory Region Sizes

REGION Size Size

b00000 Reserved
b00001 Reserved
b00010 Reserved
b00011 Reserved

21513.2  MPU Registers

The subregion disable field (bit [15:8] of the MPU Region Base Attribute and Size register) is used
to divide a region into eight equal subregions and then to define each as enabled or disabled. If a sub-
region is disabled and overlaps another region, the access rules for the other region are applied. If the
subregion is disabled and does not overlap any other region, access to this memory range will result in
a memory management fault. Subregions cannot be used if the region size is 128 bytes or less. The data
Access Permission (AP) field (bit [26:24]) defines the AP of the region (see Table 13.7).

The XN (Execute Never) field (bit [28]) decides whether an instruction fetch from this region is
allowed. When this field is set to 1, all instructions fetched from this region will generate a memory
management fault when they enter the execution stage.

Table 13.6  �Encoding of REGION Field for Different Memory Region Sizes
Continued

REGION Size Size

b00100 32 bytes

b00101 64 bytes
b00110 128 bytes
b00111 256 bytes
b01000 512 bytes
b01001 1 KB
b01010 2 KB
b01011 4 KB
b01100 8 KB
b01101 16 KB
b01110 32 KB
b01111 64 KB
b10000 128 KB
b10001 256 KB
b10010 512 KB
b10011 1 MB
b10100 2 MB
b10101 4 MB
b10110 8 MB
b10111 16 MB
b11000 32 MB
b11001 64 MB
b11010 128 MB
b11011 256 MB
b11100 512 MB
b11101 1 GB
b11110 2 GB
b11111 4 GB

216 CHAPTER 13  The Memory Protection Unit

The TEX, S, B, and C fields (bit [21:16]) are more complex. Despite that the Cortex-M3 processor
does not have cache, its implementation follows ARMv7-M architecture, which can support external
cache and more advanced memory systems. Therefore, the region access properties can be programmed
to support different types of memory management models.

Table 13.7  Encoding of AP Field for Various Access Permission Configurations

AP Value Privileged Access User Access Description

000 No access No access No access
001 Read/write No access Privileged access only
010 Read/write Read only Write in a user program

generates a fault
011 Read/write Read/write Full access
100 Unpredictable Unpredictable Unpredictable
101 Read only No access Privileged read only
110 Read only Read only Read only
111 Read only Read only Read only

Table 13.8  ARMv7-M Memory Attributes

TEX C B Description Region Shareability

b000 0 0 Strongly ordered (transfers
carry out and complete in
programmed order)

Shareable

b000 0 1 Shared device (write can be
buffered)

Shareable

b000 1 0 Outer and inner write-through;
no write allocate

[S]

b000 1 1 Outer and inner write-back; no
write allocate

[S]

b001 0 0 Outer and inner non cacheable [S]
b001 0 1 Reserved Reserved
b001 1 0 Implementation defined –
b001 1 1 Outer and inner write-back;

write and read allocate
[S]

b010 0 0 Nonshared device Not shared
b010 0 1 Reserved Reserved
b010 1 X Reserved Reserved
b1BB A A Cached memory; BB = outer

policy, AA = inner policy
[S]

Note: [S] indicates that shareability is determined by the S bit field (shared by multiple processors).

21713.2  MPU Registers

In v6 and v7 architecture, the memory system can have two cache levels: inner cache and outer
cache. They can have different caching policies. Because the Cortex-M3 processor itself does not have
a cache controller, the cache policy only affects write buffering in the internal BusMatrix and possibly
the memory controller (see Table 13.8). For most microcontrollers, the usage of memory attributes can
be simplified to just a few memory types (see Figure 13.2).

If you are using a microcontroller with cache memory, then you should program the MPU according
to the cache policy you want to use (e.g., cache disable/write through cache/write back cache). When
TEX[2] is 1, the cache policy for outer cache and inner cache is as shown in Table 13.9.

For more information on cache behavior and cache policy, refer to the ARM Architecture Applica-
tion Level Reference Manual [Ref. 2].

Figure 13.2

Commonly Used Memory Attributes in Microcontrollers.

Flash/ROM

Memory
type

Normal
memory

Normal
memory

Normal
memory

Commonly used
memory attribute

Internal
SRAM

Peripherals
Device
memory

Nonshareable, write through
C 5 1, B 5 0, TEX 5 0, S 5 0

Shareable, write through
C 5 1, B 5 0, TEX 5 0, S 5 1

External
SRAM

Shareable, write back
C 5 1, B 5 1, TEX 5 0, S 5 1

Shareable device
C 5 0, B 5 1, TEX 5 0, S 5 1

Usage

Table 13.9  �Encoding of Inner and Outer Cache Policy When
Most Significant Bit of TEX Is Set to 1

Memory Attribute Encoding
(AA and BB) Cache Policy

00 Noncacheable
01 Write back, write, and read allocate
10 Write through, no write allocate
11 Write back, no write allocate

218 CHAPTER 13  The Memory Protection Unit

13.3  Setting Up the MPU
The MPU register might look complicated, but as long as you have a clear idea of the memory regions
that are required for your application, it should not be difficult. Typically, you need to have the follow-
ing memory regions:

Program code for privileged programs (for example, OS kernel and exception handlers)•	
Program code for user programs•	
Data memory for privileged and user programs in various memory regions (e.g., •	 data and stack
of the application situated in the SRAM (Static Random Access Memory) memory region--
0x20000000 to 0x3FFFFFFF)
Other peripherals•	

It is not necessary to set up a region for the memory in the private peripheral bus range. The MPU
automatically recognizes the private peripheral bus memory addresses and allows privileged software
to perform data accesses in this region.

For Cortex-M3 products, most memory regions can be set up with TEX = b000, C = 1, B = 1.
System devices such as the Nested Vectored Interrupt Controller (NVIC) should be strongly ordered,
and peripheral regions can be programmed as shared devices (TEX = b000, C = 0, B = 1). However,
if you want to make sure that any bus faults occurring in the region are precise bus faults, you should
use a strongly ordered memory attribute (TEX = b000, C = 0, B = 0) so that write buffering is disabled.
However, doing so can reduce system performance.

For users of a Cortex Microcontroller Software Interface Standard (CMSIS) compliant device
driver, the MPU registers can be accessed using the following register names as shown in Table 13.10.
A simple flow for an MPU setup routine is shown in Figure 13.3 on page 220.

Before the MPU is enabled and if the vector table is relocated to RAM, remember to set up the fault
handler for the memory management fault in the vector table, and enable the memory management
fault in the System Handler Control and State register. They are needed to allow the memory manage-
ment fault handler to be executed if an MPU violation takes place.

Table 13.10  MPU Register Names in CMSIS

Register Names MPU Register Address

MPU->TYPE MPU Type register 0xE000ED90
MPU->CTRL MPU Control register 0xE000ED94
MPU->RNR MPU Region Number register 0xE000ED98
MPU->RBAR MPU Region Base Address register 0xE000ED9C
MPU->RASR MPU Region Attribute and Size register 0xE000EDA0
MPU->RBAR_A1 MPU Alias 1 Region Base Address register 0xE000EDA4
MPU->RBAR_A2 MPU Alias 2 Region Base Address register 0xE000EDAC
MPU->RBAR_A3 MPU Alias 3 Region Base Address register 0xE000EDB4
MPU->RASR_A1 MPU Alias 1 Region Attribute and Size register 0xE000EDA8
MPU->RASR_A2 MPU Alias 2 Region Attribute and Size register 0xE000EDB0
MPU->RASR_A3 MPU Alias 3 Region Attribute and Size register 0xE000EDB8

21913.3  Setting Up the MPU

For a simple case of only four required regions, the MPU setup code (without the region checking
and enabling) looks like this:

MPU->RNR = 0;	 // MPU Region Number Register
	 // select region 0
MPU->RBAR = 0x00000000; // MPU Region Base Address Register
	 // Base Address = 0x00000000
MPU->RASR = 0x0307002F; // Region Attribute and Size Register
	 // R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
MPU->RNR = 1; // select region 1
MPU->RBAR = 0x20000000; // Base Address = 0x20000000
MPU->RASR = 0x03070033; // R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
MPU->RNR = 2; // select region 2
MPU->RBAR = 0x40000000; // Base Address = 0x40000000
MPU->RASR = 0x03050033; // R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
MPU->RNR = 3; // select region 3
MPU->RBAR = 0xA0000000; // Base Address = 0xA0000000
MPU->RASR = 0x01040027; // Privileged R/W, TEX=0,S=1,C=0,B=0,
 // 1MB, Enable=1
MPU->CTRL = 1;	 // MPU Control register – Enable MPU

This can also be coded in assembly language:

LDR    R0,=0xE000ED98 ; Region number register
MOV    R1,#0 ; Select region 0
STR    R1, [R0]
LDR    R1,=0x00000000 ; Base Address = 0x00000000
STR    R1, [R0, #4] ; MPU Region Base Address Register
LDR    R1,=0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
STR    R1, [R0, #8] ; MPU Region Attribute and Size Register
MOV    R1,#1 ; Select region 1
STR    R1, [R0]
LDR    R1,=0x20000000 ; Base Address = 0x20000000
STR    R1, [R0, #4] ; MPU Region Base Address Register
LDR    R1,=0x03070033 ; R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
STR    R1, [R0, #8] ; MPU Region Attribute and Size Register
MOV    R1,#2 ; Select region 2
STR    R1, [R0]
LDR    R1,=0x40000000 ; Base Address = 0x40000000
STR    R1, [R0, #4] ; MPU Region Base Address Register
LDR    R1,=0x03050033 ; R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
STR    R1, [R0, #8] ; MPU Region Attribute and Size Register
MOV    R1,#3 ; Select region 3
STR    R1, [R0]
LDR    R1,=0xA0000000 ; Base Address = 0xA0000000
STR    R1, [R0, #4] ; MPU Region Base Address Register
LDR    R1,=0x01040027 ; Privileged R/W, TEX=0,S=1,C=0,B=0, 1MB,
 ; Enable=1
STR    R1, [R0, #8] ; MPU Region Attribute and Size Register
MOV    R1,#1 ; Enable MPU
STR    R1, [R0,#-4] ; MPU Control register
 ; (0xE000ED98-4=0xE000ED94)

220 CHAPTER 13  The Memory Protection Unit

This provides four regions:

•	 Code: 0x00000000–0x00FFFFFF (16 MB), full access, cacheable
Data•	 : 0x20000000–0x02003FFFF (64 MB), full access, cacheable

•	 Peripheral: 0x40000000–0x5FFFFFFF (64 MB), full access, shared device
•	 External device: 0xA0000000–0xA00FFFFF (1 MB), privileged access, strongly ordered, XN

Figure 13.3

Example Steps to Set Up the MPU.

Check MPU Type register
to see if MPU exists and
there are enough regions

Error
No

Yes

Disable MPU

Select region #0

Program region
base address

and configuration

Select region #1

Program region
base address

and configuration

Select region #N

Program region
base address

and configuration

Enable MPU

MPU setup
completed

Region selection and
programming of region

registers can be combined
in one step

Setup for other
regions

22113.3  Setting Up the MPU

By combining region selection and writing to the base address register, we can shorten the code to this:

MPU->RBAR = 0x00000010; // MPU Region Base Address Register
 // Base Address = 0x00000000, valid, region 0
MPU->RASR = 0x0307002F; // Region Attribute and Size Register
 // R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
MPU->RBAR = 0x20000011; // Base Address = 0x20000000, valid, region 1
MPU->RASR = 0x03070033; // R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
MPU->RBAR = 0x40000012; // Base Address = 0x40000000, valid, region 2
MPU->RASR = 0x03050033; // R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
MPU->RBAR = 0xA0000013; // Base Address = 0xA0000000, valid, region 3
MPU->RASR = 0x01040027; // Privileged R/W, TEX=0,S=1,C=0,B=0,
 // 1MB, Enable=1
MPU->CTRL = 1; // MPU Control register – Enable MPU

Or, in assembly:

LDR    R0,=0xE000ED9C ; Region Base Address register
LDR    R1,=0x00000010 ; Base Address = 0x00000000, region 0,
 ; valid=1
STR    R1, [R0, #0] ; MPU Region Base Address Register
LDR    R1,=0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
STR    R1, [R0, #4] ; MPU Region Attribute and Size Register
LDR    R1,=0x20000011 ; Base Address = 0x20000000, region 1,
 ; valid=1
STR    R1, [R0, #0] ; MPU Region Base Address Register
LDR    R1,=0x03070033 ; R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
STR    R1, [R0, #4] ; MPU Region Attribute and Size Register
LDR    R1,=0x40000012 ; Base Address = 0x40000000, region 2,
 ; valid=1
STR    R1, [R0, #0] ; MPU Region Base Address Register
LDR    R1,=0x03050033 ; R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
STR    R1, [R0, #4] ; MPU Region Attribute and Size Register
LDR    R1,=0xA0000013 ; Base Address = 0xA0000000, region 3,
 ; valid=1
STR    R1, [R0, #0] ; MPU Region Base Address Register
LDR    R1,=0x01040027 ; R/W, TEX=0,S=1,C=0,B=0, 1MB, Enable=1
STR    R1, [R0, #4] ; MPU Region Attribute and Size Register
MOV    R1,#1 ; Enable MPU
STR    R1, [R0,#-8] ; MPU Control register
 ; (0xE000ED9C-8=0xE000ED94)

We’ve shortened the code quite a bit. However, you can make further enhancements to create even
faster setup code. This is done using MPU aliased register addresses (see Table D.34 in Appendix D).
The aliased register addresses follow the MPU Region Attribute and Size registers and are aliased
to the MPU Base Address register and the MPU Region Attribute and Size register. They produce a
continuous address of eight words, making it possible to use Load/Store Multiple (LDM and STM)
instructions:

	 LDR   R0,=0xE000ED9C ; Region Base Address register
	 LDR    R1,=MPUconfig ; Table of predefined MPU setup variables

222 CHAPTER 13  The Memory Protection Unit

	 LDMIA  R1!, {R2, R3, R4, R5}; Read 4 words from table
	 STMIA  R0!, {R2, R3, R4, R5}; write 4 words to MPU
	 LDMIA  R1!, {R2, R3, R4, R5}; Read next 4 words from table
	 STMIA  R0!, {R2, R3, R4, R5}; write next 4 words to MPU
	 B       MPUconfigEnd
	 ALIGN 4 ; This is needed to make sure the following table
	 ; is word aligned
MPUconfig	 ; so that we can use load multiple instruction
	 DCD    0x00000010 ; Base Address = 0x00000000, region 0,
	 ; valid=1
	 DCD   0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
	 DCD   0x20000011 ; Base Address = 0x08000000, region 1,
	 ; valid=1
	 DCD   0x03070033 ; R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
	 DCD   0x40000012 ; Base Address = 0x40000000, region 2,
 	 ; valid=1
	 DCD   0x03050033 ; R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
	 DCD   0xA0000013 ; Base Address = 0xA0000000, region 3,
	 ; valid=1
	 DCD   0x01040027 ; R/W, TEX=0,S=1,C=0,B=0, 1MB, Enable=1
MPUconfigEnd
	 LDR   R0,=0xE000ED94 ; MPU Control register
	 MOV   R1,#1 ; Enable MPU
	 STR   R1, [R0]

This solution, of course, can be used only if all the required information is known beforehand.
Otherwise, a more generic approach has to be used. One way to handle this is to use a subroutine
(MpuRegionSetup) that can set up a region based on a number of input parameters and then call it sev-
eral times to set up different regions:

void MpuRegionSetup(unsigned int addr, unsigned int region,
 unsigned int size, unsigned int ap, unsigned int MemAttrib,
 unsigned int srd, unsigned int XN, unsigned int enable)
{ // Setup procedure for each region
 MPU->RBAR = (addr & 0xFFFFFFE0) | (region & 0xF) | 0x10;
 MPU->RASR = ((XN & 0x1)<<28) | ((ap & 0x7)<<24) |
	 ((MemAttrib & 0x3F)<<16) | ((srd&0xFF)<<8) |
	 ((size & 0x1F)<<1)| (enable & 0x1);
 return;
}
void MpuRegionDisable(unsigned int region)
{ // Function to disable an unused region
 MPU->RBAR = (region & 0xF) | 0x10;
 MPU->RASR = 0; // disable
 return;
}
void MpuSetup(void)
{ // Setup the whole MPU
 MPU->CTRL = 0; // Disable MPU first
 MpuRegionSetup(0x00000000, 0, 0x17, 3, 7, 0, 0, 1); // Region 0,16M
 MpuRegionSetup(0x20000000, 1, 0x19, 3, 7, 0, 0, 1); // Region 1,64M
 MpuRegionSetup(0x40000000, 2, 0x19, 3, 5, 0, 0, 1); // Region 2,64M

22313.3  Setting Up the MPU

 MpuRegionSetup(0xA0000000, 3, 0x13, 1, 4, 0, 0, 1); // Region 3, 1M
 MpuRegionDisable(4); // Disable unused region 4
 MpuRegionDisable(5); // Disable unused region 5
 MpuRegionDisable(6); // Disable unused region 6
 MpuRegionDisable(7); // Disable unused region 7
 MPU->CTRL = 1; // Enable MPU
 return;
}

In this example, we included a subroutine that is used to disable a region that is not used. This
is necessary if you do not know whether a region has been programmed previously. If an unused
region is previously programmed to be enabled, it needs to be disabled so that it doesn’t affect the new
configuration.

The MPU setup routines can be rewritten in assembly as

MpuSetup ; A subroutine to setup the MPU by calling subroutines that
 ; setup regions
 PUSH {R0-R6,LR}
 LDR R0,=0xE000ED94 ; MPU Control Register
 MOV R1,#0
 STR R1,[R0] ; Disable MPU
 ; --- Region #0 ---
 LDR R0,=0x00000000 ; Region 0: Base Address = 0x00000000
 MOV R1,#0x0 ; Region 0: Region number  = 0
 MOV R2,#0x17 ; Region 0: Size       = 0x17 (16MB)
 MOV R3,#0x3 ; Region 0: AP          = 0x3 (full

	 access)
MOV R4,#0x7 ; Region 0: MemAttrib    = 0x7
MOV R5,#0x0 ; Region 0: Sub R disable = 0
MOV R6,#0x1 ; Region 0: {XN, Enable} = 0,1
BL MpuRegionSetup
; --- Region #1 ---
LDR R0,=0x20000000 ; Region 1: Base Address = 0x20000000
MOV R1,#0x1 ; Region 1: Region number = 1
MOV R2,#0x19 ; Region 1: Size       = 0x19 (64MB)
MOV R3,#0x3 ; Region 1: AP          = 0x3 (full
	 access)
MOV R4,#0x7 ; Region 1: MemAttrib    = 0x7
MOV R5,#0x0 ; Region 1: Sub R disable = 0
MOV R6,#0x1 ; Region 1: {XN, Enable}    = 0,1
BL MpuRegionSetup
... ; setup for region #2 and #3
; --- Region #4-#7 Disable ---
MOV R0,#4
BL MpuRegionDisable
MOV R0,#5
BL MpuRegionDisable
MOV R0,#6
BL MpuRegionDisable
MOV R0,#7
BL MpuRegionDisable
LDR R0,=0xE000ED94 ; MPU Control Register

224 CHAPTER 13  The Memory Protection Unit

MOV R1,#1
STR R1,[R0] ; Enable MPU
POP {R0-R6,PC} ; Return

MpuRegionSetup
; MPU region setup subroutine
; Input R0 : Base Address
; R1 : Region number
; R2 : Size
; R3 : AP (access permission)
; R4 : MemAttrib ({TEX[2:0], S, C, B})
; R5 : Sub region disable
; R6 : {XN,Enable}
PUSH {R0-R1, LR}
BIC R0, R0, #0x1F ; Clear unused bits in address
BFI R0, R1, #0, #4 ; Insert region number to R0[3:0]
ORR R0, R0, #0x10 ; Set valid bit
LDR R1,=0xE000ED9C ; MPU Region Base Address Register
STR R0,[R1] ; Set base address reg
AND R0, R6, #0x01 ; Get Enable bit
UBFX R1, R6, #1, #1 ; Get XN bit
BFI R0, R1, #28, #1 ; Insert XN to R0[28]
BFI R0, R2, #1 , #5 ; Insert Region Size field (R2[4:0]) to
 ; R0[5:1]
BFI R0, R3, #24, #3 ; Insert AP fields (R3[2:0]) to R0[26:24]
BFI R0, R4, #16, #6 ; Insert memattrib field (R4[5:0]) to
 ; R0[21:16]
BFI R0, R5, #8, #8 ; Insert subregion disable (SRD) fields
 ; to R0[15:8]
LDR R1,=0xE000EDA0 ; MPU Region Base Size and Attribute
 ; Register
STR R0,[R1] ; Set base attribute and size reg
POP {R0-R1, PC} ; Return

MpuRegionDisable
; Subroutine to disable unused region
; Input R0 : Region number
PUSH {R1, LR}
AND R0, R0, #0xF ; Clear unused bits in Region Number
ORR R0, R0, #0x10 ; Set valid bit
LDR R1,=0xE000ED9C ; MPU Region Base Address Register
STR R0,[R1]
MOV R0, #0
LDR R1,=0xE000EDA0 ; MPU Region Base Size and Attribute
 ; Register
STR R0,[R1] ; Set base attribute and size reg to 0
 ; (disabled)
POP {R1, PC} ; Return

The example shows the application of the Bit Field Insert (BFI) instruction in the Cortex-M3. This can
greatly simplify bit-field merging operations.

22513.4  Typical Setup

13.4  Typical Setup
In typical applications, the MPU is used when there is a need to prevent user programs from accessing
privileged process data and program regions. Usually, this is done by the embedded OS. Between each
context switching, the MPU is reprogrammed by the OS to allow user applications to access their
application code and data and any other resources they are entitled to access. When developing the
setup routine for the MPU, you need to consider a number of regions:

Code region:1.	
Privileged code, including a starting vector tablea.	
User codeb.	

SRAM region:2.	
Privileged data, including the main stacka.	
User data, including the process stackb.	
Privileged bit-band alias regionc.	
User bit-band alias regiond.	

Peripherals:3.	
Privileged peripheralsa.	
User peripheralsb.	
Privileged peripheral bit-band alias regionc.	
User peripheral bit-band alias regiond.	

From this list, we have identified 10 regions; more than the eight regions supported by the Cortex-M3
MPU. However, we can define the privileged regions by means of a background region (PRIVDEFENA
set to 1), so there are only five user regions to set up, leaving three spare MPU regions. The unused
regions might still be used for setting up additional regions in external memory, to protect read-only
data or to completely block some part of the memory if necessary. Alternatively, some of the regions
could be merged together to reduce the number of regions required.

13.4.1  Example Use of the Subregion Disable
In some cases, we might have some peripherals accessible by user programs, and a few should be pro-
tected to be privileged accesses only, resulting in fragmentation of user-accessible peripheral memory
space. In this kind of scenario, we could do one of these things:

Define multiple user regions•	
Define privileged regions inside the user peripheral region•	
Use subregion disable within the user region•	

The first two methods can use up available regions very easily. With the third solution, using the
subregion disable feature, we can easily set up AP to separate peripheral blocks without using extra
regions. For example, see Figure 13.4.

The same techniques can be applied to memory regions as well. However, it is more likely that
peripherals will have a fragmented privilege setup.

226 CHAPTER 13  The Memory Protection Unit

Memory
space

Device #7
(User accessible)

Device #6
(Privileged only)

Subregion
disable

0

1

1

0

0

1

0

0

User

User

User

User

User

Background
privileged region

Foreground user region
with subregion disable

set to 0364 (01100100)

Privileged

Privileged

Privileged

Device #5
(Privileged only)

Device #4
(User accessible)

Device #3
(User accessible)

Device #1
(User accessible)

Device #0
(User accessible)

Device #2
(Privileged only)

Figure 13.4

Using Subregion Disable to Control Access Rights to Separated Peripherals.

Table 13.11  Memory Region Arrangement for MPU Setup Example Code

Address Description Size Type

Memory
Attributes (C,
B, A, S, XN)

MPU
Region

0x00000000–
0x00003FFF

Privileged program 16 KB Read only C, –, A, –, – Background

0x00004000–
0x00007FFF

User program 16 KB Read only C, –, A, –, – Region #0

0x20000000–
0x20000FFF

User data 4 KB Full access C, B, A, –, – Region #1

0x20001000–
0x20001FFF

Privileged data 4 KB Privileged
accesses

C, B, A, –, – Background

0x22000000–
0x2201FFFF

User data bit-band alias 128 KB Full access C, B, A, –, – Region #2

0x22020000–
0x2203FFFF

Privileged data bit-band alias 128 KB Full access C, B, A, –, – Background

22713.4  Typical Setup

Let’s assume that the memory regions in Table 13.11 will be used. After the required regions are
defined, we can create the MPU setup code. To make the code easier to understand and modify, we used
the function that we created earlier to develop the completed MPU setup example:

void MpuSetup(void)
{ // Setup the whole MPU
MPU->CTRL = 0; // Disable MPU first

// Parameters:  Address  Region Size AP Mem SRD XN Enable
MpuRegionSetup(0x00004000, 0, 0x0D, 3, 0x2, 0, 0, 1); // Region 0
// 0x00004000-0x00007FFF: user program , 16kB, full access,
// MemAttrib = 0x2 (TEX=0,S=0,C=1,B=0), Subregion disable = 0, XN=0

MpuRegionSetup(0x20000000, 1, 0x0B, 3, 0xB, 0, 0, 1); // Region 1
// 0x20000000-0x20000FFF: user data, 4kB, full access,
// MemAttrib = 0xB (TEX=1,S=0,C=1,B=1), Subregion disable = 0, XN=0

MpuRegionSetup(0x22000000, 2, 0x10, 3, 0xB, 0, 0, 1); // Region 2
// 0x22000000-0x2201FFFF: user bit band, 128kB, full access,
// MemAttrib = 0xB (TEX=1,S=0,C=1,B=1), Subregion disable = 0, XN=0

MpuRegionSetup(0x40000000, 3, 0x13, 3, 0x1,0x64,0,1); // Region 3
// 0x40000000-0x400FFFFF: user peripherals, 1MB, full access,
// MemAttrib = 0x1 (TEX=0,S=0,C=0,B=1), Subregion disable=0x64, XN=0
// Note: Sub-region disable = 0x64 based on figure 13.4

MpuRegionSetup(0x42000000, 4, 0x18, 3, 0x1,0x64,0,1); // Region 4
// 0x42000000-0x43FFFFFF: user peripheral bit band, 32MB, full access,
// MemAttrib = 0x1 (TEX=0,S=0,C=0,B=1), Subregion disable=0x64, XN=0

Table 13.11  Memory Region Arrangement for MPU Setup Example Code  Continued

Address Description Size Type

Memory
Attributes (C,
B, A, S, XN)

MPU
Region

0x40000000–
0x400FFFFF

User peripherals 1 MB Full access –, B, –, –, XN Region #3

0x40040000–
0x4005FFFF

Privileged peripherals within
user peripheral region

128 KB Privileged
accesses

–, B, –, –, XN Disabled
subregions in
Region #3

0x42000000–
0x43FFFFFF

User peripherals bit-band alias 32 MB Full access –, B, –, –, XN Region #4

0x42800000–
0x42BFFFFF

Privileged peripherals bit-band
alias within user region

4 MB Privileged
accesses

–, B, –, –, XN Disabled
subregion in
Region #4

0x60000000–
0x60FFFFFF

External RAM 16 MB Full access C, B, A, –, – Region #5

0xE0000000–
0xF00FFFFF

NVIC, debug, and private
peripheral bus

1 MB Privileged
accesses

–, –, –, –, XN Background

Note: A in memory attribute refers to cache allocate.

228 CHAPTER 13  The Memory Protection Unit

// Note: Sub-region disable = 0x64 based on figure 13.4

MpuRegionSetup(0x60000000, 5, 0x17, 3, 0x3, 0, 0, 1); // Region 5
// 0x60000000-0x60FFFFFF: external RAM, 16MB, full access,
// MemAttrib = 0x3 (TEX=0,S=0,C=1,B=1), Subregion disable = 0, XN=0

MpuRegionDisable(6); // Disable unused region 6
MpuRegionDisable(7); // Disable unused region 7
MPU->CTRL = 5; // Enable MPU with Default memory map enabled
 // for privileged accesses
return;
}

229Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00017-X

In This Chapter
The SYSTICK Timer.. 229
Power Management... 232
Multiprocessor Communication.. 236
Self-Reset Control.. 241

14.1  The SYSTICK Timer
The SYSTICK register in the Nested Vectored Interrupt Controller (NVIC) was covered briefly in
Chapter 8. As we saw, the SYSTICK timer is a 24-bit down counter. Once it reaches zero, the counter
loads the reload value from the RELOAD register. It does not stop until the enable bit in the SYSTICK
Control and Status register is cleared (see Figure 14.1).

The Cortex™-M3 processor allows two different clock sources for the SYSTICK counter. The
first one is the core free-running clock (not from the system clock HCLK, so it does not stop when the
system clock is stopped). The second one is an external reference clock. This clock signal must be at
least two times slower than the free-running clock because this signal is sampled by the free-running
clock. Because a chip designer might decide to omit this external reference clock in the design, it might
not be available. To determine whether the external clock source is available, you should check bit 31
of the SYSTICK Calibration register. The chip designer should connect this pin to an appropriate value
based on the design.

When the SYSTICK timer changes from 1 to 0, it will set the COUNTFLAG bit in the SYSTICK
Control and Status register. The COUNTFLAG can be cleared by one of the following:

Read of the SYSTICK Control and Status register by the processor•	
Clear of the SYSTICK counter value by writing any value to the SYSTICK Current Value register•	

The SYSTICK counter can be used to generate SYSTICK exceptions at regular intervals. This
is often necessary for the OS, for task and resources management. To enable SYSTICK exception
generation, the TICKINT bit should be set. In addition, if the vector table has been relocated to Static

Other Cortex-M3 Features 14
CHAPTER

230 CHAPTER 14  Other Cortex-M3 Features

Random Access Memory (SRAM), it would be necessary to set up the SYSTICK exception handler
in the vector table. For example:

*((volatile unsigned int *)(SCB->VTOR+(15<<2))) = (unsigned int) SysTick_Handler;

This can be written in assembly language as

; Setup SYSTICK exception handler (only needed if vector table
; is located in RAM)
MOV R0, #0xF	  ; Exception type 15
LDR R1, =SysTick_handler	  ; address of exception handler
LDR R2, =0xE000ED08	  ; Vector table offset register
LDR R2, [R2]
STR R1, [R2, R0, LSL #2]	 ; Write vector to
	 ; VectTblOffset+ExcpType*4

For users of Cortex Microcontroller Software Interface Standard (CMSIS) compliant device driver,
a function call “SysTick_Config” is available for configuration of the SYSTICK Timer. Please refer to
Appendix G for information on this function. You can also access the SYSTICK registers directly via
the following register names:

•	 SysTick->CTRL (Control and Status register)
•	 SysTick->LOAD (Reload Value register)
•	 SysTick->VAL (Current Value register)
•	 SysTick->CALIB (Calibration Value register)

For example, to generate SYSTICK exception every 1024 processor clock cycle, you can use the
following C code:

SysTick->LOAD = 1023;// Count down from 1023 to 0
SysTick->VAL = 0;// Clear current value to 0
SysTick->CTRL = 0x7; // Enable SysTick, enable SysTick
	 // exception and use processor clock

Figure 14.1

SYSTICK Registers in the NVIC.

0xE000E010 Control and status

0xE000E014 Reload value

0xE000E018 Current value

0xE000E01C Calibration

Enable
TICKINT

CLKSOURCECOUNTFLAG

RELOAD

CURRENT

TENMS

NOREF SKEW
16 02331

23114.1  The SYSTICK Timer

The same operation can be written in assembly language as follows:

; Enable SYSTICK timer operation and enable SYSTICK interrupt
LDR R0, =0xE000E010 ; SYSTICK control and status register
MOV R1, #0
STR R1, [R0]	 ; Stop counter to prevent interrupt

	 ; triggered accidentally
LDR R1, =1023	 ; Trigger every 1024 cycles (since counter

	 ; decrement from 1023 to 0, total of 1024
	 ; cycles, reload value is set to 1023)
STR R1, [R0,#4]	 ; Write reload value to reload register

	 ; address
STR R1, [R0,#8]	 ; Write any value to current value

	 ; register to clear current value to 0 and
	 ; clear COUNTFLAG
MOV R1, #0x7	 ; Clock source = core clock, Enable

	 ; Interrupt, Enable
	 ; SYSTICK counter
STR R1, [R0]	 ; Start counter

The SYSTICK counter provides a simple way to allow timing calibration information to be
accessed. The top level of the Cortex-M3 processor has a 24-bit input to which a chip designer can
input a reload value that can be used to generate a 10-ms time interval. This value can be accessed by
the SYSTICK Calibration register. However, this option is not necessarily available, so you’ll need to
check the device’s datasheet to see if you can use this feature.

The SYSTICK counter can also be used as an alarm timer that starts a certain task after a number
of clock cycles. For example, if a task has to be started to execute after 300 clock cycles, we could set
up the task at the SYSTICK exception handler and program the SYSTICK timer so that the task will be
executed when the 300 cycle count is reached:

volatile int SysTickFired; // A global software flag to
 // indicate SysTickAlarm executed
...
// Optional:Setup SYSTICK Handler, only needed if vector table
// relocated to SRAM
*((volatile unsigned int *)(SCB->VTOR+(15<<2))) = (unsigned int) SysTickAlarm;

SysTick->CTRL = 0x0; // Disable SysTick
SysTick->LOAD = (300-12); // Set Reload value
 // Minus 12 because of exception latency
SysTick->VAL = 0; // Clear current value to 0
SysTickFired = 0; // Setup software flag to zero
SysTick->CTRL = 0x7; // Enable SysTick, enable SysTick
 // exception and use processor clock
while (SysTickFired == 0); // Wait until software flag is set by
 // SYSTICK handler

The exception handler can be written as follows:

void SysTickAlarm(void) // SYSTICK exception handler
{

232 CHAPTER 14  Other Cortex-M3 Features

SysTick->CTRL = 0x0; // Disable SysTick
 // Execute required processing task
SCB->ICSR = SCB->ICSR & (0xFDFFFFFF); // Clear SYSTICK pend bit
	 // in case it has been pended again
SysTickFired++;	 // Update software flag so that the
	 // main program know that SysTick alarm
	 // task has been carried out
return;
}

The counter starts with an initial value of zero because it was manually cleared from the main pro-
gram. It then immediately reloads to 288 (300 – 12). We subtract 12 from the count because this is the
number of clock cycles for minimum exception latency. However, if another exception with the same
or a higher priority is running when the SYSTICK counter reaches zero, the start of the exception could
be delayed.

Note that the subtraction of 12 cycles from the reload value in this example is required for only one-
shot alarm timer usage. For periodic counting usage, the reload value should be the number of clock
cycles per period minus 1.

Because the SYSTICK counter does not stop automatically, we need to stop it within the SYSTICK
handler (SysTickAlarm). Furthermore, there’s a chance that the SYSTICK exception could have been
pended again if it was delayed by processing of other exceptions, so the pending status of a SYSTICK
exception needs to be cleared if the SYSTICK exception uses a one-off processing.

In the final step of the SYSTICK exception handler, we set a software variable called SysTickFired
so that the main program knows the required task has been carried out.

14.2  Power Management
14.2.1  Sleep Modes
The Cortex-M3 provides sleep modes as a power management feature. During sleep mode, the system
clock can be stopped, but the free-running clock input could still be running to allow the processor to
be woken by an interrupt. The two sleep modes are as follows:

Sleep: Indicated by the SLEEPING signal from the Cortex-M3 processor•	
Deep sleep: Indicated by the SLEEPDEEP signal from the Cortex-M3 processor•	

To decide which sleep mode will be used, the NVIC System Control register has a bit field called
SLEEPDEEP (see Table 14.1). The actions of SLEEPING and SLEEPDEEP depend on the particular
Microcontroller Unit (MCU) implementation. In some implementations, the action will be the same in
both cases.

The sleep modes are invoked by Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instructions.
Events can be interrupts, a previously triggered interrupt, or an external event signal pulse via the
Receive Event (RXEV) signal. Inside the processor, there is a latch for events, so a past event can wake
up a processor from WFE (see Figure 14.2).

For users of a CMSIS compliant device driver, WFI and WFE instructions can be accessed by __WFI()
and __WFE() intrinsic functions. The System Control register can be accessed using the “SCB->SCR”
register name.

23314.2  Power Management

What exactly happens when the processor enters sleep mode depends on the chip design. The
common case is that some of the clock signals can be stopped to reduce power consumption. How-
ever, the chip can also be designed to shut down part of the chip to further reduce power, or it is also
possible that a design can shut down the chip completely, and all the clock signals will be stopped.
In a case where the chip is shut down completely, the only way to wake the system from sleep is via
a system reset.

To wake the processor from WFI sleep, the interrupt will have to be higher priority than the current
priority level (if it is an executing interrupt) and higher than the level set by the BASEPRI register or
mask registers (PRIMASK and FAULTMASK). If an interrupt is not going to be accepted due to prior-
ity level, it will not wake up a sleep caused by WFI.

The situation for WFE is slightly different. If the interrupt triggered during sleep has lower or equal
priority than the mask registers or BASEPRI registers and if the SEVONPEND is set, it could still
wake the processor from sleep. The rules of waking the Cortex-M3 processor from sleep modes are
summarized in Table 14.2.

Table 14.1  System Control Register (0xE000ED10)

Bits Name Type Reset Value Description

4 SEVONPEND R/W 0 Send Event on Pending; wakes up from WFE if
a new interrupt is pended, regardless of whether
the interrupt has priority higher than the current
level

3 Reserved — — —
2 SLEEPDEEP R/W 0 Enable SLEEPDEEP output signal when entering

sleep mode
1 SLEEPONEXIT R/W 0 Enable Sleep-On-Exit feature
0 Reserved — — —

Figure 14.2

Sleep Operations.

WFI WFE

Event latch 5 1?

Clear event latch
and continue to
next instruction

Yes
No

SLEEPDEEP 5 1?

YesNo

Enter sleep (both
SLEEPING and
SLEEPDEEP
signal high)

Enter sleep
(SLEEPING signal
high, SLEEPDEEP

signal low)

Clear event latch

234 CHAPTER 14  Other Cortex-M3 Features

14.2.2  Sleep-On-Exit Feature
Another feature of sleep mode is that it can be programmed to go back to sleep automatically after the
interrupt routine exit. In this way, we can make the core sleep all the time unless an interrupt needs to
be served. To use this feature, we need to set the SLEEPONEXIT bit in the System Control register
(see Figure 14.3).

Note that if the Sleep-On-Exit feature is enabled, the processor can enter sleep at any exception return
to thread level, even if no WFE/WFI instruction is executed. To ensure that the processor only enter sleep
when required, set the SLEEPONEXIT bit only when the system is ready for entering sleep.

14.2.3  Wakeup Interrupt Controller
Starting from revision 2 of Cortex-M3, additional low-power features have been added. A new unit
called the Wakeup Interrupt Controller (WIC) is available as an optional component. This controller is
coupled to the existing NVIC and is used to generate a wakeup request when an interrupt arrives.

From a software point of view, the WFI and WFE behaviors remain the same. There are no program-
mable registers in the WIC, as it gets all the required interrupt information via the interface between
WIC and NVIC. By using the WIC, the clock signals going into the processor core can be completely
stopped. When an interrupt request arrives, the WIC can send a wakeup request to the system controller
or Power Management Unit (PMU) in the chip to restore the processor clock (figure 14.4).

The availability of the WIC also provides a new method for reducing power consumption during
sleep mode. By using new technologies in digital logic design, it is now possible to power down most of

Table 14.2  WFI and WFE Wakeup Behavior

WFI Behavior Wake Up IRQ Execution

IRQ with BASEPRI
IRQ priority > BASEPRIv Y Y
IRQ priority =< BASEPRI N N

IRQ with BASEPRI and PRIMASK
IRQ priority > BASEPRI Y N
IRQ priority =< BASEPRI N N

WFE Behavior

IRQ with BASEPRI, SEVONPEND = 0
IRQ priority > BASEPRI Y Y
IRQ priority =< BASEPRI N N

IRQ with BASEPRI, SEVONPEND = 1
IRQ priority > BASEPRI Y Y
IRQ priority =< BASEPRI Y N

IRQ with BASEPRI and PRIMASK, SEVONPEND = 0
IRQ priority > BASEPRI N N
IRQ priority =< BASEPRI N N

IRQ with BASEPRI & PRIMASK, SEVONPEND = 1
IRQ priority > BASEPRI Y N
IRQ priority =< BASEPRI Y N

23514.2  Power Management

Figure 14.3

Example Use of the Sleep-On-Exit Feature.

WFI/WFE

Processor wake up and
continue to next

instruction

Yes

No

Sleep

Wake up and run the
interrupt handler

Processor detect if
SLEEPONEXIT 5 1?

Exception exit and
returning to thread

Processor return to sleep
automatically without
software intervention

Figure 14.4

WIC Mirrors the Interrupt Detection Function when clock signals to Cortex-M3 stops.

Cortex-M3

IRQ

NMI

WIC

IRQ

NMI

Mask

Power
management

unit

Sleep status

Wake up

236 CHAPTER 14  Other Cortex-M3 Features

the Cortex-M3 processor, leaving a small portion of the logic gates to retain the current state of the logic.
This technology is called State Retention Power Gating (SRPG). By using SRPG and WIC together,
most portions of the Cortex-M3 processor can be powered down during deep sleep, leaving a small
amount of logic for state retention (see Figure 14.5). During this power down state, the WIC remains
operational and generates a wakeup request to power up and restore the system state when an interrupt
arrives. As a result, the processor can resume operation and service the interrupt request in a very short
time. The maximum interrupt latency with such arrangement depends on the time required to power up
the system. In most cases, it is in the range of 20 to 30 clock cycles. Normal sleep (SLEEPDEEP bit in
the System Control register is zero) does not trigger the power down feature.

The new power down capability is optional and may not be included in some microcontroller prod-
ucts. It requires an on-chip PMU developed by silicon vendors to control the power up and power down
sequences and might need to be programmed before the power down feature is used. Please refer to the
silicon vendor’s documentation for further information. A couple of points to be aware of: the power
down feature stops the SYSTICK timer during deep sleep, and the power down feature is disabled
when a debugger is attached (this is required because debugger needs to access the debug registers
regularly to examine the status of the processor).

14.3  Multiprocessor Communication
The Cortex-M3 comes with a simple multiprocessor communication interface for event communication.
The processor has one output signal, called Transmit Event (TXEV), for sending out events, and an input

Figure 14.5

WIC Mirrors the Interrupt Detection Function when Cortex-M3 is in state retention.

Cortex-M3

IRQ

NMI

WIC

IRQ

NMI

Mask

Power
management

unit Wake up

Sleep status

Powered down
during deep sleep

Processor state held in
state retention flip-flops

WIC detect and hold interrupt
request while processor is

powered down

PMU restore power
when wake up

request from WIC is
generated

23714.3  Multiprocessor Communication

signal, called RXEV, for receiving events. For a system with two processors, the event communication
signal connection can be implemented as shown in Figure 14.6.

As mentioned in the previous section “Power Management,” the processor can enter sleep when the
WFE instruction is executed and can continue the instruction execution when an external event is received.
If we use an instruction called Send Event (SEV), one processor can wake up another processor that is in
sleep mode and make sure both processors start executing a task at the same time (see Figure 14.7).

For users of a CMSIS compliant device driver, SEV instruction can be accessed by the __SEV()
intrinsic functions. Using this feature, we can make both processors start executing a task at the same
time (possibly with small timing differences, depending on actual chip implementation and the software

Figure 14.6

Event Communication Connection in a Two-Processor System.

Cortex-M3 Cortex-M3

TXEV TXEV

RXEV RXEV

Figure 14.7

Using Event Signals to Synchronize Tasks.

Processor #1 Processor #2

Execute WFE

Exit sleep mode

Check task status

Execute SEV

Execute task

Execute task

Detect a need to
execute synchronized

task

Detect that processor
#1 is sleeping

Enter sleep mode

TXEV signal from
processor #2 pulsed,
processor #1 receive

pulse on RXEV

SLEEPING signal from
processor #1 asserted

Time

238 CHAPTER 14  Other Cortex-M3 Features

code for checking task status). The number of processors invoked can be any number, but it requires that
one processor acts as a master to generate the event pulse to other processors.

It is important to note that the processor could also be woken by other events, such as interrupt
and debugging events. Therefore, before starting the required synchronized task, it is necessary to
check whether the wakeup was caused by task synchronization. In most multitasking systems, an
interprocessor messaging system like mailbox is still required to ensure that the tasks are synchro-
nized correctly.

It is also important to note that execution of WFE does not always cause the processor to enter sleep
mode. Therefore, WFE is normally used with looping (to reduce system power consumption) and status
checking code to check if the required synchronized task should be carried out after the WFE, as shown
in Figure 14.8.

When the WFE instruction is executed, it first checks the local event latch. If the latch is not set,
the core enters sleep mode. If the latch is set, it will be cleared and the instruction execution continues
without entering sleep mode. The local event latch can be set by previously occurring exceptions and
by the SEV instruction. So, if you execute an SEV and then execute a WFE, the processor will not enter
sleep and will simply continue on to the next instruction, with the event latch cleared by WFE.

An example of WFE usage is semaphore in a multiprocessor system. In a typical scenario like
Mutual Exclusion (MUTEX), system-level exclusive-access monitor and exclusive-access instructions
are used for spin locks for granting accesses to shared memory or a shared peripheral. A process requir-
ing a resource would need to call a function to gain the “lock”:

void get_lock(volatile int * Lock_Variable)
{ // __LDREXW and __STREXW are intrinsic functions in CMSIS
 // compliant device driver libraries

int status = 0;
do {
while (__LDREXW(&Lock_Variable) != 0); // Wait until lock
 // variable is free
status = __STREXW(1, &Lock_Variable); // Try set Lock_Variable
 // to 1 using STREX
} while (status != 0); // retry until lock successfully
__DMB(); // Data memory Barrier
return;

}

The same process can be carried out in assembly code:

get_lock ; an assembly function to get the lock
 LDR r0, =Lock_Variable
 MOVS r2, #1 ; use for locking STREX
get_lock_loop
 LDREX r1, [r0]
 CMP r1, #0
 BNE get_lock_loop ; It is locked, retry again
 STREX r1, r2, [r0] ; Try set Lock_Variable to 1 using STREX
 CMP r1, #0 ; Check return status of STREX
 BNE get_lock_loop ; STREX was not successful, retry
 DMB ; Data Memory Barrier
 BX LR ; Return

23914.3  Multiprocessor Communication

On the other hand, a process using the resource should unlock the resource when it is no longer
required:

void free_lock(volatile int * Lock_Variable)
{
  __DMB(); // Data memory Barrier
  Lock_Variable = 0; // Free the lock
return;
}

The same operation can be written in assembly as follows:

free_lock	 ; an assembly function to free the lock
 LDR r0, =Lock_Variable
 MOVS r1, #0
 DMB	 ; Data Memory Barrier
 STR r1, [r0]	 ; Clear lock
 BX LR	 ; Return

The spin lock can result in unnecessary power consumption when the processor is idle. As a result,
we add WFE into these operations to reduce power consumption, while allowing the processor waiting
for the lock to be woken up as soon as the resource is free.

Figure 14.8

Example Use of the WFE Feature.

WFE

Exit loop

Sleep

Run synchronized task

Exit Idle loop?

Event

Yes

No

Wake up by task
synchronization?

Idle loop

Check task status

No

Yes

240 CHAPTER 14  Other Cortex-M3 Features

void get_lock_with_WFE(volatile int * Lock_Variable)
{
 int status = 0;
 do {
 while (__LDREXW(&Lock_Variable) != 0){ // Wait until lock
 __WFE();} // variable is free, if not, enter sleep until event
 status = __STREXW(1, &Lock_Variable); // Try set Lock_Variable
 // to 1 using STREX
 } while (status != 0); // retry until lock successfully
 __DMB(); // Data memory Barrier
 return;
}

For the function to free the lock, the SEV instruction is used to wake up other processors that are
waiting for the lock.

void free_lock(volatile int * Lock_Variable)
{
 __DMB(); // Data memory Barrier
 Lock_Variable = 0; // Free the lock
 __DSB(); // ensure the store is complete
 __SEV(); // Send Event to wake up other processors
 return;
}

The same operation can be written in assembly as follows:

get_lock_with_WFE	 ; an assembly function to get the lock
 LDR r0, =Lock_Variable
 MOVS r2, #1	 ; use for locking STREX
get_lock_loop
 LDREX r1,[r0]
 CBNZ r1, lock_is_set; If lock is set, sleep and retry later
 STREX r1, r2, [r0] ; Try set Lock_Variable to 1 using STREX
 CMP r1, #0 ; Check return status of STREX
 BNE get_lock_loop ; STREX was not successful, retry
 DMB ; Data Memory Barrier
 BX LR ; Return
lock_is_set
 WFE ; Wait for event
 B get_lock_loop ; woken up, retry again

And for the function that frees the lock, it can be written in assembly as follows:

free_lock_with_SEV	 ; an assembly function to free the lock
 LDR r0, =Lock_Variable
 MOVS r1, #0
 DMB	 ; Data Memory Barrier
 STR r1, [r0]	 ; Clear lock
 DSB	 ; ensure the store is complete
 SEV	 ; Send Event to wake up other processors
 BX LR	 ; Return

By combining event communication interface and necessary semaphore code, the power consump-
tion during spin lock can be reduced. Similar techniques can be created for message passing and tasks
synchronizations.

24114.4  Self-Reset Control

In most Cortex-M3-based products, there will be only one processor, and the RXEV input is likely
tied to 0 or connected to peripherals that generate events.

14.4  Self-Reset Control
The Cortex-M3 provides two self-reset control features. The first reset feature is the SYSRESETREQ
(System Reset Request) bit in the same NVIC register. It allows the Cortex-M3 processor to assert a
reset request signal to the system’s reset generator. Because the system reset generator is not part of
Cortex-M3 design, the implementation of this reset feature depends on the chip design. Therefore, it
is necessary to carefully check the chip’s specification to determine which part of the chip is reset by
this reset control bit.

For users of a CMSIS compliant device driver, the NVIC_SystemReset() function can be used to trig-
ger the system reset using SYSRESETREQ. (A summary of this function can be found in Appendix G.)
Users not using CMSIS can use:

*((volatile unsigned int *)(0xE000ED0C))= 0x05FA0004;
// Set SYSRESETREQ bit (05FA is a write access key)
while(1); // a deadloop is used to ensure no other
	 // instructions follow the reset is executed

Assembly language users can generate the system reset request using the following example code:

	 LDR  R0,=0xE000ED0C	 ; NVIC AIRCR address
	 LDR  R1,=0x05FA0004	 ; Set SYSRESETREQ bit (05FA is a write

		 ; access key)
	 STR  R1,[R0]
deadloop
	 B deadloop	 ; a deadloop is used to ensure no other

		 ; instructions follow the reset is executed

The second reset feature is the VECTRESET control bit in the NVIC Application Interrupt and
Reset Control register (bit [0]). Writing 1 to this bit will reset the Cortex-M3 processor, excluding the
debug logic. This does not reset any circuit outside the Cortex-M3 processor. For example, if the system-
on‑chip (SoC) contains a universal asynchronous receiver/transmitter (UART), writing to this bit does
not reset the UART or any peripherals outside the Cortex-M3. This feature is mainly targeted for debug,
or in some case, where the software needs to reset the processor only but not the rest of the system.

*((volatile unsigned int *)(0xE000ED0C))= 0x05FA0001;
// Set VECTRESET bit (05FA is a write access key)
while(1); // a deadloop is used to ensure no other
 // instructions follow the reset is executed

The same operation can be carried out in the following assembly code:

	 LDR  R0,=0xE000ED0C	 ; NVIC AIRCR address
	 LDR  R1,=0x05FA0001	 ; Set VECTRESET bit (05FA is a write

		 ; access key)
	 STR  R1,[R0]
deadloop
	 B deadloop	 ; a deadloop is used to ensure no other

			 ; instructions following the reset is
			 ; executed

242 CHAPTER 14  Other Cortex-M3 Features

In general, software reset should be generated using SYSRESETREQ instead of VECTRESET.
This ensures most parts of the system will be reset at the same time. Depending on the chip design, it
might or might not reset all peripherals, the chip and the clocking control logic including Phase-Locked
Loop (PLL). Please refer to the manufacturer datasheet for details.

Note that the delay from assertion of SYSRESETREQ to actual reset from the reset generator can
be an issue in some cases. If there is a delay in the reset generator, you might find the processor still
accepting interrupts after the reset request is set. If you want to stop the core from accepting interrupts
before running this code, you can set the Interrupt Mask register (e.g., PRIMASK or FAULTMASK)
before requesting the reset.

243Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00018-1

In This Chapter

Debugging Features Overview... 243
CoreSight Overview.. 244
Debug Modes.. 248
Debugging Events.. 250
Breakpoint in the Cortex-M3.. 251
Accessing Register Content in Debug.. 253
Other Core Debugging Features.. 254

Debug Architecture 15
CHAPTER

15.1  Debugging Features Overview
The Cortex™-M3 processor provides a comprehensive debugging environment. Based on the nature of
operations, the debugging features can be classified into two groups.

Invasive debugging:1.	
	 Program halt and stepping•	
	 Hardware breakpoints•	
	 Breakpoint instruction•	
	 Data watchpoint on access to data address, address range, or data value•	
	 Register value accesses (both read or write)•	
	 Debug monitor exception•	
	•	 ROM-based debugging (Flash Patch)

Noninvasive debugging:2.	
	 Memory accesses (memory contents can be accessed even when the core is running)•	
	 Instruction trace (through the optional Embedded Trace Module)•	
	 Data trace•	
	 Software trace (through the Instrumentation Trace Module)•	
	 Profiling (through the Data Watchpoint and Trace [DWT] Module)•	

244 CHAPTER 15  Debug Architecture

A number of debugging components are included in the Cortex-M3 processor. The debugging sys-
tem is based on the CoreSight debug architecture, allowing a standardized solution to access debugging
controls, gather trace information, and detect debugging system configuration.

15.2  CoreSight Overview
The CoreSight debug architecture covers a wide area, including the debugging interface protocol, debug-
ging bus protocol, control of debugging components, security features, trace data interface, and more.
The CoreSight Technology System Design Guide [Ref. 3] is a useful document for getting an overview
of the architecture. In addition, a number of sections in the Cortex-M3 Technical Reference Manual
[Ref. 1] are descriptions of the debugging components in Cortex-M3 design. These components are
normally used only by debugger software, not by application code. However, it is still useful to briefly
review these items so that we can have a better understanding of how the debugging system works.

15.2.1  Processor Debugging Interface
Unlike traditional ARM7 or ARM9, the debugging system of the Cortex-M3 processor is based on
the CoreSight debug architecture. Traditionally, ARM processors provide a Joint Test Action Group
(JTAG) interface, allowing registers to be accessed and memory interface to be controlled. In the
Cortex-M3, the control to the debug logic on the processor is carried out through a bus interface called
the Debug Access Port (DAP), which is similar to Advanced Peripheral Bus (APB) in Advanced Micro-
controller Bus Architecture (AMBA). The DAP is controlled by another component that converts JTAG
or Serial-Wire (SW) communication protocols into the DAP bus interface protocol.

Because the internal debug bus is similar to APB, a generic bus protocol, it is easy to connect multiple
debugging components, resulting in a very scalable debugging system. In addition, by separating the
debug interface and debug control hardware, the actual interface type used on the chip can become trans-
parent; hence, the same debugging tasks can be carried out no matter what debugging interface you use.

The actual debugging functions in the Cortex-M3 processor core are controlled by the Nested Vec-
tored Interrupt Controller (NVIC) and a number of other debugging components, such as the Flash
Patch and Breakpoint (FPB), DWT, and Instrumentation Trace Macrocell (ITM). The NVIC contains a
number of registers to control the core debugging actions, such as halt and stepping, whereas the other
blocks support features such as watchpoints, breakpoints, and debug message outputs.

15.2.2  The Debug Host Interface
CoreSight technology supports a number of interface types for connection between the debug host
and the system-on-chip (SoC). Traditionally, this has always been JTAG. Now, because the processor
debugging interface has been changed to a generic bus interface, by putting a different interface module
between the debug host and the debug interface of the processor, we can come up with different chips
that have different debug host interfaces, without redesigning the debug interface on the processor.

Currently, Cortex-M3 systems support two types of debug host interface. The first one is the well-
known JTAG interface, and the second one is a new interface protocol called Serial-Wire. The SW
interface reduces the number of signals to two. Several types of debug host interface modules (called
Debug Port, or DP) are available from ARM and they provide the support for the different interface

24515.2  CoreSight Overview

protocols. The debugger hardware is connected to one side of a DP, and the other side is connected to
the DAP, a generic bus interface on the processor.

15.2.3  DP Module, AP Module, and DAP
The connection from external debugging hardware to the debug interface in the Cortex-M3 processor
is divided into multiple stages (see Figure 15.1).

The DP interface module (normally either Serial-Wire JTAG Debug Port [SWJ-DP] or Serial-Wire
Debug Port [SW-DP]) first converts the external signals into a generic 32-bit debug bus (a DAP bus in the
diagram). SWJ-DP supports both JTAG and SW, and SW-DP supports SW only. In the ARM CoreSight
product series, there is also a JTAG Debug Port, which only supports the JTAG protocol; chip manu-
facturers can choose to use one of these DP modules to suit their needs. The address of the DAP bus is
32-bit, with the upper 8 bits of the address bus used to select which device is being accessed. Up to 256
devices can be attached to the DAP bus. Inside the Cortex-M3 processor, only one of the device addresses
is used, so you can attach 255 more access port (AP) devices to the DAP bus if needed. So, theoretically,
you can have hundreds of processors in one chip sharing one JTAG or SW debug connection.

After passing through the DAP interface in the Cortex-M3 processor, an AP device called Advanced
High-Performance Bus Access Port (AHB-AP) is connected. This acts as a bus bridge to convert commands
into AHB transfers, which are inserted into the internal bus network inside the Cortex-M3. This allows the
memory map of the Cortex-M3, including the debug control registers in the NVIC, to be accessed.

Why Serial-Wire?
The Cortex-M3 is targeted at the low-cost microcontroller market in which some devices have very low pin
counts. For example, some of the low-end versions are in 28-pin packages. Despite the fact that JTAG is a very
popular protocol, using four pins to debug is a lot for a 28-pin device. Therefore, SW is an attractive solution
because it can reduce the number of debug pins to two.

Figure 15.1

Connection from the Debug Host to the Cortex-M3.

Debug host
(PC)

Debug
interface hardware

USB or
Ethernet

JTAG or
Serial-Wire

Microcontroller

SWJ-DP
or SW-DP

AHB-AP

Other AP

Cortex-M3
core

NVIC

Memory

AHB
interconnect

Cortex-M3

DAP
bus

246 CHAPTER 15  Debug Architecture

In the CoreSight product series, several types of Access Port (AP) devices are available, including
an Advanced Peripheral Bus Access Port (APB-AP) and a JTAG Access Port (JTAG-AP). The APB-AP
can be used to generate APB transfers, and the JTAG-AP can be used to control traditional JTAG-based
test interfaces such as the debug interface on ARM7.

15.2.4  Trace Interface
Another part of the CoreSight architecture concerns tracing. In the Cortex-M3, there can be three types
of trace sources:

Instruction trace: Generated by the Embedded Trace Macrocell (ETM)•	
Data trace: Generated by the DWT unit•	
Debug message: Generated by ITM, provides message output such as •	 printf in the debugger
graphical user interface

During tracing, the trace results, in the form of data packets, are output from the trace sources
like ETM, using a trace data bus interface called Advanced Trace Bus (ATB). Based on the CoreSight
architecture, if an SoC contains multiple trace sources (e.g., multiprocessors), the ATB data stream can
be merged using ATB merger hardware (in the CoreSight architecture this hardware is called ATB fun-
nel). The final data stream on the chip can then be connected to a Trace Port Interface Unit (TPIU) and
exported to external trace hardware. Once the data reach the debug host (for example, a PC), the data
stream can then be converted back into multiple data streams.

Despite the Cortex-M3 having multiple trace sources, its debugging components are designed to
handle trace merging so that there is no need to add ATB funnel modules. The trace output interface can
be connected directly to a special version of the TPIU designed for the Cortex-M3. The trace data are
then captured by external hardware and collected by the debug host (e.g., a PC) for analysis.

15.2.5  CoreSight Characteristics
The CoreSight-based design has a number of advantages:

The memory content and peripheral registers can be examined even when the processor is running.•	
Multiple processor debug interfaces can be controlled with a single piece of debugger hardware. •	
For example, if JTAG is used, only one Test Access Port (TAP) controller is required, even when
there are multiple processors on the chip.
Internal debugging interfaces are based on simple bus design, making it scalable and easy to •	
develop additional test logic for other parts of the chip or SoC.
It allows multiple trace data streams to be collected in one trace capture device and separated back •	
into multiple streams on the debug host.

The debugging system used in the Cortex-M3 processor is slightly different from the standard Core-
Sight implementation.

Trace components are specially designed in the Cortex-M3. Some of the ATB interface is 8 bits •	
wide in the Cortex-M3, whereas in CoreSight the width is 32 bits.
The debug implementation in the Cortex-M3 does not support TrustZone.•	 1

1TrustZone is an ARM technology that provides security features to embedded products.

24715.2  CoreSight Overview

The debug components are part of the system memory map, whereas in standard CoreSight systems, •	
a separate bus (with a separate memory map) is used for controlling debug components. For example,
the conceptual system connection in a CoreSight system can be like the one shown in Figure 15.2.

In the Cortex-M3, the debugging devices share the same system memory map (see Figure 15.3).
Additional information about the CoreSight debug architecture can be found in the CoreSight

Technology System Design Guide [Ref. 3].

Figure 15.2

Design Concept of a CoreSight System.

JTAG or
Serial-Wire

Interface to
debug host

Basic concept of a CoreSight
debug control system

System bus Memory

JTAG
devices

Debug APB

DAP bus

JTAG

APB
multiplexer

Debug
device

#1

Debug
device

#2

Debug
device

#3

AHB-AP

JTAG-AP

SWJ-DP
or SW-DP

APB-AP

Figure 15.3

The Debug System in the Cortex-M3.

SWJ-DP
or SW-DP

AHB-AP

NVIC

DWT

FPBJTAG or
Serial-Wire

Interface to
debug host

Basic concept of Cortex-M3
debug control system

Memory

External PPB

DAP bus

ITM

AHB to
APB

TPIU ETM ROM
table

CM3Core

System bus

APB Peripherals
(via PPB interface)

248 CHAPTER 15  Debug Architecture

Although the debug components in Cortex-M3 are build differently from normal CoreSight systems,
the communication interface and protocols in the Cortex-M3 are compliant to CoreSight architecture
and can be directly attached to other CoreSight systems. For example, CoreSight debug components
like CoreSight TPIU, DPs, and trace infrastructure blocks can be used with Cortex-M3 and allow it to
be extended to a multicore debug system.

15.3  Debug Modes
There are two types of debug operation modes in the Cortex-M3. The first one is halt, whereby the pro-
cessor stops program execution completely. The second one is the debug monitor exception, whereby
the processor executes an exception handler to carry out the debugging tasks while still allowing higher-
priority exceptions to take place. Debug monitor is exception type 12 and its priority is programmable. It
can be invoked by means of debug events, as well as by manually setting the pending bit. In summary:

Halt mode:1.	
	 Instruction execution is stopped•	
	 The System Tick Timer (SYSTICK) counter is stopped•	
	 Supports single-step operations•	
	 Interrupts can be pended and can be invoked during single stepping or be masked so that •	

external interrupts are ignored during stepping

	Debug monitor mode:2.	
	 Processor executes exception handler type 12 (debug monitor)•	
	 SYSTICK counter continues to run•	
	 New arrive interrupts may or may not preempt, depending on the priority of the debug monitor •	

and the priority of the new interrupt
	 If the debug event takes place when a higher-priority interrupt is running, the debug event will •	

be missed
	 Supports single-step operations•	
	 Memory contents (for example, stack memory) could be changed by the debug monitor han-•	

dler during stacking and handler execution

The reason for having a debug monitor is that in some electronic systems, stopping a processor
for a debugging operation can be infeasible. For example, in automotive engine control or hard disk
controller applications, the processor should continue to serve interrupt requests during debugging, to
ensure safety of operations or to prevent damage to the device being tested. With a debug monitor, the
debugger can stop and debug the thread level application and lower-priority interrupt handlers, whereas
higher-priority interrupts and exceptions can still be executed.

To enter halt mode, the C_DEBUGEN bit in the NVIC Debug Halting Control and Status register
(DHCSR) must be set. This bit can only be programmed through the DAP, so you cannot halt the Cortex-M3
processor without a debugger. After C_DEBUGEN is set, the core can be halted by setting the C_HALT bit
in DHCSR. This bit can be set by either the debugger or by the software running on the processor itself.

The bit field definition of DHCSR differs between read operations and write operations. For write
operations, a debug key value must be used on bit 31 to bit 16. For read operations, there is no debug
key and the return value of the upper half word contains the status bits (see Table 15.1).

249

In normal situations, the DHCSR is used only by the debugger. Application codes should not change
DHCSR contents to avoid causing problems to debugger tools.

The control bit in DHCSR is reset by power-on reset. System reset (for example, by the Application •	
Interrupt and Reset Control register of NVIC) does not reset the debug controls. For debugging
using the debug monitor, a different NVIC register, the NVIC’s Debug Exception and Monitor
Control register, is used to control the debug activities (see Table 15.2). Aside from the debug
monitor control bits, the Debug Exception and Monitor Control register contains the trace system
enable bit (TRCENA) and a number of vector catch (VC) control bits. The VC feature can be used
only with halt mode debugging. When a fault (or core reset) takes place and the corresponding VC
control bit is set, the halt request will be set and the core will halt as soon as the current instruction
completes.
The TRCENA control bit and VC control bits in •	 Debug Exception and Monitor Control
register (DEMCR) are reset by power-on reset. System reset does not reset these bits. The
control bits for monitor mode debug, however, are reset by power-on reset as well as system
reset.

Table 15.1  Debug Halting Control and Status Register (0xE000EDF0)

Bits Name Type
Reset
Value Description

31:16 KEY W — �Debug key; value of 0xA05F must be written to this
field to write to this register, otherwise the write will be
ignored

25 S_RESET_ST R — Core has been reset or being reset; this bit is clear on
read

24 S_RETIRE_ST R — Instruction is completed since last read; this bit is clear
on read

19 S_LOCKUP R — When this bit is 1, the core is in a locked-up state
18 S_SLEEP R — When this bit is 1, the core is in sleep mode
17 S_HALT R — When this bit is 1, the core is halted
16 S_REGRDY R — Register read/write operation is completed
15:6 Reserved — — Reserved
5 C_SNAPSTALL R/W 0* Use to break a stalled memory access
4 Reserved — — Reserved
3 C_MASKINTS R/W 0* �Mask interrupts while stepping; can only be modified

when the processor is halted
2 C_STEP R/W 0* �Single step the processor; valid only if C_DEBUGEN

is set
1 C_HALT R/W 0* �Halt the processor core; valid only if C_DEBUGEN

is set
0 C_DEBUGEN R/W 0* Enable halt mode debug

* The control bit in DHCSR is reset by power on reset. System reset (for example, by the Application Interrupt and Reset
Control register of NVIC) does not reset the debug controls.

15.3  Debug Modes

250 CHAPTER 15  Debug Architecture

15.4  Debugging Events
The Cortex-M3 can enter debug mode (both halt or debug monitor exception) for a number of possible
reasons. For halt mode debugging, the processor will enter halt mode if conditions resemble those
shown in Figure 15.4.

The external debug request is from a signal called EDBGREQ on the Cortex-M3 processor. The
actual connection of this signal depends on the microcontroller or SoC design. In some cases, this
signal could be tied low and never occur. However, this can be connected to accept debug events
from additional debug components (chip manufacturers can add extra debug components to the
SoC) or, if the design is a multiprocessor system, it could be linked to debug events from another
processor.

After debugging is completed, the program execution can be returned to normal by clearing the
C_HALT bit. Similarly, for debugging with the debug monitor exceptions, a number of debug events
can cause a debug monitor to take place (see Figure 15.5).

Table 15.2  Debug Exception and Monitor Control Register (0xE000EDFC)

Bits Name Type
Reset
Value Description

24 TRCENA R/W 0* �Trace system enable; to use DWT, ETM, ITM, and TPIU,
this bit must be set to 1

23:20 Reserved — — Reserved
19 MON_REQ R/W 0 �Indication that the debug monitor is caused by a manual

pending request rather than hardware debug events
18 MON_STEP R/W 0 �Single step the processor; valid only if MON_EN is set
17 MON_PEND R/W 0 �Pend the monitor exception request; the core will enter

monitor exceptions when priority allows
16 MON_EN R/W 0 Enable the debug monitor exception
15:11 Reserved — — Reserved
10 VC_HARDERR R/W 0* Debug trap on hard faults
9 VC_INTERR R/W 0* Debug trap on interrupt/exception service errors
8 VC_BUSERR R/W 0* Debug trap on bus faults
7 VC_STATERR R/W 0* Debug trap on usage fault state errors
6 VC_CHKERR R/W 0* �Debug trap on usage fault-enabled checking errors

(e.g., unaligned, divide by zero)
5 VC_NOCPERR R/W 0* Debug trap on usage fault, no coprocessor errors
4 VC_MMERR R/W 0* Debug trap on memory management fault
3:1 Reserved — — Reserved

0 VC_CORERESET R/W 0* Debug trap on core reset

* The control bit in DHCSR is reset by power on reset. System reset (for example, by the Application Interrupt and Reset
Control register of NVIC) does not reset the debug controls.

25115.5  Breakpoint in the Cortex-M3

For debug monitor, the behavior is a bit different from halt mode debugging. This is because the
debug monitor exception is just one type of exception and can be affected by the current priority of the
processor if it is running another exception handler.

After debugging is completed, the program execution can be returned to normal by carrying out an
exception return.

15.5  Breakpoint in the Cortex-M3
One of the most commonly used debug features in most microcontrollers is the breakpoint feature. In
the Cortex-M3, the following two types of breakpoint mechanisms are supported:

Breakpoint instruction•	
Breakpoint using address comparators in the FPB•	

Figure 15.4

Debugging Events for Halt Mode Debugging.

C_HALT get set
manually

Watchpoint
from DWT

External debug
request

Breakpoint from FPB

Vector catch events

Execution of
breakpoint
instruction

Debug
events

C_DEBUGEN 5 1

C_DEBUGEN 5 0

HALT

Ignore

C_DEBUGEN 5 1

C_DEBUGEN 5 0

Hard fault

Debug monitor
exception

Debug monitor
disabled

Debug
monitor enabled

252 CHAPTER 15  Debug Architecture

The breakpoint instruction (BKPT #immed8) is a 16-bit Thumb® instruction with encoding 0xBExx.
The lower 8 bits depend on the immediate data given following the instruction. When this instruction is
executed, it generates a debug event and can be used to halt the processor core if C_DBGEN is set, or if
the debug monitor is enabled, it can be used to trigger the debug monitor exception. Because the debug
monitor is one type of exception with programmable priority, it can only be used in thread or exception
handlers with priority lower than itself. As a result, if debug monitor is used for debugging, the BKPT
instructions should not be used in exception handlers such as nonmaskable interrupt or hard fault, and
the debug monitor can only be pended and executed after the exception handler is completed.

When the debug monitor exception returns, it is returned to the address of the BKPT instruction,
not the address after the BKPT instruction. This is because in normal use of breakpoint instructions, the
BKPT is used to replace a normal instruction, and when the breakpoint is hit and the debug action is
carried out, the instruction memory is restored to the original instruction, and the rest of the instruction
memory is unaffected.

If the BKPT instruction is executed with C_DEBUGEN = 0 and MON_EN = 0, it will cause the
processor to enter a hard fault exception, with DEBUGEVT in the Hard Fault Status register (HFSR)
set to 1, and BKPT in the Debug Fault Status register (DFSR) also set to 1.

Figure 15.5

Debugging Events for Debug Monitor Exceptions.

MON_REQ get set
manually

Watchpoint
from DWT

Breakpoint from FPB

External debug
request

Execution of
breakpoint instruction

Debug
events

MON_EN � 1 and monitor
exception priority higher

than current priority

Debug monitor
exception invoke

Ignore

MON_EN � 0 or monitor
exception priority same or
lower than current priority

Fault
exception

MON_EN � 0 or monitor
exception priority same or
lower than current priority

MON_EN � 1 and monitor
exception priority higher

than current priority

Debug monitor
exception pended

MON_EN � 1 and monitor
exception priority same or
lower than current priority

25315.6  Accessing Register Content in Debug

The FPB unit can be programmed to generate breakpoint events even if the program memory cannot
be altered. However, it is limited to six instruction addresses and two literal addresses. More informa-
tion about FPB is covered in the next chapter.

15.6  Accessing Register Content in Debug
Two more registers are included in the NVIC to provide debug functionality. They are the Debug
Core Register Selector register (DCRSR) and the Debug Core Register Data register (DCRDR) (see
Tables 15.3 and 15.4). These two registers allow the debugger to access registers of the processors. The
register transfer feature can be used only when the processor is halted.

To use these registers to read register contents, the following procedure must be followed:

Make sure the processor is halted.1.	
Write to the DCRSR with bit 16 set to 0, indicating it is a read operation.2.	
Poll until the S_REGRDY bit in DHCSR (0xE000EDF0) is 1.3.	
Read the DCRDR to get the register content.4.	

Table 15.3  Debug Core Register Selector Register (0xE000EDF4)

Bits Name Type Reset Value Description

16 REGWnR W — Direction of data transfer:
Write = 1, Read = 0

15:5 Reserved — — —
4:0 REGSEL W — �Register to be accessed:

00000 = R0
00001 = R1
. . .
01111 = R15
10000 = xPSR/flags
10001 = Main Stack Pointer (MSP)
10010 = Process Stack Pointer (PSP)
10100 = Special registers:
 [31:24] Control
 [23:16] FAULTMASK
 [15:8] BASEPRI
 [7:0] PRIMASK
Other values are reserved

Table 15.4  Debug Core Register Data Register (0xE000EDF8)

Bits Name Type Reset Value Description

31:0 Data R/W — �Data register to hold register read result or to
write data into selected register

254 CHAPTER 15  Debug Architecture

Similar operations are needed for writing to a register:

Make sure the processor is halted.1.	
Write data value to the DCRDR.2.	
Write to the DCRSR with bit 16 set to 1, indicating it is a write operation.3.	
Poll until the S_REGRDY bit in DHCSR (0xE000EDF0) is 1.4.	

The DCRSR and the DCRDR registers can only transfer register values during halt mode debug.
For debugging using a debug monitor handler, the contents of some of the register can be accessed from
the stack memory; the others can be accessed directly within the monitor exception handler.

The DCRDR can also be used for semihosting if suitable function libraries and debugger support
are available. For example, when an application executes a printf statement, the text output could be
generated by a number of putc (put character) function calls. The putc function calls can be imple-
mented as functions that store the output character and status to the DCRDR and then trigger the debug
mode. The debugger can then detect the core halt and collect the output character for display. This
operation, however, requires the core to halt, whereas the semihosting solution using ITM does not
have this limitation.

15.7  Other Core Debugging Features
The NVIC also contains a number of other features for debugging. These include the following:

•	 External debug request signal: The NVIC provides an external debug request signal that allows the
Cortex-M3 processor to enter debug mode through an external event such as debug status of other
processors in a multiprocessor system. This feature is very useful for debugging a multiprocessor
system. In simple microcontrollers, this signal is likely to be tied low.

•	 DFSR: Because of the various debug events available on the Cortex-M3, a DFSR (Debug Fault
Status Register) is available for the debugger to determine the debug event that has taken place.

Reset control•	 : During debugging, the processor core can be restarted using the VECTRESET
control bit or SYSRESETREQ control bit in the NVIC Application Interrupt and Reset Control
register (0xE000ED0C). Using this reset control register, the processor can be reset without
affecting the debug components in the system.

•	 Interrupt masking: This feature is very useful during stepping. For example, if you need to debug
an application but do not want the code to enter the interrupt service routine during the stepping,
the interrupt request can be masked. This is done by setting the C_MASKINTS bit in the DHCSR
(0xE000EDF0).

•	 Stalled bus transfer termination: If a bus transfer is stalled for a very long time, it is possible
to terminate the stalled transfer by an NVIC control register. This is done by setting the
C_SNAPSTALL bit in the DHCSR (0xE000EDF0). This feature can be used only by a debugger
during halt.

255Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00019-3

In This Chapter

Introduction��255
Trace Components: DWT.. 256
Trace Components: ITM���258
Trace Components: ETM��260
Trace Components: TPIU���261
The Flash Patch and Breakpoint Unit���262
The Advanced High-Performance Bus Access Port���264
ROM Table��265

CHAPTER

Debugging Components 16

16.1  Introduction
The Cortex™-M3 processor comes with a number of debugging components used to provide debugging
features such as breakpoint, watchpoint, Flash Patch, and trace. If you are an application developer,
there might be a chance that you’ll never need to know the details about these debugging components
because they are normally used only by debugger tools. This chapter will introduce you to the basics of
each debug component. If you want to know the details about things such as the actual programmer’s
model, refer to the Cortex-M3 Technical Reference Manual [Ref. 1].

All the debug trace components, as well as the Flash Patch and Breakpoint (FPB), can be pro-
grammed through the Cortex-M3 Private Peripheral Bus (PPB). In most cases, the components will
only be programmed by the debugging host. It is not recommended for applications to try accessing
the debug components (except stimulus port registers in the Instrumentation Trace Macrocell [ITM])
because this could interfere with the debugger’s operation.

16.1.1  The Trace System in the Cortex-M3
The Cortex-M3 trace system is based on the CoreSight architecture. Trace results are generated in the
form of packets, which can be of various lengths (in terms of number of bytes). The trace components
transfer the packets using Advanced Trace Bus (ATB) to the Trace Port Interface Unit (TPIU), which

256 CHAPTER 16  Debugging Components

formats the packets into Trace Interface Protocol. The data is then captured by an external trace capture
device such as a Trace Port Analyzer (TPA), as shown in Figure 16.1.

There are up to three trace sources in a standard Cortex-M3 processor: Embedded Trace Macrocell
(ETM), ITM, and Data Watchpoint and Trace (DWT). Note that the ETM in the Cortex-M3 is optional,
so some Cortex-M3 products do not have instruction trace capability. During operation, each trace
source is assigned a 7-bit ATB Trace ID value (ATID), which is transferred along the trace packets
during merging in the ATB so that the packets can be separated back into multiple trace streams when
they reach the debug host.

Unlike many other standard CoreSight components, the debug components in the Cortex-M3 pro-
cessor include the functionality of merging ATB streams, whereas in standard CoreSight systems, ATB
packet merger, called ATB funnel, is a separate block.

Before using the trace system, the Trace Enable (TRCENA) bit in the Debug Exception and Moni-
tor Control register (DEMCR) must be set to 1 (see Table 15.2 or D.38). Otherwise, the trace system
will be disabled. In normal operations that do not require tracing, clearing the TRCENA bit can disable
some of the trace logic and reduce the power consumption.

16.2  Trace Components: DWT
The DWT has a number of debugging functionalities:

It has four comparators, each of which can be configured as follows:1.	
Hardware watch point (generates a watch point event to the processor to invoke debug modes a.	
such as halt or debug monitor)
ETM trigger (causes the ETM to emit a trigger packet in the instruction trace stream)b.	
PC sampler event triggerc.	
Data address sampler triggerd.	

The first comparator can also be used to compare against the clock cycle counter (CYCCNT) instead
of comparing with a data address.

Figure 16.1

The Cortex-M3 Trace System.

Cortex-M3
processor core

ETM ATB

DWT ITM ATBATB

TPIU

Instruction
trace

Hardware and
software trace

Trace port

Trace port
analyzer

Debug
host

Chip
boundaryCortex-M3

25716.2  Trace Components: DWT

Counters for counting the following:2.	
Clock cycles (CYCCNT)a.	
Folded instructionsb.	
Load store unit operationsc.	
Sleep cyclesd.	
Cycles per instructione.	
Interrupt overheadf.	

PC sampling at regular intervals3.	

Interrupt events trace4.	

When used as a hardware watchpoint or ETM trigger, the comparator can be programmed to compare
either data addresses or program counters. When programmed as other functions, it compares the data
addresses.

Each of the comparators has three corresponding registers, which are as follows:

COMP (compare) register•	
MASK register•	
FUNCTION control register•	

The COMP register is a 32-bit register that the data address (or program counter value, or CYCCNT)
compares to. The MASK register determines whether any bit in the data address will be ignored during
the compare (see Table 16.1).

By using the mask register, it is possible to trace data access in an address range of 32 KB maximum
size. However, because of the limited first in/first out (FIFO) size in the DWT and the ITM, it is not
practical to trace lots of data transfers as this will cause trace overflow and result in loss of trace data.

The comparator’s FUNCTION register determines its function. To avoid unexpected behavior, the
MASK register and the COMP register should be programmed before this register is set. If the comparator’s
function is to be changed, you should disable the comparator by setting FUNCTION to 0 (disable), then
program the MASK and COMP registers, and then enable the FUNCTION register in the last step.

The rest of the DWT counters are typically used for profiling the application codes. They can be
programmed to emit events (in the form of trace packets) when the counter overflows. One typical
application is to use the CYCCNT register to count the number of clock cycles required for a specific
task, for benchmarking purposes.

Table 16.1  Encoding of the DWT Mask Registers

MASK Ignore Bit

0 All bits are compared
1 Ignore bit [0]
2 Ignore bit [1:0]
3 Ignore bit [2:0]
… …
15 Ignore bit [14:0]

258 CHAPTER 16  Debugging Components

For example, the Keil μVision development tool can use these profiling counters to generate statis-
tical information (see Figure 16.2). These counters trigger event packets to be generated and are col-
lected by the debugger through the Serial Wire Viewer (SWV) output.

The TRCENA bit in the DEMCR must be set to 1 before the DWT is used. If the DWT is being used
to generate a trace, the DWT enable (DWTEN) bit in the ITM control register should also be enabled.

16.3  Trace Components: ITM
The ITM has the following functionalities, as shown in Figure 16.3:

Software can directly write console messages to ITM stimulus ports and output them as trace data.•	
The DWT can generate trace packets and output them through the ITM.•	
The ITM can generate timestamp packets that are inserted into a trace stream to help the debugger •	
find out the timing of events.

Because the ITM uses a trace port to output data, if the microcontroller or system-on-chip (SoC)
does not have TPIU support, the traced information cannot be output. Therefore, it is necessary to
check whether the microcontroller or SoC has all the required features before you use the ITM. In the

Figure 16.3

Merging of Trace Packets on the ITM and TPIU.

DWT

Software trace

Timestamp
generator

ITM

Merged
packets

TPIU

Trace
packets

from ETM

External trace
capture device
(e.g., RealView

Trace unit)

Figure 16.2

Program Execution Statistics in Keil μVision Using DWT Counters.

25916.3  Trace Components: ITM

worst case, if these features are not available, you can still use semihosting via the Nested Vectored
Interrupt Controller (NVIC) debug register (supported by ARM RealView Debugger) or a universal
asynchronous receiver/transmitter (UART) to output console messages.

To use the ITM, the TRCENA bit in the DEMCR must be set to 1. Otherwise, the ITM will be
disabled and ITM registers cannot be accessed.

In addition, there is also a lock register in the ITM. You need to write the access key 0xC5ACCE55
(CoreSight ACCESS) to this register before programming the ITM. Otherwise, all write operations to
the ITM will be ignored.

Finally, the ITM itself is another control register to control the enabling of individual features. The
control register also contains the ATID field, which is an ID value for the ITM in the ATB. This ID
value must be unique from the IDs for other trace sources, so that the debug host receiving the trace
packet can separate the ITM’s trace packets from other trace packets.

16.3.1  Software Trace with the ITM
One of the main uses of the ITM is to support debug message output (such as printf). The ITM contains
32 stimulus ports, allowing different software processes to output to different ports, and the messages
can be separated later at the debug host. Each port can be enabled or disabled by the Trace Enable regis-
ter and can be programmed (in groups of eight ports) to allow or disallow user processes to write to it.

Unlike UART-based text output, using the ITM to output does not cause much delay for the applica-
tion. A FIFO buffer is used inside the ITM, so writing output messages can be buffered. However, it is
still necessary to check whether the FIFO is full before you write to it.

The output messages can be collected at the trace port interface or the Serial Wire Viewer interface
(SWV) on the TPIU. There is no need to remove code that generates the debug messages from the
final code because if the TRCENA control bit is low, the ITM will be inactive and debug messages will
not be output. You can also switch on the output message in a “live” system and use the Trace Enable
register in the ITM to limit which ports are enabled so that only some of the messages can be output.

For example, the Keil μVision development tool can collect and display the text output using the
ITM viewer shown in Figure 16.4.

Figure 16.4

μVision ITM Viewer Display Shows the Software Generated ITM Text Output.

260 CHAPTER 16  Debugging Components

16.3.2  Hardware Trace with ITM and DWT
The ITM is used in output of hardware trace packets. The packets are generated from the DWT, and the
ITM acts as a trace packet merging unit. To use DWT trace, you need to enable the DWTEN bit in the
ITM control register; the rest of the DWT trace settings still need to be programmed at the DWT.

16.3.3  ITM Timestamp
ITM has a timestamp feature that allows trace capture tools to find out timing information by inserting
delta timestamp packets into the traces when a new trace packet enters the FIFO inside the ITM. The
timestamp packet is also generated when the timestamp counter overflows.

The timestamp packets provide the time difference (delta) with previous events. Using the delta
timestamp packets, the trace capture tools can then establish the timing of when each packet is gener-
ated, and hence reconstruct the timing of various debug events.

Combining the trace functionality of DWT and ITM, we can collect a lot of useful information. For
example, the exception trace windows in the Keil μVision development tool can tell you what excep-
tions have been carried out and how much time was spend on the exceptions, as shown in Figure 16.5.

16.4  Trace Components: ETM
The ETM block is used for providing instruction traces. It is optional and might not be available on
some Cortex-M3 products. When it is enabled and when the trace operation starts, it generates instruc-
tion trace packets. A FIFO buffer is provided in the ETM to allow enough time for the trace stream to
be captured.

To reduce the amount of data generated by the ETM, it does not always output exactly what address
the processor has reached/executed. It usually outputs information about program flow and outputs full
addresses only if needed (e.g., if a branch has taken place). Because the debugging host should have a
copy of the binary image, it can then reconstruct the instruction sequence the processor has carried out.

The ETM also interacts with other debugging components such as the DWT. The comparators in the
DWT can be used to generate trigger events in the ETM or to control the trace start/stop.

Figure 16.5

μVision Exception Trace Output.

26116.5  Trace Components: TPIU

Unlike the ETM in traditional ARM processors, the Cortex-M3 ETM does not have its own address
comparators, because the DWT can carry out the comparison for ETM. Furthermore, because the data
trace functionality is carried out by the DWT, the ETM design in the Cortex-M3 is quite different from
traditional ETM for other ARM cores.

To use the ETM in the Cortex-M3, the following setup is required (handled by debug tools):

The TRCENA bit in the DEMCR must be set to 1 (refer to 1.	 Table 15.2 or D.38).
The ETM needs to be unlocked so that its control registers can be programmed. This can be done 2.	
by writing the value 0xC5ACCE55 to the ETM LOCK_ACCESS register.
The ATB ID register (ATID) should be programmed to a unique value so that the trace packet 3.	
output through the TPIU can be separated from packets from other trace sources.
The Non-Invasive Debug Enable (4.	 NIDEN) input signal of the ETM must be set to high.
The implementation of this signal is device specific. Refer to the datasheet from your chip’s
manufacturer for details.
	Program the ETM control registers for trace generation.5.	

16.5  Trace Components: TPIU
The TPIU is used to output trace packets from the ITM, DWT, and ETM to the external capture device
(for example, a TPA). The Cortex-M3 TPIU supports two output modes:

Clocked mode, using up to 4-bit parallel data output ports•	
SWV mode, using single-bit SWV output•	 1

In clocked mode, the actual number of bits being used on the data output port can be programmed to dif-
ferent sizes. This will depend on the chip package as well as the number of signal pins available for trace
output in the application. The maximum trace port size supported by the chip can be determined from
one of the registers in the TPIU. In addition, the speed of trace data output can also be programmed.

1Available in Cortex-M3 products based on Cortex-M3 revision 1 and onwards.

Figure 16.6

Pin Sharing of SWV Output.

Serial-Wire
JTAG

(SWJ_DP)

TMS (SWIO)

TCK (SWCLK)

TDI

TDO

Cortex-M3

Trace Port
Interface

Unit
(TPIU)

SWV

TDO

Protocol selection

Trace data bit 3

Trace data bit 2

Trace data bit 1

Trace data bit 0/
SWV

SWV

Clocked
mode

parallel
output

ULink2,
ULinkPro, or

RealView ICE

ULink Pro
or

RealView
Trace

262 CHAPTER 16  Debugging Components

In SWV mode, a one-bit serial protocol is used and this reduces the number of output signal to
1, but the maximum bandwidth for trace output will also be reduced. When combining SWV with
Serial-Wire debug protocol, the Text Data Output (TDO) pin normally used for Joint Test Action
Group (JTAG) protocol can be shared with SWV (see Figure 16.6). For example, the trace output
in SWV mode can be collected using a standard debug connector for JTAG using a Keil U-Link2
module.

Alternatively, the SWV output mode can also share a pin with the trace output pin in clocked mode.
The trace data (either in clocked mode or SWV mode) can be collected by external TPA like the ARM
RealView Trace.

When instruction trace (using ETM) is required, the clocked mode is more suitable than SWV
mode as it provides higher trace bandwidth. For simple data trace and event trace (e.g., tracing of
exception events), the SWV mode is usually sufficient and can be used with less connection pins.

To use the TPIU, the TRCENA bit in the DEMCR must be set to 1, and the protocol (mode)
selection register and trace port size control registers need to be programmed by the trace capture
software.

16.6  The Flash Patch and Breakpoint Unit
The FPB has the following two functions:

Hardware breakpoint (generates a breakpoint event to the processor to invoke debug modes such •	
as halt or debug monitor)
Patch instruction or literal data from Code memory space to Static Random Access Memory •	
(SRAM) memory region

16.6.1  Breakpoint Feature
The breakpoint function is fairly easy to understand—during debugging, you can set one or multiple
breakpoints to program addresses or literal constant addresses. If the program code at the breakpoint
addresses get executed, or if the literal constant addresses get accessed, then this triggers the break-
point debug event and causes the program execution to halt (for halt mode debug) or triggers the debug
monitor exception (if debug monitor is used). Then, you can examine the register’s content, memory
contents, debug using single stepping, and so on.

16.6.2  Flash Patch Feature
The Flash Patch function allows using a small programmable memory in the system to apply patches
to a program memory which cannot be modified. For products to be produced in high volume, using
mask ROM or one-time-programmable ROM can reduce the cost of the product. But, if a software
bug is found after the device is programmed, it could be costly to replace the devices. By integrat-
ing a small reprogrammable memory, for example, a very small Flash or Electrically Erasable
Programmable Read Only Memory (EEPROM), patches can be made to the original software pro-
grammed in the device. For microcontrollers that only use Flash to store software, Flash Patch is
not required as the whole Flash can be erased and reprogrammed easily.

26316.6  The Flash Patch and Breakpoint Unit

16.6.3  Comparators
The FPB contains eight comparators:

Six instruction comparators•	
Two literal comparators•	

The comparators can be used either for breakpoint function or Flash Patch function, but both do not
function at the same time.

The FPB has a Flash Patch control register that contains an enable bit to enable the FPB. In addition,
each comparator comes with a separate enable bit in its comparator control register. Both of the enable
bits must be set to 1 for a comparator to operate.

The comparators can be programmed to remap addresses from Code space to the SRAM memory
region. When this function is used, the REMAP register needs to be programmed to provide the base
address of the remapped contents. The upper three bits of the REMAP register (bit[31:29]) is hardwired
to b001, limiting the remap base address location to within 0x20000000 to 0x3FFFFF80, which is
always within the SRAM memory region.

When the instruction address or the literal address hits the address defined by the comparator, the
read access is remapped to the table pointed to by the REMAP register (see Figure 16.7).

What Are Literal Loads?
When we program in assembler language, very often we need to set up immediate data values in a register. When
the value of the immediate data is large, the operation cannot be fitted into one instruction space. For example,

LDR R0, =0xE000E400  ; External Interrupt Priority Register
   ; starting address

Because no instruction has an immediate value space of 32, we need to put the immediate data in a different
memory space, usually after the program code region, and then use a PC relative load instruction to read the
immediate data into the register. So what we get in the compiled binary code will be something like the following:

LDR R0, [PC, #<immed_8>*4]
 ; immed_8 = (address of literal value – PC)/4
...
; literal pool
...
DCD 0xE000E400
...

or with Thumb-2 instructions:

LDR.W R0, [PC, #+/- <offset_12>]
 ; offset_12 = address of literal value - PC
...
; literal pool
...
DCD 0xE000E400
...

Because we are likely to use more than one literal value in our code, the assembler or compiler will usually
generate a block of literal data, it is commonly called literal pool.

In Cortex-M3, the literal loads are data read operation carried out on the data bus (D-CODE bus or System
bus depending on memory location).

264 CHAPTER 16  Debugging Components

Using the remap function, it is possible to create some “what-if” test cases in which the original
instruction or a literal value is replaced by a different one; even the program code is in ROM or Flash
memory. An example use is to allow execution of a program or subroutine in the SRAM region by
patching program ROM in the Code region so that a branch to the test program or subroutine can take
place. This makes it possible to debug a ROM-based device.

Alternatively, the six instruction address comparators can be used to generate breakpoints as well
as to invoke halt mode debug or debug monitor exceptions.

16.7  The Advanced High-Performance Bus Access Port
The Advanced High-Performance Bus Access Port (AHB-AP) is a bridge between the debug interface
module (Serial-Wire JTAG Debug Port or Serial-Wire Debug Port) and the Cortex-M3 memory system
(see Figure 16.8). For the most basic data transfers between the debug host and the Cortex-M3 system,
the following three registers in the AHB-AP are used:

Figure 16.7

Flash Patch: Remap of Instructions and Literal Read.

Inst #3

Inst #2

Inst #1

Literal #1

0x20000000

New Inst #3
New Inst #2
New Inst #1

New literal #1

REMAP base address

0x20000000

CODE
region

SRAM
region

COMP6

COMP1

COMP0

COMP2
0x00000000

Remap
operations

Memory
space

26516.8  ROM Table

Control and Status Word (CSW)•	
Transfer Address register (TAR)•	
Data Read/Write (DRW)•	

The CSW register can control the transfer direction (read/write), transfer size, transfer types, and so
on. The TAR register is used to specify the transfer address, and the DRW register is used to carry out
the data transfer operation (transfer starts when this register is accessed).

The data register DRW represents exactly what is shown on the bus. For half word and byte trans-
fers, the required data will have to be manually shifted to the correct byte lane by debugger software.
For example, if you want to carry out a data transfer of half word size to address 0x1002, you need to
have the data on bit [31:16] of the DRW register. The AHB-AP can generate unaligned transfers, but it
does not rotate the result data based on the address offset. So, the debugger software will have to either
rotate the data manually or split an unaligned data access into several accesses if needed.

Other registers in the AHB-AP provide additional features. For example, the AHB-AP provides
four banked registers and an automatic address increment function so that access to memory within
close range or sequential transfers can be speeded up. The AHB-AP also contains a register called base
address to indicate the address of ROM table.

In the CSW register, there is one bit called MasterType. This is normally set to 1 so that hardware
receiving the transfer from AHB-AP knows that it is from the debugger. However, the debugger can
pretend to be the core by clearing this bit. In this case, the transfer received by the device attached to the
AHB system should behave as though it is accessed by the processor. This is useful for testing peripher-
als with FIFO that can behave differently when accessed by the debugger.

16.8  ROM Table
The ROM table is used to allow autodetection of debug components inside a Cortex-M3 chip. The
Cortex-M3 processor is the first product based on ARM v7-M architecture. It has a defined memory
map and includes a number of debug components. However, in newer Cortex-M devices or if the chip

Figure 16.8

Connection of the AHB-AP in the Cortex-M3.

SWJ-DP or
SW-DP

Debug
host

DAP port
on

Cortex-M3

AHB-AP

TAR
CSW
DATA

Cortex-M3
core system

Address

Control

Data

Memory
system

AHB Bus
interconnection

Cortex-M3

266 CHAPTER 16  Debugging Components

designers modified the default debug components, the memory map for the debug devices could be dif-
ferent. To allow debug tools to detect the components in the debug system, a ROM table is included; it
provides information on the NVIC and debug block addresses.

The ROM table is located in address 0xE00FF000. Using contents in the ROM table, the memory
locations of system and debug components can be calculated. The debug tool can then check the ID
registers of the discovered components and determine what is available on the system.

For the Cortex-M3, the first entry in the ROM table (0xE00FF000) should contain the offset to
the NVIC memory location. (The default value in the ROM table’s first entry is 0xFFF0F003; bit[1:0]
means that the device exists and there is another entry in the ROM table following. The NVIC offset
can be calculated as 0xE00FF000 + 0xFFF0F000 = 0xE000E000.)

The default ROM table for the Cortex-M3 is shown in Table 16.2. However, because chip manufac-
turers can add, remove, or replace some of the optional debug components with other CoreSight debug
components, the value you find on your Cortex-M3 device could be different.

The lowest two bits of the value indicate whether the device exists. In normal cases, the NVIC,
DWT, and FPB should always be there, so the last two bits are always 1. However, the TPIU and the

Table 16.2  Cortex-M3 Default ROM Table Values

Address Value Name Description

0xE00FF000 0xFFF0F003 NVIC Points to the NVIC base address at 0xE000E000
0xE00FF004 0xFFF02003 DWT Points to the DWT base address at 0xE0001000
0xE00FF008 0xFFF03003 FPB Points to the FPB base address at 0xE0002000
0xE00FF00C 0xFFF01003 ITM Points to the ITM base address at 0xE0000000
0xE00FF010 0xFFF41003 TPIU Points to the TPIU base address at 0xE0040000

/ 0xFFF41002
0xE00FF014 0xFFF42003 ETM Points to the ETM base address at 0xE0041000

/ 0xFFF42002
0xE00FF018 0 End End-of-table marker
0xE00FFFCC 0x1 MEMTYPE Indicates that system memory can be accessed on

this memory map
0xE00FFFD0 0 / 0x04 PID4 Peripheral ID space; reserved
0xE00FFFD4 0 / 0x00 PID5 Peripheral ID space; reserved
0xE00FFFD8 0 / 0x00 PID6 Peripheral ID space; reserved
0xE00FFFDC 0 / 0x00 PID7 Peripheral ID space; reserved
0xE00FFFE0 0 / 0xC3 PID0 Peripheral ID space; reserved
0xE00FFFE4 0 / 0xB4 PID1 Peripheral ID space; reserved
0xE00FFFE8 0 / 0x0B PID2 Peripheral ID space; reserved
0xE00FFFEC 0 / 0x00 PID3 Peripheral ID space; reserved
0xE00FFFF0 0 / 0x0D CID0 Component ID space; reserved
0xE00FFFF4 0 / 0x10 CID1 Component ID space; reserved
0xE00FFFF8 0 / 0x05 CID2 Component ID space; reserved
0xE00FFFFC 0 / 0xB1 CID3 Component ID space; reserved

26716.8  ROM Table

ETM could be taken out by the chip manufacturer and might be replaced with other debugging compo-
nents from the CoreSight product family.

The upper part of the value indicates the address offset from the ROM table base address. For example,

NVIC address = 0xE00FF000 + 0xFFF0F000 = 0xE000E000 (truncated to 32-bit)

For debug tool development using CoreSight technology, it is necessary to determine the address
of debug components from the ROM table. Some Cortex-M3 devices might have a different setup of
the debug component connection that can result in additional base addresses. By calculating the cor-
rect device address from this ROM table, the debugger can determine the base address of the provided
debug component, and then from the component ID of those components the debugger can determine
the type of debug components that are available (see Figure 16.9).

Figure 16.9

Automatic Detection of Components via CoreSight Technology.

Debugger
connection

SWJ-DP

AHB-AP

base address

Debugger detects
SWJ-DP via

JTAG or Serial
Wire protocol

Debugger detects
connection of

AHB-AP by reading
the ID registers

in AHB-AP

ROM table

Using a register called
base address in AHB-AP,
the debugger detects the

ROM table

NVIC / SCS

DWT

FPB

ITM

TPIU

ETM

The debugger goes
through each entry on
ROM table, and reads

the ID values of
debug components

NVIC

ID registers

DWT

ID registers

FPB
Number of
breakpoints

Number of
watchpoints

Debugger can then
determine available
debug features by
other registers in

the debug
components

ID registers

ETM

ID registers

269Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00020-X

CHAPTER

In This Chapter

Choosing a Cortex-M3 Product... 269
Development Tools... 270
Differences between the Cortex-M3 Revision 0 and Revision 1.. 272
Differences between the Cortex-M3 Revision 1 and Revision 2.. 274
Benefits and Effects of the Revision 2 New Features... 277
Differences between the Cortex-M3 and Cortex-M0... 278

Getting Started with
the Cortex-M3 Processor 17

17.1  Choosing a Cortex-M3 Product
Aside from memory, peripheral options, and operation speed, a number of other factors make one
Cortex™-M3 product different from another. The Cortex-M3 design supplied by ARM contains a num-
ber of features that are configurable, such as

Number of external interrupts•	
Number of interrupt priority levels (width of priority-level registers)•	
With Memory Protection Unit (MPU) or without MPU•	
With Embedded Trace Macrocell (ETM) or without ETM•	
Choice of debug interface (Serial-Wire (SW), Joint Test Action Group (JTAG), or both)•	

In most projects, the features and specification of the microcontroller will certainly affect your
choice of Cortex-M3 product. For example,

•	 Peripherals: For many applications, peripheral support is the main criterion. More peripherals
might be good, but this also affects the microcontroller’s power consumption and price.

•	 Memory: Cortex-M3 microcontrollers can have Flash memory from several kilobytes to several
megabytes. In addition, the size of the internal memory might also be important. Usually these
factors will have a direct impact on the price.

•	 Clock speed: The Cortex-M3 design from ARM can easily reach more than 100 MHz, even
in 0.18 µm processes. However, manufacturers might specify a lower operation speed due to
limitations of memory access speed.

270 CHAPTER 17  Getting Started with Cortex-M3 Processor

•	 Footprint: The Cortex-M3 can be available in many different packages, depending on the chip
manufacturer’s decision. Many Cortex-M3 devices are available in low pin count packages, making
them ideal for low-cost manufacturing environments.

Currently, a number of microcontroller vendors are already shipping Cortex-M3-based microcon-
trollers, and a number of other vendors will also soon be shipping Cortex-M3 products. Here, we list
a number of them:

Texas Instruments (formerly LuminaryMicro): The Stellaris Cortex-M3 microcontroller product range
has over 100 devices in the family, including devices with 10/100 Ethernet MAC and PHY, USB, CAN,
SPI, I2C, I2S, and so on.

ST Microelectronics: The ST’s Cortex-M3 products included several product lines as follows:
	 STM32 connectivity line for feature-packed device supporting USB On-The-Go (USB OTG), •	

Ethernet, and memory cards.
	 STM32L for ultralow-power applications with analog and •	 LCD interface support.
	 STM32 value line for low-cost applications.•	

Toshiba: The TX03 product series targets various application areas including industrial and automotive
applications, consumer applications, and supporting interfaces, including USB, CAN, Ethernet, and
analog interface on a number of devices.

Atmel: The SAM3U product family supports high-speed USB interface, dual bank flash, communica-
tion interface (SPI, Secure Digital Input Output (SDIO), and Serial Synchronous Controller (SSC)),
memory card interface, as well as ADC.

Energy Micro: The EFM®32 is a highly energy efficient product family with innovative peripherals that
can react and respond without central processing unit (CPU) intervention. Interface support includes
I2C, LCD, ADC, DAC, and special features like Advanced Encryption Standard (AES) support.

NXP: There are two Cortex-M3 product lines in the NXP LPC® product family: the LPC1700 product
line and the LPC1300 product line. The LPC1700 is targeted at high-performance application with
support for fast communication, motor control, and industrial control (e.g., USB, CAN, I2S, and
DAC). LPC1300 is targeted at low-power and mixed signal applications.

17.2  Development Tools
To start using the Cortex-M3, you’ll need a number of tools. Typically, they will include the following:

A compiler and/or assembler•	 : Software to compile your C or assembler application codes. Almost
all C compiler suites come with an assembler.

•	 Instruction set simulator: Software to simulate the instruction execution for debugging in early
stages of software development. This is optional.
In-circuit emulator (ICE) or debug probe•	 : A hardware device to connect your debug host (usually
a personal computer) to the target circuit. The interface can be either JTAG or SW.
A development board•	 : A circuit board that contains the microcontroller.
Trace capture•	 : An optional hardware and software package for capturing instruction traces or
output from Data Watchpoint and Trace (DWT) and Instrumentation Trace Macrocell (ITM)

27117.2  Development Tools

modules that outputs them to human-readable format. Sometimes the trace capture feature can be
build-in as a part of the ICE.

•	 An embedded operating system: An operating system (OS) running on the microcontroller. This is
optional; many applications do not require an OS.

17.2.1  C Compiler and Debuggers
A number of C compiler suites and development tools are already available for the Cortex-M3 (see
Table 17.1).

Table 17.1  Examples of Development Tools Supporting Cortex-M3

Company Product1

ARM (www.arm.com) The Cortex-M3 is supported by RealView Development Suite (RVDS).
RealView-ICE (RVI) is available for connecting debug target to debug
environment. Note that older products, such as ARM Development
Suite (ADS) and Software Development Toolkit (SDT), do not support the
Cortex-M3.

Keil, an ARM company
(www.keil.com)

The Cortex-M3 is supported in Microcontroller Development Kit (MDK-
ARM). The ULINK™ USB-JTAG adapters are available for connecting
debug target to debug Integrated Development Environment (IDE).

CodeSourcery
(www.codesourcery.com)

GNU Tool Chain for ARM processors is now available at www
.codesourcery.com/gnu_toolchains/arm/

Rowley Associates
(www.rowley.co.uk)

CrossWorks for ARM is a GNU C compiler (GCC)-based development
suite supporting the Cortex-M3 (www.rowley.co.uk/arm/index.htm).

IAR Systems (www.iar.com) IAR Embedded Workbench for ARM and Cortex provides a C/C++
compiler and debug environment (v4.40 or above). A KickStart kit is
also available, based on the Luminary Micro LM3S102 microcontroller,
including debugger and a J-Link Debug Probe for connecting the target
board to debug IDE.

Lauterbach
(www.lauterbach.com)

JTAG debugger and trace utilities are available from Lauterbach.

Segger (www.segger.com) Segger J-Link and J-Trace support Cortex-M3 microcontrollers for
debug and trace operations.

Signum (www.signum.com) JTAGJet and JTAGJet-Trace are in-circuit debuggers supporting
Cortex-M3 microcontrollers for debug and trace operations.

Code Red
(www.code-red-tech.com)

Red Suite™ 2 provides a GCC-based development environment, and
Red Probe is for debug operations supporting JTAG and SW protocols.

National Instrument
(www.ni.com)

LabVIEW Embedded Module for ARM Microcontroller

Raisonance
(www.raisonance.com)

RKit-ARM Software Toolset is a GCC-based toolchain for ARM
Microcontroller. Raisonance also provides debugger (RLink) and starter
kit (STM32 Primer)

GNU GCC
(www.gcc.gnu.org)

The support for the Cortex-M3 processor has been added to the GCC.

1Product names are registered trademarks of the companies listed on the left-hand side of the table.

www.arm.com
www.keil.com
www.codesourcery.com
www.rowley.co.uk
www.rowley.co.uk/arm/index.htm
www.iar.com
www.lauterbach.com
www.segger.com
www.signum.com
www.code-red-tech.com
www.ni.com
www.raisonance.com
www.gcc.gnu.org

272 CHAPTER 17  Getting Started with Cortex-M3 Processor

Free GCC-based C compilers are available from Gnu’s Not Unix (GNU) web site and companies
including CodeSourcery and Raisonance. You can also get evaluation versions of some commercial
tools, such as Keil MDK-ARM, which are fully functional.

17.2.2  Embedded OS Support
Many applications require an OS to handle multithreading and resource management. Many OSs are
developed for the embedded market. Currently, a number of these OSs are supported on the Cortex-M3
(see Table 17.2).

17.3  Differences between the Cortex-M3 Revision 0 and Revision 1
Early versions of Cortex-M3 products were based on revision 0 of the Cortex-M3 processor. Products
based on Cortex-M3 revision 1 have been available since the third quarter of 2006. When this book was
first published, all new Cortex-M3-based products should have been based on revision 1. Revision 2
of the Cortex-M3 was released in 2008 with products based on this release available in 2009. It could
be important to know the revision of the chip you are using because there are a number of changes and
improvements in these releases.

Table 17.2  Examples of Embedded OSs Supporting Cortex-M3

Company Product2

FreeRTOS (www.freertos.org) FreeRTOS
Express Logic (www.rtos.com) ThreadX(TM) RTOS
Micrium (www.micrium.com) µC/OS-II
Mentor Graphics (www.mentor.com) Nucleus/Nucleus Plus
Pumpkin Inc. (www.pumpkininc.com) Salvo RTOS
CMX Systems (www.cmx.com) CMX-RTX
Keil (www.keil.com) ARM RTX
Segger (www.segger.com) emboss
IAR Systems (www.iar.com) IAR PowerPac for ARM
eCosCentric (www.ecoscentric.com, www.ecos.sourceware.org) eCos
Interniche Technologies Inc. (www.nichetask.com) NicheTask
Green Hills Software (www.ghs.com) µVelOSity
Open source (www.linux-arm.org/LinuxKernel/LinuxM3) µCLinux
Quadros System (www.quadros.com) RTXC
ENEA (www.enea.com) OSE Epsilon RTOS
Raisonance (www.stm32circle.com/projects/circleos.php) CircleOS
SCIOPTA (www.sciopta.com) SCIOPTA RTOS
Micro Digital (www.smxrtos.com) SMX RTOS

2Product names are registered trademarks of the companies listed on the left-hand side of the table.

www.freertos.org
www.rtos.com
www.micrium.com
www.mentor.com
www.pumpkininc.com
www.cmx.com
www.keil.com
www.segger.com
www.iar.com
(www.ecoscentric.com,
www.nichetask.com
www.ghs.com
www.linux-arm.org/LinuxKernel/LinuxM3
www.quadros.com
www.enea.com
www.stm32circle.com/projects/circleos.php
www.sciopta.com
www.smxrtos.com

27317.3  Differences between the Cortex-M3 Revision 0 and Revision 1

For revision 1, the visible changes in the programmer’s model and development features include
the following:

From revision 1, the stacking of registers when an exception occurs can be configured such that it is •	
forced to begin from a double word aligned memory address. This is done by setting the STKALIGN
bit in the Nested Vectored Interrupt Controller (NVIC) Configuration Control register.
For that reason, the NVIC Configuration Control register has the STKALIGN bit.•	

•	 Release r1p1 includes the new AUXFAULT (Auxiliary Fault) status register (optional).
Additional features include data value matching added to the DWT.•	
ID register value changes due to the revision fields update.•	

Changes invisible to end users include the following:

The memory attribute for Code memory space is hardwired to cacheable, allocated, nonbufferable, •	
and nonshareable. This affects the I-Code Advanced High-Performance Bus (AHB) and the
D-Code AHB interface but not the system bus interface. The change only affect caching and
buffering behavior outside the processor (e.g. level 2 cache or memory controllers with cache).
The processor internal write buffer behavior does not change and this modification has no effect
on most microcontroller products.
Supports bus multiplexing operation mode between I-Code AHB and D-Code AHB. Under this •	
operation mode, the I-Code and D-Code buses can be merged using a simple bus multiplexer (the
previous solution used an ADK BusMatrix component). This can lower the total gate count.
Added new output port for connection to the AHB Trace Macrocell (HTM, a CoreSight debug •	
component from ARM) for complex data trace operations.
Debug components or debug control registers can be accessed even during system reset; only •	
during power-on reset are those registers inaccessible.
The Trace Port Interface Unit (TPIU) has •	 Serial-Wire Viewer (SWV) operation mode support. This
allows trace information to be captured with low-cost hardware.
In revision 1, the VECTPENDING field in the NVIC Interrupt Control and Status register can be affec•	
ted by the C_MASKINTS bit in the NVIC Debug Halting Control and Status register. If C_MASKINTS
is set, the VECTPENDING value could be zero if the mask is masking a pending interrupt.
The JTAG-DP debug interface module has been changed to the SW JTAG-Debug Port (SWJ-DP) •	
module (see the next section, “Revision 1 Change: Moving from JTAG-DP to SWJ-DP”). Chip
manufacturers can continue to use JTAG-DP, which is still a product in the CoreSight product family.

Since revision 0 of the Cortex-M3 does not have a double word stack alignment feature in its
exception sequence, some compiler tools, such as ARM RealView Development Suite (RVDS) and the
Keil RealView Microcontroller Development Kit, have special options to allow software adjustment of
stacking, which allow the developed application to be embedded-application binary interface (EABI)
compliant. This could be important if it has to work with other EABI-compliant development tools.

To determine which revision of the Cortex-M3 processor is used inside the microcontroller or
system-on-chip (SoC), you can use the CPU ID Base register in the NVIC. The revision and variant
number indicates which version of the Cortex-M3 it is, as shown in Table 17.3.

Individual debug components inside the Cortex-M3 processor also carry their own ID registers, and
the revision field might also be different between revision 0 and revision 1.

274 CHAPTER 17  Getting Started with Cortex-M3 Processor

17.3.1  Revision 1 Change: Moving from JTAG-DP to SWJ-DP
The JTAG-DP provided in some earlier Cortex-M3 products is replaced with the SWJ-DP. The
SWJ-DP combines the function of the SW-DP and the JTAG-DP and with protocol detection (see
Figure 17.1). Using this component, a Cortex-M3 device can support debugging with both SW and
JTAG interfaces.

17.4  Differences between the Cortex-M3 Revision 1 and Revision 2
In mid-2008, Revision 2 (r2p0) of the Cortex-M3 was released to silicon vendors. Products using revi-
sion 2 arrived on the market in 2009. Revision 2 has a number of new features, most of them targeted

Table 17.3  CPU ID Base Register (0xE000ED00)

Implementer
[31:24]

Variant
[23:20]

Constant
[19:16] Part No [15:4] Revision [3:0]

Revision 0
(r0p0)

0x41 0x0 0xF 0xC23 0x0

Revision 1
(r1p0)

0x41 0x0 0xF 0xC23 0x1

Revision 1
(r1p1)

0x41 0x1 0xF 0xC23 0x1

Revision 2
(r2p0)

0x41 0x2 0xF 0xC23 0x0

Figure 17.1

SWJ-DP: Combining JTAG-DP and SW-DP Functionalities.

Debug host
(PC)

Debug
interface
hardware

USB or
ethernet

JTAG or
Serial-Wire

Microcontroller

AHB-AP

Other AP

Cortex-M3
core

NVIC

Memory

AHB
interconnect

Cortex-M3

DAP
bus

JTAG
interface

Serial-Wire
interface

Protocol
detection

SWJ-DP

27517.4  Differences between the Cortex-M3 Revision 1 and Revision 2

at reducing power consumption and offering better debug flexibility. Changes that are visible in the
programmer’s model include the following:

17.4.1  Default Configuration of Double Word Stack Alignment
The double word stack alignment feature for exception stacking is now enabled by default (silicon
vendors may select to retain revision 1 behavior). This reduces the start up overhead for most C appli-
cations (removing the need to set the STKALIGN bit in the NVIC Configuration Control register).

17.4.2  Auxiliary Control Register
An Auxiliary Control register is added to NVIC to allow fine tuning of the processor behavior. For
example, for debugging purposes, it is possible to switch off the write buffers in Cortex-M3 so that bus
faults will be synchronous to the memory access instruction (precise). In this way, the faulting instruc-
tion can be pinpointed from the stacked return address (stacked PC) easily.

The details of the Auxiliary Control register are shown in Table 17.4.

17.4.3  ID Register Values Updates
Various ID registers in NVIC and debug components have been updated. For example, the CPU ID
register in the NVIC is changed to 0x412FC230 (refer to Table 17.3).

17.4.4  Debug Features
For debug features, revision 2 has a number of improvements as follows:

Watchpoint triggered data trace in the DWT now supports tracing of read transfers only and write •	
transfers only. This can reduce the trace data bandwidth required as you can specify the data are
traced only when it is changed, or only when the data are read.
Higher flexibility in implementation of debug features. For example, the number of breakpoints and •	
watchpoints can be reduced to reduce the size of the design in very low-power designs.
Better support in multiprocessor debugging. A new interface is introduced to allow simultaneous •	
restart and single stepping of multiple processors (not visible in the programmer’s view).

Table 17.4  Auxiliary Control Register (0xE000E008)

Bits Name Type Reset Value Description

2 DISFOLD R/W 0 Disable IT folding (prevent overlap of IT instruction
execution phase with next instruction)

1 DISDEFWBUF R/W 0 Disable write buffer for default memory map (memory
accesses in MPU-mapped regions are not affected)

0 DISMCYCINT R/W 0 Disable interruption of multiple cycle instructions
like Load Multiple instruction (LDM), store multiple
instruction, (STM), and 64-bit multiply and divide
instructions.

276 CHAPTER 17  Getting Started with Cortex-M3 Processor

17.4.5  Sleep Features
On the system design level, the existing sleep features have also improved (see Figure 17.2). In revision 2, it
is possible for the wake up of the processor to be delayed. This allows more parts of the chip to be powered
down, and the power management system can resume the program execution when the system is ready.
This is needed in some microcontroller designs where some parts of the system are powered down during
sleep, as it might take some time for the voltage supply to be stabilized after power is restored.

Aside from sleep extension, new technology has been used to allow the design to push the
power consumption lower. In previous versions of the Cortex-M3, to allow the processor to wake
up from sleep mode via interrupts, the free running clock of the core needed to be active. Although
the free running clock only drives a small part of the system, it is still better to have this turned off
completely.

Figure 17.2

Sleep Extension Capability Added in Cortex-M3 Revision 2.

Program execution Sleep Waking up Program execution

Interrupt requestIRQ

Flash voltage

Sleep extension

Figure 17.3

WIC Added in Cortex-M3 Revision 2.

Cortex-M3

IRQ

NMI

WIC

IRQ

NMI

Mask

Power
management

unit Wake up

Sleep status

Powered down
during deep sleep

Processor state held in
state retention flip-flops

WIC detects and holds any
interrupt request while

processor is powered down

PMU restores power
when wake up

request from WIC is
generated

27717.5  Benefits and Effects of the Revision 2 New Features

To solve this problem, a simple interrupt controller is added externally to the processor. This
controller, called Wake up Interrupt Controller (WIC), mirrors the interrupt masking function inside
the NVIC during deep sleep and can tell the power management system when a wake up is required. By
doing this, all the clock signals going to the Cortex-M3 processor could be stopped (see Figure 17.3).

In addition to stopping the clocks, the new design methodology also allows most parts of the proces-
sor to be powered down, with the state of the processor saved in special logic cells. When an interrupt
arrives, the WIC sends a request to Power Management Unit (PMU) to power up the system. After the
processor is powered up, the previous state of the processor is restored from the special logic cells and
the processor is then ready to process the interrupt.

This power down feature reduces the power consumption of the design during sleep. However, this
feature depends on the silicon manufacturing process being used and might not be available on some
of the revision 2 products.

17.5  Benefits and Effects of the Revision 2 New Features
So what does that means in terms of developing embedded product development?

First, it means lower power consumption for the embedded products and better battery life. When
WIC mode deep sleep is used, only a very small portion of the design needs to be active. Also, in
designs targeted at extremely low power, the silicon vendor can reduce the size of the design by reduc-
ing the number of breakpoint and watchpoints.

Second, it provides better flexibility in debugging and troubleshooting. Beside from the improved data
trace feature that can be used by debugger, we can also use the new Auxiliary Control register to force
write transfers to be nonbufferable to pinpoint faulting instruction or disable interrupts during multiple
cycle instructions so that each multiple load/store instruction will be completed before the exception is
taken, this can make the analysis of memory contents easier. For systems of multiple Cortex-M3, revi-
sion 2 also brings the capability of simultaneous restarting and stepping of multiple cores.

In addition, revision 2 has a number of internal optimizations to allow higher performance and
better interface features. This allows silicon vendors to develop faster Cortex-M3 products with more
features. However, there are a few things that embedded programmers need to be aware of. They are
as follows:

Double word stack alignment for exception stack frame1.	 : The exception stack frames will be aligned
to double word memory location by default. Some assembly applications written for revision 0 or
revision 1 that use stack to transfer data to exception handlers could be affected. The exception
handler should determine if stack alignment has been carried out by reading the bit 9 of the stacked
Program Status register (PSR) in the stack frame, then it can determine the address of the stacked
data before the exception. Alternatively, the application can program the STKALIGN bit to 0 to get
the same stacking behavior as revision 0 and revision 1. Applications compliant to EABI standard
(e.g., C-Code compiled using an EABI compliant compiler) are not affected.

2.	 SYSTICK Timer might stop in deep sleep: If the Cortex-M3 microcontroller included power down
feature or the core clocks are completely stopped for deep sleep mode, then the SYSTICK Timer
might not be running during deep sleep. Embedded applications that use OS will need to use a
timer externally to the processor core to wake up the processor for event scheduling.

278 CHAPTER 17  Getting Started with Cortex-M3 Processor

3.	 Debug and power-down feature: The new power down feature is disabled when the processor is
connected to a debugger. This is because the debugger needs to access to the processor’s debug
registers during a debug session. During a debug session, the core will still need to be able to be
halted or enter sleep modes, but it should not trigger the power down sequence even if the power
down feature is enabled. For testing of power down operations, the device under test should be
disconnected from the debugger.

17.6  Differences between the Cortex-M3 and Cortex-M0
Some of you might have heard of the ARM Cortex-M0 processor. The programmer’s model of the
Cortex-M0 processor is quite similar to the Cortex-M3. However, it is smaller, supports fewer instructions
and is based on the Von Neumann architecture. The Cortex-M0 processor is developed for ultralow-power
designs and mixed signal applications, where logic gate count is critical. In minimum configuration, the
Cortex-M0 processor is only 12 k logic gates in size, smaller than most 16-bit processors and some of
the high-end 8-bit processors. However, the performance of the Cortex-M0 is 0.9 DMIPS per MHz, more
than double of most 16-bit processors, and nearly 10 times of modern 8-bit microcontrollers. This makes
the Cortex-M0 the most energy efficient 32-bit processor for microcontrollers.

17.6.1  Programmer’s Model
There are a number of differences between the programmer’s model of Cortex-M3 and Cortex-M0
processors (see Figure 17.4). The unprivileged level is only available in the Cortex-M3 processor. In
addition, the FAULTMASK and BASEPRI special registers are not present in the Cortex-M0 either.

Figure 17.4

Programmer’s Model Differences between the Cortex-M3 and Cortex-M0.

Privileged
handler

User thread

Privileged
thread

Start
(reset)

Exception
Exception

exit

Exception

Exception
exit

Program of
control
register

Not available
in Cortex-M0

Functions (and banked registers)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14

R15

R13 (PSP)

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

General-purpose register

Main Stack Pointer, Process Stack Pointer

Link register (LR)

Program counter (PC)

Low registers

High registers

Name

xPSR

PRIMASK

FAULTMASK

BASEPRI

Functions

Program Status registers

Interrupt Mask
registers

Control registerCONTROL

Special
registers

Name

27917.6  Differences between the Cortex-M3 and Cortex-M0

The xPSR also has some minor differences. The Q bit in the Application Program Status register
(APSR) and the Interrupt Continuable Instruction/IF-THEN (ICI/IT) bit fields in the Execution
Program Status register (EPSR) are not available in the Cortex-M0. The Cortex-M0 processor does
not support the IT instruction block, and interruption of a multiple load or store instruction will result
in the instruction being cancelled and restarted when the interrupt handler completes.

17.6.2  Exceptions and NVIC
The exception operation of the Cortex-M0 processor is the same as in the Cortex-M3. The interrupts
and exceptions are vectored, and the NVIC handles nested exceptions automatically. Some of the sys-
tem exceptions on the Cortex-M3 are not available on the Cortex-M0 processor. These include the bus
fault, usage fault, memory management fault, and the debug monitor exceptions. If a fault occurs in a
Cortex-M0 application, the hard fault handler is executed. Some of the fault status registers available
on the Cortex-M3 are also not available on the Cortex-M0.

The priority registers in the Cortex-M0 are only 2 bits. As a result, only four priority levels are
available for interrupts and system exceptions with configurable priority. There is no dynamic priority
switching support in the Cortex-M0 processor, so the priority of interrupt and exceptions are normally
programmed at the beginning of the application and remain unchanged afterwards. The NVIC in the
Cortex-M0 has a similar programmer’s model compared with the one in the Cortex-M3. However,
the registers are word accessible only. So if the priority level of an interrupt needs to be changed, it
might be necessary to read the whole word, modify the priority level for the interrupt, and then write
it back. A number of registers in the Cortex-M3 NVIC are also not available in the Cortex-M0 NVIC
as follows:

•	 Vector Table Offset register: The vector table is fixed at address 0x0. However, microcontrollers
might feature memory map switching features to allow changing of exception vectors at run time.
Software Trigger Interrupt register•	 : To generate an exception by software, the Interrupt Set Pending
register is used instead.
Interrupt Active Status register•	

•	 Interrupt Controller Type register

17.6.3  Instruction Set
The Cortex-M0 processor is based on ARMv6-M architecture. It supports 16-bit Thumb® instructions
and a few 32-bit Thumb instructions (branch with link [BL], instruction synchronization barrier [ISB],
data synchronization barrier [DSB], data memory barrier [DMB], MRS, and MSR). A number of
instructions in Cortex-M3 are not supported on the Cortex-M0. For example,

IT instruction block•	
Compare and branch (compare and branch if zero [CBZ] and compare and branch if nonzero •	
[CBNZ])
Multiple accumulate instructions (multiply accumulate [MLA], multiply and subtract [MLS], •	
signed multiply accumulate long [SMLAL], and unsigned multiply accumulate long [UMLAL])
and multiply instructions with 64-bit results (unsigned multiply long [UMULL] and signed
multiply long [SMULL])

280 CHAPTER 17  Getting Started with Cortex-M3 Processor

Hardware divide instructions (unsigned divide [UDIV] and signed divide [SDIV]) and saturation •	
(signed saturate [SSAT] and unsigned saturate [USAT])
Table branch instruction (Table Branch Half word [TBH] and Table Branch Byte [TBB])•	
Exclusive access instructions•	
Bit field processing instructions (unsigned bit field extract [UBFX], signed bit field extract [SBFX], •	
Bit Field Insert [BFI], and Bit Field Clear [BFC])
Some data processing instructions (count leading zero [CLZ], rotate right extended [RRX], and •	
reverse bit [RBIT])
Load/store instructions with address modes or register combinations that are only supported with •	
32-bit instruction format
Load/store instructions with translate •	 (load word data from memory to register with unprivileged
access [LDRT] and store word to memory with unprivileged access [STRT])

17.6.4  Memory System Features
Both the memory maps from the Cortex-M3 and Cortex-M0 are divided into a number of regions
including CODE, SRAM, peripherals, and so on. However, a number of memory system features on
the Cortex-M3 are not available in the Cortex-M0. These include the following:

Bit band regions•	
Unaligned transfer support•	
MPU (optional in Cortex-M3 processor)•	
Exclusive accesses•	

17.6.5  Debug Features
The Cortex-M0 processor does not include any trace feature (no ETM, ITM). When compared with the
Cortex-M3, it supports a smaller number of breakpoints and watchpoints. (See Table 17.5.)

In most cases, the debug connection of Cortex-M0 microcontrollers only supports one type of
debug communication protocol (SW debug or JTAG). While for Cortex-M3 microcontroller products,
the debug interface normally supports both SW and JTAG protocols and allows dynamic switching
between the two.

17.6.6  Compatibility
The Cortex-M0 processor is upwards compatible with the Cortex-M3 processor. Programs compiled
for the Cortex-M0 can be used on Cortex-M3 directly. However, programs compiled for Cortex-M3

Table 17.5  Debug Feature Comparison

Cortex-M0 Cortex-M3

Breakpoints Up to 4 Up to 8
Watchpoints Up to 2 Up to 4

28117.6  Differences between the Cortex-M3 and Cortex-M0

cannot be used on Cortex-M0 (see Figure 17.5). Due to similarities between the two processors, most
microcontroller applications can be written so that they can be used on either processor (provided that
the memory map and the peripherals are compatible).

If an embedded application is to be used on both Cortex-M3 and Cortex-M0 products, there are
various areas we need to pay attention to so that the application can be compatible with both processors
as follows:

Access to the NVIC registers should use word access only or use core access functions in the 1.	
CMSIS compliant device drivers.

To not use any unaligned data: In the Cortex-M3 processor, you can set the UNALIGN_TRP bit 2.	
in the Configuration Control register to detect accidental generation of unaligned transfers. On
the Cortex-M0 processor, attempts to generate unaligned transfers always result in a hard fault
exception.

Since bit-band regions are not supported on the Cortex-M0, if the application needs to be used 3.	
on both processors, the bit-band feature cannot be used. Alternatively, you can add conditionally
compiled code to provide a software-based solution on the Cortex-M0.

The compatibility between Cortex-M0 and Cortex-M3 brings many advantages to embedded
product developers. Besides from making software porting easy, it also allows embedded developers
to debug their Cortex-M0 applications on a Cortex-M3 platform, which has more debug features like
instruction trace and event trace. To make the behavior of the Cortex-M3 more like Cortex-M0, we can
use the Auxiliary Control register in Cortex-M3 to disable buffered writes. However, since the Cortex-
M3 processor has different instruction timing in a number of instructions compared with the Cortex-
M0, there may still be execution cycle differences between the two.

Figure 17.5

Compatibility between the Cortex-M3 and Cortex-M0 Processors.

Cortex-M0 Cortex-M3

Upward
compatible

Simple porting /
recompile

0.9 DMIP/MHz 1.25 DMIPS/MHz

Harvard bus
architecture

Von Neumann
architecture

ARMv7-M
architecture

ARMv6-M
architecture

283Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00021-1

In This Chapter
Overview... 283
System Characteristics.. 283
Assembly Language Files... 286
C Program Files... 288
Precompiled Object Files... 288
Optimization.. 289

18.1  Overview
For many engineers, porting existing program code to new architecture is a typical task. With the
Cortex™-M3 products starting to emerge on the market, many of us have to face the challenge of
porting ARM7TDMI (referred to as ARM7 in the following text) code to the Cortex-M3. This chapter
evaluates a number of aspects involved in porting applications from the ARM7 to the Cortex-M3.

There are several areas to consider when you’re porting from the ARM7 to the Cortex-M3. They
are as follows:

System characteristics•	
Assembly language files•	
C language files•	
Optimization•	

Overall, low-level code, such as hardware control, task management, and exception handlers,
requires the most changes whereas application codes normally can be ported with minor modification
and recompiling.

18.2  System Characteristics
There are a number of system characteristic differences between ARM7-based systems and Cortex-
M3-based systems (e.g., memory map, interrupts, Memory Protection Unit [MPU], system control,
and operation modes).

Porting Applications
from the ARM7 to the
Cortex-M3 18

CHAPTER

284 CHAPTER 18  Porting Applications from the ARM7 to the Cortex-M3

18.2.1  Memory Map
The most obvious target of modification in porting programs between different microcontrollers is their
memory map differences. In the ARM7, memory and peripherals can be located in almost any address
whereas the Cortex-M3 processor has a predefined memory map. Memory address differences are
usually resolved in compile and linking stages. Peripheral code porting could be more time consuming
because the programmer model for the peripheral could be completely different. In that case, device
driver codes might need to be completely rewritten.

Many ARM7 products provide a memory remap feature so that the vector table can be remapped
to the Static Random Access Memory (SRAM) after boot-up. In the Cortex-M3, the vector table can
be relocated using the NVIC register so that memory remapping is no longer needed. Therefore, the
memory remap feature might be unavailable in many Cortex-M3 products.

Big endian support in the ARM7 is different from such support in the Cortex-M3. Program files can
be recompiled to the new big endian system, but hardcoded lookup tables might need to be converted
during the porting process.

In ARM720T, and some later ARM processors like ARM9, a feature called high vector is available,
which allows the vector table to be located to 0xFFFF0000. This feature is for supporting Windows CE
and is not available in the Cortex-M3.

18.2.2  Interrupts
The second target is the difference in the interrupt controller being used. Program code to control the
interrupt controller, such as enabling or disabling interrupts, will need to be changed. In addition, new
code is required for setting up interrupt priority levels and vector addresses for various interrupts.

The interrupt return method is also changed. This requires modification of interrupt return in
assembler code or, if C language is used, it might be necessary to make adjustments on compile
directives.

Enable and disable of interrupts, previously done by modifying Current Program Status register
(CPSR), must be replaced by setting up the Interrupt Mask register. In addition, in the ARM7T-
DMI, it is possible to reenable interrupt at the same time as interrupt return due to restore of CPSR
from Saved Program Status register (SPSR). In the Cortex-M3, if interrupts are disabled during an
interrupt handler by setting PRIMASK, the PRIMASK should be cleared manually before interrupt
return. Otherwise, the interrupts will remain disabled.

In the Cortex-M3, some registers are automatically saved by the stacking and unstacking mecha-
nisms. Therefore, some of the software stacking operations could be reduced or removed. However, in
the case of the Fast Interrupt request (FIQ) handler, traditional ARM cores have separate registers for
FIQ (R8–R11). Those registers can be used by the FIQ without the need to push them into the stack.
However, in the Cortex-M3, these registers are not stacked automatically, so when an FIQ handler is
ported to the Cortex-M3, either the registers being used by the handler must be changed or a stacking
step will be needed.

Code for nested interrupt handling can be removed. In the Cortex-M3, the NVIC has built-in nested
interrupt handling.

There are also differences in error handling. The Cortex-M3 provides various fault status registers
so that the cause of faults can be located. In addition, new fault types are defined in the Cortex-M3 (e.g.,

28518.2  System Characteristics

stacking and unstacking faults, memory management faults, and hard faults). Therefore, fault handlers
will need to be rewritten.

18.2.3  MPU
The MPU programming model is another system block that needs new program code set up. Microcon-
troller products based on the ARM7TDMI/ARM7TDMI-S do not have MPUs, so moving the applica-
tion code to the Cortex-M3 should not be a problem. However, products based on the ARM720T have
a Memory Management Unit (MMU), which has different functionalities to the MPU in Cortex-M3.
If the application needs to use the MMU (as in a virtual memory system), it cannot be ported to the
Cortex-M3.

18.2.4  System Control
System control is another key area to look into when you’re porting applications. The Cortex-M3 has
built-in instructions for entering sleep mode. In addition, the system controller inside Cortex-M3 prod-
ucts is likely to be completely different from that of the ARM7 products, so function code that involves
system management features will need to be rewritten.

18.2.5  Operation Modes
In the ARM7, there are seven operation modes; in the Cortex-M3, these have been changed to differ-
ence exceptions (see Table 18.1).

The FIQ in the ARM7 can be ported as a normal interrupt request (IRQ) in the Cortex-M3 because
in the Cortex-M3, we can set up the priority for a particular interrupt to be highest; thus it will be able to
preempt other exceptions, just like the FIQ in the ARM7. However, due to the difference between banked
FIQ registers in the ARM7 and the stacked registers in the Cortex-M3, the registers being used in the FIQ
handler must be changed, or the registers used by the handler must be saved to the stack manually.

Table 18.1  Mapping of ARM7TDMI Exceptions and Modes to the Cortex-M3

Modes and Exceptions in the ARM7

Corresponding Modes and Exceptions in the
Cortex-M3

Supervisor (default) Privileged, thread
Supervisor (software interrupt) Privileged, Supervisor Call (SVC)
FIQ Privileged, interrupt
Interrupt request (IRQ) Privileged, interrupt
Abort (prefetch) Privileged, bus fault exception
Abort (data) Privileged, bus fault exception
Undefined Privileged, usage fault exception
System Privileged, thread
User User access (nonprivileged), thread

286 CHAPTER 18  Porting Applications from the ARM7 to the Cortex-M3

18.3  Assembly Language Files
Porting assembly files depends on whether the file is for ARM state or Thumb® state.

18.3.1  Thumb State
If the file is for Thumb state, the situation is much easier. In most cases, the file can be reused without a
problem. However, a few Thumb instructions in the ARM7 are not supported in the Cortex-M3 as follows:

Any code that tries to switch to ARM state•	
SWI is replaced by SVC (note that the program code for parameters passing and return need to be •	
updated.)

Finally, make sure that the program accesses the stack only in full descending stack operations. It is
possible, though uncommon, to implement a different stacking model differently (e.g., full ascending)
in ARM7TDMI.

18.3.2  ARM State
The situation for ARM code is more complicated. There are several scenarios as follows:

•	 Vector table: In the ARM7, the vector table starts from address 0x0 and consists of branch
instructions. In the Cortex-M3, the vector table contains the initial value for the stack pointer and
reset vector address, followed by addresses of exception handlers. Due to these differences, the
vector table will need to be completely rewritten.

•	 Register initialization: In the ARM7, it is often necessary to initialize different registers for different
modes. For example, there are banked stack pointers (R13), a link register (R14), and an SPSR
in the ARM7. Since the Cortex-M3 has a different programmer’s model, the register initialization
code will have to be changed. In fact, the register initialization code on the Cortex-M3 will be much
simpler because there is no need to switch the processor into a different mode.

•	 Mode switching and state switching codes: Since the operation mode definition in the Cortex-M3
is different from that of the ARM7, the code for mode switching needs to be removed. The same
applies to ARM/Thumb state switching code.

FIQ and Nonmaskable Interrupt
Many engineers might expect the FIQ in the ARM7 to be directly mapped to the nonmaskable interrupt (NMI)
in the Cortex-M3. In some applications it is possible, but a number of differences between the FIQ and the
NMI need special attention when you’re porting applications using the NMI as an FIQ.

First, the NMI cannot be disabled whereas on the ARM7, the FIQ can be disabled by setting the F-bit in
the CPSR. So it is possible in the Cortex-M3 for an NMI handler to start right at boot-up time whereas in the
ARM7, the FIQ is disabled at reset.

Second, you cannot use SVC in an NMI handler on the Cortex-M3 whereas you can use software interrupt
(SWI) in an FIQ handler on the ARM7. During execution of an FIQ handler on the ARM7, it is possible for
other exceptions to take place (except IRQ, because the I-bit is set automatically when the FIQ is served).
However, on the Cortex-M3, a fault exception inside the NMI handler can cause the processor to lock up.

28718.3  Assembly Language Files

•	 Interrupt enabling and disabling: In the ARM7, interrupts can be enabled or disabled by clearing
or setting the I-bit in the CPSR. In the Cortex-M3, this is done by clearing or setting an Interrupt
Mask register, such as PRIMASK or FAULTMASK. Furthermore, there is no F-bit in the Cortex-
M3 because there is no FIQ input.

•	 Coprocessor accesses: There is no coprocessor support on the Cortex-M3, so this kind of operation
cannot be ported.

•	 Interrupt handler and interrupt return: In the ARM7, the first instruction of the interrupt handler
is in the vector table, which normally contains a branch instruction to the actual interrupt handler.
In the Cortex-M3, this step is no longer needed. For interrupt returns, the ARM7 relies on manual
adjustment of the return program counter. In the Cortex-M3, the correctly adjusted program
counter is saved into the stack and the interrupt return is triggered by loading EXC_RETURN
into the program counter. Instructions, such as MOVS and SUBS, should not be used as interrupt
returns on the Cortex-M3. Because of these differences, interrupt handlers and interrupt return
codes need modification during porting.

Nested interrupt support code•	 : In the ARM7, when a nested interrupt is needed, usually the IRQ
handler will need to switch the processor to system mode and re-enable the interrupt. This is not
required in the Cortex-M3.

FIQ handler•	 : If an FIQ handler is to be ported, you might need to add an extra step to save the
contents of R8–R11 to stack memory. In the ARM7, R8–R12 are banked, so the FIQ handler can
skip the stack push for these registers. However, on the Cortex-M3, R0–R3 and R12 are saved onto
the stack automatically, but R8–R11 are not.

•	 SWI handler: The SWI is replaced with an SVC. However, when porting an SWI handler to an
SVC, the code to extract the passing parameter for the SWI instruction needs to be updated.
The calling SVC instruction address can be found in the stacked PC, which is different from
the SWI in the ARM7, where the program counter address has to be determined from the link
register.

•	 SWP instruction (swap): There is no swap instruction (SWP) in the Cortex-M3. If the SWP was
used for semaphores, the exclusive access instructions should be used as replacement. This requires
rewriting the semaphores code. If the instruction was used purely for data transfers, this can be
replaced by multiple memory access instructions.

Access to CPSR and SPSR•	 : The CPSR in the ARM7 is replaced with Combined Program Status
registers (xPSR) in the Cortex-M3, and the SPSR has been removed. If the application would like
to access the current values of processor flags, the program code can be replaced with read access
to the APSR. If an exception handler would like to access the Program Status register (PSR) before
the exception takes place, it can find the value in the stack memory because the value of xPSR is
automatically saved to the stack when an interrupt is accepted. So there is no need for an SPSR in
the Cortex-M3.

•	 Conditional execution: In the ARM7, conditional execution is supported for many ARM instructions
whereas most Thumb-2 instructions do not have the condition field inside the instruction coding.
When porting these codes to the Cortex-M3, the assembly tool might automatically convert these
conditional codes to use the IF-THEN (IT) instruction block; alternatively, we can manually insert
the IT instructions or insert branches to produce conditionally executed codes. One potential issue

288 CHAPTER 18  Porting Applications from the ARM7 to the Cortex-M3

with replacing conditional execution code with IT instruction blocks is that it could increase the
code size and, as a result, could cause minor problems, such as load/store operations in some part
of the program could exceed the access range of the instruction.

•	 Use of the program counter value in code that involves calculation using the current program
counter: In running ARM code on the ARM7, the read value of the PC during an instruction is the
address of the instruction plus 8. This is because the ARM7 has three pipeline stages and, when
reading the PC during the execution stage, the program counter has already incremented twice,
4 bytes at a time. When porting code that processes the PC value to the Cortex-M3, since the code
will be in Thumb, the offset of the program counter will only be 4.

•	 Use of the R13 value: In the ARM7, the stack pointer R13 has 32 bits; in the Cortex-M3 processor,
the lowest 2 bits of the stack pointer are always forced to zero. Therefore, in the unlikely case that
R13 is used as a data register, the code has to be modified because the lowest 2 bits would be lost.

For the rest of the ARM program code, we can try to compile it as Thumb/Thumb-2 and see if
further modifications are needed. For example, some of the preindex and postindex memory access
instructions in the ARM7 are not supported in the Cortex-M3 and have to be recoded into multiple
instructions. Some of the code might have long branch range or large immediate data values that cannot
be compiled as Thumb code and so must be modified to Thumb-2 code manually.

18.4  C Program Files
Porting C program files is much easier than porting assembly files. In most cases, application code in
C can be recompiled for the Cortex-M3 without a problem. However, there are still a few areas that
potentially need modification, which are as follows:

•	 Inline assemblers: Some C program code might have inline assembly code that needs modification. This
code can be easily located via the __asm keyword. If RealView Development Suite (RVDS)/RealView
Compilation Tools (RVCT) 3.0 or later is used, it should be changed to Embedded Assembler.

•	 Interrupt handler: In the C program you can use __irq to create interrupt handlers that work with
the ARM7. Due to the difference between the ARM7 and the Cortex-M3 interrupt behaviors,
such as saved registers and interrupt returns, depending on development tools being used,
the __irq keyword might need to be removed. (However, in ARM development tools including
RVDS and RVCT, support for the Cortex-M3 is added to the __irq, and use of the __irq directive
is recommended for reasons of clarity.)

ARM C compiler pragma directives like “#pragma arm” and “#pragma thumb” should be removed.

18.5  Precompiled Object Files
Most C compilers will provide precompiled object files for various function libraries and startup code.
Some of those (such as startup code for traditional ARM cores) cannot be used on the Cortex-M3 due
to the difference in operation modes and states. A number of them will have source code available and
can be recompiled using Thumb-2 code. Refer to your tool vendor documentation for details.

28918.6  Optimization

18.6  Optimization
After getting the program to work with the Cortex-M3, you might be able to further improve it to obtain
better performance and lower memory use. A number of areas should be explored:

•	 Use of the Thumb-2 instruction: For example, if a 16-bit Thumb instruction transfers data from
one register to another and then carries a data processing operation on it, it might be possible to
replace the sequence with a single Thumb-2 instruction. This can reduce the number of clock cycles
required for the operation.

•	 Bit band: If peripherals are located in bit-band regions, access to control register bits can be greatly
simplified by accessing the bit via a bit-band alias.

•	 Multiply and divide: Routines that require divide operations, such as converting values into decimals
for display, can be modified to use the divide instructions in the Cortex-M3. For multiplication of
larger data, the multiple instructions in the Cortex-M3, such as unsigned multiply long (UMULL),
signed multiply long (SMULL), multiply accumulate (MLA), multiply and subtract (MLS),
unsigned multiply accumulate long (UMLAL), and signed multiply accumulate long (SMLAL) can
be used to reduce complexity of the code.

Immediate data•	 : Some of the immediate data that cannot be coded in Thumb instructions can be
produced using Thumb-2 instructions.

•	 Branches: Some of the longer distance branches that cannot be coded in Thumb code (usually
ending up with multiple branch steps) can be coded with Thumb-2 instructions.

•	 Boolean data: Multiple Boolean data (either 0 or 1) can be packed into a single byte/half word/
word in bit-band regions to save memory space. They can then be accessed via the bit-band alias.

Bit-field processing•	 : The Cortex-M3 provides a number of instructions for bit-field processing,
including unsigned bit field extract (UBFX), signed bit field extract (SBFX), Bit Field Insert
(BFI), Bit Field Clear (BFC), and reverse bits (RBIT). They can simplify many program codes for
peripheral programming, data packet formation, or extraction and serial data communications.

•	 IT instruction block: Some of the short branches might be replaceable by the IT instruction
block. By doing that, we could avoid wasting clock cycles when the pipeline is flushed during
branching.

ARM/Thumb state switching•	 : In some situations, ARM developers divide code into various files
so that some of them can be compiled to ARM code and others compiled to Thumb code. This
is usually needed to improve code density where execution speed is not critical. With Thumb-2
features in the Cortex-M3, this step is no longer needed, so some of the state switching overhead
can be removed, producing short code, less overhead, and possibly fewer program files.

291Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00022-3

In This Chapter

Background... 291
Getting the GNU Tool Chain.. 292
Development Flow.. 292
Examples... 294
Accessing Special Registers.. 304
Using Unsupported Instructions.. 305
Inline Assembler in the GNU C Compiler... 305

Starting Cortex-M3
Development Using
the GNU Tool Chain 19

19.1  Background
Many people use Gnu’s Not Unix (GNU) tool chain for ARM product development, and a number of
development tools for ARM are based on the GNU tool chain. The GNU tool chains supporting the
Cortex™-M3 are available from the GNU gcc source, as well as from a number of vendors providing
precompiled ready-to-use tool chains.

One of the vendors providing the GNU that supports the Cortex-M3 processor is CodeSourcery.
The CodeSourcery ARM compiler is available in various packages:

CodeSourcery G++ Lite: This is freely available from the CodeSourcery web site (www.codesourcery.
com). This free version provides command-line tools only and limited debug support.

CodeSourcery G++ Personal Edition: A popular choice as it is low-cost and has support features,
including the following:

Integration of Eclipse Integrated Development Environment •	 (IDE) environment
Support for a wide range of ARM microcontrollers, including CS3 support for these •	
microcontrollers (e.g., linker scripts and debug configurations)
Evaluation board support including Luminary Micro (Texas Instrument) Stellaris and •	
STMicroelectronics STM32 evaluation boards. This allows full browsing of peripheral
registers. The list of supported boards grows with every release.

CHAPTER

www.codesourcery.com
www.codesourcery.com

292 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

Large collection of design examples•	
Integrated support for multiple debug interfaces including•	

ARMUSB (built into Stellaris parts)•	
Segger J-Link•	
Keil ULINK2•	

Board Builder Wizard to set up support for custom boards•	
Clone board definitions•	
Modify memory layout•	
Modify reset and start-up sequence•	
Debug configurations•	

Support for importing StellarisWare examples•	

CodeSourcery G++ Professional Edition: All features in Personal Edition plus addition libraries
and unlimited support.

The examples in this chapter are based on the command-line tools in CodeSourcery G++ Lite,
as these areas of information are common to most GNU-based tool chains. This chapter intro-
duces only the most basic steps in using the GNU tool chain. Detailed uses of the tool chain are
available from documentation from tool vendors and on the Internet and are outside the scope of
this book.

Assembler syntax for GNU assembler (AS in the GNU tool chain) is a bit different from ARM
assembler. These differences include declarations, compile directives, comments, and the like. There-
fore, assembly codes for ARM RealView Development Tools need modification before being used with
the GNU tool chain.

19.2  Getting the GNU Tool Chain
The compiled version of the GNU tool chain can be downloaded from www.codesourcery.com/sgpp/
lite/arm. A number of binary builds are available. For the simplest uses, let’s select one with embedded-
application binary interface (EABI) and without a specific embedded OS as the target platform. The
tool chain is available for various development platforms such as Windows and Linux. The examples
shown in this chapter should work with either version.

19.3  Development Flow
As with ARM tools, the GNU tool chain contains a compiler, an assembler, a linker, and additional
utilities. The tools allow projects that contain source code in both C and assembly language (see
Figure 19.1).

With GNU C compiler, the linking stage is normally invoked by the C compiler during the compile
stage. This ensures that correct libraries and settings are passed on to the linker. If the linker is used
directly without correct parameters from the C compiler, it might not be able to link the object files. In
addition, without the compiler help routine, the linker might generate an output image that is not EABI
compliant.

www.codesourcery.com/sgpp/lite/arm
www.codesourcery.com/sgpp/lite/arm

29319.3  Development Flow

There are versions of the tool chain for different application environments (Symbian, Linux, EABI,
and so on). The filenames of the programs usually have a prefix, depending on your tool chain target
options. For example, if the EABI1 environment is used, the Gnu C Compiler (GCC) command could
be arm-xxxx-eabi-gcc. The following examples use the commands from the CodeSourcery GNU ARM
Tool Chain, as shown in Table 19.1.

If your project is developed completely in assembler, then you could link the objects by using the
linker directly (see Figure 19.2).

1EABI for the ARM architecture—executables must conform to this specification in order for them to be used with various
development tool sets.

Figure 19.1

Example Development Flow Based on the CodeSourcery G++ Tool Chain.

C files (.c)

gcc
(compile 1 link)

Object files (.o)

Assembly files (.s)

as
(compiler)

Object files (.o)

Linker script
Executable
image file

objdump

objcopy

Binary
program
image
(.bin)

Disassembled code
(.txt)

memory
layout

ld
(linker)

Table 19.1  Command Name of the CodeSourcery Tool Chain

Function Command (EABI Version)

Assembler arm-none-eabi-as
C Compiler arm-none-eabi-gcc
Linker arm-none-eabi-ld
Binary image generator arm-none-eabi-objcopy
Disassembler arm-none-eabi-objdump

Notice the command names of tool chains differ from other vendors.

294 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

19.4  Examples
Let’s look at a few examples using the GNU tool chain.

19.4.1  Example 1: The First Program
For a start, let’s try a simple assembly program that we covered in Chapter 10 that calculates 10 + 9 +
8 … + 1:

========== example1.s ==========
/* define constants */
	 .equ    STACK_TOP, 0x20000800
	 .text
	 .syntax unified
	 .thumb
	 .global _start
	 .type start, %function
_start:
	 .word STACK_TOP, start
	 /* Start of main program */
start:
	 movs r0, #10
	 movs r1, #0
	 /* Calculate 10+9+8... +1 */
loop:
	 adds r1, r0
	 subs r0, #1
	 bne loop
	 /* Result is now in R1 */
deadloop:
	 b	 deadloop
	 .end
========== end of file ==========

Figure 19.2

Example Development Flow for Assembly Projects.

Assembly files (.s)

as
(compiler)

Object files (.o)

Linker script

Executable
image file

objdump

objcopy

Binary
program
image
(.bin)

Disassembled code
(.txt)

memory
layout

ld
(linker)

29519.4  Examples

The •	 .word directive here helps us define the starting stack pointer value as 0x20000800 and the
reset vector as start.

•	 .text is a predefined directive indicating that it is a program region that needs to be assembled.
•	 .syntax unified indicates that the unified assembly language syntax is used.
•	 .thumb indicates that the program code is in Thumb® instruction set. Alternatively, you can use

.code16 for legacy Thumb instruction syntax.
•	 .global allows the label _start to be shared with other object files if needed.
•	 _start is a label indicating the starting point of the program region.
•	 start is a separate label indicating the reset handler.
•	 .type start, %function declares that the symbol start is a function. This is necessary for all the

exception vectors in the vector table. Otherwise, the assembler sets the least significant bit (LSB)
of the vector to zero.

•	 .end indicates the end of this program file.

Unlike ARM assembler, labels in GNU assemblers are followed by a colon (:). Comments are
quoted with /* and */, and directives are prefixed by a period (.).

Notice that the reset vector (start) is defined as a function (.type start, %function) within thumb
code (.thumb). The reason for this is to force the LSB of the reset vector to 1 to indicate that it starts
in Thumb state. Otherwise, the processor will try starting in ARM mode, resulting in a hard fault. To
assemble this file, we can use as in the following command:

$> arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

This creates the object file example1.o. The options -mcpu and -mthumb define the instruction set
to be used. The linking stage can be done by ld as follows:

$> arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

Then, the binary file can be created using Object Copy (objcopy) as follows:

$> arm-none-eabi-objcopy -Obinary example1.out example1.bin

We can examine the output by creating a disassembled code listing file using Object Dump (objdump):

$> arm-none-eabi-objdump -S example1.out > example1.list

which looks like this:

example1.out:  file format elf32-littlearm
Disassembly of section .text:
00000000 <_start>:
   0:	 20000800	 .word 0x20000800
   4:	 00000009	 .word 0x00000009

00000008 <start>:
   8:	 200a	 movs r0, #10
   a:	 2100	 movs r1, #0

0000000c <loop>:
   c:	 1809	 adds r1, r1, r0
   e:	 3801	 subs r0, #1
  10:	 d1fc	 bne.n c <loop>

00000012 <deadloop>:
  12:	 e7fe	 b.n 12 <deadloop>

296 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

19.4.2  Example 2: Linking Multiple Files
As mentioned before, we can create multiple object files and link them together. Here, we have an example
of two assembly files: example2a.s and example2b.s; example2a.s contains the vector table only, and
example2b.s contains the program code. The .global is used to pass the address from one file to another:

========== example2a.s ==========
/* define constants */

	 .equ    STACK_TOP, 0x20000800
	 .syntax unified
	 .global vectors_table
	 .global start
	 .global nmi_handler
	 .thumb

vectors_table:
	 .word STACK_TOP, start, nmi_handler, 0x00000000
	 .end
========== end of file ==========

========== example2b.s ==========
/* Main program */
	 .text
	 .syntax unified
	 .thumb
	 .type start, %function
	 .type nmi_handler, %function
	 .global _start
	 .global start
	 .global nmi_handler
_start:
	 /* Start of main program */
start:
	  movs	 r0, #10
	  movs	 r1, #0
	  /* Calculate 10+9+8... +1 */
loop:
	 adds	 r1, r0
	 subs	 r0, #1
	 bne	 loop
	 /* Result is now in R1 */
deadloop:
	 b	 deadloop
	 /* Dummy NMI handler for illustration */
nmi_handler:
	 bx	 lr
	 .end
========== end of file ==========

To create the executable image, the following steps are used:

Assemble example2a.s:1.	

$> arm-none-eabi-as -mcpu=cortex-m3 -mthumb example2a.s -o example2a.o

29719.4  Examples

Assemble example2b.s:2.	

$> arm-none-eabi-as -mcpu=cortex-m3 -mthumb example2b.s -o example2b.o

Link the object files to a single image. Note that the order of the object files in the command line 3.	
affects the order of the objects in the final executable image:

$> arm-none-eabi-ld -Ttext 0x0 -o example2.out example2a.o example2b.o

The binary file can then be generated as follows:4.	

$> arm-none-eabi-objcopy -Obinary example2.out example2.bin

As in the previous example, we generate a list file to check that we have a correctly assembled 5.	
image:

$> arm-none-eabi-objdump -S example2.out > example2.list

As the number of files increases, the compile process can be simplified using a UNIX makefile.
Individual development suites may also have built-in facilities to make the compile process easier.

19.4.3  Example 3: A Simple “Hello World” Program
To be a bit more ambitious, let’s now try the “Hello World” program. (Note: We skipped the universal
asynchronous receiver/transmitter [UART] initialization here; you need to add your own UART ini-
tialization code to try this example. An example of UART initialization in C language is provided in
Chapter 20.)

========== example3a.s ==========
/* define constants */
	 .equ    STACK_TOP, 0x20000800
	 .syntax unified
	 .thumb
	 .global vectors_table
	 .global _start
vectors_table:
	 .word STACK_TOP, _start
	 .end
========== end of file ==========

========== example3b.s ==========
	 .text
	 .syntax unified
	 .thumb
	 .global _start
	 .type _start, %function
_start:
	 /* Start of main program */
	 movs	r0, #0
	 movs	r1, #0
	 movs	r2, #0
	 movs	r3, #0
	 movs	r4, #0
	 movs	r5, #0

298 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

	 ldr      r0,=hello
	 bl        puts
	 movs     r0, #0x4
	 bl       putc
deadloop:
	 b         deadloop
hello:
	 .asciz	 "Hello\n"
	 .align

puts:	 /* Subroutine to send string to UART */
	 /* Input r0 = starting address of string */
	 /* The string should be null terminated */
	 push {r0, r1, lr}	 /* Save registers */
	 mov r1, r0	 /* Copy address to R1, because */
 		 /* R0 will be used as input for */
 		 /* putc */
putsloop:
	 ldrb.w r0,[r1],#1
	 /* Read one character and increment address */
	 cbz r0, putsloopexit /* if character is null, goto end */
	 bl putc
	 b putsloop
putsloopexit:
	   pop {r0, r1, pc} /* return */

.equ UART0_DATA, 0x4000C000

.equ UART0_FLAG, 0x4000C018

putc: /* Subroutine to send a character via UART */
	 /* Input R0 = character to send */
	 push{r1, r2, r3, lr} /* Save registers */
	 LDR   r1,=UART0_FLAG
putcwaitloop:
	 ldr	 r2,[r1]	 /* Get status flag */
	 tst.w	 r2, #0x20	 /* Check transmit buffer full flag bit */
	 bne	 putcwaitloop	 /* If busy then loop */
	 ldr	 r1,=UART0_DATA	 /* otherwise output data to transmit buffer */
	 str	 r0, [r1]
	 pop	 {r1, r2, r3, pc}	 /* Return */
	 .end
========== end of file ==========

In this example, we used .asciz to create a null terminated string. This is equivalent to using .ascii to
define the string and following .byte to create a byte with a value of null. After defining the string, we
used .align to ensure that the next instruction starts in the right place. Otherwise, the assembler might
put the next instruction in an unaligned location.

To compile the program, create the binary image and disassemble outputs, the following steps can
be used:

$> arm-none-eabi-as –mcpu=cortex-m3 -mthumb example3a.s -o example3a.o
$> arm-none-eabi-as –mcpu=cortex-m3 -mthumb example3b.s -o example3b.o

29919.4  Examples

$> arm-none-eabi-ld -Ttext 0x0 -o example3.out example3a.o example3b.o
$> arm-none-eabi-objcopy -Obinary example3.out example3.bin
$> arm-none-eabi-objdump -S example3.out > example3.list

19.4.4  Example 4: Data in RAM
Very often we will store the data in Static Random Access Memory (SRAM). The following simple
example shows the required setup:

========== example4.s ==========
	 .equ	 STACK_TOP, 0x20000800
	 .text
	 .syntax unified
	 .thumb
	 .global _start
	 .type start, %function
_start:
	 .word	 STACK_TOP, start
	 /* Start of main program */
start:
	 movs r0, #10
	 movs r1, #0
	 /* Calculate 10+9+8... +1 */
loop:
	 adds r1, r0
	 subs r0, #1
	 bne loop
	 /* Result is now in R1 */
	 ldr r0,=Result
	 str r1,[r0]
deadloop:
	 b deadloop
	 /* Data in LC – Local Common section */
	 .lcomm Result 4 /* A 4 byte data called Result */
	 .end
========== end of file ==========

In the program, the .lcomm pseudo-op is used to create an uninitialized block of storage inside the
“bss” region. Inside this region, a .word directive is used to reserve a space labelled Result. The pro-
gram code can then access this space using the defined label Result.

To link this program, we need to tell the linker where the RAM is. This can be done using the -Tbss
option, which sets the data segment to the required location:

$> arm-none-eabi-as –mcpu=cortex-m3 -mthumb example4.s -o example4.o
$> arm-none-eabi-ld -Ttext 0x0 -Tbss 0x20000000 -o example4.out example4.o
$> arm-none-eabi-objcopy -Obinary example4.out example4.bin
$> arm-none-eabi-objdump -S example4.out > example4.list

300 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

19.4.5  Example 5: C Program
One of the main components in the GNU tool chain is the C compiler. In this example, the whole
executable is coded using C. In addition, a linker script is needed to put the segments in place. First,
let’s look at the C program file:

========== example5.c ==========
// Declare functions
void myputs(char *string1);
void myputc(char mychar);
int main(void);
void Reset_Handler(void);
void NMI_Handler(void);
void HardFault_Handler(void);
void UartInit(void);
// Declare _start - C startup code
extern void _start(void);
//---------------------------------
void Reset_Handler(void)
{
  // Call the CS3 reset handler
  _start();
}
//---------------------------------
//Dummy handler
void NMI_Handler(void)
{
  return;
}
//---------------------------------
//Dummy handler
void HardFault_Handler(void)
{
  return;
}
//---------------------------------
void UartInit(void)
{
  /* Add your UART initialization code here */
  return;
}
//---------------------------------
// Start of main program
int main(void)
{
#define NVIC_CCR (*((volatile unsigned long *)(0xE000ED14)))
const char *helloworld="Hello world\n";
  NVIC_CCR = NVIC_CCR | 0x200; /* Set STKALIGN in NVIC */
  UartInit();
  myputs(helloworld);
  while(1);
  return(0);
}

30119.4  Examples

//---------------------------------
// Function to print a string
void myputs(char *string1)
{
char mychar;
int j;
j=0;
do {
  mychar = string1[j];
  if  (mychar!=0) {
    myputc(mychar);
    j++;
    }
    } while (mychar != 0);
return;
}
//---------------------------------
void myputc(char mychar)
{
#define UART0_DATA (*((volatile unsigned long *)(0x4000C000)))
#define UART0_FLAG (*((volatile unsigned long *)(0x4000C018)))
// Wait until busy flag is clear
while ((UART0_FLAG & 0x20) != 0);
// Output character to UART
UART0_DATA = mychar;
return;
}
========== end of file ==========

This program prints the “Hello world” message via a UART interface. Depending on the UART you
use, you need to provide your own UART setup code or use the device driver library from a microcon-
troller vendor to initialize the UART.

After reset, the reset handler calls the _start function, which is the C start-up routine. When the C
runtime initialization is done, it executes the main() code. The CodeSourcery G++ packages use the
CS3 (CodeSourcery Common Start-up Code Sequence) for start-up and vector table handling in micro-
controllers. CS3 has a predefined vector table for the Cortex-M3 processor called “__cs3_interrupt_
vector_micro.” The vector table is shown in Table 19.2.

The exception handlers we used in the program are mapped into these vector symbols using a linker
script. In addition, the memory layout including the vector table positioning is also defined in this file.
Users of CodeSourcery G++ Personal and Professional Editions, can find linker scripts for most avail-
able Cortex-M3 microcontrollers already included in the installation. For the CodeSourcery G++ Lite
edition, a number of generic linker scripts in the arm-none-eabi\lib path can be found. In this example,
we use a linker script modified from the generic linker script for Cortex-M processors (generic-m.ld).
This modified linker script (cortexm3.ld) is provided in Appendix F.

The command for the compiler and link process is as follows:

$> arm-none-eabi-gcc –mcpu=cortex-m3 -mthumb example5.c
	 -T cortexm3.ld -o example5.o

302 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

The memory map information is passed on to the linker during the compile stage.
The gcc automatically carried out the linking, so there is no need to carry out a linking stage.

Finally, the binary and disassembled list file can be generated:

$> arm-none-eabi-objcopy -Obinary example5.out example5.bin
$> arm-none-eabi-objdump -S example5.out > example5.list

The use of Reset_Handler in this C example is optional. You can point “__cs_reset” to the “_start”
start-up routine in the linker script instead.

19.4.6  Example 6: C with Retargeting
In the last example, we created our own text output function, but in many cases, we would use the text
output function provided by the C library. For example, we might need to use “printf” for text outputting.
In this case, we need to implement a function to redirect printf output to the UART output routine.

The following example illustrates how to implement retargeting function to support “printf”:

========== example6.c ==========
#include<stdio.h>
// Declare functions
void myputc(char mychar);
int   main(void);
void Reset_Handler(void);
void NMI_Handler(void);
void HardFault_Handler(void);
void UartInit(void);
// Declare _start - C startup code
extern void _start(void);
//---------------------------------

Table 19.2  Cortex-M3 Vector Table Definition in CS3

Number Vector Name Description

0 __cs3_stack Initial Main Stack Pointer
1 __cs3_reset Reset vector
2 __cs3_isr_nmi Nonmaskable interrupt
3 __cs3_isr_hard_fault Hard fault
4 __cs3_isr_mpu_fault Memory management fault
5 __cs3_isr_bus_fault Bus fault
6 __cs3_isr_usage_fault Usage fault
7 … 10 __cs3_isr_reserved_7 … 10 Reserved exception types
11 __cs3_isr_svcall Supervisor Call
12 __cs3_isr_debug Debug monitor exception
13 __cs3_isr_reserved_13 Reserved exception types
14 __cs3_isr_pendsv PendSV
15 __cs3_isr_systick System Tick Timer
16 … 47 __cs3_isr_external_0 …

__cs3_isr_external_31
External interrupt

30319.4  Examples

void Reset_Handler(void)
{
  // Call the CS3 reset handler
  _start();
}
//---------------------------------
//Dummy handler
void NMI_Handler(void)
{
  return;
}
//---------------------------------
//Dummy handler
void HardFault_Handler(void)
{
  return;
}
//---------------------------------
void UartInit(void)
{
  /* Add your UART initialization code here */
  return;
}
//---------------------------------
// Retarget function
int _write_r(void *reent, int fd, char *ptr, size_t len)
{
  size_t i;
  for (i=0; i<len; i++)
  {
  myputc(ptr[i]); // call our character output function
  }
  return len;
}
//---------------------------------
// Start of main program
int main(void)
{
#define NVIC_CCR (*((volatile unsigned long *)(0xE000ED14)))
  NVIC_CCR = NVIC_CCR | 0x200; /* Set STKALIGN in NVIC */
  UartInit();
  printf("Hello world\n");
  while(1);
  return(0);
}
//---------------------------------
// Function to output a character
void myputc(char mychar)
{
#define UART0_DATA (*((volatile unsigned long *)(0x4000C000)))
#define UART0_FLAG (*((volatile unsigned long *)(0x4000C018)))
// Wait until busy flag is clear
  while ((UART0_FLAG & 0x20) != 0);

304 CHAPTER 19  Starting Cortex-M3 Development Using the GNU Tool Chain

// Output character to UART
  UART0_DATA = mychar;
return;
}
========== end of file ==========

The retargeting is carried out by implementing the “_write_r” function. This function calls our own
character output routine to display the “Hello world” message.

19.4.7  Example 7: Implement Your Own Vector Table
If you are not using CodeSourcery G++ tool chain, you might need to implement your own vector table.
This can be done by using the following C code:

// Define the vector table
__attribute__ ((section("vectors")))
void (* const VectorArray[])(void) = {
  (void (*)(void))((unsigned long) MainStack + sizeof(MainStack)),
  Reset_Handler,
  NMI_Handler,
  HardFault_Handler
  };

And the stack memory can be defined using an array:

  // Reserve 64 words memory space for the main stack
  static unsigned long MainStack[64];

The vector table can be allocated to the start of the memory using linker script. For example:

  .text :
  {
    CREATE_OBJECT_SYMBOLS
    __cs3_region_start_rom = .;
    *(.cs3.region-head.rom)
    __cs3_interrupt_vector = __cs3_interrupt_vector_micro;
    (vectors) / vector table */

The “vectors” section needs to match the section name used when we declare the vector table. Other-
wise, the vector table will not be allocating to the beginning of the memory correctly.

This method can be useful even when you are using the CodeSourcery tool chain; if you need more
than 32 interrupt vectors, you can create extra vectors and place it right after the CS3 vector table.

19.5  Accessing Special Registers
The CodeSourcery GNU ARM tool chain supports access to special registers. The names of the special
registers must be in lowercase. For example:

	 msr	 control, r1
	 mrs	 r1, control
	 msr	 apsr, R1
	 mrs	 r0, psr

30519.7  Inline Assembler in the GNU C Compiler

19.6  Using Unsupported Instructions
If you are using another GNU ARM tool chain, there might be cases in which the GNU assembler
you are using does not support the assembly instruction that you wanted. In this situation, you can still
insert the instruction in form of binary data using .word. For example:

	 .equ DW_MSR_CONTROL_R0, 0x8814F380
		 ...
		 MOV R0, #0x1
	 .word	 DW_MSR_CONTROL_R0 /* This set the processor in user mode */
		 ...

19.7  Inline Assembler in the GNU C Compiler
As in the ARM C Compiler, the GNU C Compiler supports an inline assembler. The syntax is a little
bit different:

	 __asm	 ("	 inst1 op1, op2... \n"
		 "	 inst2 op1, op2... \n"
		 ...
		 "	 inst op1, op2... \n"
		 : output_operands        /* optional */
		 : input_operands         /* optional */
		 : clobbered_register_list   /* optional */
);

For example, a simple code to enter sleep mode looks like this:

void Sleep(void)
{ // Enter sleep mode using Wait-For-Interrupt
  __asm (
   "WFI\n"
  );
}

If the assembler code needs to have an input variable and an output variable—for example, divide
a variable by 5 in the following code—it can be written as follows:

unsigned int DataIn, DataOut; /* variables for input and output */
...
__asm	 ("mov r0, %0\n"
		 "mov r3, #5\n"
		 "udiv r0, r0, r3\n"
		 "mov %1, r0\n"
		 :"=r" (DataOut) : "r" (DataIn) : "cc", "r3");

With this code, the input parameter is a C variable called DataIn (%0 first parameter), and the code
returns the result to another C variable called DataOut (%1 second parameter). The inline assembler
code manually modifies register r3 and changes the condition flags cc so that they are listed in the clob-
bered register list.

For more examples of an inline assembler, refer to the GNU tool chain documentation GCC-Inline-
Assembly-HOWTO on the Internet.

307Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00023-5

CHAPTER

In This Chapter

Overview��307
Getting Started with μVision��308
Outputting the “Hello World” Message Via Universal Asynchronous Receiver/Transmitter��������������������������314
Testing the Software���317
Using the Debugger��318
The Instruction Set Simulator��325
Modifying the Vector Table��326
Stopwatch Example with Interrupts with CMSIS��327
Porting Existing Applications to Use CMSIS���334

Getting Started with the Keil
RealView Microcontroller
Development Kit 20

20.1  Overview
Various commercial development platforms are available for the Cortex™-M3. One of the popular
choices is the Keil RealView Microcontroller Development Kit (RealView MDK-ARM). The Real-
View MDK-ARM contains various components as follows:

μVision Integrated Development Environment (IDE)•	
Debugger•	
Simulator•	
RealView Compilation Tools from ARM•	

	 C/C•	 ++ Compiler
	 Assembler•	
	 Linker and utilities•	

RTX Real-Time Kernel•	
Detailed start-up code for microcontrollers•	
Flash programming algorithms•	
Program examples•	

308 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

For learning about the Cortex-M3 with RealView MDK-ARM, it is not necessary to have Cortex-M3
hardware. The μVision environment contains an instruction set simulator that allows testing of simple
programs that do not require a development board.

A free evaluation compact disc read-only memory (CD-ROM) for the Keil tool can be requested
from the Keil web site (www.keil.com). This version is also included in a number of Cortex-M3 evalu-
ation kits from various microcontroller vendors.

20.2  Getting Started with mVision
A number of examples are provided with the RealView MDK-ARM, including some examples for
various Cortex-M3 microcontroller products and evaluation boards available on the market. In addi-
tion, you can also download device driver libraries from microcontroller vendor web sites, which also
contain a number of examples. These examples provide a powerful set of device driver libraries that
are ready to use. It’s easy to modify the provided examples to start developing your application or
you can develop your project from scratch. The following examples illustrate how this is done. The
examples shown in this chapter are based on the version 3.80 of Keil MDK-ARM and on Luminary
Micro LM3S811 devices.

After installing the RealView MDK, you can start the μVision from the program menu. After
installation, the μVision might start with a default project for a traditional ARM processor. We can
close the current project and start a new one by selecting New Project in the pull-down menu (see
Figure 20.1).

Figure 20.2 shows a new project directory called HelloWorld is created. Now, we need to select the
targeted device for this project. In this example, the LM3S811 is selected (see Figure 20.3).

Figure 20.1

Selecting a New Project from the Program Menu.

www.keil.com

30920.2  Getting Started with µVision

Figure 20.2

Choosing the HelloWorld Project Directory.

Figure 20.3

Selecting the LM3S811 Device.

310 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

The software will then ask if you would like to use the default startup code. In this case, we select
Yes (see Figure 20.4).

As Figure 20.5 shows, we now have a project called Hello with only one file, called Startup.s. We
can create a new C program file containing the main program (see Figure 20.6). A text file is created
and saved as hello.c (see Figure 20.7). As Figure 20.8 shows, we now need to add this file to our project
by right-clicking Source Group 1.

Figure 20.4

Choosing to Use the Default Startup Code.

Figure 20.5

Project Created with the Default Startup Code.

31120.2  Getting Started with µVision

Figure 20.6

Creating a New C Program File.

Figure 20.7

A HelloWorld C Example.

Select the hello.c that we created and then close the Add File window. Now, the project contains
two files (see Figure 20.9).

We can define the project setting by right clicking on the “Target 1” in the Project Workspace and
selecting option for target “Target 1.” In the Target tab, we find that the memory layout details are

312 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.8

Adding the Hello.c Example to the Project.

Renaming the Target and File Groups
The target name “Target 1” and file group name “Source Group 1” can be renamed to give a clearer meaning.
This is done by clicking Target 1 and Source Group 1 in the Project Workspace and editing the names from
there.

already set up by the tool automatically (see Figure 20.10). From this dialog, you can also access vari-
ous other project options by the tabs on the top.

We can now compile the program. This can be done by clicking on the build target icons on the tool
bar (see Figure 20.11) or by right-clicking Target 1 and selecting Build target.

You should see the compilation success message in the output window (see Figure 20.12).

31320.2  Getting Started with µVision

Figure 20.9

Project Window After the Hello.c Example is Added.

Figure 20.10

Project Option Dialog.

314 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.11

Starting the Compilation.

Figure 20.12

Compilation Result in the Output Window.

20.3  �Outputting the “Hello World” Message Via Universal
Asynchronous Receiver/Transmitter

In the program code we created, we used the printf function in the standard C library. Since the C
library does not know about the actual hardware we are using, if we want to output the text message
using real hardware, such as the universal asynchronous receiver/transmitter (UART) on a chip, we
need additional code.

31520.3  Outputting the “Hello World” Message

As mentioned earlier in this book, the implementation of output to actual hardware is often
referred to as retargeting. Besides creating text output, the retargeting code might also include func-
tions for error handling and program termination. In this example, only the text output retargeting
is covered.

For the following code, the “Hello world” message is output to UART 0 of the LM3S811 device.
The target system used is the Luminary Micro LM3S811 evaluation board. The board has a 6 MHz
crystal as a clock source and an internal Phase-Locked Loop (PLL) module that can step up the clock
frequency to 50 MHz after a simple setup process. The baud rate setting is 115 200 and is output to
HyperTerminal running on a Windows PC.

To retarget the printf message, we need to implement the fputc function. In the following code, we
have created an fputc function that calls the sendchar function, which carries out the UART control.

hello.c

#include "stdio.h"
#pragma import(__use_no_semihosting_swi)
struct __FILE { int handle; };
FILE __stdout;

#define CR    0x0D // Carriage return
#define LF    0x0A // Linefeed
void Uart0Init(void);
void SetClockFreq(void);
int sendchar(int ch);
// Comment out the following line to use 6MHz clock
#define CLOCK50MHZ
// Register addresses
#define SYSCTRL_RCC    *((volatile unsigned long *)(0x400FE060))
#define SYSCTRL_RIS    *((volatile unsigned long *)(0x400FE050))
#define SYSCTRL_RCGC1     *((volatile unsigned long *)(0x400FE104))
#define SYSCTRL_RCGC2     *((volatile unsigned long *)(0x400FE108))
#define GPIOPA_AFSEL    *((volatile unsigned long *)(0x40004420))
#define UART0_DATA      *((volatile unsigned long *)(0x4000C000))
#define UART0_FLAG      *((volatile unsigned long *)(0x4000C018))
#define UART0_IBRD      *((volatile unsigned long *)(0x4000C024))
#define UART0_FBRD      *((volatile unsigned long *)(0x4000C028))
#define UART0_LCRH       *((volatile unsigned long *)(0x4000C02C))
#define UART0_CTRL      *((volatile unsigned long *)(0x4000C030))
#define UART0_RIS       *((volatile unsigned long *)(0x4000C03C))
#define NVIC_CCR        *((volatile unsigned long *)(0xE000ED14))
int main (void)
{ // Simple code to output hello world message
NVIC_CCR = NVIC_CCR | 0x200; // Set STKALIGN
SetClockFreq(); // Setup clock setting (50MHz/6MHz)
Uart0Init();	 // Initialize Uart0
printf ("Hello world!\n");
while (1);
}
void SetClockFreq(void)
{
#ifdef    CLOCK50MHZ
// Set BYPASS, clear USRSYSDIV and SYSDIV
SYSCTRL_RCC = (SYSCTRL_RCC & 0xF83FFFFF) | 0x800 ;

Continued

316 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

The SetupClockFreq routine sets the system clock to 50 MHz. The setup sequence is device
dependent. The subroutine can also be used to set the clock frequency to 6 MHz if the “CLOCK50MHZ”
compile directive is not set.

The UART initialization is carried out inside the Uart0Init subroutine. The setup process includes
setting up the baud rate generator to provide a baud rate of 115 200; configuring the UART to 8 bits,

// Clr OSCSRC, PWRDN and OEN
SYSCTRL_RCC = (SYSCTRL_RCC & 0xFFFFCFCF);
// Change SYSDIV, set USRSYSDIV and Crystal value
SYSCTRL_RCC = (SYSCTRL_RCC & 0xF87FFC3F) | 0x01C002C0;
// Wait until PLLLRIS is set
while ((SYSCTRL_RIS & 0x40)==0); // wait until PLLLRIS is set
// Clear bypass
SYSCTRL_RCC = (SYSCTRL_RCC & 0xFFFFF7FF) ;
#else
// Set BYPASS, clear USRSYSDIV and SYSDIV
SYSCTRL_RCC = (SYSCTRL_RCC & 0xF83FFFFF) | 0x800 ;
#endif
return;
}
void Uart0Init(void)
{
SYSCTRL_RCGC1 = SYSCTRL_RCGC1 | 0x0003; // Enable UART0 & UART1 clock
SYSCTRL_RCGC2 = SYSCTRL_RCGC2 | 0x0001; // Enable PORTA clock
UART0_CTRL = 0; // Disable UART
#ifdef	 CLOCK50MHZ
UART0_IBRD = 27; // Program baud rate for 50MHz clock
UART0_FBRD = 9;
#else
UART0_IBRD = 3; // Program baud rate for 6MHz clock
UART0_FBRD = 17;
#endif
UART0_LCRH = 0x60; // 8 bit, no parity
UART0_CTRL = 0x301; // Enable TX and RX, and UART enable
GPIOPA_AFSEL = GPIOPA_AFSEL | 0x3; // Use GPIO pins as UART0
return;
}
/* Output a character to UART0 (used by printf function to output data) */
int sendchar (int ch) {
if (ch == '\n') {

while ((UART0_FLAG & 0x8));    // Wait if it is busy
UART0_DATA = CR;      // output extra CR to get correct

}               // display on HyperTerminal
while ((UART0_FLAG & 0x8));    // Wait if it is busy
return (UART0_DATA = ch);     // output data
}
/* Retargetting code for text output */
int fputc(int ch, FILE *f) {
return (sendchar(ch));
}
void _sys_exit(int return_code) {
/* dummy exit */
label: goto label; /* endless loop */
}

31720.4  Testing the Software

no parity, and 1 stop bit; and switching the General Purpose Input/Output (GPIO) port to alternate
function because the UART pins are shared with the GPIO port A. Before accessing the UART and the
GPIO, the clocks for these blocks must be turned on. This is done by writing to SYSCTRL_RCGC1 and
SYSCTRL_RCGC2.

The retargeting code is carried out by fputc, a predefined function name for character outputs.
This function calls the sendchar function to output the character to the UART. The sendchar func-
tion outputs an extra carriage return character as a new line is detected. This is needed to get the text
output correct on HyperTerminal; otherwise, the new text in the next line will overwrite the previous
line of text.

After the hello.c program is modified to include the retargeting code, the program is compiled
again.

20.4  Testing the Software
If you’ve got the Luminary Micro LM3S811 evaluation board, you can try out the example by down-
loading the compile program into Flash and getting the “Hello world” message display output from
the HyperTerminal. Assuming that you have set up the software drivers that come with the evaluation
board, you can download and test the program by following these steps.

First, set up the Flash download option. This can be accessed from the Flash pull-down menu, as
shown in Figure 20.13.

Inside this menu, we select the Luminary Evaluation Board as the download target for this example
(see Figure 20.14). In this menu, we also can see that μVision supports a number of different debug
hardware.

After selecting the flash download target, we might need to click on the Setting button to ensure that
a suitable setting is used. (The settings are shown in Figure 20.15.)

Figure 20.13

Setting Up Flash Programming Configuration.

318 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.14

Selecting Flash Programming Driver.

Then, we can download the program to the Flash on a chip by selecting Download in the Flash
pull-down menu. The message shown in Figure 20.16 will appear, indicating that the download is
complete. Note: If you have the board already running with HyperTerminal, you might need to close
HyperTerminal, disconnect the Universal Serial Bus (USB) cable from the PC, and reconnect before
programming the Flash.

After the programming is completed, you can start HyperTerminal and connect to the board using
the Virtual COM Port driver (via USB connection) and get the text display from the program running
on the microcontroller (see Figure 20.17).

20.5  Using the Debugger
The debugger in μVision supports a number of in-circuit debuggers including the ULINK products
(ULINK-2, ULINK-Pro, and ULINK-ME) from Keil (see Figure 20.18) and a number of debugger
products from third parties.

31920.5  Using the Debugger

Figure 20.15

Flash Download Option.

Figure 20.16

Report of the Download Process in the Output Window.

320 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.17

Output of the “Hello World” Example from HyperTerminal Console.

Third party in-circuit debugger support includes the following:

Signum JTAGJet and JTAGJet-Trace•	
Segger J-Link and J-Trace•	
Luminary Micro Evaluation board•	
ST ST-Link•	

Figure 20.18

Keil ULINK Products.

32120.5  Using the Debugger

Figure 20.19

Configuring to Use Luminary Micro Evaluation Board with μVision Debugger.

For this example, we will use the debugger in μVision to connect to the Luminary Evaluation
Board to debug the application. By right-clicking the project Target 1 and selecting Options, we can
access the debug option. In this case, we select to use the Luminary Eval Board for debugging (see
Figure 20.19).

If you click on the “Settings” button next to the debug target selection, you can see the setting dia-
log as a Flash download option shown in Figure 20.15. You can select the debug protocol being used,
debug clock speed and a few other settings. If you are using Keil ULINK-2/ULINK-Pro debugger for
development, you can find more options (see Figure 20.20) via the setting button.

From here, you can select debug protocol (JTAG/Serial-Wire), debug communication clock speed,
and trace and flash download options.

We can then start the debug session from the pull-down menu (see Figure 20.21). Note: If you
are using virtual COM port with FTDI device driver and have the board already running with
HyperTerminal, you might need to close HyperTerminal, disconnect the USB cable from the PC, and
reconnect before starting the debug session.

322 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.20

ULINK-2 Debug Options.

Figure 20.21

Starting a Debugger Session in μVision.

When the debugger starts, the IDE provides a register view to display register contents. You can also
get the disassemble code window and see the current instruction address. In Figure 20.22, we can see
that the core is halted at the Reset_Handler, the first instruction of the program execution.

For demonstration, a breakpoint is set to stop the program execution at the beginning of main.
This can be done by right-clicking on the first line of code in the main program in the program code

32320.5  Using the Debugger

Figure 20.22

μVision Debug Environment.

window and selecting Insert/Remove Breakpoint (see Figure 20.23). Note: We could also use the Run
to main() feature in the debug option to get the program execution to stop at the beginning of main.

After the breakpoint is added, a red marker will be shown in the left side of the code line as shown
in line 29 of the code in Figure 20.23. The program execution can then be started using the Run button
on the tool bar (see Figure 20.24).

Figure 20.23

Insert or Remove Breakpoint.

324 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.25

Program Execution Halted at the Beginning of Main When a Breakpoint Is Hit.

Figure 20.24

Starting Program Execution Using the Run Button.

The program execution is then started, and it stops when it gets to the start of the main program
(see Figure 20.25).

We can then use the stepping control of the tool bar to test our application and examine the results
using the register window.

32520.6  The Instruction Set Simulator

Figure 20.26

Selecting Simulator as Debugging Target.

20.6  The Instruction Set Simulator
The μVision IDE also comes with an instruction set simulator that can be used for debugging
applications. The operation is similar to using the debugger with hardware and is a useful tool for
learning the Cortex-M3. To use the instruction set simulator, change the debug option of the project to
Use Simulator (see Figure 20.26). Note that the simulator might not be able to simulate all hardware
peripheral behaviors for some microcontroller products, so the UART interface code might not simu-
late correctly.

The simulator in μVision has full device level support for a wide range of Cortex-M3 devices. In
some cases where full device simulation is not available, you might need to adjust the memory setting
when using the simulator for debugging. This is done by accessing the Memory Map option after start-
ing the debugging session (see Figure 20.27).

For example, you might need to add the UART memory address range to the memory map (see
Figure 20.28). Otherwise, you will get an abort exception in the simulation when you try to access the

326 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.27

Accessing the Memory Map Option.

UART. But in most cases, all of the required memory map should have been set up for you when you
specified a microcontroller, so usually this is not necessary.

20.7  Modifying the Vector Table
In the previous example, the vector table is defined inside the file Startup.s, which is a standard startup
code the tool prepares automatically. This file contains the vector table, a default reset handler, a default
nonmaskable interrupt (NMI) handler, a default hard fault handler, and a default interrupt handler.
These exception handlers might need to be customized or modified, depending on your application. For

32720.8  Stopwatch Example with Interrupts with CMSIS

Figure 20.28

Adding New Memory Range to Simulator Memory Setup.

example, if a peripheral interrupt is required for your application, you need to change the vector table so
that the Interrupt Service Routine (ISR) you created will be executed when the interrupt is triggered.

The default exception handlers are in the form of assembly code inside Startup.s. However, the
exception handlers can be implemented in C or in a different assembly program file. In these cases, the
IMPORT command in the assembler will be required to indicate that the interrupt handler address label
is defined in another file.

For example, if we want to add a SYSTICK exception handler and a UART exception handler, we
can edit the file startup.s as shown in Figure 20.29 as follows:

Comment out existing default interrupt handler for the exception.•	
Add the IMPORT commands for the two exception vectors that are defined in the C-code. This is •	
required if the handlers are in a separated C or assembly program file.
Add the exception vectors in the vector table with Define Constant Data (DCD) command.•	

These modifications of startup code (startup.s) for adding exception handlers are not required with
Cortex Microcontroller Software Interface Standard (CMSIS) compliant device driver libraries if the
name of the exception handlers match the handler names specific in the CMSIS startup code. The next
example illustrates how this is done.

20.8  Stopwatch Example with Interrupts with CMSIS
This example includes the use of exceptions, such as SYSTICK and the interrupt (UART0). The stop-
watch to be developed has three states, as illustrated in Figure 20.30.

328 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

Figure 20.29

Adding Exception Vectors to the Vector Table by IMPORT and DCD Commands.

Figure 20.30

State Machine Design for Stopwatch.

Idle

StartStop

Key pressed

Key pressedKey pressed

Counting inside
SYSTICK
exception

Counting
stopped

Result
displayed

Result
cleared

Based on the previous example, the stopwatch is controlled by the PC using the UART interface. To
simplify the example code, we fix the operating speed at 50 MHz.

The timing measurement is carried out by the SYSTICK, which interrupts the processor at 100 Hz.
The SYSTICK is running from the core clock frequency at 50 MHz. Every time the SYSTICK excep-
tion handler is executed and if the stopwatch is running, the counter variable TickCounter increments.

Since display of text via UART is relatively slow, the control of the stopwatch is handled inside the
exception handler and the display of the text and stopwatch values is carried out in the main (thread
level). A simple software state machine is used to control the start, stop, and clear of the stopwatch.

32920.8  Stopwatch Example with Interrupts with CMSIS

The state machine is controlled via the UART handler, which is triggered every time a character is
received.

Using the same procedure we used for the “Hello world” example, let’s start a new project called
stopwatch. Instead of having hello.c, a C program file called stopwatch.c is added. In addition, we
added a number of other files from the CMSIS in the project.

In Figure 20.31, we can see that the Startup.s is replaced by startup_rvmdk.s, and lm3s_cmsis.h is
included in the stopwatch.c. In addition, system_lm3s.c and core_cm3.c are also included in the project.
The file system_lm3s.c contains SystemInit() function that we use in the program. The file core_cm3.c
contains intrinsic functions. Despite that this example does not use any intrinsic function, this file is
included for completeness.

Some of these filenames are microcontroller vendor specific (e.g., startup_rvmdk.s, and lm3s_
cmsis.h). These CMSIS files used in this project can be found in CMSIS compliant device driver librar-
ies or from the CMSIS files available from www.onarm.com.

Use of CMSIS reduces the complexity of the stopwatch.c because peripheral register definitions
and a number of system functions are provided by CMSIS.

Figure 20.31

Stopwatch Project with CMSIS.

www.onarm.com

330 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

stopwatch.c

#include "lm3s_cmsis.h" // Vendor specific CMSIS header
#include "stdio.h"     // For printf function
#pragma import(__use_no_semihosting_swi)
struct __FILE { int handle; };
FILE __stdout;
// Special characters for display function
#define CR 0x0D    // Carriage return
#define LF 0x0A    // Linefeed

// Function definitions
void Uart0Init(void);	 // Initialization of UART0
void SetClockFreq(void);	 // Set clock frequency to 50MHz
void DisplayTime(void);	  // Display time value
int sendchar(int ch);	 // Output character to UART
int getkey(void);          // Read charcter from UART
void UART0_IRQHandler(void);	 // UART0 interrupt handler
void SysTick_Handler(void);	 // SysTick exception handler

// Global variables
volatile int        CurrState; // State machine
volatile unsigned long  TickCounter; // Stop watch value
volatile int        KeyReceived; // Indicate user pressed a key
volatile int        userinput; // Key pressed by user

#define IDLE_STATE 0               // Definition of state machine
#define RUN_STATE	 1
#define STOP_STATE	2

int main (void)
{
int    CurrStateLocal; // A local copy of current state

SystemInit();    // System initialization – part of CMSIS standard
 // Not required with CMSIS v1.30 or after
 // because this is done in startup code.
SetClockFreq();	 // Setup clock setting (50MHz)

// Initialize global variable
CurrState = 0;
KeyReceived = 0;

// Initialization of hardware
SCB->CCR = SCB->CCR | 0x200; // Set STKALIGN
Uart0Init();           // Initialize Uart0
SysTick_Config(499999);     // Initialize Systick (CMSIS function)
printf ("Stop Watch\n");

while (1) {
 CurrStateLocal = CurrState; // Make a local copy because the
 // value could change by UART handler at any time.
 switch (CurrStateLocal) {
 case (IDLE_STATE):
 printf ("\nPress any key to start\n");
 break;
 case (RUN_STATE):
 printf ("\nPress any key to stop\n");
 break;
 case (STOP_STATE):
 printf ("\nPress any key to clear\n");
 break;

33120.8  Stopwatch Example with Interrupts with CMSIS

 default:
 CurrState = IDLE_STATE;
 break;
 } // end of switch
 while (KeyReceived == 0) {
 if (CurrStateLocal==RUN_STATE){
 DisplayTime();
 }
 }; // Wait for user input
 if (CurrStateLocal==STOP_STATE) {
 TickCounter=0;
 DisplayTime(); // Display to indicate result is cleared
 }
 else if (CurrStateLocal==RUN_STATE) {
 DisplayTime(); // Display result
 }
 if (KeyReceived!=0) KeyReceived=0;
 }; // end of while loop
} // end of main
void SetClockFreq(void) // Set processor and UART clock
{
// Set BYPASS, clear USRSYSDIV and SYSDIV
SYSCTL->RCC = (SYSCTL->RCC & 0xF83FFFFF) | 0x800 ;
// Clr OSCSRC, PWRDN and OEN
SYSCTL->RCC = (SYSCTL->RCC & 0xFFFFCFCF);
// Change SYSDIV, set USRSYSDIV and Crystal value
SYSCTL->RCC = (SYSCTL->RCC & 0xF87FFC3F) | 0x01C002C0;
// Wait until PLLLRIS is set
while ((SYSCTL->RIS & 0x40)==0); // wait until PLLLRIS is set
// Clear bypass
SYSCTL->RCC = (SYSCTL->RCC & 0xFFFFF7FF);
return;
}
// UART0 initialization
void Uart0Init(void)
{ // Clock for UART functions
SYSCTL->RCGC1 = SYSCTL->RCGC1 | 0x0003; // Enable UART0 & UART1 clock
SYSCTL->RCGC2 = SYSCTL->RCGC2 | 0x0001; // Enable PORTA clock
 // UART setup
UART0->CTL = 0;     // Disable UART
UART0->IBRD = 27;   // Program baud rate for 50MHz clock
UART0->FBRD = 9;
UART0->LCRH = 0x60; // 8 bit, no parity
UART0->CTL = 0x301; // Enable TX and RX, and UART enable
UART0->IM = 0x10; // Enable UART interrupt for receive data
GPIOA->AFSEL = GPIOA->AFSEL | 0x3; // Use GPIO pins as UART0
NVIC_EnableIRQ(UART0_IRQn); // Enable UART interrupt at NVIC
 //(CMSIS function)
return;
}
// SYSTICK exception handler
void SysTick_Handler(void) // Function name is conform to CMSIS
{
if (CurrState==RUN_STATE) {
 TickCounter++;
 }

Continued

332 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

return;
}
// UART0 RX interrupt handler
void UART0_IRQHandler(void) // Function name defined in CMSIS startup code
{
userinput = getkey();
// Indicate a key has been received
KeyReceived++;
// De-assert UART interrupt
UART0->ICR = 0x10;
// Switch state
switch (CurrState) {
 case (IDLE_STATE):
 CurrState = RUN_STATE;
 break;
 case (RUN_STATE):
 CurrState = STOP_STATE;
 break;
 case (STOP_STATE):
 CurrState = IDLE_STATE;
 break;
 default:
 CurrState = IDLE_STATE;
 break;
 } // end of switch
return;
}

// Display the time value
void DisplayTime(void)
{
unsigned long TickCounterCopy;
unsigned long TmpValue;

sendchar(CR);
TickCounterCopy = TickCounter; // Make a local copy because the
// value could change by SYSTICK handler at any time.
TmpValue = TickCounterCopy / 6000; // Minutes
printf ("%d", TmpValue);
TickCounterCopy = TickCounterCopy – (TmpValue * 6000);
TmpValue = TickCounterCopy / 100; // Seconds
sendchar(':');
printf ("%d", TmpValue);
TmpValue = TickCounterCopy – (TmpValue * 100);
sendchar(':');
printf ("%d", TmpValue); // mini-seconds
sendchar(' ');
sendchar(' ');
return;
}

// Output a character to UART0 (used by printf function to output data)
int sendchar (int ch){
 if (ch == '\n'){
 while ((UART0->FR & 0x8)); // Wait if it is busy
 UART0->DR = CR; // output extra CR to get correct
	 // display on hyperterminal
}

 while ((UART0->FR & 0x8)); // Wait if it is busy

33320.8  Stopwatch Example with Interrupts with CMSIS

 return (UART0->DR = ch); // output data
}
// Get user input
int getkey (void) { // Read character from Serial Port
	 while (UART0->FR & 0x10); // Wait if RX FIFO empty
	 return (UART0->DR);
}
// Retarget text output
int fputc(int ch, FILE *f) {
	 return (sendchar(ch));
}

void _sys_exit(int return_code) {
 /* dummy exit */
label: goto label; /* endless loop */
}

When compared with the previous “Hello world” example, the UART initialization has changed slightly to
enable interrupts when a character is received via the UART interface. To enable the UART interrupt request,
the interrupt has to be enabled at the UART Interrupt Mask register, as well as at the NVIC. For the SYS-
TICK, only the exception control at the SYSTICK Control and Status register needs to be programmed.

In addition, a number of extra functions are added, including the UART and SYSTICK handlers,
display functions, and SYSTICK initialization. Depending on the design of the peripheral, an excep-
tion/interrupt handler might need to clear the exception/interrupt request. In this case, the UART han-
dler clears the UART interrupt request using the Interrupt Clear register (UART0->ICR).

After the program is compiled and downloaded to the evaluation board, it can then be tested by con-
necting to a PC running HyperTerminal. Figure 20.32 shows the result.

Figure 20.32

Output of the Stopwatch Example on the HyperTerminal Console.

334 CHAPTER 20  Getting Started with the Keil RealView Microcontroller

20.9  Porting Existing Applications to Use CMSIS
It is easy to port existing Cortex-M3 applications to use CMSIS. The modifications include the
following:

Replace the default startup code with CMSIS startup code for the targeted microcontroller.•	
Modify the project setup to include CMSIS file.•	
Modify the program to include CMSIS header file•	
Modify the register definitions with CMSIS register definitions•	
Replace existing processor peripheral access functions with CMSIS processor access functions.•	
Name of exception handlers might need to be modified to ensure that they match the exception •	
handler names used by the CMSIS startup code.
Peripheral setup code could be replaced by device driver library functions if available.•	

By changing the application code to use CMSIS, the application becomes more portable, as outlined

in Chapter 10.

335Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00024-7

In This Chapter

Overview... 335
What Is LabVIEW... 335
Development Flow.. 337
Example of a LabVIEW Project .. 339
How It Works ... 343
Additional Features in LabVIEW.. 344
Porting to Another ARM Processor.. 345

21.1  Overview
Besides C language and assembly language, there are other ways to create applications for Cortex™-M3
microcontrollers. One of the possible methods is by using the National Instruments LabVIEW graphical
development environment. You can use LabVIEW on PCs as well as ARM microcontrollers, including
Cortex-M3 microcontroller products.

21.2  What Is LabVIEW
There are several versions of the LabVIEW development environment, including versions for PC (avail-
able for Windows and Linux) and embedded platforms, which support a number of different embedded
processors, including the Cortex-M3 processor and ARM7TDMI processor.

The LabVIEW graphical programming language supports all the features that you expect in any
programming language such as looping, conditional execution, and the handling of different data types.
The main difference in working with LabVIEW is that you design programs in diagrams. For example,
a simple loop to compute the sum of 1–10 can be represented by the For Loop shown in Figure 21.1.

The flow of data is represented by connections; different data types are represented in different line
styles; and different color and variables are represented by icons. For example, a U32 icon refers to an
unsigned 32-bit integer and an I32 icon refers to a signed 32-bit integer.

Programming the Cortex-M3
Microcontrollers in NI
LabVIEW 21

CHAPTER

336 CHAPTER 21  Programming the Cortex-M3 Microcontrollers in NI LabVIEW

Similar to function calls and subroutines in traditional programming, in LabVIEW, you can design the
software into hierarchy of modules called virtual instruments (VIs). Data passing into and outputs from
sub-VIs indicate connection points so that a higher-hierarchy VI can connect input variables and output vari-
ables to it. For example, the right side of Figure 21.2 shows a sub-VI block diagram that takes four 32-bit inte-
ger inputs and selects the largest value as output. On the left side, the sub-VI is used to find the largest values
from four 32-bit integer value sources: three from the slide bar control and one that is a random number.

The LabVIEW programming environment contains a large number of ready-to-use components
that make your software development easier. These include common data-processing functions (e.g.,
abs—absolute value), signal processing functions, such as filter and spectral analysis, and many user
interface components.

Figure 21.1

A Simple For Loop to Add 1–10.

Figure 21.2

The VI and Sub-VI Allow Programs to Divide into Hierarchy Levels.

33721.2  Development Flow

21.2.1  Typical Application Areas
So how does LabVIEW programming compare with traditional programming?

Ease of use—The LabVIEW programming environment makes it much easier to develop complex
applications without the need to learn low-level hardware and software details. This allows different
types of users, from students to scientists, to develop their applications without spending time learning
processor architecture—they can focus on developing the algorithms and features. Domain-experts can
now take advantage of the benefits of microcontroller designs.

Component library—The large number of software components available in LabVIEW also makes
it easy to develop complex applications in a short time. The component library includes hundreds of
mathematical and signal processing functions to quickly develop algorithms. Applications running on
ARM microcontrollers can even connect to a graphical user interface (GUI) running on a PC so users
can control the embedded system and observe the output easily.

Multithreading support—The graphical programming environment is concurrent in nature. It allows
multiple threads to run at the same time. In contrast, in a traditional programming environment, it takes
time for an inexperienced engineer to learn an embedded real time operating system (RTOS) well
enough to develop a multithreading application.

Connectivity to test and data acquisition equipment—The LabVIEW programming environment
provides easy-to-use interface components to data acquisition equipment communications systems as
well as a large number of interface boards for industrial control and educational purposes.

The LabVIEW programming environment is popular in universities, laboratories, and scientific
research institutions. It is commonly used in data acquisition, testing system automation, algorithm
development and modeling, industrial control, and embedded system prototyping.

21.2.2  What You Need to Use LabVIEW and ARM
To start using LabVIEW for the Cortex-M3 microcontroller, you need the NI LabVIEW Embedded
Module for ARM Microcontrollers, which includes the Keil ARM Microcontroller Development Kit
(MDK-ARM). For evaluation, you can purchase a low-cost kit that includes an ARM microcontroller
board (Cortex-M3/ARM7), Keil ULINK2 debugger, and the required development software, as shown
in Figure 21.3 (a trial version of MDK-ARM is included on the CD). Details of the products are avail-
able on the National Instruments web site (www.ni.com/arm).

You can use LabVIEW with other Cortex-M3 microcontrollers or ARM7 microcontrollers. How-
ever, LabVIEW does not have device drivers for the peripherals of some of the microcontrollers. For
these devices, you may need to develop the interface code in C and access it in LabVIEW.

21.3  Development Flow
The development of a LabVIEW application typically involves the steps below and shown in
Figure 21.4.

•	 Create a project and a VI: You can use the project wizard to create an ARM project easily. This
includes setting up the targeted platform and device drivers. After the project creation, a VI (usually
a blank one) is created.

www.ni.com/arm

338 CHAPTER 21  Programming the Cortex-M3 Microcontrollers in NI LabVIEW

•	 Define inputs and outputs: These can be hardware interfaces on the microcontroller or user interfaces
running on the PC connected to the system. For hardware interfaces, you need to define the inputs and
outputs as elemental input/output (I/O) in the project before you can use them in your VI design.

Create •	 the application using graphical programming.

•	 Build the design.

•	 Simulate: It is possible to download the created execution image to the device simulation in the
Keil MDK-ARM to test your application.

•	 Download to the microcontroller and test: By default, the program is downloaded to the
microcontroller as a test when the compilation is done. You can use the LabVIEW interface to
pause, stop, or single-step the execution. You can also probe the variable value by clicking the
connection during execution.

Figure 21.4

Example Design Flow.

Create a project
Define input, output,
and user interface

Create program using
graphical language Build the design

Simulate Download to
hardware and test

Figure 21.3

LabVIEW Evaluation Kit for the Cortex-M3 Processor.

33921.3  Example of a LabVIEW Project

Each VI has two views:

•	 Front panel view: Containing a GUI of the VI.
•	 Block diagram view: Serving as a work-space for graphical programming.

When you create a VI, it has a blank front panel by default. You can then add control elements and
indicator elements to define the inputs and outputs of the system. For instance, in the previous example
of getting the largest integer from three inputs and a random value, the front panel may be similar to
the one shown in Figure 21.5.

You can choose from a variety of control and indicator components in the VI libraries. After you
add these controls and indicators, they become visible in the block diagram view. You can then cus-
tomize properties like data types and create your graphical program by connecting them with various
LabVIEW functions.

21.4  Example of a LabVIEW Project
21.4.1  Create the Project
This example creates a simple application that samples analog signals and displays on the Organic
LED (OLED) screen as a waveform. The first step is to use the project wizard to create a new
project. From the LabVIEW startup screen, select “more” and then “ARM project,” as shown in
Figure 21.6. Then you can create a blank VI, or use an existing one. For this example, create a

Figure 21.5

Simple Front Panel Design for the VI in Figure 2.

340 CHAPTER 21  Programming the Cortex-M3 Microcontrollers in NI LabVIEW

new VI. Now you have the choice of target type. For this example, select the LM3S8962 evaluation
kit (Figure 21.7).

In the final step, the project wizard builds the specification that allows you to run the project on a
simulator. For this example, run it in hardware instead of selecting the simulator option. The project
creation wizard also saves the project and a default blank VI.

Figure 21.6

Create New ARM Project via the Project Wizard.

Figure 21.7

Select Target Type.

34121.3  Example of a LabVIEW Project

21.4.2  Define Inputs and Outputs
The next step of the project is to define the inputs and outputs for the applications. In this example, you
need to define only the ADC0 input (the OLED display is controlled by library components, so you
don’t have to define it here). To complete that, right click on the target in the project window and select
“New-> Elemental I/O” (Figure 21.8). Then define the input used in the project in the New Elemental
I/O window, as shown in Figure 21.9.

In this window, a number of other I/O options are available. For example, the push buttons, light
emitting diode (LED), General Purpose Input/Output (GPIO), and Pulse Width Modulator (PWM)
interfaces can help you simplify your project development.

21.4.3  Create the Program
Then you can create the application code in the block diagram view. LabVIEW features many
functions and it is impossible to cover all of these in this chapter. LabVIEW has detailed documen-
tation on how to create graphical programming elements, and each element has context-sensitive
help information. In general, you can right click on the block diagram area to browse the available
components (see Figure 21.10). For example, a number of the OLED screen controls are available
in the ARM category.

Figure 21.8

Define Elemental I/O.

342 CHAPTER 21  Programming the Cortex-M3 Microcontrollers in NI LabVIEW

In addition to the OLED control, you can find the elemental I/O, Controller Area Network (CAN),
Inter-Integrated Circuit (I2C), Serial Peripherial Interface (SPI), and interrupt control functions in the
ARM category.

In the analog waveform display application, the program code is divided into two parts: on the left
side of the block diagram, the code initializes the OLED screen, displays a startup screen, delays for
a short period and then clears the screen and displays “Analog Input 0” at the top of the screen. Use
this sub-VI, which is specific to the LM3S8962 evaluation board you are using, for the OLED controls
provided in the LabVIEW Embedded Module for ARM Microcontrollers (Figure 21.11).

The right side of the block diagram features a While Loop that samples from ADC0 of the LM3S8962
and then displays the waveform by drawing a pixel on the screen. If the X-position is reached on the
right side of the OLED screen, the X-position counter resets to 0.

The calculated Y position value is also stored into an array. The array has a size of 128 integers and
is used to remove the old waveform before the new pixel is drawn on the screen.

21.4.4  Build the Design and Test the Application
Once you have completed the design, you can build the design and test the application. First click the
arrow button on the tool bar. If the program contains an error, the arrow icon displays as broken to indi-
cate that the program is not ready. You can click on it to report the errors detected in the program.

When you have completed the compile process, the program is downloaded to the board automati-
cally and executed. In this example, the program has executed successfully and generated the waveform
for an analog input (see Figure 21.12 on page 345).

Figure 21.9

Adding Elemental I/O to Your Project.

34321.4  How It Works

21.5  How It Works
When you build the program, LabVIEW generates C code from the VI created. You can then compile
C code using the MDK-ARM (Figure 21.13 on page 346). To run VI-s in parallel, the generated C code
uses the RealView Real-Time Library (RL-ARM, www.keil.com/arm/rl-arm/), which works with the
Keil RTX Real Time Kernel (www.keil.com/arm/rl-arm/kernel.asp).

Figure 21.10

Access LabVIEW Functions and ARM-Specific Features.

www.keil.com/arm/rl-arm/
(www.keil.com/arm/rl-arm/kernel.asp)

344 CHAPTER 21  Programming the Cortex-M3 Microcontrollers in NI LabVIEW

In addition to the capability of multithreading, using the RL-ARM provides access to a variety of
drivers including timing control, Transmission Control Protocol/Internet Protocol (TCP/IP) stack, and
CAN protocol stack.

21.6  Additional Features in LabVIEW
Semihosting: LabVIEW supports the creation of GUIs running on the debug host (PC). This is very

useful for system prototyping because developing GUIs running on a microcontroller can be a time-
consuming task. The LabVIEW library supports user-interface elements including switches, slide
bars, and graphs, making it easy to create professional GUIs in just a few mouse clicks. During
operation, the GUIs are running on the PC and the data are communicated to the running microcon-
troller target via the debug connection Joint Test Action Group, TCP/IP, or Serial. This allows you
to control and access the results on the hardware in real time.

C code integration: LabVIEW supports embedding C code inside a VI. This is useful for creating new device
drivers and handling data-processing tasks that you cannot complete using elements in LabVIEW.

Debugging: Debugging is easy in the LabVIEW environment. During design simulation or test, you
can use the VI design environment as a debugger by showing the values on data variables when it
stops. The VI block diagram view provides pause, run, and single-stepping controls as well as value
probing (Figure 21.14 on page 346).

In addition, because the Keil μVision comes with a full-featured debugger, you can debug the applica-
tion code you generated on LabVIEW using the μVision debugger (Figure 21.15 on page 347).

Figure 21.11

Block Diagram of the Analog Waveform Display Application.

345

21.7  Porting to Another ARM Processor
In addition to running your LabVIEW application using the evaluation kit, you can port the application
to other Cortex-M3 microcontrollers or other ARM microcontrollers that are supported by the RTX
Real-Time Kernel. This typically involves the following steps:

•	 Port the RTX Real-Time Kernel: This step is not required for Cortex-M3 devices because the
processor contains the required support for the RTX Real-Time Kernel. However, if you choose
to use ARM7 microcontrollers, you may need this. A port for the RTX Real-Time Kernel may
already be available in the Keil MDK-ARM installation options. You can determine if an RTX port
is available for your ARM microcontroller by browsing the \Keil\ARM\Startup directory. If an
RTX_Conf*.c is already available for the microcontroller target, then the RTX Real-Time Kernel
has already been ported.

21.6  Porting to Another ARM Processor

Figure 21.12

LabVIEW Application Running on the Evaluation Kit.

346 CHAPTER 21  Programming the Cortex-M3 Microcontrollers in NI LabVIEW

Figure 21.14

Debugging in a VI Block Diagram.

Figure 21.13

Design Flow Using LabVIEW and Keil μVision.

347

•	 Create the target in LabVIEW and incorporate the Keil toolchain: You can do this by manually
creating the target folder.

•	 Integrate the Real-Time Agent Module for debugging: You may need to customize the RTX_config.c
to include the Real-Time Agent Configuration option.

•	 Develop peripheral and I/O drivers: You can implement this step using the Element I/O Device
Editor.

For more detailed information on the porting process, view the National Instruments online
tutorial titled LabVIEW Embedded for ARM Porting Guide (http://zone.ni.com/devzone/cda/tut/p/
id/6994).

21.6  Porting to Another ARM Processor

Figure 21.15

Using μVision to Debug Code Generated in LabVIEW.

http://zone.ni.com/devzone/cda/tut/p/id/6994
http://zone.ni.com/devzone/cda/tut/p/id/6994

349Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00025-9

This appendix is the Cortex™-M3 instruction set description from the ARM Cortex-M3 user guide
reference material; it is reproduced with permission from ARM. The following sections give general
information:

•	 Instruction set summary on page 349
•	 About the instruction descriptions on page 353

Each of the following sections describes a functional group of Cortex-M3 instructions. Together
they describe all the instructions supported by the Cortex-M3 processor:

Memory access instructions •	 on page 361
•	 General data-processing instructions on page 373
•	 Multiply and divide instructions on page 383
•	 Saturating instructions on page 386
•	 Bitfield instructions on page 388
•	 Branch and control instructions on page 391
•	 Miscellaneous instructions on page 397

A.1  Instruction Set Summary
The processor implements a version of the Thumb® instruction set. Table A.1 lists the supported
instructions.

Appendix

The Cortex-M3 Instruction
Set, Reference Material

Table A.1  Cortex-M3 Instructions

Mnemonic Operands Brief Description Flags Page

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V Page 374
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V Page 374
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C,V Page 374
ADR Rd, label Load PC-relative address — Page 362
AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C Page 376
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C Page 377

Continued

A

350 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Table A.1  Cortex-M3 Instructions  Continued

Mnemonic Operands Brief Description Flags Page

B Label Branch — Page 391

BFC Rd, #lsb, #width Bit Field Clear — Page 388
BFI Rd, Rn, #lsb, #width Bit Field Insert — Page 388
BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C Page 376
BKPT #imm Breakpoint — Page 397
BL Label Branch with Link — Page 391
BLX Rm Branch indirect with Link — Page 391
BX Rm Branch indirect — Page 391
CBNZ Rn, label Compare and Branch if

Nonzero
— Page 393

CBZ Rn, label Compare and Branch if Zero — Page 393
CLREX — Clear Exclusive — Page 372
CLZ Rd, Rm Count leading zeros — Page 378
CMN Rn, Op2 Compare Negative N,Z,C,V Page 378
CMP Rn, Op2 Compare N,Z,C,V Page 378
CPSID iflags Change Processor State,

Disable Interrupts
— Page 398

CPSIE iflags Change Processor State,
Enable Interrupts

— Page 398

DMB — Data Memory Barrier — Page 398
DSB — Data Synchronization Barrier — Page 399
EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C Page 376
ISB — Instruction Synchronization

Barrier
— Page 399

IT — If-Then condition block — Page 393
LDM Rn{!}, reglist Load Multiple registers,

increment after
— Page 368

LDMDB, LDMEA Rn{!}, reglist Load Multiple registers,
decrement before

— Page 368

LDMFD, LDMIA Rn{!}, reglist Load Multiple registers,
increment after

— Page 368

LDR Rt, [Rn, #offset] Load Register with word — Page 362
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte — Page 362
LDRD Rt, Rt2, [Rn, #offset] Load Register with 2 bytes — Page 362
LDREX Rt, [Rn, #offset] Load Register Exclusive — Page 371
LDREXB Rt, [Rn] Load Register Exclusive with

byte
— Page 371

LDREXH Rt, [Rn] Load Register Exclusive with
halfword

— Page 371

LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword — Page 362
LDRSB, LDRSBT Rt, [Rn, #offset] Load Register with signed

byte
— Page 362

351A.1  Instruction Set Summary

Table A.1  Cortex-M3 Instructions  Continued

Mnemonic Operands Brief Description Flags Page

LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed
halfword

— Page 362

LDRT Rt, [Rn, #offset] Load Register with word — Page 362
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C Page 377
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C Page 377
MLA Rd, Rn, Rm, Ra Multiply with Accumulate,

32-bit result
— Page 383

MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit
result

— Page 383

MOV, MOVS Rd, Op2 Move N,Z,C Page 379
MOVT Rd, #imm16 Move Top — Page 381
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C Page 379
MRS Rd, spec_reg Move from special register to

general register
— Page 400

MSR spec_reg, Rm Move from general register to
special register

N,Z,C,V Page 400

MUL, MULS Rd, Rn, Rm Multiply, 32-bit result N,Z Page 383
MVN, MVNS Rd, Op2 Move NOT N,Z,C Page 379
NOP — No Operation — Page 401
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C Page 376
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C Page 376
POP reglist Pop registers from stack — Page 370
PUSH reglist Push registers onto stack — Page 370
RBIT Rd, Rn Reverse bits — Page 381
REV Rd, Rn Reverse byte order in a word — Page 381
REV16 Rd, Rn Reverse byte order in each

halfword
— Page 381

REVSH Rd, Rn Reverse byte order in bottom
halfword and sign extend

— Page 381

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C Page 377
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C Page 377
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V Page 374
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V Page 374
SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract — Page 389
SDIV {Rd,} Rn, Rm Signed Divide — Page 386
SEV — Send Event — Page 402
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with

Accumulate (32 × 32 + 64),
64-bit result

— Page 385

SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 × 32),
64-bit result

— Page 385

Continued

352 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Table A.1  Cortex-M3 Instructions  Continued

Mnemonic Operands Brief Description Flags Page

SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q Page 386
STM Rn{!}, reglist Store Multiple registers,

increment after
— Page 368

STMDB, STMEA Rn{!}, reglist Store Multiple registers,
decrement before

— Page 368

STMFD, STMIA Rn{!}, reglist Store Multiple registers,
increment after

— Page 368

STR Rt, [Rn, #offset] Store Register word — Page 362
STRB, STRBT Rt, [Rn, #offset] Store Register byte — Page 362
STRD Rt, Rt2, [Rn, #offset] Store Register two words — Page 362
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive — Page 371
STREXB Rd, Rt, [Rn] Store Register Exclusive byte — Page 371
STREXH Rd, Rt, [Rn] Store Register Exclusive

halfword
— Page 371

STRH, STRHT Rt, [Rn, #offset] Store Register halfword — Page 362
STRT Rt, [Rn, #offset] Store Register word — Page 362
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V Page 374
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V Page 374
SVC #imm Supervisor Call — Page 402
SXTB Rd, Rm {,ROR #n} Sign extend a byte — Page 390
SXTH Rd, Rm {,ROR #n} Sign extend a halfword — Page 390
TBB [Rn, Rm] Table Branch Byte — Page 395
TBH [Rn, Rm, LSL #1] Table Branch Halfword — Page 395
TEQ Rn, Op2 Test Equivalence N,Z,C Page 382
TST Rn, Op2 Test N,Z,C Page 382
UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract — Page 389
UDIV {Rd,} Rn, Rm Unsigned Divide — Page 386
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with

Accumulate (32 × 32 + 64),
64-bit result

— Page 385

UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 × 32),
64-bit result

— Page 385

USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q Page 386
UXTB Rd, Rm {,ROR #n} Zero extend a byte — Page 390
UXTH Rd, Rm {,ROR #n} Zero extend a halfword — Page 390
WFE — Wait For Event — Page 403
WFI — Wait For Interrupt — Page 403

Note: Angle brackets, <>, enclose alternative forms of the operand; braces, {}, enclose optional operands; the Operands
column is not exhaustive; Op2 is a flexible second operand that can be either a register or a constant; most instructions can
use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

353A.2  About the Instruction Descriptions

A.2  About the Instruction Descriptions
The following sections give more information about using the instructions:

•	 Operands on page 353
•	 Restrictions when using PC or SP on page 353
•	 Flexible second operand on page 353
•	 Shift Operations on page 354
•	 Address alignment on page 357
•	 PC-relative expressions on page 358
•	 Conditional execution on page 358
•	 Instruction width selection on page 360

A.2.1  Operands
An instruction operand can be an ARM register, a constant, or another instruction-specific parameter.
Instructions act on the operands and often store the result in a destination register. When there is a des-
tination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant; see
“Flexible Second Operand” section.

A.2.2  Restrictions When Using PC or SP
Many instructions have restrictions on whether you can use the program counter (PC) or stack pointer
(SP) for the operands or destination register. See instruction descriptions for more information.

Note
Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1
for correct execution, because this bit indicates the required instruction set, and the Cortex-M3 proces-
sor only supports Thumb instructions.

A.2.3  Flexible Second Operand
Many general data-processing instructions have a flexible second operand. This is shown as Operand2
in the descriptions of the syntax of each instruction.

Operand2 can be a

•	 Constant
Register with optional shift •	 on page 354.

Constant
You specify an Operand2 constant in the form:

#constant

354 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

where constant can be

Any constant that can be produced by shifting an 8-bit value left by any number of bits within a •	
32-bit word
Any constant of the form •	 0x00XY00XY
Any constant of the form •	 0xXY00XY00
Any constant of the form •	 0xXYXYXYXY.

Note
In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These
are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ, or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater
than 255 and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag
if Operand2 is any other constant.

Instruction Substitution
Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP Rd,
#0xFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

Register with Optional Shift
You specify an Operand2 register in the form:
Rm {, shift}

where

Rm	 is the register holding the data for the second operand.
shift	 is an optional shift to be applied to Rm. It can be one of the following:

	 ASR #n	 Arithmetic Shift Right n bits, 1 ≤ n ≤ 32
	 LSL #n	 Logical Shift Left n bits, 1≤ n ≤ 31
	 LSR #n	 Logical Shift Right n bits, 1 ≤ n ≤ 32
	 ROR #n	 Rotate Right n bits, 1 ≤ n ≤ 31
	 RRX	 Rotate Right 1 bit, with Extend
	 -	 If omitted, no shift occurs, equivalent to LSL #0

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.
If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used

by the instruction. However, the contents in the register Rm remain unchanged. Specifying a register
with shift also updates the carry flag when used with certain instructions. For information on the shift
operations and how they affect the carry flag, see “Shift Operations” section.

A.2.4  Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift
length. Register shift can be performed

355A.2  About the Instruction Descriptions

Directly by the instructions •	 ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination
register.
During the calculation of •	 Operand2 by the instructions that specify the second operand as a
register with shift; see “Flexible Second Operand” section on page 353. The result is used by the
instruction.

The permitted shift lengths depend on the shift type and the instruction; see the individual instruc-
tion description or “Flexible Second Operand” section on page 353. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is 0. The
following subsections describe the various shift operations and how they affect the carry flag. In these
descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

ASR
Arithmetic Shift Right by n bits moves the left-hand 32–n bits of the register Rm to the right by n
places, into the right-hand 32–n bits of the result. And it copies the original bit[31] of the register into
the left-hand n bits of the result; see Figure A.1.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result
being rounded toward negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ, or TST, the carry flag is updated to the last bit shifted
out, bit[n–1], of the register Rm.

Note
If •	 n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
If •	 n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

LSR
Logical Shift Right by n bits moves the left-hand 32–n bits of the register Rm, to the right by n
places, into the right-hand 32–n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure A.2.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is regarded
as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n–1], of the register Rm.

Figure A.1

ASR #3.

31 1

Carry
flag

2345 0

356 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Note
If •	 n is 32 or more, then all the bits in the result are cleared to 0.
If •	 n is 33 or more and the carry flag is updated, it is updated to 0.

LSL
Logical Shift Left by n bits moves the right-hand 32–n bits of the register Rm, to the left by n places,
into the left-hand 32–n bits of the result. And it sets the right-hand n bits of the result to 0. See
Figure A.3.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur without
warning.

When the instruction is LSLS or when LSL #n, with nonzero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ, or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the
carry flag when used with LSL #0.

Note
If •	 n is 32 or more, then all the bits in the result are cleared to 0.
If •	 n is 33 or more and the carry flag is updated, it is updated to 0.

ROR
Rotate Right by n bits moves the left-hand 32–n bits of the register Rm, to the right by n places, into the
right-hand 32–n bits of the result. And it moves the right-hand n bits of the register into the left-hand
n bits of the result. See Figure A.4.

Figure A.3

LSL #3.

31

000

1 02345

Carry
flag

Figure A.2

LSR #3.

31 1 0

000

2345

Carry
flag

357A.2  About the Instruction Descriptions

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ, or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

Note
If •	 n is 32, then the value of the result is the same as the value in Rm, and if the carry flag is updated,
it is updated to bit[31] of Rm.

•	 ROR with shift length, n, more than 32 is the same as ROR with shift length n–32.

RRX
Rotate Right with Extend moves the bits of the register Rm to the right by 1 bit. And it copies the carry
flag into bit[31] of the result; see Figure A.5.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ, or TST, the carry flag is updated to bit[0] of the
register Rm.

A.2.5  Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or
multiple word access, or where a halfword-aligned address is used for a halfword access. Byte accesses
are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

•	 LDR, LDRT
•	 LDRH, LDRHT
•	 LDRSH, LDRSHT

Figure A.4

ROR #3.

31 1 02345

Carry
flag

Figure A.5

RRX.

31 30 1 0

Carry
flag

358 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

•	 STR, STRT
•	 STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned
access, and therefore, their accesses must be address aligned.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions
might not support unaligned accesses. Therefore, ARM recommends that programmers ensure that
accesses are aligned. To trap accidental generation of unaligned accesses, use the UNALIGN_TRP bit
in the Configuration and Control register to trigger usage fault exception for all unaligned accesses.

A.2.6  PC-Relative Expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or literal
data. It is represented in the instruction as the PC value plus or minus a numeric offset. The assembler
calculates the required offset from the label and the address of the current instruction. If the offset is
too big, the assembler produces an error.

Note
For •	 B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruc
tion plus 4 bytes.
For most other instructions that use labels, the value of the PC is the address of the current •	
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.
Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or •	
minus a number, or an expression of the form [PC, #number].

A.2.7  Conditional Execution
Most data-processing instructions can optionally update the condition flags in the Application Program
Status Register (APSR) according to the result of the operation. Some instructions update all flags, and
some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruc-
tion, either immediately after the instruction that updated the flags or after any number of intervening
instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suf-
fixes to instructions. See Table A.2 for a list of the suffixes to add to instructions to make them con-
ditional instructions. The condition code suffix enables the processor to test a condition based on the
flags. If the condition test of a conditional instruction fails, the instruction

Does not execute•	
Does not write any value to its destination register•	
Does not affect any of the flags•	
Does not generate any exception.•	

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block.
See “IT” section on page 393 for more information and restrictions when using the IT instruction.

359A.2  About the Instruction Descriptions

Depending on the vendor, the assembler might automatically insert an IT instruction if you have con-
ditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on
the result.

This section describes

The condition flags•	 on page 359
•	 Condition code suffixes on page 360.

The Condition Flags
The APSR contains the following condition flags:

N	 Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z	 Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
C	 Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
V	 Set to 1 when the operation caused overflow, cleared to 0 otherwise.

A carry occurs

If the result of an addition is greater than or equal to 2•	 32

If the result of a subtraction is positive or zero•	
As the result of an inline barrel shifter operation in a move or logical instruction.•	

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the
operation been performed at infinite precision, for example:

if adding two negative values results in a positive value•	
if adding two positive values results in a negative value•	

Table A.2  Condition Code Suffixes

Suffix Flags Meaning

EQ Z = 1 Equal
NE Z = 0 Not equal
CS or HS C = 1 Higher or same, unsigned ≥
CC or LO C = 0 Lower, unsigned <
MI N = 1 Negative
PL N = 0 Positive or zero
VS V = 1 Overflow
VC V = 0 No overflow
HI C = 1 and Z = 0 Higher, unsigned >
LS C = 0 or Z = 1 Lower or same, unsigned ≤
GE N = V Greater than or equal, signed ≥
LT N != V Less than, signed <
GT Z = 0 and N = V Greater than, signed >
LE Z = 1 and N != V Less than or equal, signed ≤
AL Can have any value Always; default when no suffix is specified

360 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

if subtracting a positive value from a negative value generates a positive value•	
if subtracting a negative value from a positive value generates a negative value•	

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result
is discarded. See the instruction descriptions for more information.

Note
Most instructions update the status flags only if the S suffix is specified; see the instruction descriptions
for more information.

Condition Code Suffixes
The instructions that can be conditional have an optional condition code, shown in syntax descriptions
as {cond}. Conditional execution requires a preceding IT instruction. An instruction with a condition
code is only executed if the condition code flags in the APSR meet the specified condition. Table A.2
shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instruc-
tions in code. Table A.2 also shows the relationship between condition code suffixes and the N, Z, C,
and V flags.

Example A.1 shows the use of a conditional instruction to find the absolute value of a number.
R0 = ABS(R1).

Example A.2 shows the use of conditional instructions to update the value of R4 if the signed values
R0 is greater than R1 and R2 is greater than R3.

A.2.8  Instruction Width Selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depend-
ing on the operands and destination register specified. For some of these instructions, you can force a
specific instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction
encoding. The .N suffix forces a 16-bit instruction encoding.

Example A.1  Absolute Value

MOVS R0, R1 ; R0 = R1, setting flags
IT MI ; IT - Skip next instruction if value 0 or positive
RSBMI R0, R1, #0 ; If negative, R0 = –R1

Example A.2  Compare and Update Value

CMP R0, R1 ; Compare R0 and R1, setting flags
ITT GT ; IT - Skip next two instructions unless GT condition holds

CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, R5 ; If still 'greater than', do R4 = R5

361A.3  Memory Access Instructions

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding
of the requested width, it generates an error.

Note
In some cases, it might be necessary to specify the .W suffix, for example, if the operand is the label of
an instruction or literal data, as in the case of branch instructions. This is because the assembler might
not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condi-
tion code, if any. Example A.3 shows instructions with the instruction width suffix.

A.3  Memory Access Instructions
Table A.3 shows the memory access instructions.

Example A.3  Instruction Width Selection

BCS.W label ; creates a 32-bit instruction even for a short branch
ADDS.W R0, R0, R1 ; creates a 32-bit instruction even though the same

; operation can be done by a 16-bit instruction

Table A.3  Memory Access Instructions

Mnemonic Brief Description See

ADR Generate PC-relative address ADR on page 362
CLREX Clear Exclusive CLREX on page 372
LDM{mode} Load Multiple registers LDM and STM on page 368
LDR{type} Load Register using immediate offset LDR and STR, Immediate Offset on page 362
LDR{type} Load Register using register offset LDR and STR, Register Offset on page 365
LDR{type}T Load Register with unprivileged

access
LDR and STR, Unprivileged on page 366

LDR Load Register using PC-relative
address

LDR, PC-Relative on page 367

LDREX{type} Load Register Exclusive LDREX and STREX on page 371
POP Pop registers from stack PUSH and POP on page 370
PUSH Push registers onto stack PUSH and POP on page 370
STM{mode} Store Multiple registers LDM and STM on page 368
STR{type} Store Register using immediate offset LDR and STR, Immediate Offset on page 362
STR{type} Store Register using register offset LDR and STR, Register Offset on page 365
STR{type}T Store Register with unprivileged

access
LDR and STR, Unprivileged on page 366

STREX{type} Store Register Exclusive LDREX and STREX on page 371

362 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

A.3.1  ADR
Generate PC-relative address.

Syntax
ADR{cond} Rd, label

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
label	 is a PC-relative expression. See “PC-Relative Expressions” section on page 358.

Operation
ADR generates an address by adding an immediate value to the PC and writes the result to the destina-
tion register.

ADR facilitates the generation of position-independent code because the address is PC-relative. If
you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the
address you generate is set to 1 for correct execution.

Values of label must be within the range of −4095 to +4095 from the address in the PC.

Note
You might have to use the .W suffix to get the maximum offset range or to generate addresses that are
not word-aligned; see “Instruction Width Selection” section on page 360.

Restrictions
Rd must not be SP and must not be PC.

Condition Flags
This instruction does not change the flags.

Examples
ADR   R1,	 TextMessage	; Write address value of a location labelled as
		 ; TextMessage to R1

A.3.2  LDR and STR, Immediate Offset
Load and Store with immediate offset, preindexed immediate offset or postindexed immediate offset.

Syntax
�op{type}{cond} Rt, [Rn {, #offset}]   ; immediate offset
op{type}{cond} Rt, [Rn, #offset]!  ; pre-indexed
op{type}{cond} Rt, [Rn], #offset  ; post-indexed
�opD{cond} Rt, Rt2, [Rn {, #offset}]  ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]!  ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset    ; post-indexed, two words

363A.3  Memory Access Instructions

where

Op	 is one of the following:
	 LDR	 Load Register
	 STR	 Store Register

Type	 is one of the following:
	 B	 Unsigned byte, zero extends to 32 bits on loads
	 SB	 Signed byte, sign extends to 32 bits (LDR only)
	 H	 Unsigned halfword, zero extends to 32 bits on loads
	 SH	 Signed halfword, sign extends to 32 bits (LDR only)
	 -	 Omit, for word

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rt	 is the register to load or store.
Rn	 is the register on which the memory address is based.
Offset	 is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2	 is the additional register to load or store for two-word operations.

Operation
LDR instructions load one or two registers with a value from memory. STR instructions store one or two
register values to memory.

Load and store instructions with immediate offset can use the following addressing modes.

Offset Addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The result is
used as the address for the memory access. The register Rn is unaltered. The assembly language syntax
for this mode is

[Rn, #offset]

Preindexed Addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The result is
used as the address for the memory access and written back into the register Rn. The assembly language
syntax for this mode is

[Rn, #offset]!

Postindexed Addressing
The address obtained from the register Rn is used as the address for the memory access. The offset
value is added to or subtracted from the address and written back into the register Rn. The assembly
language syntax for this mode is

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either
be signed or be unsigned; see “Address Alignment” section on page 357.

Table A.4 shows the ranges of offset for immediate, preindexed, and postindexed forms.

364 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Restrictions
For load instructions:

•	 Rt can be SP or PC for word loads only.
•	 Rt must be different from Rt2 for two-word loads.
•	 Rn must be different from Rt and Rt2 in the preindexed or postindexed forms.

When Rt is PC in a word load instruction:

bit[0] of the loaded value must be 1 for correct execution.•	
A branch occurs to the address created by changing bit[0] of the loaded value to 0.•	
If the instruction is conditional, it must be the last instruction in the IT block.•	

For store instructions:

•	 Rt can be SP for word stores only.
•	 Rt must not be PC.
•	 Rn must not be PC.
•	 Rn must be different from Rt and Rt2 in the preindexed or postindexed forms.

Condition Flags
These instructions do not change the flags.

Examples
LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
	 ; 960 bytes above the address in R5, and
	 ; increments R5 by 960.
STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
	 ; to a constant in the range 0–4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in
	 ; R4, then increment R4 by 4
LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
	 ; address in R3, and load R9 from a word 36
	 ; bytes above the address in R3
STRD R0, R1, [R8], #–16 ; Store R0 to address in R8, and store R1 to
	 ; a word 4 bytes above the address in R8,
	 ; and then decrement R8 by 16.

Table A.4  Offset Ranges

Instruction Type Immediate Offset Preindexed Postindexed

Word, halfword, signed
halfword, byte, or
signed byte

−255 to 4095 −255 to 255 −255 to 255

Two words multiple of 4 in the range
−1020 to 1020

multiple of 4 in the range
−1020 to 1020

multiple of 4 in the range
−1020 to 1020

365A.3  Memory Access Instructions

A.3.3  LDR and STR, Register Offset
Load and Store with register offset.

Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where

op	 is one of the following:
	 LDR	 Load Register
	 STR	 Store Register

Type	 is one of the following:
	 B	 Unsigned byte, zero extends to 32 bits on loads
	 SB	 Signed byte, sign extends to 32 bits (LDR only)
	 H	 Unsigned halfword, zero extends to 32 bits on loads
	 SH	 Signed halfword, sign extends to 32 bits (LDR only)
	 -	 Omit, for word

Cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rt	 is the register to load or store.
Rn	 is the register on which the memory address is based.
Rm	 is a register containing a value to be used as the offset.
LSL #n	 is an optional shift, with n in the range 0 to 3.

Operation
LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.
The memory address to load from or store to is at an offset from the register Rn. The offset is specified
by the register Rm and can be shifted left by up to 3 bits using LSL.
The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or be unsigned; see “Address Alignment” section on page 357.

Restrictions
In these instructions:

•	 Rn must not be PC.
•	 Rm must not be SP and must not be PC.
•	 Rt can be SP only for word loads and word stores.
•	 Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-•	
aligned address.
If the instruction is conditional, it must be the last instruction in the IT block.•	

366 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Condition Flags
These instructions do not change the flags.

Examples
STR R0, [R5, R1] ; Store value of R0 into an address equal to
	 ; sum of R5 and R1
LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
	 ; sum of R5 and two times R1, sign extended it
	 ; to a word value and put it in R0
STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
	 ; and four times R2

A.3.4  LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax
op{type}T{cond} Rt, [Rn {, #offset}]	 ; immediate offset

where

op	 is one of the following:
	 LDR	 Load Register
	 STR	 Store Register

type	 is one of the following:
	 B	 Unsigned byte, zero extends to 32 bits on loads
	 SB	 Signed byte, sign extends to 32 bits (LDR only)
	 H	 Unsigned halfword, zero extends to 32 bits on loads
	 SH	 Signed halfword, sign extends to 32 bits (LDR only)
	 -	 Omit, for word

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rt	 is the register to load or store.
Rn	 is the register on which the memory address is based.
Offset	� is an offset from Rn and can be 0–255. If offset is omitted, the address is the value in Rn.

Operation
These load and store instructions perform the same function as the memory access instructions with
immediate offset; see “LDR and STR, Immediate Offset” section on page 362. The difference is that
these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave exactly the same way as normal
memory access instructions with immediate offset.

Restrictions
In these instructions:

•	 Rn must not be PC.
•	 Rt must not be SP and must not be PC.

367A.3  Memory Access Instructions

Condition Flags
These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
 ; �R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
 ; sum of R2 and 8 into R2, with unprivileged access

A.3.5  LDR, PC-Relative
Load register from memory.

Syntax
LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label 	 ; Load two words

where

type	 is one of the following:
	 B	 Unsigned byte, zero extends to 32 bits
	 SB	 Signed byte, sign extends to 32 bits
	 H	 Unsigned halfword, zero extends to 32 bits
	 SH	 Signed halfword, sign extends to 32 bits
	 -	 Omit, for word

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rt	 is the register to load or store.
Rt2	 is the second register to load or store.
label	 is a PC-relative expression; see “PC-Relative Expressions” section on page 358.

Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is specified
by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or be unsigned; see “Address Alignment” section on page 357.

label must be within a limited range of the current instruction. Table A.5 shows the possible off-
sets between label and PC.

Table A.5  Offset Ranges

Instruction Type Offset Range

Word, halfword, signed halfword, byte, signed byte −4095 to 4095
Two words −1020 to 1020

368 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Note
You might have to use the .W suffix to get the maximum offset range; see “Instruction Width Selection”
section on page 360.

Restrictions
In these instructions:

•	 Rt can be SP or PC only for word loads.
•	 Rt2 must not be SP and must not be PC.
•	 Rt must be different from Rt2.

When Rt is PC in a word load instruction:

bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-•	
aligned address.
If the instruction is conditional, it must be the last instruction in the IT block.•	

Condition Flags
These instructions do not change the flags.

Examples
LDR R0, LookUpTable ; Load R0 with a word of data from an address
	 ; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled
	 ; as localdata, sign extend it to a word
	 ; value, and put it in R7

A.3.6  LDM and STM
Load and Store Multiple registers.

Syntax
op{addr_mode}{cond} Rn{!}, reglist

where

op	 is one of the following:
	 LDM	 Load Multiple registers
	 STM	 Store Multiple registers

addr_mode	 is any one of the following:
	 IA	 Increment address After each access; this is the default
	 DB	 Decrement address Before each access

Cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rn	 is the register on which the memory addresses are based.
!	� is an optional writeback suffix. If ! is present, the final address, that is loaded from

or stored to, is written back into Rn.

369A.3  Memory Access Instructions

reglist	� is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one
register or register range; see “Examples” section on page 370.

•	 LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

•	 LDMEA is a synonym for LDMDB and refers to its use for popping data from Empty Ascending
stacks.

•	 STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty
Ascending stacks.

•	 STMFD is synonym for STMDB and refers to its use for pushing data onto Full Descending
stacks

Operation
LDM instructions load the registers in reglist with word values from memory addresses based
on Rn. STM instructions store the word values in the registers in reglist to memory addresses based
on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA, the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n–1), where n is the number of reg-
isters in reglist. The accesses happen in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n–1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD, the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn – 4 * (n–1), where n is the number of registers in reglist. The
accesses happen in order of decreasing register numbers, with the highest numbered register using the
highest memory address and the lowest number register using the lowest memory address. If the write-
back suffix is specified, the value of Rn – 4 * (n–1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form; see “PUSH and POP” section on
page 370 for details.

Restrictions
In these instructions:

•	 Rn must not be PC.
•	 reglist must not contain SP.

In any •	 STM instruction, reglist must not contain PC.
In any •	 LDM instruction, reglist must not contain PC if it contains LR.

•	 reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglist in an LDM instruction:

bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this •	
halfword-aligned address.
If the instruction is conditional, it must be the last instruction in the IT block.•	

370 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Condition Flags
These instructions do not change the flags.

Examples
LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3–R6,R11,R12}

Incorrect Examples
STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

A.3.7  PUSH and POP
Push registers onto and pop registers off a full-descending stack.

Syntax
PUSH{cond} reglist
POP{cond} reglist

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Reglist	� is a nonempty list of registers, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register
range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access
based on SP and with the final address for the access written back to the SP. PUSH and POP are the
preferred mnemonics in these cases.

Operation
PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address
and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value
in the SP register as the lowest memory address, implementing a full-descending stack. On comple-
tion, PUSH updates the SP register to point to the location of the lowest store value, POP updates the SP
register to point to the location above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP
instruction has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit
must be 1 to ensure correct operation.

See LDM and STM on page 368 for more information.

Restrictions
In these instructions:

•	 reglist must not contain SP.

371A.3  Memory Access Instructions

For the •	 PUSH instruction, reglist must not contain PC.
For the •	 POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this •	
halfword-aligned address.
If the instruction is conditional, it must be the last instruction in the IT block.•	

Condition Flags
These instructions do not change the flags.

Examples
PUSH {R0,R4-R7}	 ; Push R0, R4, R5, R6, R7 onto the stack
PUSH {R2,LR}		 ; Push R2 and the link-register onto the stack
POP {R0,R6,PC}	 ; Pop R0, R6 and PC from the stack, then branch to the new PC.

A.3.8  LDREX and STREX
Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where

cond		 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register for the returned status.
Rt	 is the register to load or store.
Rn	 is the register on which the memory address is based.
offset	� is an optional offset applied to the value in Rn. If offset is omitted, the address is

the value in Rn.

Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword, respectively, from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword, respectively, to a mem-
ory address. The address used in any store-exclusive instruction must be the same as the address in the
most recently executed load-exclusive instruction. The values stored by the store-exclusive instruction
must also have the same data size as the value loaded by the preceding load-exclusive instruction. This
means software must always use a load-exclusive instruction and a matching store-exclusive instruc-
tion to perform a synchronization operation.

If a store-exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the store-exclusive instruction writes 0 to

372 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

the destination register, it is guaranteed that no other process in the system has accessed the memory
location between the load-exclusive and store-exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding load-exclusive
and store-exclusive instruction to a minimum.

Note
The result of executing a store-exclusive instruction to an address that is different from that used in the
preceding load-exclusive instruction is unpredictable.

Restrictions
In these instructions:

Do not use PC.•	
Do not use SP for •	 Rd and Rt.
For •	 STREX, Rd must be different from both Rt and Rn.
The value of •	 offset must be a multiple of 4 in the range 0–1020.

Condition Flags
These instructions do not change the flags.

Examples
MOV R1, #0x1 ; Initialize the 'lock taken' value try
LDREX R0, [LockAddr] ; Load the lock value
CMP R0, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
CMPEQ R0, #0 ; Did this succeed?
BNE try ; No – try again
.... ; Yes – we have the lock

A.3.9  CLREX
Clear Exclusive.

Syntax
CLREX{cond}

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
Use CLREX to make the next STREX, STREXB, or STREXH instructions write 1 to its destination regis-
ter and fail to perform the store. It is useful in exception handler code to force the failure of the store
exclusive if the exception occurs between a load-exclusive instruction and the matching store-exclusive
instruction in a synchronization operation.

Condition Flags
These instructions do not change the flags.

373A.4  General Data-Processing Instructions

Examples
CLREX

A.4  General Data-Processing Instructions
Table A.6 shows the data-processing instructions.

Table A.6  Data-Processing Instructions

Mnemonic Brief Description See

ADC Add with Carry ADD, ADC, SUB, SBC, and RSB on page 374
ADD Add ADD, ADC, SUB, SBC, and RSB on page 374
ADDW Add ADD, ADC, SUB, SBC, and RSB on page 374
AND Logical AND AND, ORR, EOR, BIC, and ORN on page 376
ASR Arithmetic Shift Right ASR, LSL, LSR, ROR, and RRX on page 377
BIC Bit Clear AND, ORR, EOR, BIC, and ORN on page 376
CLZ Count leading zeros CLZ on page 378
CMN Compare Negative CMP and CMN on page 378
CMP Compare CMP and CMN on page 378
EOR Exclusive OR AND, ORR, EOR, BIC, and ORN on page 376
LSL Logical Shift Left ASR, LSL, LSR, ROR, and RRX on page 377
LSR Logical Shift Right ASR, LSL, LSR, ROR, and RRX on page 377
MOV Move MOV and MVN on page 379
MOVT Move Top MOVT on page 381
MOVW Move 16-bit constant MOV and MVN on page 379
MVN Move NOT MOV and MVN on page 379
ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN on page 376
ORR Logical OR AND, ORR, EOR, BIC, and ORN on page 376
RBIT Reverse Bits REV, REV16, REVSH, and RBIT on page 381
REV Reverse byte order in a word REV, REV16, REVSH, and RBIT on page 381
REV16 Reverse byte order in each

halfword
REV, REV16, REVSH, and RBIT on page 381

REVSH Reverse byte order in bottom
halfword and sign extend

REV, REV16, REVSH, and RBIT on page 381

ROR Rotate Right ASR, LSL, LSR, ROR, and RRX on page 377
RRX Rotate Right with Extend ASR, LSL, LSR, ROR, and RRX on page 377
RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB on page 374
SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB on page 374
SUB Subtract ADD, ADC, SUB, SBC, and RSB on page 374
SUBW Subtract ADD, ADC, SUB, SBC, and RSB on page 374
TEQ Test Equivalence TST and TEQ on page 382
TST Test TST and TEQ on page 382

374 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

A.4.1  ADD, ADC, SUB, SBC, and RSB
Add, Add with Carry, Subtract, Subtract with Carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imm12 ; ADD and SUB only

where

op	 is one of the following:
	 ADD	 Add
	 ADC	 Add with Carry
	 SUB	 Subtract
	 SBC	 Subtract with Carry
	 RSB	 Reverse Subtract

S	� is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation; see “Conditional Execution” section on page 358.

Cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register. If Rd is omitted, the destination register is Rn.
Rn	 is the register holding the first operand.
Operand2	� is a flexible second operand; see “Flexible Second Operand” section on page 353 for

details of the options.
imm12	 is any value in the range 0–4095.

Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn. The ADC instruction adds
the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn. The SBC
instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because
of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic; see “Multiword Arithmetic Examples” section
on page 376; see also “ADR” section on page 362.

Note
ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions
In these instructions:

•	 Operand2 must not be SP and must not be PC.
•	 Rd can be SP only in ADD and SUB and only with the additional restrictions.

	•	 Rn must also be SP.
	 Any shift in •	 Operand2 must be limited to a maximum of 3 bits using LSL.

375A.4  General Data-Processing Instructions

•	 Rn can be SP only in ADD and SUB.
•	 Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

	 You must not specify the S suffix.•	
	•	 Rm must not be PC and must not be SP.
	 If the instruction is conditional, it must be the last instruction in the IT block.•	

With the exception of the •	 ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB,
and only with the additional restrictions:

	 You must not specify the S suffix.•	
	 The second operand must be a constant in the range 0–4095.•	

Note
When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00 before •	
performing the calculation, making the base address for the calculation word-aligned.
If you want to generate the address of an instruction, you have to adjust the constant based on the •	
value of the PC. ARM recommends that you use the ADR instruction instead of ADD or SUB with
Rn equal to the PC, because your assembler automatically calculates the correct constant for the
ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

bit[0] of the value written to the PC is ignored.•	
A branch occurs to the address created by forcing bit[0] of that value to 0.•	

Condition Flags
If S is specified, these instructions update the N, Z, C, and V flags according to the result.

Examples
ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, R0, R3 ; Only executed if C flag set and Z
 ; flag clear

Multiword Arithmetic Examples
Example A.4 shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in R0 and R1 and place the result in R4 and R5.

Multiword values do not have to use consecutive registers. Example A.5 shows instructions that
subtract a 96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The
example stores the result in R6, R9, and R2.

Example A.4  64-Bit Addition

ADDS R4, R0, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

376 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

A.4.2  AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where

op	 is one of the following:
	 AND	 Logical AND
	 ORR	 Logical OR or bit set
	 EOR	 Logical Exclusive OR

	 BIC	 Logical AND NOT or Bit Clear
	 ORN	 Logical OR NOT

S	� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation; see “Conditional Execution” section on page 358.

Cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
Rn	 is the register holding the first operand.
Operand2	� is a flexible second operand; see “Flexible Second Operand” section on page 353

for details of the options.

Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the
values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

Restrictions
Do not use SP and do not use PC.

Condition Flags
If S is specified, these instructions

Update the N and Z flags according to the result•	
Can update the C flag during the calculation of •	 Operand2; see “Flexible Second Operand” section
on page 353
Do not affect the V flag.•	

Example A.5  96-Bit Subtraction

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

377A.4  General Data-Processing Instructions

Examples
AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORNS R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

A.4.3  ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

Syntax
op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where

op	 is one of the following:
	 ASR	 Arithmetic Shift Right
	 LSL	 Logical Shift Left
	 LSR	 Logical Shift Right
	 ROR	 Rotate Right

S	� is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation; see “Conditional Execution” section on page 358.

Rd	 is the destination register.
Rm	 is the register holding the value to be shifted.
Rs	� is the register holding the shift length to apply to the value in Rm. Only the least significant

byte is used and can be in the range 0–255.
n	 is the shift length. The range of shift length depends on the instruction:

	 ASR	 Shift length from 1 to 32
	 LSL	 Shift length from 0 to 31
	 LSR	 Shift length from 1 to 32
	 ROR	 Shift length from 1 to 31

Note
MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation
ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places
specified by constant n or register Rs. RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For
details on what result is generated by the different instructions, see “Shift Operations” section on page 354.

Restrictions
Do not use SP and do not use PC.

378 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Condition Flags
If S is specified:

These instructions update the N and Z flags according to the result.•	
The C flag is updated to the last bit shifted out, except when the shift length is 0; see “Shift •	
Operations” section on page 354.

Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend

A.4.4  CLZ
Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
Rm	 is the operand register.

Operation
The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd.
The result value is 32 if no bits are set in the source register and 0 if bit[31] is set.

Restrictions
Do not use SP and do not use PC.

Condition Flags
This instruction does not change the flags.

Examples
CLZ R4,R9
CLZNE R2,R3

A.4.5  CMP and CMN
Compare and Compare Negative.

Syntax
CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

379A.4  General Data-Processing Instructions

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rn	 is the register holding the first operand.
Operand2	� is a flexible second operand; see “Flexible Second Operand” section on page 353

for details of the options.

Operation
These instructions compare the value in a register with Operand2. They update the condition flags on
the result but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a
SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions
In these instructions:

Do not use PC.•	
•	 Operand2 must not be SP.

Condition Flags
These instructions update the N, Z, C, and V flags according to the result.

Examples
CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2

A.4.6  MOV and MVN
Move and Move NOT.

Syntax
MOV{S}{cond} Rd, Operand02
MOV{cond} Rd, #imm16
MVN{S}{cond} Rd, Operand2

where

S	� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation; see “Conditional Execution” section on page 358.

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
Operand2	� is a flexible second operand; see “Flexible Second Operand” section on page 353

for details of the options.
imm16	 is any value in the range 0–65535.

380 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Operation
The MOV instruction copies the value of Operand2 into Rd. When Operand2 in a MOV instruc-
tion is a register with a shift other than LSL #0, the preferred syntax is the corresponding shift
instruction:

•	 ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n.
•	 LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if

n != 0.
•	 LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n.
•	 ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n.
•	 RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:

•	 MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.
•	 MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.
•	 MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.
•	 MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs.

See ASR, LSL, LSR, ROR, and RRX on page 377.
The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on

the value, and places the result into Rd.

Note
The MOVW instruction provides the same function as MOV but is restricted to using the imm16
operand.

Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:

The second operand must be a register without shift.•	
You must not specify the S suffix.•	

When Rd is PC in a MOV instruction:

bit[0] of the value written to the PC is ignored.•	
A branch occurs to the address created by forcing bit[0] of that value to 0.•	

Note
Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or
BLX instruction to branch for software portability to the ARM instruction set.

Condition Flags
If S is specified, these instructions:

Update the N and Z flags according to the result•	
Can update the C flag during the calculation of •	 Operand2; see “Flexible Second Operand” section
on page 353
Do not affect the V flag.•	

381A.4  General Data-Processing Instructions

Example

A.4.7  MOVT
Move Top.

Syntax
MOVT{cond} Rd, #imm16

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
imm16	 is a 16-bit immediate constant.

Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register.
The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

Restrictions
Rd must not be SP and must not be PC.

Condition Flags
This instruction does not change the flags.

Examples
MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
 ; and APSR are unchanged

A.4.8  REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn

where

op	 is any of the following:
	 REV	 Reverse byte order in a word

MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated
MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated
MOV R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of0xF)

; to the R2 and update flags

382 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

	 REV16	 Reverse byte order in each halfword independently
	 REVSH	 Reverse byte order in the bottom halfword, and sign extends to 32 bits
	 RBIT	 Reverse the bit order in a 32-bit word

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
Rn	 is the register holding the operand.

Operation
Use these instructions to change endianness of data:

REV	� converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into
big-endian data.

REV16	� converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into
big-endian data.

REVSH	 converts either:
16-bit signed big-endian data into 32-bit signed little-endian data
16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5 ; Reverse Signed Halfword
REVHS R3, R7 ; Reverse with Higher or Same condition
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7

A.4.9  TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rn	 is the register holding the first operand.
Operand2	� is a flexible second operand; see “Flexible Second Operand” section on page 353

for details of the options.

383A.5  Multiply and Divide Instructions

Operation
These instructions test the value in a register against Operand2. They update the condition flags based
on the result but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2.
This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has bit
set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand2. This is same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical

Exclusive OR of the sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions:

Update the N and Z flags according to the result•	
Can update the C flag during the calculation of •	 Operand2; see “Flexible Second Operand” section
on page 353.
Do not affect the V flag.•	

Examples
TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
 ; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
 ; value in R9, APSR is updated but result is discarded

A.5  Multiply and Divide Instructions
Table A.7 shows the multiply and divide instructions.

A.5.1  MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands and producing
a 32-bit result.

Syntax
MUL{S}{cond} Rd, Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where

cond 	 is an optional condition code; see “Conditional Execution” section on page 358.
S	� is an optional suffix. If S is specified, the condition code flags are updated on the

result of the operation; see “Conditional Execution” section on page 358.

384 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Rd	 is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm	 are registers holding the values to be multiplied.
Ra	 is a register holding the value to be added or subtracted from.

Operation
The MUL instruction multiplies the values from Rn and Rm and places the least significant 32 bits of the
result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from
Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:

•	 Rd, Rn, and Rm must all be in the range R0–R7.
•	 Rd must be the same as Rm.

You must not use the •	 cond suffix.

Condition Flags
If S is specified, the MUL instruction:

Updates the N and Z flags according to the result•	
Does not affect the C and V flags.•	

Table A.7  Multiply and Divide Instructions

Mnemonic Brief Description See

MLA Multiply with Accumulate, 32-bit result MUL, MLA, and MLS on page 383
MLS Multiply and Subtract, 32-bit result MUL, MLA, and MLS on page 383
MUL Multiply, 32-bit result MUL, MLA, and MLS on page 383
SDIV Signed Divide SDIV and UDIV on page 386
SMLAL Signed Multiply with Accumulate (32 × 32

+ 64), 64-bit result
UMULL, UMLAL, SMULL, and SMLAL on
page 385

SMULL Signed Multiply (32 × 32), 64-bit result UMULL, UMLAL, SMULL, and SMLAL on
page 385

UDIV Unsigned Divide SDIV and UDIV on page 386
UMLAL Unsigned Multiply with Accumulate (32 × 32

+ 64), 64-bit result
UMULL, UMLAL, SMULL, and SMLAL on
page 385

UMULL Unsigned Multiply (32 × 32), 64-bit result UMULL, UMLAL, SMULL, and SMLAL on
page 385

385A.5  Multiply and Divide Instructions

Examples

MUL R10, R2, R5 ; Multiply, R10 = R2 × R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 × R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 × R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 × R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 – (R5 × R6)

A.5.2  UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing
a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm

where

op	 is one of the following:
	 UMULL	 Unsigned Long Multiply
	 UMLAL	 Unsigned Long Multiply, with Accumulate
	 SMULL	 Signed Long Multiply
	 SMLAL	 Signed Long Multiply, with Accumulate

Cond	 is an optional condition code; see “Conditional Execution” section on page 358.
RdHi, RdLo	� are the destination registers. For UMLAL and SMLAL, they also hold the accumulat-

ing value.
Rn, Rm	 are registers holding the operands.

Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo and the most significant 32 bits of
the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes
the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers and places the least significant 32 bits of the result in RdLo and the most
significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo,
and writes the result back to RdHi and RdLo.

Restrictions
In these instructions:

Do not use SP and do not use PC.•	
•	 RdHi and RdLo must be different registers.

386 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 × R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 × R8

A.5.3  SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register. If Rd is omitted, the destination register is Rn.
Rn	 is the register holding the value to be divided.
Rm	 is a register holding the divisor.

Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm. UDIV performs an
unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
toward zero.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples
SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

A.6  Saturating Instructions
This section describes the saturating instructions: SSAT and USAT.

A.6.1  SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

387A.6  Saturating Instructions

Syntax
op{cond} Rd, #n, Rm {, shift #s}

where

op	 is one of the following:
	 SSAT	 Saturates a signed value to a signed range
	 USAT	 Saturates a signed value to an unsigned range

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.

n	 specifies the bit position to saturate to:
	 n ranges from 1 to 32 for SSAT
	 n ranges from 0 to 31 for USAT
Rm	 is the register containing the value to saturate.

shift #s	 is an optional shift applied to Rm before saturating. It must be one of the following:
	 ASR #s	 where s is in the range 1–31
	 LSL #s	 where s is in the range 0–31

Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift and then saturates to the signed range −2n−1 ≤ x ≤
2n−1 − 1. The USAT instruction applies the specified shift and then saturates to the unsigned range 0 ≤
x ≤ 2n − 1.

For signed n-bit saturation using SSAT, this means that

If the value to be saturated is less than −2•	 n−1, the result returned is −2n−1.
If the value to be saturated is greater than 2•	 n −1 − 1, the result returned is 2n−1 − 1.
Otherwise, the result returned is the same as the value to be saturated.•	

For unsigned n-bit saturation using USAT, this means that

If the value to be saturated is less than 0, the result returned is 0.•	
If the value to be saturated is greater than 2•	 n − 1, the result returned is 2n − 1.
Otherwise, the result returned is the same as the value to be saturated.•	

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To
clear the Q flag to 0, you must use the MSR instruction; see MSR on page 400.

To read the state of the Q flag, use the MRS instruction; see “MRS” section on page 400.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

388 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Examples
SSAT	 R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
	 ; saturate it as a signed 16-bit value and
	 ; write it back to R7
USATNE R0, #7,	 R5	 ; Conditionally saturate value in R5 as an
	 ; unsigned 7 bit value and write it to R0

A.7  Bitfield Instructions
Table A.8 shows the instructions that operate on adjacent sets of bits in registers or bitfields.

A.7.1  BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
Rn	 is the source register.
lsb	� is the position of the least significant bit of the bitfield. lsb must be in the range

0−31.
width	 is the width of the bitfield and must be in the range 1−32−lsb.

Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb. Other
bits in Rd are unchanged.

Table A.8  Packing and Unpacking Instructions

Mnemonic Brief Description See

BFC Bit Field Clear BFC and BFI on page 388
BFI Bit Field Insert BFC and BFI on page 388
SBFX Signed Bit Field Extract SBFX and UBFX on page 389
SXTB Sign extend a byte SXT and UXT on page 390
SXTH Sign extend a halfword SXT and UXT on page 390
UBFX Unsigned Bit Field Extract SBFX and UBFX on page 389
UXTB Zero extend a byte SXT and UXT on page 390
UXTH Zero extend a halfword SXT and UXT on page 390

389A.7  Bitfield Instructions

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
 ; bit 0 to bit 11 from R2

A.7.2  SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #width
UBFX{cond} Rd, Rn, #lsb, #width

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
Rn	 is the source register.
lsb	� is the position of the least significant bit of the bitfield. lsb must be in the range

0−31.
width	 is the width of the bitfield and must be in the range 1−32−lsb.

Operation
SBFX extracts a bitfield from one register; sign extends it to 32 bits and writes the result to the destina-
tion register.

UBFX extracts a bitfield from one register; zero extends it to 32 bits and writes the result to the
destination register.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the flags.

Examples
SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
 ; extend to 32 bits and then write the result to R0.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
 ; extend to 32 bits and then write the result to R8

390 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

A.7.3  SXT and UXT
Sign extend and zero extend.

Syntax
SXT extend{cond} Rd, Rm {, ROR #n}
UXT extend{cond} Rd, Rm {, ROR #n}

where

extend	 is one of the following:
	 B	 extends an 8-bit value to a 32-bit value.
	 H	 extends a 16-bit value to a 32-bit value.

cond	� is an optional condition code; see “Conditional Execution”
section on page 358.

Rd	 is the destination register.
Rm	 is the register holding the value to extend.
ROR #n	 is one of the following:

ROR #8		 value from Rm is rotated right 8 bits.
ROR #16	 value from Rm is rotated right 16 bits.
ROR #24	 value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.

Operation
These instructions do the following:

Rotate the value from 1.	 Rm right by 0, 8, 16, or 24 bits.
Extract bits from the resulting value:2.	

SXTB a.	 extracts bits[7:0], and sign extends to 32 bits.
UXTB b.	 extracts bits[7:0], and zero extends to 32 bits.
SXTH c.	 extracts bits[15:0], and sign extends to 32 bits.
UXTH d.	 extracts bits[15:0], and zero extends to 32 bits.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
 ; halfword of the result and then sign extend to
 ; 32 bits and write the result to R4.
UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
 ; extend it, and write the result to R3

391A.8  Branch and Control Instructions

A.8  Branch and Control Instructions
Table A.9 shows the branch and control instructions.

A.8.1  B, BL, BX, and BLX
Branch instructions.

Syntax
B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where

B	 is branch (immediate).
BL	 is branch with link (immediate).
BX	 is branch indirect (register).
BLX	 is branch indirect with link (register).
cond	 is an optional condition code; see “Conditional Execution” section on page 358.
label	 is a PC-relative expression; see “PC-Relative Expressions” section on page 358.
Rm	� is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but

the address to branch to is created by changing bit[0] to 0.

Operation
All these instructions cause a branch to label or to the address indicated in Rm. In addition:

The •	 BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
The •	 BX and BLX instructions cause a usage fault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block.
All other branch instructions must be conditional inside the IT block and must be unconditional outside
the IT block; see “IT” section on page 393.

Table A.10 shows the ranges for the various branch instructions.

Table A.9  Branch and Control Instructions

Mnemonic Brief Description See

B Branch B, BL, BX, and BLX on page 391
BL Branch with Link B, BL, BX, and BLX on page 391
BLX Branch indirect with Link B, BL, BX, and BLX on page 391
BX Branch indirect B, BL, BX, and BLX on page 391
CBNZ Compare and Branch if Nonzero CBZ and CBNZ on page 393
CBZ Compare and Branch if zero CBZ and CBNZ on page 393
IT If-Then IT on page 393
TBB Table Branch Byte TBB and TBH on page 395
TBH Table Branch Halfword TBB and TBH on page 395

392 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Note
You might have to use the .W suffix to get the maximum branch range; see “Instruction Width Selec-
tion” section on page 360.

Restrictions
The restrictions are as follows:

Do not use PC in the •	 BLX instruction.
For •	 BX and BLX, bit[0] of Rm must be 1 for correct execution, but a branch occurs to the target
address created by changing bit[0] to 0.
When any of these instructions is inside an IT block, it must be the last instruction of the IT block.•	

Note
Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has
a longer branch range when it is inside an IT block.

Condition Flags
These instructions do not change the flags.

Examples

B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB
BL funC ; Branch with link (Call) to function funC, return

address
; stored in LR

BX LR ; Return from function call
BXNE R0 ; Conditionally branch to address stored in R0
BLX R0 ; Branch with link and exchange (Call) to a address

stored
; in R0

Table A.10  Branch Ranges

Instruction Branch Range

B label −16 to +16 MB
Bcond label (outside IT block) −1 to +1 MB
Bcond label (inside IT block) −16 to +16 MB
BL{cond} label −16 to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

393A.8  Branch and Control Instructions

A.8.2  CBZ and CBNZ
Compare and Branch on Zero and Compare and Branch on Nonzero.

Syntax
CBZ Rn, label
CBNZ Rn, label

where

Rn	 is the register holding the operand.
label	 is the branch destination.

Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number
of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to

CMP   Rn, #0
BEQ   label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to

CMP   Rn, #0
BNE   label

Restrictions
The restrictions are as follows:

•	 Rn must be in the range of R0–R7.
The branch destination must be within 4–130 bytes after the instruction.•	
These instructions must not be used inside an IT block.•	

Condition Flags
These instructions do not change the flags.

Examples
CBZ R5, target ;Forward branch if R5 is zero
CBNZ R0, target ;Forward branch if R0 is not zero

A.8.3  IT
If-Then condition instruction.

Syntax

IT{x{y{z}}} cond

where

x	 specifies the condition switch for the second instruction in the IT block.
y	 specifies the condition switch for the third instruction in the IT block.

394 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

z	 specifies the condition switch for the fourth instruction in the IT block.
cond	 specifies the condition for the first instruction in the IT block.

The condition switch for the second, third, and fourth instruction in the IT block can be either

T	 Then, applies the condition cond to the instruction
E	 Else, applies the inverse condition of cond to the instruction.

Note
It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all the instruc-
tions in the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation
The IT instruction makes up to four following instructions conditional. The conditions can be all the
same, or some of them can be the logical inverse of the others. The conditional instructions following
the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Note
Your assembler might be able to generate the required IT instructions for conditional instructions
automatically so that you do not need to write them yourself. See your assembler documentation for
details.

A BKPT instruction in an IT block is always executed, even if its condition fails.
Exceptions can be taken between an IT instruction and the corresponding IT block or within an

IT block. Such an exception results in entry to the appropriate exception handler, with suitable return
information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the excep-
tion, and execution of the IT block resumes correctly. This is the only way that a PC-modifying instruc-
tion is permitted to branch to an instruction in an IT block.

Restrictions
The following instructions are not permitted in an IT block:

•	 IT
•	 CBZ and CBNZ
•	 CPSID and CPSIE

Other restrictions when using an IT block are as follows:

a branch or any instruction that modifies the PC must either be outside an IT block or must be the •	
last instruction inside the IT block. These are as follows:
•	ADD PC, PC, Rm
•	MOV PC, Rm
•	B, BL, BX, BLX

Any •	 LDM, LDR, or POP instruction that writes to the PC
•	TBB and TBH

395A.8  Branch and Control Instructions

Do not branch to any instruction inside an IT block, except when returning from an exception handler.•	
All conditional instructions except •	 Bcond must be inside an IT block. Bcond can be either outside
or inside an IT block but has a larger branch range if it is inside one.
Each instruction inside the IT block must specify a condition code suffix that is either the same or •	
logical inverse as for the other instructions in the block.

Note
Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of
assembler directives within them.

Condition Flags
This instruction does not change the flags.

Example

ITTE	 NE	 ; Next 3 instructions are conditional
ANDNE	 R0, R0, R1	 ; ANDNE does not update condition flags
ADDSNE	 R2, R2, #1	 ; ADDSNE updates condition flags
MOVEQ	 R2, R3	 ; Conditional move
CMP	 R0, #9	 ; Convert R0 hex value (0 to 15) into ASCII
		 ; ('0'-'9', 'A'-'F')
ITE	 GT	 ; Next 2 instructions are conditional
ADDGT	 R1, R0, #55	 ; Convert 0xA -> 'A'
ADDLE	 R1, R0, #48	 ; Convert 0x0 -> '0'
IT	 GT	 ; IT block with only one conditional instruction
ADDGT	 R1, R1, #1	 ; Increment R1 conditionally
ITTEE	 EQ	 ; Next 4 instructions are conditional
MOVEQ	 R0, R1	 ; Conditional move
ADDEQ	 R2, R2, #10	 ; Conditional add
ANDNE	 R3, R3, #1	 ; Conditional AND
BNE.W	 dloop	 ; Branch instruction can only be used in the last
		 ; instruction of an IT block
IT	 NE	 ; Next instruction is conditional
ADD	 R0, R0, R1	 ; Syntax error: no condition code used in IT block

A.8.4  TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]

where

Rn	� is the register containing the address of the table of branch lengths. If Rn is PC, then the address
of the table is the address of the byte immediately following the TBB or TBH instruction.

Rm	� is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles
the value in Rm to form the right offset into the table.

396 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Operation
These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB or
halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table.
For TBB, the branch offset is twice the unsigned value of the byte returned from the table, and for
TBH, the branch offset is twice the unsigned value of the halfword returned from the table. The branch
occurs to the address at that offset from the address of the byte immediately after the TBB or TBH
instruction.

Restrictions
The restrictions are as follows:

•	 Rn must not be SP.
•	 Rm must not be SP and must not be PC.

When any of these instructions is used inside an IT block, it must be the last instruction of the IT •	
block.

Condition Flags
These instructions do not change the flags.

Examples
ADR.W R0, BranchTable_Byte
TBB [R0, R1]	 ; R1 is the index, R0 is the base address of the
		 ; branch table
Case1
		 ; an instruction sequence follows
Case2
		 ; an instruction sequence follows
Case3
		 ; an instruction sequence follows
BranchTable_Byte
DCB 0	 ; Case1 offset calculation
DCB ((Case2-Case1)/2)	 ; Case2 offset calculation
DCB ((Case3-Case1)/2)	 ; Case3 offset calculation

TBH [PC, R1, LSL #1]	 ; R1 is the index, PC is used as base of the
		 ; branch table
BranchTable_H
DCI ((CaseA - BranchTable_H)/2)	 ; CaseA offset calculation
DCI ((CaseB - BranchTable_H)/2)	 ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/2)	 ; CaseC offset calculation
CaseA
		 ; an instruction sequence follows
CaseB
		 ; an instruction sequence follows
CaseC
		 ; an instruction sequence follows

397A.9  Miscellaneous Instructions

A.9  Miscellaneous Instructions
Table A.11 shows the remaining Cortex-M3 instructions.

A.9.1  BKPT
Breakpoint.

Syntax
BKPT #imm

where

imm	 is an expression evaluating to an integer in the range 0–255 (8-bit value).

Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate
system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information
about the breakpoint. ARM does not recommend the use of the BKPT instruction with an immediate
value set to 0xAB for any purpose other than Semi-hosting.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected
by the condition specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Table A.11  Miscellaneous Instructions

Mnemonic Brief Description See

BKPT Breakpoint BKPT on page 397
CPSID Change Processor State, Disable

Interrupts
CPS on page 398

CPSIE Change Processor State, Enable
Interrupts

CPS on page 398

DMB Data Memory Barrier DMB on page 398
DSB Data Synchronization Barrier DSB on page 399
ISB Instruction Synchronization Barrier ISB on page 399
MRS Move from special register to

register
MRS on page 400

MSR Move from register to special
register

MSR on page 400

NOP No Operation NOP on page 401
SEV Send Event SEV on page 402
SVC Supervisor Call SVC on page 402
WFE Wait For Event WFE on page 403
WFI Wait For Interrupt WFI on page 403

398 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Examples
BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can

	 ; extract the immediate value by locating it using the PC)

Note
ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for
any purpose other than Semi-hosting.

A.9.2  CPS
Change Processor State.

Syntax
CPSeffect iflags

where

effect	 is one of the following:
	 IE	 clears the special purpose register.
	 ID	 sets the special purpose register.

iflags	 is a sequence of one or more flags:
	 i	 sets or clears PRIMASK.
	 f	 sets or clears FAULTMASK.

Operation
CPS changes the PRIMASK and FAULTMASK special register values.

Restrictions
The restrictions are as follows:

Use •	 CPS only from privileged software; it has no effect if used in unprivileged software.
•	 CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags
This instruction does not change the condition flags.

Examples
CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

A.9.3  DMB
Data Memory Barrier.

Syntax
DMB{cond}

399A.9  Miscellaneous Instructions

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
DMB acts as a Data Memory Barrier. It ensures that all explicit memory accesses that appear, in program
order, before the DMB instruction are completed before any explicit memory accesses that appear, in
program order, after the DMB instruction. DMB does not affect the ordering or execution of instructions
that do not access memory.

Condition Flags
This instruction does not change the flags.

Examples
DMB ; Data Memory Barrier

A.9.4  DSB
Data Synchronization Barrier.

Syntax
DSB{cond}

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in
program order, do not execute until the DSB instruction completes. The DSB instruction completes when
all explicit memory accesses before it complete.

Condition Flags
This instruction does not change the flags.

Examples
DSB ; Data Synchronization Barrier

A.9.5  ISB
Instruction Synchronization Barrier.

Syntax
ISB{cond}

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
ISB acts as an Instruction Synchronization Barrier. It flushes the pipeline of the processor so that all
instructions following the ISB are fetched from cache or memory again, after the ISB instruction has
been completed.

400 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronization Barrier

A.9.6  MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{cond} Rd, spec_reg

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rd	 is the destination register.
spec_reg	� can be any of APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,

PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation
Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for
example, to clear the Q flag.

In process swap code, the programmer model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in must also
be restored. These operations use MRS in the state-saving instruction sequence and MSR in the state-
restoring instruction sequence.

Note
BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction; see MSR on page 400.

Restrictions
Rd must not be SP and must not be PC.

Condition Flags
This instruction does not change the flags.

Examples
MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

A.9.7  MSR
Move the contents of a general-purpose register into the specified special register.

Syntax
MSR{cond} spec_reg, Rn

401A.9  Miscellaneous Instructions

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
Rn	 is the source register.
spec_reg	� can be any of APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,

PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can only
access the APSR. Privileged software can access all special registers.

In unprivileged software, writes to unallocated or execution state bits in the PSR are ignored.

Note
When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either

•	 Rn is nonzero and the current BASEPRI value is 0.
•	 Rn is nonzero and less than the current BASEPRI value.

See “MRS” section on page 400.

Restrictions
Rn must not be SP and must not be PC.

Condition Flags
This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

A.9.8  NOP
No Operation.

Syntax
NOP{cond}

where

cond 	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from
the pipeline before it reaches the execution stage.

Use NOP for padding, for example, to place the subsequence instruction on a 64-bit boundary.

Condition Flags
This instruction does not change the flags.

402 APPENDIX A  The Cortex-M3 Instruction Set, Reference Material

Examples
NOP ; No operation

A.9.9  SEV
Send Event.

Syntax
SEV{cond}

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor
system. It also sets the local event register to 1. More details can be found in Section 14.3, Multiproces-
sor communication.

Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

A.9.10  SVC
Supervisor Call.

Syntax
SVC{cond} #imm

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.
imm	 is an expression evaluating to an integer in the range 0–255 (8-bit value).

Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine
what service is being requested.

Condition Flags
This instruction does not change the flags.

Examples
SVC #0x32 ; Supervisor Call (SVC handler can extract the immediate value
 ; by locating it via the stacked PC)

403A.9  Miscellaneous Instructions

A.9.11  WFE
Wait For Event.

Syntax
WFE{cond}

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

An exception, unless masked by the exception mask registers or the current priority level.•	
An exception enters the pending state, if •	 SEVONPEND in the System Control register is set.
A Debug Entry request, if Debug is enabled.•	
An event signaled by a peripheral or another processor in a multiprocessor system using the •	 SEV
instruction.

If the event register is 1, WFE clears it to 0 and returns immediately. Please refer to Section 14.2.1,
Sleep Mode, for details of WFE and the event register.

Condition Flags
This instruction does not change the flags.

Examples
WFE ; Wait for event

A.9.12  WFI
Wait for Interrupt.

Syntax
WFI{cond}

where

cond	 is an optional condition code; see “Conditional Execution” section on page 358.

Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:

An exception.•	
A Debug Entry request, regardless of whether Debug is enabled.•	

Condition Flags
This instruction does not change the flags.

Examples
WFI ; Wait for interrupt

405

B
Most of the 16-bit Thumb® instructions are available in architecture v4T (ARM7TDMI). However, a
number of them are added in architecture v5, v6, and v7. Table B.1 lists these instructions.

The 16-Bit Thumb Instructions
and Architecture Versions

APPENDIX

Table B.1  Change of 16-bit Instruction Support in Various Recent ARM Architecture Versions

Instruction V4T v5 v6 Cortex™-M3 (v7-M)

BKPT N Y Y Y
BLX N Y Y BLX <reg> only
CBZ, CBNZ N N N Y
CPS N N Y CPSIE <i/f>, CPSID <i/f>
CPY N N Y Y
NOP N N N Y
IT N N N Y
REV (various forms) N N Y REV, REV16, REVSH
SEV N N N Y
SETEND N N Y N
SWI Y Y Y Changed to SVC
SXTB, SXTH N N Y Y
UXTB, UXTH N N Y Y
WFE, WFI N N N Y

407

C
C.1  Exception Types and Enables

Appendix

Cortex-M3 Exceptions
Quick Reference

Table C.1  Quick Summary of Cortex™-M3 Exception Types and Their Priority Configurations

Exception Type Name Priority (Level Address) Enable

1 Reset –3 Always
2 NMI –2 Always
3 Hard fault –1 Always
4 MemManage fault Programmable

(0xE000ED18)
NVIC SHCSR
(0xE000ED24) bit[16]

5 Bus fault Programmable
(0xE000ED19)

NVIC SHCSR
(0xE000ED24) bit[17]

6 Usage fault Programmable
(0xE000ED1A)

NVIC SHCSR
(0xE000ED24) bit[18]

7–10 — — —
11 SVC Programmable

(0xE000ED1F)
Always

12 Debug monitor Programmable
(0xE000ED20)

NVIC DEMCR
(0xE000EDFC) bit[16]

13 — — —
14 PendSV Programmable

(0xE000ED22)
Always

15 SYSTICK Programmable
(0xE000ED23)

SYSTICK CTRLSTAT
(0xE000E010) bit[1]

16–255 IRQ Programmable
(0xE000E400)

NVIC SETEN
(0xE000E100)

408 APPENDIX C

C.2  Stack Contents After Exception Stacking

Table C.2  Exception Stack Frame

Address Data Push Order

Old SP (N+32)→ (Previously pushed data) —
(N+28) PSR 2
(N+24) PC 1
(N+20) LR 8
(N+16) R12 7
(N+12) R3 6
(N+8) R2 5
(N+4) R1 4
New SP (N)→ R0 3

Note: If double word stack alignment feature is used and the SP was not double word aligned when the exception occurred,
the stack frame top might begin at ([OLD_SP-4] AND 0xFFFFFFF8), and the rest of the table moves one word down.

409

D
Appendix

Nested Vectored Interrupt
Controller and System Control
Block Registers Quick Reference

Table D.1  Interrupt Controller Type Register (0xE000E004)

Bits Name Type Reset Value Description

4:0 INTLINESNUM R — Number of interrupt inputs in steps
of 32
0 = 1–32
1 = 33–64
…

Table D.2  Auxiliary Control Register (0xE000E008)

Bits Name Type Reset Value Description

2 DISFOLD R/W 0 When this bit is set, it disables the overlapping of
the IT execution cycle with another instruction. The
overlapping (called IT folding) is an optimization to
allow faster execution of conditional execution.

1 DISDEFWBUF R/W 0 When this bit is set, it disables the use of write buffers
within the processor so that an instruction following a
store instruction must not start until the store operation
is completed. This bit does not affect write buffer
outside the processor (e.g., in bus bridge).

0 DISMCYCINT R/W 0 When this bit is set, it disables interruption of
multicycle instructions.

Note: The Auxiliary Control register is available from Cortex™-M3 revision 2.

Table D.3  SYSTICK Control and Status Register (0xE000E010)

Bits Name Type Reset Value Description

16 COUNTFLAG R 0 Read as 1 if counter reaches 0 since this is the last
time this register is read. Clear to 0 automatically
when read or when current counter value is cleared.

2 CLKSOURCE R/W 0 0 = External reference clock (STCLK)
1 = Use core clock

1 TICKINT R/W 0 1 = Enable SYSTICK interrupt generation when
SYSTICK timer reaches 0
0 = Do not generate interrupt

0 ENABLE R/W 0 SYSTICK timer enable

410 APPENDIX D

Table D.4  SYSTICK Reload Value Register (0xE000E014)

Bits Name Type Reset Value Description

23:0 RELOAD R/W 0 Reload value when timer reaches 0.

Table D.5  SYSTICK Current Value Register (0xE000E018)

Bits Name Type Reset Value Description

23:0 CURRENT R/Wc 0 Read to return current value of the timer.
Write to clear counter to 0; clearing of current value
should also clear COUNTFLAG in SYSTICK Control and
Status register.

Table D.6  SYSTICK Calibration Value Register (0xE000E01C)

Bits Name Type Reset Value Description

31 NOREF R — 1 = No external reference clock (STCLK not available)
0 = External reference clock available

30 SKEW R — 1 = Calibration value is not exactly 10 ms
0 = Calibration value is accurate

23:0 TENMS R/W 0 Calibration value for 10 ms. SoC designer should provide
this value through Cortex-M3 input signals. If this value is
read as 0, it means calibration value is not available.

Table D.7  External Interrupt SETEN Registers (0xE000E100-0xE000E11C)

Address Name Type Reset Value Description

0xE000E100 SETENA0 R/W 0 Enable for external Interrupt #0–#31
bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31

0xE000E104 SETENA1 R/W 0 Enable for external Interrupt #32–#63
… … … … …

Table D.8  External Interrupt CLREN Registers (0xE000E180-0xE000E19C)

Address Name Type Reset Value Description

0xE000E180 CLRENA0 R/W 0 Clear Enable for external Interrupt #0–#31
bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31

0xE000E184 CLRENA1 R/W 0 Clear Enable for external Interrupt #32–#63
… … … … …

411NVIC and SCB Registers Quick Reference

Table D.9  External Interrupt SETPEND Registers (0xE000E200-0xE000E21C)

Address Name Type Reset Value Description

0xE000E200 SETPEND0 R/W 0 Pending for external Interrupt #0–#31
bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31

0xE000E204 SETPEND1 R/W 0 Pending for external Interrupt #32–#63
… … … … …

Table D.10  External Interrupt CLRPEND Registers (0xE000E280-0xE000E29C)

Address Name Type Reset Value Description

0xE000E280 CLRPEND0 R/W 0 Clear Pending for external Interrupt #0–#31
bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31

0xE000E284 CLRPEND1 R/W 0 Clear Pending for external Interrupt #32–#63
… … … … …

Table D.11  External Interrupt ACTIVE Registers (0xE000E300-0xE000E31C)

Address Name Type Reset Value Description

0xE000E300 ACTIVE0 R 0 Active status for external Interrupt #0–#31
bit[0] for Interrupt #0
bit[1] for Interrupt #1
…
bit[31] for Interrupt #31

0xE000E304 ACTIVE1 R 0 Active status for external Interrupt #32–#63
… … … … …

Table D.12  External Interrupt Priority Level Register (0xE000E400-0xE000E4EF; listed
as byte addresses)

Address Name Type Reset Value Description

0xE000E400 PRI_0 R/W 0 Priority level external Interrupt #0
0xE000E401 PRI_1 R/W 0 Priority level external Interrupt #1
… … … … …
0xE000E41F PRI_31 R/W 0 Priority level external Interrupt #31
… … … … …

412 APPENDIX D

Table D.13  CPU ID Base Register (address 0xE000ED00)

Bits Name Type Reset Value Description

31:24 IMPLEMENTER R 0x41 Implementer code; ARM is 0x41
23:20 VARIANT R 0x0/0x1/0x2 Implementation defined variant number
19:16 Constant R 0xF Constant
15:4 PARTNO R 0xC23 Part number
3:0 REVISION R 0x0/0x1 Revision code

Table D.14  Interrupt Control and State Register (0xE000ED04)

Bits Name Type Reset Value Description

31 NMIPENDSET R/W 0 NMI Pended
28 PENDSVSET R/W 0 Write 1 to pend system call;

Read value indicates pending status
27 PENDSVCLR W 0 Write 1 to clear PendSV pending status
26 PENDSTSET R/W 0 Write 1 to pend SYSTICK exception;

Read value indicates pending status
25 PENDSTCLR W 0 Write 1 to clear SYSTICK pending status
23 ISRPREEMPT R 0 Indicates that a pending interrupt is going to be

active in next step (for debug).
22 ISRPENDING R 0 External Interrupt Pending (excluding system

exceptions like NMI for fault)
21:12 VECTPENDING R 0 Pending ISR number
11 RETTOBASE R 0 Set to 1 when the processor is running an

exception handler and will return to thread level if
interrupt return and no other exceptions pending

8:0 VECTACTIVE R 0 Current running interrupt service routine

Table D.15  Vector Table Offset Register (address 0xE000ED08)

Bits Name Type Reset Value Description

29 TBLBASE R/W 0 Table base in Code (0) or RAM (1) memory region
28:7 TBLOFF R/W 0 Table offset value from Code region or RAM region

Table D.16  Application Interrupt and Reset Control Register (address 0xE000ED0C)

Bits Name Type Reset Value Description

31:16 VECTKEY R/W — Access key; 0x05FA must be written to this field
to write to this register, otherwise the write will be
ignored. The read back value is 0xFA05.

15 ENDIANESS R — Indicates endianness for data: 1 for big endian (BE8)
and 0 for little endian. This can only change after a reset.

413NVIC and SCB Registers Quick Reference

Table D.16  Application Interrupt and Reset Control Register (address 0xE000ED0C)  Continued

Bits Name Type Reset Value Description

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ W — Request chip control logic to generate a reset

1 VECTCLRACTIVE W — Clear all active state information for exceptions;
typically used in debug or OS to allow system to
recover from system error (Reset is safer).

0 VECTRESET W — Reset Cortex-M3 (except debug logic); but this
will not reset circuits outside the processor.

Table D.17  System Control Register (0xE000ED10)

Bits Name Type Reset Value Description

4 SEVONPEND R/W 0 Send Event on Pending. Wake up from WFE if a
new interrupt is pended regardless of whether the
interrupt has priority higher than current level.

3 Reserved — — —
2 SLEEPDEEP R/W 0 Enable SLEEPDEEP output signal when entering

sleep mode.
1 SLEEPONEXIT R/W 0 Enable Sleep on Exit feature
0 Reserved — — —

Table D.18  Configuration Control Register (0xE000ED14)

Bits Name Type Reset Value Description

9 STKALIGN R/W 0 or 1 Force exception stacking start in double word
aligned address. This bit is reset as zero on
Cortex-M3 revision 1, and is reset as one
on revision 2. Revision 0 does not have this
feature.

8 BFHFNMIGN R/W 0 Ignore data bus fault during hard fault and
NMI handlers.

7:5 Reserved — — Reserved
4 DIV_0_TRP R/W 0 Trap on divide by 0
3 UNALIGN_TRP R/W 0 Trap on unaligned accesses
2 Reserved — — Reserved
1 USERSETMPEND R/W 0 If set to 1, allow user code to write to

Software Trigger Interrupt register
0 NONBASETHRDENA R/W 0 Nonbase Thread Enable. If set to 1, allows

exception handler to return to thread state
at any level by controlling return value.

414 APPENDIX D

Table D.19  System Exceptions Priority Level Register (0xE000ED18–0xE000ED23; listed
as byte addresses)

Address Name Type Reset Value Description

0xE000ED18 PRI_4 R/W 0 Priority level for memory management fault
0xE000ED19 PRI_5 R/W 0 Priority level for bus fault
0xE000ED1A PRI_6 R/W 0 Priority level for usage fault
0xE000ED1B — — — —
0xE000ED1C — — — —
0xE000ED1D — — — —
0xE000ED1E — — — —
0xE000ED1F PRI_11 R/W 0 Priority level for SVC
0xE000ED20 PRI_12 R/W 0 Priority level for debug monitor
0xE000ED21 — — — —
0xE000ED22 PRI_14 R/W 0 Priority level for PendSV
0xE000ED23 PRI_15 R/W 0 Priority level for SYSTICK

Table D.20  System Handler Control and State Register (0xE000ED24)

Bits Name Type Reset Value Description

18 USGFAULTENA R/W 0 Usage Fault Handler Enable
17 BUSFAULTENA R/W 0 Bus Fault Handler Enable
16 MEMFAULTENA R/W 0 Memory Management Fault Enable
15 SVCALLPENDED R/W 0 SVC pended; SVC is started but was replaced

by a higher priority exception
14 BUSFAULTPENDED R/W 0 Bus fault pended; bus fault is started, but was

replaced by a higher priority exception
13 MEMFAULTPENDED R/W 0 Memory management fault pended; memory

management fault started but was replaced by
a higher priority exception

12 USGFAULTPENDED R/W 0 Usage fault pended; usage fault started but was
replaced by a higher-priority exceptiona

11 SYSTICKACT R/W 0 Read as 1 if SYSTICK exception is active
10 PENDSVACT R/W 0 Read as 1 if PendSV exception is active
8 MONITORACT R/W 0 Read as 1 if debug monitor exception is active
7 SVCALLACT R/W 0 Read as 1 if SVC exception is active
3 USGFAULTACT R/W 0 Read as 1 if usage fault exception is active
1 BUSFAULTACT R/W 0 Read as 1 if bus fault exception is active
0 MEMFAULTACT R/W 0 Read as 1 if memory management fault is active

a Bit 12 (USGFAULTPENDED) is not available on revision 0 of Cortex-M3 processor.

415NVIC and SCB Registers Quick Reference

Table D.21  Memory Management Fault Status Register (0xE000ED28; byte size)

Bits Name Type Reset Value Description

7 MMARVALID — 0 Indicates MMAR is valid
6:5 — — — —
4 MSTKERR R/Wc 0 Stacking error
3 MUNSTKERR R/Wc 0 Unstacking error
2 — — — —
1 DACCVIOL R/Wc 0 Data access violation
0 IACCVIOL R/Wc 0 Instruction access violation

Table D.22  Bus Fault Status Register (0xE000ED29; byte size)

Bits Name Type Reset Value Description

7 BFARVALID — 0 Indicates BFAR is valid
6:5 — — — —
4 STKERR R/Wc 0 Stacking error
3 UNSTKERR R/Wc 0 Unstacking error
2 IMPREISERR R/Wc 0 Imprecise data access violation
1 PRECISERR R/Wc 0 Precise data access violation
0 IBUSERR R/Wc 0 Instruction access violation

Table D.23  Usage Fault Status Register (0xE000ED2A; half word size)

Bits Name Type Reset Value Description

9 DIVBYZERO R/Wc 0 Indicates divide by zero takes place (can only be set
if DIV_0_TRP is set)

8 UNALIGNED R/Wc 0 Indicates unaligned access takes place (can only be
set if UNALIGN_TRP is set)

7:4 — — — —
3 NOCP R/Wc 0 Attempts to execute a coprocessor instruction
2 INVPC R/Wc 0 Attempts to do exception with bad value in

EXC_RETURN number
1 INVSTATE R/Wc 0 Attempts to switch to invalid state (e.g., ARM)
0 UNDEFINSTR R/Wc 0 Attempts to execute an undefined instruction

416 APPENDIX D

Table D.25  Debug Fault Status Register (0xE000ED30)

Bits Name Type Reset Value Description

4 EXTERNAL R/Wc 0 EDBGRQ signal asserted
3 VCATCH R/Wc 0 Vector fetch occurred
2 DWTTRAP R/Wc 0 DWT match occurred
1 BKPT R/Wc 0 BKPT instruction executed
0 HALTED R/Wc 0 Halt requested in NVIC

Table D.26  Memory Manage Address Register MMAR (0xE000ED34)

Bits Name Type Reset Value Description

31:0 MMAR R — Address that caused memory manage fault

Table D.27  Bus Fault Manage Address Register BFAR (0xE000ED38)

Bits Name Type Reset Value Description

31:0 BFAR R — Address that caused bus fault

Table D.28  Auxiliary Fault Status Register (0xE000ED3C)

Bits Name Type Reset Value Description

31:0 Vendor controlled R/Wc 0 Vendor controlled (optional)

Table D.29  MPU Type Register (0xE000ED90)

Bits Name Type Reset Value Description

23:16 IREGION R — Number Instruction region
Because ARM v7-M architecture uses a unified MPU,
this is always 0.

15:8 DREGION R — Number of regions supported by this MPU
0 SEPARATE R — This is always 0 as the MPU is always unified.

Table D.24  Hard Fault Status Register (0xE000ED2C)

Bits Name Type Reset Value Description

31 DEBUGEVT R/Wc 0 Indicates hard fault is triggered by debug event
30 FORCED R/Wc 0 Indicates hard fault is taken because of bus fault/

memory management fault/usage fault
29:2 — — — —
1 VECTBL R/Wc 0 Indicates hard fault is caused by failed vector fetch
0 — — — —

417NVIC and SCB Registers Quick Reference

Table D.30  MPU Control Register (0xE000ED94)

Bits Name Type Reset Value Description

2 PRIVDEFENA R/W 0 Privileged Default memory map enable
1 HFNMIENA R/W 0 If set to 1, it enables MPU during hard fault

handler and NMI handler. Otherwise, the MPU is
not enabled for hard fault handler and NMI.

0 ENABLE R/W 0 Enable the MPU if set to 1.

Table D.31  MPU Region Number Register (0xE000ED98)

Bits Name Type Reset Value Description

7:0 REGION R/W 0 Select which region is being programmed

Table D.32  MPU Region Base Address Register (0xE000ED9C)

Bits Name Type Reset Value Description

31:N ADDR R/W 0 Base address of the region. N is dependent on the
region size.

4 VALID R/W 0 If this is 1, the region defined in bit[3:0] will be used
in this programming step, otherwise, the region
selected by MPU Region Number register is used.

3:0 REGION R/W 0 This field overrides MPU Region Number register if
VALID is 1, otherwise, this is ignored.

Table D.33  MPU Region Base Attribute and Size Register (0xE000EDA0)

Bits Name Type Reset Value Description

31:29 Reserved — —
28 XN R/W 0 Instruction access disable (1 = Disable)
27 Reserved — —
26:24 AP R/W 000 Data access permission field
23:22 Reserved — —
21:19 TEX R/W 000 Type extension field
18 S R/W — Shareable
17 C R/W — Cacheable
16 B R/W — Bufferable
15:8 SRD R/W 0x00 Sub region disable
7:6 Reserved — —
5:1 REGION SIZE R/W — MPU protection region size
0 ENABLE R/W 0 Region enable

418 APPENDIX D

Table D.34  MPU Alias Registers (0xE000EDA4–0xE000EDB8)

Address Name Description

0xE000EDA4 Alias of D9C MPU Alias 1 Region Base Address register
0xE000EDA8 Alias of DA0 MPU Alias 1 Region Attribute and Size register
0xE000EDAC Alias of D9C MPU Alias 2 Region Base Address register
0xE000EDB0 Alias of DA0 MPU Alias 2 Region Attribute and Size register
0xE000EDB4 Alias of D9C MPU Alias 3 Region Base Address register
0xE000EDB8 Alias of DA0 MPU Alias 3 Region Attribute and Size register

Table D.35  Debug Halting Control and Status Register (0xE000EDF0)

Bits Name Type Reset Value Description

31:16 KEY W — Debug key; value of 0xA05F must be written
to this field to write to this register, otherwise,
the write will be ignored.

25 S_RESET_ST R — Core has been reset or is being reset. This
bit is cleared on read.

24 S_RETIRE_ST R — Instruction is completed since last read. This
bit is cleared on read.

19 S_LOCKUP R — When this bit is 1, the core is in locked-up
state.

18 S_SLEEP R — When this bit is 1, the core is in sleep mode.
17 S_HALT R — When this bit is 1, the core is halted.
16 S_REGRDY R — Register read/write operation is completed.
15:6 Reserved — — Reserved
5 C_SNAPSTALL R/W — Used to break a stalled memory access
4 Reserved — — Reserved
3 C_MASKINTS R/W — Mask interrupts while stepping; can only be

modified when the processor is halted.
2 C_STEP R/W — Single step the processor, valid only if

C_DEBUGEN is set.
1 C_HALT R/W — Halt the processor core, valid only if

C_DEBUGEN is set.
0 C_DEBUGEN R/W — Enable halt mode debug

419NVIC and SCB Registers Quick Reference

Table D.36  Debug Core Register Selector Register (0xE000EDF4)

Bits Name Type Reset Value Description

16 REGWnR W — Direction of data transfer
Write = 1, Read = 0

15:5 Reserved — — —
4:0 REGSEL W —

Register to be accessed
00000 = R0
00001 = R1
…
01111 = R15
10000 = xPSR/Flags
10001 = MSP (Main Stack Pointer)
10010 = PSP (Process Stack Pointer)
10100 = Special registers:
 [31:24] CONTROL,
 [23:16] FAULTMASK,
 [15:8] BASEPRI,
 [7:0] PRIMASK.
Others values are reserved

Table D.37  Debug Core Register Data Register (0xE000EDF8)

Bits Name Type Reset Value Description

31:0 Data R/W — Data register to hold register read result or to
write data into the selected register.

Table D.38  Debug Exception and Monitor Control Register (0xE000EDFC)

Bits Name Type Reset Value Description

24 TRCENA R/W 0 Trace system enable; to use DWT, ETM, ITM,
and TPIU, this bit must be set to 1.

23:20 Reserved — — Reserved
19 MON_REQ R/W 0 Indication that the debug monitor is caused by

a manual pending request rather than hardware
debug events.

18 MON_STEP R/W 0 Single step the processor; valid only if MON_EN
is set.

17 MON_PEND R/W 0 Pend the monitor exception request; the core
will enter monitor exception when priority is
allowed.

16 MON_EN R/W 0 Enable the debug monitor exception
15:11 Reserved — — Reserved

Continued

420 APPENDIX D

Table D.39  Software Trigger Interrupt Register (0xE000EF00)

Bits Name Type Reset Value Description

8:0 INTID W — Writing the interrupt number sets the pending bit of
the interrupt.

Table D.40  NVIC Peripheral ID Registers (0xE000EFD0-0xE000EFFC)

Address Name Type Reset Value Description

0xE000EFD0 PERIPHID4 R 0x04 Peripheral ID register
0xE000EFD4 PERIPHID5 R 0x00 Peripheral ID register
0xE000EFD8 PERIPHID6 R 0x00 Peripheral ID register
0xE000EFDC PERIPHID7 R 0x00 Peripheral ID register
0xE000EFE0 PERIPHID0 R 0x00 Peripheral ID register
0xE000EFE4 PERIPHID1 R 0xB0 Peripheral ID register
0xE000EFE8 PERIPHID2 R 0x0B/0x1B/0x2B Peripheral ID register
0xE000EFEC PERIPHID3 R 0x00 Peripheral ID register
0xE000EFF0 PCELLID0 R 0x0D Component ID register
0xE000EFF4 PCELLID1 R 0xE0 Component ID register
0xE000EFF8 PCELLID2 R 0x05 Component ID register
0xE000EFFC PCELLID0 R 0xB1 Component ID register

Note: PERIPHID2 value is 0x0B for Cortex-M3 revision 0, 0x1B for revision 1, and 0x2B for revision 2.

Table D.38  Debug Exception and Monitor Control Register (0xE000EDFC)  Continued

Bits Name Type Reset Value Description

10 VC_HARDERR R/W 0 Debug trap on hard faults
9 VC_INTERR R/W 0 Debug trap on interrupt/exception service

errors
8 VC_BUSERR R/W 0 Debug trap on bus faults
7 VC_STATERR R/W 0 Debug trap on usage fault state errors
6 VC_CHKERR R/W 0 Debug trap on usage fault enabled checking

errors (e.g., unaligned, divide by zero)
5 VC_NOCPERR R/W 0 Debug trap on usage fault; no coprocessor

errors
4 VC_MMERR R/W 0 Debug trap on memory management fault
3:1 Reserved — — Reserved
0 VC_CORERESET R/W 0 Debug trap on core reset

421

E.1  Overview
One of the challenges of using the Cortex™-M3 is to locate problems when the program goes wrong.
The Cortex-M3 processor provides a number of Fault Status registers to assist in troubleshooting (see
Table E.1).

The MMSR, BFSR, and UFSR registers can be accessed in one go using a word transfer instruc-
tion. In this situation, the combined fault status register is called the Configurable Fault Status register
(CFSR) (see Figure E.1).

For users of CMSIS compliant device drivers, these Fault Status registers can be accessed using the
following symbols:

•	 SCB->CFSR:  Configurable Fault Status register
•	 SCB->HFSR:  Hard Fault Status register
•	 SCB->DFSR:  Debug Fault Status register
•	 SCB->AFSR:  Auxiliary Fault Status register

Another important piece of information is the stacked program counter (PC). This is located in
memory address [SP + 24] when a fault exception handler is entered. Because there are two stack point-
ers in the Cortex-M3, the fault handler might need to determine which stack pointer was used before
obtaining the stacked PC.

In addition, for bus faults and memory management faults, you might also be able to determine
the address that caused the fault. This is done by accessing the MemManage (Memory Management)
Fault Address register (MMAR) and the Bus Fault Address register (BFAR). The contents of these two
registers are only valid when the MMAVALID bit (in MMSR) or BFARVALID bit (in BFSR) is set.
The MMAR and BFAR are physically the same register, so only one of them can be valid at a time (see

Table E.2).
For users of CMSIS compliant device drivers, these Fault Address registers can be accessed using

the following symbols:

•	 SCB->MMAR:  MemManage Fault Address register
•	 SCB->BFAR:  Bus Fault Address register

Finally, the link register (LR) value when entering the fault handler might also provide hints about
the cause of the fault. In the case of faults caused by invalid EXC_RETURN values, the value of LR
when the fault handler is entered shows the previous LR value when the fault occurred. Fault handler
can report the faulty LR value, and software programmers can then use this information to check why
the LR ends up with an illegal return value.

Appendix

Cortex-M3 Troubleshooting
Guide E

422 APPENDIX E

E.2  Developing Fault Handlers
In most cases, fault handlers for development and for real running systems differ from one another.
For software development, the fault handler should focus on reporting the type of error, whereas
the fault handler for running systems will likely focus on system recovery actions. Here, we
cover only the fault reporting because system recovery actions highly depend on design type and
requirements.

In complex software, instead of outputting the results inside the fault handler, the contents of
these registers can be copied to a memory block and then PendSV can be used to report the fault
details later. This avoids potential faults in display or outputting routines causing lockup. For simple
applications this might not matter, and the fault details can be output directly within the fault handler
routine.

Figure E.1

Accessing Fault Status Registers.

0xE000ED28

0xE000ED2C

0xE000ED30

0xE000ED3C

UFSR BFSR MFSR

HFSR

DFSR

AFSR

0781516Bit 31

CFSR

Table E.2  Fault Address Registers on Cortex-M3

Address Register Full Name Size

0xE000ED34 MMAR MemManage Fault Address register Word
0xE000ED38 BFAR Bus Fault Address register Word

Table E.1  Fault Status Registers on Cortex-M3

Address Register Full Name Size

0xE000ED28 MMSR MemManage Fault Status register Byte
0xE000ED29 BFSR Bus Fault Status register Byte
0xE000ED2A UFSR Usage Fault Status register Half word
0xE000ED2C HFSR Hard Fault Status register Word
0xE000ED30 DFSR Debug Fault Status register Word
0xE000ED3C AFSR Auxiliary Fault Status register Word

423Cortex-M3 Troubleshooting Guide

E.2.1  Report Fault Status Registers
The most basic step of a fault handler is to report the Fault Status register values. These include the
following:

UFSR•	
BFSR•	
MMSR•	
HFSR•	
DFSR•	
AFSR (optional)•	

E.2.2  Report Stacked PC and Other Stacked Registers
In a fault handler, the step for getting the stacked PC is similar to the SVC example in this book.

This process can be carried out in assembly language as follows:

TST    LR, #0x4 ; Test EXC_RETURN number in LR bit 2
ITTEE EQ ; if zero (equal) then
MRSEQ R0, MSP ; Main Stack was used, put MSP in R0
LDREQ R0,[R0,#24] ; Get stacked PC from stack.
MRSNE R0, PSP ; else, Process Stack was used, put PSP in R0
LDRNE R0,[R0,#24] ; Get stacked PC from stack.

Most Cortex-M3 developers use C for their projects. However, in C, it is difficult to locate and
directly access the stack frame (stacked register values) as you cannot obtain the stack point value
in C. To report the stack frame contents in your fault handler in C, you need to use a short assembly
code to obtain stack point value, and then pass it to the fault reporting function in C as a parameter (see
Figure E.2). The mechanism is identical to the SVC example in Chapter 12. The following example

Figure E.2

Getting the Value of a Stacked PC from Stack Memory.

Determine which stack was
used in calling process using

the LR value (bit[2])

Stacked was
done using MSP

Stacking was
done using PSP

Get stacked PC from
stack memory

Bit 2 5 0

Bit 2 5 1

424 APPENDIX E

uses embedded assembler, which can work with RealView Development Suite (RVDS) and Keil Real-
View Microcontroller Development Kit (MDK-ARM).

The first part of the program is an assembly wrapper. The vector table should have the starting
address of this wrapper code in the hard fault entry. This wrapper code copies the correct stack pointer
value into R0, and passes it to the C function as a parameter.

// hard fault handler wrapper in assembly
// it extract the location of stack frame and pass it
// to handler in C as pointer.
__asm void hard_fault_handler_asm(void)
{
TST	 LR, #4
ITE	 EQ
MRSEQ	 R0, MSP
MRSNE	 R0, PSP
B	 __cpp(hard_fault_handler_c)
}

The second part of the handler is in C. Here, we demonstrate how the stacked register contents and the
Fault Status registers can be accessed.

// hard fault handler in C,
// with stack frame location as input parameter
void hard_fault_handler_c(unsigned int * hardfault_args)
{
unsigned int stacked_r0;
unsigned int stacked_r1;
unsigned int stacked_r2;
unsigned int stacked_r3;
unsigned int stacked_r12;
unsigned int stacked_lr;
unsigned int stacked_pc;
unsigned int stacked_psr;

stacked_r0 = ((unsigned long) hardfault_args[0]);
stacked_r1 = ((unsigned long) hardfault_args[1]);
stacked_r2 = ((unsigned long) hardfault_args[2]);
stacked_r3 = ((unsigned long) hardfault_args[3]);

stacked_r12 = ((unsigned long) hardfault_args[4]);
stacked_lr = ((unsigned long) hardfault_args[5]);
stacked_pc = ((unsigned long) hardfault_args[6]);
stacked_psr = ((unsigned long) hardfault_args[7]);

printf ("[Hard fault handler]\n");
printf ("R0 = %x\n", stacked_r0);
printf ("R1 = %x\n", stacked_r1);
printf ("R2 = %x\n", stacked_r2);
printf ("R3 = %x\n", stacked_r3);
printf ("R12 = %x\n", stacked_r12);
printf ("LR = %x\n", stacked_lr);
printf ("PC = %x\n", stacked_pc);

425Cortex-M3 Troubleshooting Guide

printf ("PSR = %x\n", stacked_psr);
printf ("BFAR = %x\n", (*((volatile unsigned long *)(0xE000ED38))));
printf ("CFSR = %x\n", (*((volatile unsigned long *)(0xE000ED28))));
printf ("HFSR = %x\n", (*((volatile unsigned long *)(0xE000ED2C))));
printf ("DFSR = %x\n", (*((volatile unsigned long *)(0xE000ED30))));
printf ("AFSR = %x\n", (*((volatile unsigned long *)(0xE000ED3C))));

exit(0); // terminate

return;
}

Please note that this handler will not work correctly if the stack pointer is pointing to an invalid
memory region (e.g., because of stack overflow). This affects all C code as stack is required in C func-
tions in most cases.

To help with debugging, we should also create a disassembled code list file so that we can locate
the problem easily.

E.2.3  Read Fault Address Register
The Fault Address register can be erased after the MMARVALID or BFARVALID is cleared. To cor-
rectly access the Fault Address register, the following procedure should be used:

Read BFAR/MMAR.1.	
Read BFARVALID/MMARVALID. If it is 0, the BFAR/MMAR read should be discarded.2.	
Clear BFARVALID/MMARVALID.3.	

The reason for this procedure instead of reading valid bits first is to prevent a fault handler being
preempted by another higher-priority fault handler after the valid bit is read, which could lead to the
following erroneous fault-reporting sequence:

Read BFARVALID/MMARVALID.1.	
Valid bit is set, going to read BFAR/MMAR.2.	
Higher-priority exception preempts existing fault handler, which generates another fault, causing 3.	
another fault handler to be executed.
The higher-priority fault handler clears the BFARVALID/MMARVALID bit, causing the BFAR/4.	
MMAR to be erased.
After returning to the original fault handler, the BFAR/MMAR is read, but now the content is 5.	
invalid and leads to incorrect reporting of the fault address.

Therefore, it is important to read the BFARVALID/MMARVALID after reading the Fault Address
register to ensure that the address register content is valid.

E.2.4  Clear Fault Status Bits
After the fault reporting is done, the fault status bit in the FSR should be cleared so that next time the
fault handler is executed, the previous faults will not confuse the fault handler. In addition, if the fault
address valid bit is not clear, the Fault Address register will not get an update for the next fault.

426 APPENDIX E

E.2.5  Others
It is often necessary to save the contents of LR in the beginning of a fault handler. However, if the fault
is caused by a stack error, pushing the LR to stack might just make things worst. As we know, R0–R3
and R12 should already been saved, so that we could copy LR to one of these registers before doing
any function calls.

E.3  Understanding the Cause of the Fault
After obtaining the information we need, we can establish the cause of the problem. Tables E.3 through
E.7 list some of the common reasons that faults occur.

Table E.4  Bus Fault Status Register

Bit Possible Causes

BFARVALID (bit 7) Indicates the Bus Fault Address register contains a valid bus fault address.
STKERR (bit 4) Error occurred during stacking (starting of exception).

1.  Stack pointer is corrupted.
2.  Stack size became too large, reaching an undefined memory region.
3.  PSP is used but not initialized.

Table E.3  MemManage Fault Status Register

Bit Possible Causes

MMARVALID (bit 7) Indicates the Memory Manage Address register (MMAR) contains a valid fault
addressing value.

MSTKERR (bit 4) Error occurred during stacking (starting of exception).
1.  Stack pointer is corrupted.
2. � Stack size is too large, reaching a region not defined by the MPU or disallowed

in the MPU configuration.
MUNSTKERR (bit 3) Error occurred during unstacking (ending of exception). If there was no error

stacking but error occurred during unstacking, it might be because of the
following reasons:
1.  Stack pointer was corrupted during exception.
2.  MPU configuration was changed by exception handler.

DACCVIOL (bit 1) Violation to memory access protection, which is defined by MPU setup. For
example, user application trying to access privileged-only region.

IACCVIOL (bit 0) 1. � Violation to memory access protection, which is defined by MPU setup. For
example, user application trying to access privileged-only region. Stacked PC
might be able to locate the code that has caused the problem.

2.  Branch to nonexecutable regions.
3.  Invalid exception return code.
4. � Invalid entry in exception vector table. For example, loading of an executable

image for traditional ARM core into the memory, or exception happened before
vector table was set.

5.  Stacked PC corrupted during exception handling.

427Cortex-M3 Troubleshooting Guide

Table E.4  Bus Fault Status Register  continued

Bit Possible Causes

UNSTKERR(bit 3) Error occurred during unstacking (ending of exception). If there was no error
stacking but error occurred during unstacking, it might be that the stack pointer
was corrupted during exception.

IMPRECISERR (bit 2) Bus error during data access. Bus error could be caused by the device not being
initialized, access of privileged-only device in user mode, or the transfer size is
incorrect for the specific device.

PRECISERR (bit 1) Bus error during data access. The fault address may be indicated by BFAR. A bus
error could be caused by the device not being initialized, access of privileged-only
device in user mode, or the transfer size is incorrect for the specific device.

IBUSERR (bit 0) 1. � Branch to invalid memory regions; for example, caused by incorrect function
pointers in program code.

2.  I�nvalid exception return code; for example, a stacked EXC_RETURN code is
corrupted, and as a result, an exception return incorrectly treated as a branch.

3. � Invalid entry in exception vector table. For example, loading of an executable
image for traditional ARM core into the memory, or exception, happens before
the vector table is set.

4.  Stacked PC corrupted during function calls.
5.  Access to NVIC or SCB in user mode (nonprivileged).

Table E.5  Usage Fault Status Register

Bit Possible Causes

DIVBYZERO (bit 9) Divide by 0 takes place and DIV_0_TRP is set. The code causing the fault can be
located using stacked PC.

UNALIGNED (bit 8) Unaligned access attempted with UNALIGN_TRP is set. The code causing the fault
can be located using stacked PC.

NOCP (bit 3) Attempt to execute a coprocessor instruction. The code causing the fault can be
located using stacked PC.

INVPC (bit 2) 1.  Invalid value in EXC_RETURN number during exception return. For example,
   a.  Return to thread with EXC_RETURN = 0xFFFFFFF1
   b.  Return to handler with EXC_RETURN = 0xFFFFFFF9
		 To investigate the problem, the current LR value provides the value of LR at
	 the failing exception return.
2.  Invalid exception active status. For example,
   a. � Exception return with exception active bit for the current exception already

cleared. Possibly caused by use of VECTCLRACTIVE, or clearing of exception
active status in NVIC SHCSR.

   b. � Exception return to thread with one or more exception active bits still active.
3.  Stack corruption causing the stacked IPSR to be incorrect.
	� For INVPC fault, the stacked PC shows the point where the faulting exception

interrupted the main/preempted program. To investigate the cause of the
problem, it is best to use exception trace feature in the DWT.

4. � ICI/IT bit invalid for current instruction. This can happen when a multiple-load/
store instruction gets interrupted and, during the interrupt handler, the stacked
PC is modified. When the interrupt return takes place, the nonzero ICI bit is
applied to an instruction that does not use ICI bits. The same problem can also
happen because of corruption of stacked PSR.

continued

428 APPENDIX E

Table E.5  Usage Fault Status Register  Continued

Bit Possible Causes

INVSTATE (bit 1) 1. � Loading branch target address to PC with LSB equals 0. Stacked PC should
show the branch target.

2. � LSB of vector address in vector table is 0. Stacked PC should show the starting
of exception handler.

3. � Stacked PSR corrupted during exception handling, so after the exception the
core tries to return to the interrupted code in ARM state.

UNDEFINSTR (bit 0) 1.  Use of instructions not supported in Cortex-M3.
2.  Bad/corrupted memory contents.
3.  Loading of ARM object code during link stage. Checks compile steps.
4. � Instruction align problem. For example, if GNU Tool chain is used, omitting

of .align after .ascii might cause next instruction to be unaligned (start in odd
memory address instead of halfword addresses).

Table E.6  Hard Fault Status Register

Bit Possible Causes

DEBUGEVF (bit 31) Fault is caused by debug event:
1.  Breakpoint/watchpoint events.
2. � If the hard fault handler is executing, it might be caused by execution of BKPT

without enable monitor handler (MON_EN = 0) and halt debug is not enabled
(C_DEBUGEN = 0). By default, some C compilers might include semihosting
code that use BKPT.

FORCED (bit 30) 1. � Trying to run SVC/BKPT within SVC/monitor or another handler with same or
higher priority.

2. � A fault occurred if the corresponding handler is disabled or cannot be started
because another exception with the same or higher priority is running, or because
exception mask is set.

VECTBL (bit 1) Vector fetch failed. It could be caused by
1.  Bus fault at vector fetch.
2.  Incorrect vector table offset setup.

Table E.7  Debug Fault Status Register

Bit Possible Causes

EXTERNAL (bit 4) EDBGRQ signal has been asserted.
VCATCH (bit 3) Vector catch event has occurred.
DWTTRAP (bit 2) DWT watchpoint event has occurred.
BKPT (bit 1) 1.  Breakpoint instruction is executed.

2.  FPB unit generated a breakpoint event.
In some cases, BKPT instructions are inserted by C startup code as part of the
semihosting debugging setup. This should be removed for a real application code.
Please refer to your compiler document for details.

HALTED (bit 0) Halt request in NVIC.

429Cortex-M3 Troubleshooting Guide

E.4  Other Possible Problems
A number of other common problems are in Table E.8.

Table E.8  Other Possible Problems

Situations Possible Causes

No program execution Vector table could be set up incorrectly.
1.  Located in incorrect memory location.
2.  LSB of vectors (including hard fault handler) is not set to 1.
3. � Use of branch instruction (as in vector table in traditional ARM

processor) in the vector table.
Please generate a disassembly code listing to check if the vector
table is set up correctly.

Program crashes after a few numbers
of instructions

Possibly caused by incorrect endian setting, or
incorrect stack pointer setup (check vector table), or
use of C object library for traditional ARM processor (ARM code
instead of Thumb® code). The offending C object library code
could be part of the C startup routine. Please check compiler
and linker options to ensure that Thumb or Thumb-2 library files
are used.

Processor does not enter sleep mode
when WFE is executed

A WFE instruction does not always result in sleep. If the internal
event register was set before the WFE instruction, it will clear the
event register and act as NOP. Therefore, in normal coding WFE
should be used with a loop.

Processor stops executing
unexpectedly

When sleep-on-exit feature is enabled, the processor enters sleep
mode when returning from exception handler to thread mode,
even if no WFI or WFE instructions are used.

Unexpected SEVONPEND behavior The SEVONPEND in the NVIC System Control register enables
a disabled interrupt to wake up the processor from WFE, but
not WFI. The wake up event is generated only at a new pending
of an interrupt. If the interrupt pending status was already set
before execution of WFE, arrival of a new interrupt request will
not generate the wake up event and hence will not wake up the
processor.

Interrupt priority level not working as
expected

Unlike many other processors, the Cortex-M3 processor uses
value 0 for highest programmable exception priority level. The
larger the priority level value, the lower the priority is.

When programming the priority level registers for interrupt,
make sure the priority values are written to the implemented bits of
the registers. The least significant bits of the priority level registers
are not implemented.

Most Cortex-M3 microcontrollers are either 3 bits (8 levels) or
4 bits (16 levels). When there is less than 8 bits of priority level, the
LSBs are not implemented. So, if you write priority level values like
0x03, 0x07, and so forth to these registers, the value will become
0x00.

Continued

430 APPENDIX E

Table E.8  Other Possible Problems  Continued

Situations Possible Causes

SVC instruction result in fault exception The Cortex-M3 processor does not support recursive exception—
an exception cannot preempt unless it is higher priority than the
current level. As a result, you cannot use SVC within an SVC, hard
fault or NMI handler, or any other exception handlers which have
the same or higher priority than the SVC exception.

Parameters passing to SVC corrupted When passing parameters to exception handlers like SVC, the
extraction of parameters (R0–R3) should be carried by getting
the parameters from the stack frame instead of using values on
the register bank. This is because there could be a chance that
another exception was processed just before entering the SVC
(new arrival exception case).

Because the other exception handler can change R0–R3,
R12 (AAPCS does not require a C function to keep R0–R3, R12
unchanged), the values of R0–R3 and R12 can be undefined when
entering the SVC handler. To obtain the parameters correctly, the
stacked data should be used. This involved using a simple SVC
wrapper in assembly to extract the correct stack pointer and pass
it on to the C handler as a C pointer. Example code of this can be
found in chapter 11 of this book and ARM application note AN179.

A similar arrangement can be found in returning data from the
exception handler to the interrupted program. The handler should
store the return data into the stack frame. Otherwise, the value in
the register bank will be overwritten during unstacking.

SysTick exception occur after clearing
TICKINT

The TICKINT bit in the SysTick Control and Status register
enables and disables the generation of SysTick exception.
However, if the SysTick exception is already in pending state,
clearing of TICKINT will not stop the SysTick exception from
getting fired. To ensure the SysTick exception will not be
generated, you need to clear TICKINT and the SysTick pending
status in the Interrupt Control and Status register in the NVIC.

JTAG locked out In many Cortex-M3-based microcontrollers, the JTAG and I/O pins
are shared. If the I/O functions for these pins are enabled right in
the start of the program, you could find that you will not be able to
debug or erase the Flash again.

Unexpected extra interrupt Some microcontrollers have a write buffer in the bus bridge for the
peripheral bus. This makes it possible for an exception handler
to clear a peripheral interrupt by writing to the peripherals, exiting
the handler, and then entering the interrupt again as the peripheral
cannot deassert the interrupt request fast enough. There are
several work-arounds for this problem:
1. � The interrupt service routine (ISR) could carry out a dummy

access to the peripheral before exception exit. However, this
can increase the duration of the ISR.

2. � The clearing of the interrupt can be moved to the beginning of
the ISR so that the interrupt is cleared before the ISR end. This
might not work if the ISR duration is shorter than the buffered
write delay, so extensive testing should be carried out for
various peripheral clock ratios.

431Cortex-M3 Troubleshooting Guide

Table E.8  Other Possible Problems  Continued

Situations Possible Causes

Problem with using the normal interrupt
as software interrupt

Some users might intend to use unassigned exception types
available in NVIC for software interrupt functions. However, the
external interrupt and the PendSV exceptions are imprecise. That
means the exception handler might not happen immediately after
pending it. To handle this, a polling loop can be used to ensure
that the exception is carried out.

Unexpected BLX or BX instructions
which switched to ARM state

For users of GNU assembler, if a function symbol is from a
different file, you need to ensure the function name is declared as
a function:

.text

.global my_function_name

.type my_function_name, %function

Otherwise, a branch or call to this function might result in
accidental switching to ARM state.

In addition, during linking stage, you might need “-mcortex-m3
-mthumb” options for the GNU linker. Otherwise, the GNU linker
might pull in the wrong version of C library code.

Unexpected disabling of interrupt The behavior of the Cortex-M3 and ARM7TDMI processors are
different regarding exception return. In ARM7TDMI, if the interrupt
is disabled inside an interrupt handler, it will be automatically
reenabled at exception return due to restore of CPSR (I bit).

For the Cortex-M3 processor, if you disable interrupts manually
using PRIMASK (e.g., “CPSID I” instruction or __disable_irq( )), you
will need to reenable it at a later stage inside the interrupt handler.
Otherwise, the PRIMASK register will remain set after exception
return and will block all interrupts from occuring.

Unexpected unaligned accesses The Cortex-M3 processor supports unaligned transfers on single
load/store. Normally C compilers do not generate unaligned
transfer except for packed structures and manual manipulation
of pointers. For programming in assembly language, it could be a
bigger issue as a user might accidentally use unaligned transfers
and not know it.

For example, when a program reads a peripheral with word
transfer of an unaligned address, the lowest two bits of the
addresses might be ignored when using other ARM processors
(as the AHB to APB bridge might force these two bits to 0). In
the case of the Cortex-M3 processor, if the same software code
is used, it will divide the unaligned transfer into multiple aligned
transfers. This could end up with different results. Equally, issues
can be found when porting software for the Cortex-M3 processor
to other ARM processors that do not support unaligned transfers.

It is easy to detect if the software generates unaligned transfers.
This can be done by setting the UNALIGN_TRP bit in the NVIC
Configuration Control register in the System Control Block. By
doing this, a usage fault will be triggered when an unaligned
transfer happens, and you can then eliminate all unexpected
unaligned transfers.

433

F
F.1  Example Linker Script for Cortex-M3
The following linker script is modified from a generic linker script included in CodeSourcery G++
Lite (generic-m.ld), which is the target for Cortex™-M3 processors. This linker script assumes that the
CS3 start up sequence and vector table is used, and therefore, it is toolchain specific. For other GNU C
compilers, please refer to the documentation and examples provided in the package.

[cortexm3.ld – Used in Example 5 and Example 6 of Chapter 19]

/* Linker script for generic-m
*
* Version:Sourcery G++ Lite 2009q1-161
* BugURL:https://support.codesourcery.com/GNUToolchain/
*
* Copyright 2007, 2008 CodeSourcery, Inc.
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
* */
OUTPUT_FORMAT ("elf32-littlearm", "elf32-bigarm", "elf32-littlearm")
ENTRY(_start)
SEARCH_DIR(.)
GROUP(-lgcc -lc -lcs3 -lcs3unhosted -lcs3micro)
MEMORY
{
/* ROM is a readable (r), executable region (x)	 */
rom (rx) : ORIGIN = 0, LENGTH = 32k

/* RAM is a readable (r), writable (w) and	 */
/* executable region (x)	 */
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 16k

}

Appendix

Example Linker Script
for CodeSourcery G++

<FEFF>https://support.codesourcery.com/GNUToolchain/<FEFF>

434 APPENDIX F

/*	 These force the linker to search for particular symbols from
  *	 the start of the link process and thus ensure the user's
  *	 overrides are picked up
  */
EXTERN(__cs3_reset_generic_m)
INCLUDE micro-names.inc
EXTERN(__cs3_interrupt_vector_micro)
EXTERN(__cs3_start_c main __cs3_stack __cs3_heap_end)

PROVIDE(__cs3_heap_start = _end);
PROVIDE(__cs3_heap_end = __cs3_region_start_ram + __cs3_region_size_ram);
PROVIDE(__cs3_region_num = (__cs3_regions_end - __cs3_regions) / 20);
PROVIDE(__cs3_stack = __cs3_region_start_ram + __cs3_region_size_ram);

SECTIONS
{

.text :
{
CREATE_OBJECT_SYMBOLS
__cs3_region_start_rom = .;
*(.cs3.region-head.rom)
ASSERT (. == __cs3_region_start_rom, ".cs3.region-head.rom not permitted");

/* Vector table */
__cs3_interrupt_vector = __cs3_interrupt_vector_micro;
(.cs3.interrupt_vector) / vector table */
/* Make sure we pulled in an interrupt vector. */
ASSERT (. != __cs3_interrupt_vector_micro, "No interrupt vector");

/* Map CS3 vector symbols to handler names in C */
__cs3_reset = Reset_Handler;
__cs3_isr_nmi = NMI_Handler;
__cs3_isr_hard_fault = HardFault_Handler;

(.text .text. .gnu.linkonce.t.*)
*(.plt)
*(.gnu.warning)
*(.glue_7t) *(.glue_7) *(.vfp11_veneer)

(.ARM.extab .gnu.linkonce.armextab.*)
*(.gcc_except_table)

} >rom
.eh_frame_hdr : ALIGN (4)
{
KEEP (*(.eh_frame_hdr))

} >rom
.eh_frame : ALIGN (4)
{
KEEP (*(.eh_frame))

} >rom
/* .ARM.exidx is sorted, so has to go in its own output section. */
__exidx_start = .;
.ARM.exidx :

435Example Linker Script for CodeSourcery G++

{
(.ARM.exidx .gnu.linkonce.armexidx.*)

} >rom
__exidx_end = .;
.rodata : ALIGN (4)
{
(.rodata .rodata. .gnu.linkonce.r.*)

. = ALIGN(4);
KEEP(*(.init))

. = ALIGN(4);
__preinit_array_start = .;
KEEP (*(.preinit_array))
__preinit_array_end = .;

. = ALIGN(4);
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;

. = ALIGN(4);
KEEP(*(.fini))

. = ALIGN(4);
__fini_array_start = .;
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
__fini_array_end = .;

. = ALIGN(0x4);
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*crtend.o(.ctors))

. = ALIGN(0x4);
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*crtend.o(.dtors))

/* Add debug information
. = ALIGN(4);
__my_debug_regions = .;
LONG (__cs3_heap_start)
LONG (__cs3_heap_end)
LONG (__cs3_stack) */

. = ALIGN(4);
__cs3_regions = .;
LONG (0)
LONG (__cs3_region_init_ram)
LONG (__cs3_region_start_ram)

436 APPENDIX F

LONG (__cs3_region_init_size_ram)
LONG (__cs3_region_zero_size_ram)
__cs3_regions_end = .;

. = ALIGN (8);
*(.rom)
*(.rom.b)
_etext = .;

} >rom

.data : ALIGN (8)
{
__cs3_region_start_ram = .;
_data = .;
*(.cs3.region-head.ram)
KEEP(*(.jcr))
*(.got.plt) *(.got)
*(.shdata)
(.data .data. .gnu.linkonce.d.*)
. = ALIGN (8);
*(.ram)
_edata = .;

} >ram AT>rom
.bss :
{
_bss = .;
*(.shbss)
(.bss .bss. .gnu.linkonce.b.*)
*(COMMON)
. = ALIGN (8);
*(.ram.b)
_ebss = .;
_end = .;
__end = .;

} >ram AT>rom
__cs3_region_init_ram = LOADADDR (.data);
__cs3_region_init_size_ram = _edata - ADDR (.data);
__cs3_region_zero_size_ram = _end - _edata;
__cs3_region_size_ram = LENGTH(ram);

.stab	 0 (NOLOAD) : { *(.stab) }

.stabstr	 0 (NOLOAD) : { *(.stabstr) }
/* DWARF debug sections.
* Symbols in the DWARF debugging sections are relative to the beginning
* of the section so we begin them at 0. */
/* DWARF 1 */
.debug	 0 : { *(.debug) }
.line	 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo	 0 : { *(.debug_srcinfo) }
.debug_sfnames	 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges	 0 : { *(.debug_aranges) }

437Example Linker Script for CodeSourcery G++

.debug_pubnames	 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info	 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev	 0 : { *(.debug_abbrev) }
.debug_line	 0 : { *(.debug_line) }
.debug_frame	 0 : { *(.debug_frame) }
.debug_str	 0 : { *(.debug_str) }
.debug_loc	 0 : { *(.debug_loc) }
.debug_macinfo	 0 : { *(.debug_macinfo) }
/* DWARF 2.1 */
.debug_ranges	 0 : { *(.debug_ranges) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames	0 : { *(.debug_weaknames) }
.debug_funcnames	 0 : { *(.debug_funcnames) }
.debug_typenames	 0 : { *(.debug_typenames) }
.debug_varnames	 0 : { *(.debug_varnames) }
.note.gnu.arm.ident	0 : { KEEP (*(.note.gnu.arm.ident)) }
.ARM.attributes	 0 : { KEEP (*(.ARM.attributes)) }
/DISCARD/ : { *(.note.GNU-stack)

}

439

G
The Cortex™ Microcontroller Software Interface Standard (CMSIS) contains the following standard-
ized functions:

Core peripheral access functions•	
Intrinsic functions•	

In this appendix, the basic information about these standardized functions is covered. Some of the
functions in CMSIS use the standard data types defined in “stdint.h”. For example,

G.1  Exception and Interrupt Numbers
A number of functions in CMSIS use interrupt numbers to access interrupt features. The interrupt number
definition is different from the processor Interrupt Status register (IPSR) definition. In CMSIS, periph-
eral interrupts start from value of 0, and negative numbers are used to indicate system exceptions.

Appendix

CMSIS Core Access
Functions Reference

Table G.1  Standard Data Types Used in CMSIS

Type Description

uint32_t Unsigned 32-bit integer
uint16_t Unsigned 16-bit integer
uint8_t Unsigned 8-bit integer

Table G.2  Exception and Interrupt Number

CMSIS
Interrupt
Number

Exception
Number
In Processor
(IPSR) Exception

Exception Type Name
(enum) – “IRQn_Type”

Exception Handler
Name

— — Reset — Reset_Handler
−14 2 NMI NonMaskableInt_IRQn NMI_Handler

Continued

440 APPENDIX G

G.2  NVIC Access Functions
The following functions are available for NVIC feature accesses.

Table G.2  Exception and Interrupt Number  Continued

CMSIS
Interrupt
Number

Exception
Number
In Processor
(IPSR) Exception

Exception Type Name
(enum) – “IRQn_Type”

Exception Handler
Name

−13 3 Hard fault — HardFault_Handler
−12 4 Memory

Management
fault

MemoryManagement_IRQn MemManage_Handler

−11 5 Bus fault BusFault_IRQn BusFault_Handler
−10 6 Usage fault UsageFault_IRQn UsageFault_Handler
−5 11 SVC SVCall_IRQn SVC_Handler
−4 12 Debug monitor DebugMonitor_IRQn DebugMon_Handler
−2 14 PendSV PendSV_IRQn PendSV_Handler
−1 15 SysTick SysTick_IRQn SysTick_Handler
0 16 Peripheral

interrupt 0
<MCU specific> <MCU specific>

1 17 Peripheral
interrupt 1

<MCU specific> <MCU specific>

2 18 Peripheral
interrupt 2

<MCU specific> <MCU specific>

… … … <MCU specific> <MCU specific>

Function Name void NVIC_SetPriorityGrouping(uint32_t PriorityGroup)

Description Set the priority grouping in NVIC Interrupt Controller.
(This function is not available on the Cortex-M0/M1.)

Parameter PriorityGroup is priority grouping field.
Return None

Function Name uint32_t NVIC_GetPriorityGrouping(void)

Description Get the priority grouping from NVIC Interrupt Controller.
(This function is not available on Cortex-M0/M1.)

Parameter None
Return Priority grouping field.

441CMSIS Core Access Functions Reference

Function Name void NVIC_EnableIRQ(IRQn_Type IRQn)

Description Enable Interrupt in NVIC Interrupt Controller.
Parameter IRQn_Type IRQn specifies the positive interrupt number. It cannot be system

exception.
Return None

Function Name void NVIC_DisableIRQ(IRQn_Type IRQn)

Description Disable Interrupt in NVIC Interrupt Controller.
Parameter IRQn_Type IRQn is the positive number of the external interrupt. It cannot be

system exception.
Return None

Function Name uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)

Description Read the interrupt pending bit for a device-specific interrupt source.
Parameter IRQn_Type IRQn is the number of the device-specific interrupt. This function

does not support system exception.
Return 1 if pending interrupt, else 0.

Function Name void NVIC_SetPendingIRQ(IRQn_Type IRQn)

Description Set the pending bit for an external interrupt.
Parameter IRQn_Type IRQn is the number of the interrupt. This function does not support

system exception.
Return None

Function Name void NVIC_ClearPendingIRQ(IRQn_Type IRQn)

Description Clear the pending bit for an external interrupt.
Parameter IRQn_Type IRQn is the number of the interrupt. This function does not support

system exception.
Return None

Function Name uint32_t NVIC_GetActive(IRQn_Type IRQn)

Description Read the active bit for an external interrupt. (This function is not available on
Cortex-M0/M1.)

Parameter IRQn_Type IRQn is the number of the interrupt. This function does not support
system exception.

Return 1 if active, else 0.

442 APPENDIX G

Function Name void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

Description Set the priority for an interrupt or system exception with programmable
priority level.

Parameter IRQn_Type IRQn is the number of the interrupt.
unint32_t priority is the priority for the interrupt. This function automatically
shifts the input priority value left to put priority value in implemented bits.

Return None

Function Name uint32_t NVIC_GetPriority(IRQn_Type IRQn)

Description Read the priority for an interrupt or system exception with programmable
priority level.

Parameter IRQn_Type IRQn is the number of the interrupt.
Return Return value (type uint32_t) is the priority for the interrupt. This function

automatically shifts the input priority value right to remove unimplemented
bits in the priority value register.

Function Name
uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t
PreemptPriority, uint32_t SubPriority)

Description Encode the priority for an interrupt: Encode the priority for an interrupt with the
given priority group, preemptive priority value, and subpriority value. In case of
a conflict between priority grouping and available priority bits (__NVIC_PRIO_
BITS), the smallest possible priority group is set. (This function is not available
on Cortex-M0/M1.)

Parameter PriorityGroup is the used priority group.
PreemptPriority is the preemptive priority value (starting from 0).
SubPriority is the subpriority value (starting from 0).

Return The priority for the interrupt.

Function Name
void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup,
uint32_t* pPreemptPriority, uint32_t* pSubPriority)

Description Decode the priority of an interrupt: Decode an interrupt priority value with the
given priority group to preemptive priority value and subpriority value. In case of
a conflict between priority grouping and available priority bits (__NVIC_PRIO_
BITS), the smallest possible priority group is set. (This function is not available
on Cortex-M0/M1.)

Parameter Priority is the priority for the interrupt.
PriorityGroup is the used priority group.
pPreemptPriority is the preemptive priority value (starting from 0).
pSubPriority is the subpriority value (starting from 0).

Return None

443CMSIS Core Access Functions Reference

G.3  System and SysTick Functions
The following functions are for system setup.

G.4  Core Registers Access Functions
The following functions are for accessing special registers in the processor core.

Function Name void SystemInit (void)

Description Initialize the system
Parameter None
Return None

Function Name void NVIC_SystemReset(void)

Description Initiate a system reset request
Parameter None
Return None

Function Name uint32_t SysTick_Config(uint32_t ticks)

Description Initialize and start the SysTick counter and its interrupt. This function program
the SysTick to generate SysTick exception for every “ticks” number of core
clock cycles.

Parameter ticks is the number of clock ticks between two interrupts.
Return None

Function Name Description

uint32_t __get_MSP(void) Get MSP value
void __set_MSP(uint32_t topOfMainStack) Change MSP value

Function Name void SystemCoreClockUpdate(void)

Description Update the SystemCoreClock variable. This function should be used each time
after the processor clock frequency is changed. This function is introduced
from CMSIS version 1.30. Earlier version of CMSIS do not have this function
and use a different variable called SystemFrequency for timing information.

Parameter None
Return None

Continued

444 APPENDIX G

G.5  CMSIS Intrinsic Functions
The CMSIS provides a number of intrinsic functions for access to instructions that cannot be generated
by ISO/IEC C. The function “__enable_fault_irq” and “__disable_fault_irq” are not available
for Cortex-M0/M1.

Functions for system features.

Functions for exclusive memory accesses shown in the next table – these functions are not available
on Cortex-M0/M1. Functions for data processing – The “__RBIT” function in the table on the next
page is not available for Cortex-M0/M1.

Function Name Instruction Description

void __WFI(void) WFI Wait for interrupt (sleep)
void __WFE(void) WFE Wait for event (sleep)
void __SEV(void) SEV Send event
void __enable_irq(void) CPSIE i Enable interrupt (clear PRIMASK)
void __disable_irq(void) CPSID i Disable interrupt (set PRIMASK)
void __enable_fault_irq(void) CPSIE f Enable interrupt (clear FAULTMASK)
void __disable_fault_irq(void) CPSID f Disable interrupt (set FAULTMASK)
void __NOP(void) NOP No operation
void __ISB(void) ISB Instruction synchronisation barrier
void __DSB(void) DSB Data synchronisation barrier
void __DMB(void) DMB Data memory barrier

Function Name Description

uint32_t __get_PSP(void) Get PSP value
void __set_PSP(uint32_t topOfProcStack) Change PSP value
uint32_t __get_BASEPRI(void) Get BASEPRI value
void __set_BASEPRI(uint32_t basePri) Change BASEPRI value
uint32_t __get_PRIMASK(void) Get PRIMASK value
void __set_PRIMASK(uint32_t priMask) Change PRIMASK value
uint32_t __get_FAULTMASK(void) Get FAULTMASK value
void __set_FAULTMASK(uint32_t faultMask) Change FAULTMASK value
uint32_t __get_CONTROL(void) Get CONTROL value
void __set_CONTROL(uint32_t control) Change CONTROL value

445

G.6  Debug Message Output Function
A debug message output function is defined to use ITM for message output.

CMSIS Core Access Functions Reference

Function Name Instruction Description

uint8_t __LDREXB(uint8_t *addr) LDREXB Exclusive load byte
uint16_t __LDREXH(uint16_t *addr) LDREXH Exclusive load half word

uint32_t __LDREXW(uint32_t *addr) LDREX Exclusive load word
uint32_t __STREXB(uint8_t value,
uint8_t *addr)

STREXB Exclusive store byte. Return value is the
access status (success = 0, failed = 1).

uint32_t __STREXH(uint16_t value,
uint8_t *addr)

STREXH Exclusive store half word. Return value is
the access status (success = 0,
failed = 1).

uint32_t __STREXW(uint32_t value,
uint8_t *addr)

STREX Exclusive store word. Return value is the
access status (success = 0, failed = 1).

void __CLREX(void) CLREX Reset exclusive lock created by exclusive
read.

Function Name Instruction Description

uint32_t __REV(uint32_t value) REV Reverse byte order inside a word.
uint32_t __REV16(uint32_t value) REV16 Reverse byte order inside each of the

two half words.
uint32_t __REVSH(uint32_t value) REVSH Reverse byte order in the lower half

word and then extend the result to
32-bit.

uint32_t __RBIT(uint32_t value) RBIT Reverse bit order in the word.

Function Name uint32_t ITM_putchar(uint32_t chr)

Description Output a character through the ITM output channel 0. When no debugger is
connected, the function returns immediately. If debugger is connected and
instrumentation trace is enabled, the function outputs the character to ITM
and stalls if the ITM is still busy on the last transfer.

Parameter “chr” is the character to be output.
Return The output character “chr”.

447

H
H.1  Overview
A number of commonly used debug connectors are shown here. Most of the ARM development tools
use one of these pins out. When developing your ARM circuit board, it is recommended to use a stan-
dard debug signal arrangement to make connection to the debugger easier.

H.2  the 20-Pin Cortex Debug + ETM Connector
Newer ARM microcontroller boards use a 0.05" 20 pin header (Samtec FTSH-120) for both debug and
trace. (The signals greyed out in the following figures are not available on the Cortex™-M3.)

The 20-pin Cortex Debug + ETM connector supports both JTAG and Serial-Wire debug protocols
(see Figures H.1 and H.2). When the Serial debug protocol is used, the TDO signal can be used for
Serial-Wire Viewer (SWV) output for trace capture. The connector also provides a 4-bit wide trace port
for capturing of trace that requires a higher trace bandwidth (e.g., when ETM trace is enabled).

The FTSH-120 connector is smaller than the traditional IDC connector and is recommended for
new designs. An example development board that uses this new connector is the Keil MCBSTM32E
evaluation board.

Appendix

Connectors for Debug
and Tracers

Figure H.1

The 20-Pin Cortex Debug + ETM Connector.

448 Appendix H

1 2

19 20

TMS/SWIOVTref

TCK/SWCLK

TDO/SWO/TRACECTL/EXTa

TDI/EXTb/NC

nRESET

TRACECLK

TRACEDATA0

GND

GND

KEY

GNDDetect

GND/TgtPwr 1 Cap

TRACEDATA1

TRACEDATA2

TRACEDATA3

GND

GND

GND

GND/TgtPwr 1 Cap

Figure H.2

The 20-Pin Cortex Debug + ETM Connector Pin Layout.

Figure H.3

The 10-Pin Cortex Debug Connector.

1 2

9 10

TMS/SWIOVTref

TCK/SWCLK

TDO/SWO

TDI

nRESET

GND

GND

KEY

GNDDetect

Figure H.4

The 10-Pin Cortex Debug Connector Pin Layout.

449Connectors for Debug and Tracers

H.3  The 10-Pin Cortex Debug Connector
For devices without ETM, you can use an even smaller 0.05" 10-pin connector for debug. Similar to
the 20-pin Cortex Debug + ETM connector, both JTAG and Serial-Wire debug protocols are supported
in the 10-pin version (see Figures H.3 and H.4).

H.4  Legacy 20-Pin IDC Connector
A common debug connector used in ARM development boards is the 20-pin IDC connector (see
Figure H.5). The 20 pin IDC connector arrangement support JTAG debug, Serial-Wire debug (SWIO
and SWCLK), and SWV. The nICEDETECT pin allows the target system to detect if a debugger is
connected. When no debugger is attached, this pin is pulled high. A debugger connection connects this
pin to the ground. This is used in some development boards that support multiple JTAG configurations.
The nSRST connection is optional; debugger can reset a Cortex-M3 system through the NVIC so this
connection is often omitted from the top level of microcontroller designs.

H.5  Legacy 38-Pin Mictor Connector
In some ARM system designs, a Mictor connector is used when trace port is required (e.g., for instruc-
tion trace with ETM; see Figure H.6). It can also be used for JTAG/SWD connection. The 20-pin IDC
connector can be connected in parallel with the Mictor connector (only one is used at a time).

Figure H.5

The 20-Pin IDC Connector.

1 2

19 20

3V33V3

GND

GND

GND

GND

GND

GND

GND

GND

nICEDETECT

nTRST

TDI

TMS/SWIO

TCK/SWCLK

RTCK

TDO/SWV

NC/nSRST

NC

NC

450 Appendix H

Typically, a Cortex-M3 microcontroller only has 4 bits of trace data signals, so most of the trace
data pins on the Mictor connectors are not used. The Mictor connector is used mostly in other ARM
Cortex processors (Cortex-A8/A9, Cortex-R4); in some multiprocessor systems the trace system might
require a wider trace port. In such cases, some of the other unused pins on the connector will also be
used. For Cortex-M3 systems, the Cortex Debug + ETM connector is recommended.

Figure H.6

The 38-Pin Mictor Connector.

NC

NC

GND

Pulldown

NC/nSRST

TDO/SWV

RTCK

TCK/SWCLK

TMS/SWIO

TDI

nTRST

1 2

37 38

NC

NC

TRACECLK

Pulldown

Pullup (Vref)

VSupply

TRACEDATA[3]

0

0

1

Pulldown

TRACEDATA[2]

TRACEDATA[1]

TRACEDATA[0]

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

0/TRACEDATA[4]

0/TRACEDATA[5]

0/TRACEDATA[6]

0/TRACEDATA[7]

0/TRACEDATA[8]

0/TRACEDATA[9]

0/TRACEDATA[10]

0/TRACEDATA[11]

0/TRACEDATA[12]

0/TRACEDATA[13]

0/TRACEDATA[14]

0/TRACEDATA[15]

0/TRACECTRL

451

References

	1.	 Cortex-M3 Technical Reference Manual (TRM): downloadable from the ARM documentation
web site at http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337g/index.html

	2.	 ARMv7-M Architecture Application Level Reference Manual: downloadable from the ARM
documentation web site at www.arm.com/products/CPUs/ARM_Cortex-M3_v7.html

	3.	 CoreSight Technology System Design Guide: downloadable from the ARM documentation
web site at http://infocenter.arm.com/help/topic/com.arm.doc.dgi0012b/index.html

	4.	 AMBA Specification: downloadable from the ARM documentation web site at www.arm.com/
products/solutions/AMBA_Spec.html

	5.	 AAPCS Procedure Call Standard for the ARM Architecture: downloadable from the ARM
documentation web site at http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042c/index.html

	6.	 RVCT 4.0 Compilation Tools Compiler User Guide: downloadable from the ARM documentation
web site at http://infocenter.arm.com/help/topic/com.arm.doc.dui0205i/index.html

	7.	 ARM Application Note 179: Cortex-M3 Embedded Software Development: downloadable from
the ARM documentation web site at http://infocenter.arm.com/help/topic/com.arm.doc.dai0179b/
index.html

	8.	 RVCT 4.0 Compilation Tools Compiler Reference Guide: downloadable from the ARM
documentation web site at http://infocenter.arm.com/help/topic/com.arm.doc.dui0348b/index.html

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-963-8.00035-1

A
AAPCS (Procedure Call Standard for ARM Architecture),

159, 204
assembly code and C program interactions, 170
double-word stack alignment, 204

Access port (AP), 245
AFSR (Auxiliary Fault Status Register), 126, 416, 421
AHB (Advanced High-performance Bus), 80, 101, 146, 207

AHB-AP, 102, 245, 264–265
AHB-to-APB, 102, 107
in BE-8 Big Endian mode, 95, 96
BusMatrix, 102, 105–107
error responses, causes, 121
in word-invariant big endian, 95, 96

AIRCR (NVIC Application Interrupt and Reset Control
Register), 113, 125, 241, 254, 412

AMBA (Advanced Microcontroller Bus Architecture), 101, 244
APB (Advanced Peripheral Bus), 80, 101, 104, 244

APB-AP, 246
API (Application Programming Interface), 126, 193
APSR (Application Program Status Register), 29, 279, 358,

359
flag bits for conditional branches, 62
and MSR instruction, 29, 55
signed saturation results, 69
updating instructions, 58
with traditional Thumb instruction syntax, 45

ARM Architecture Reference Manual, The, 8
ATB (Advanced Trace Bus), 103, 246, 255, 256
ATB funnel, 246, 256
Auxiliary Control Register, 275, 277, 281

B
Background region (MPU), 212, 225
BASEPRI, 16, 30

special register, 136–137
use, 31

BFAR (Bus Fault Address Register), 122, 421
BFSR (Bus Fault Status Register), 121, 122, 152, 153,

415, 426
Big Endian

in ARM7, 95, 96, 284
in Cortex-M3, 95, 96
memory views, 95

Bit band
alias, 79, 80, 289
vs. bit bang, 87
operations, 84–91
semaphore operation, 179–180

Breakpoint, 21, 262
in cortex-M3, 251–253
and Flash Patch, 21, 103, 253, 255, 262–264
Insert/Remove breakpoint, 323

Bus Fault, 121–122
precise and imprecise, 122
stacking error, 152
status register, 121, 122, 152, 153, 415, 426
unstacking error, 153

BusMatrix, 102, 105–107
Byte-invariant big endian, 95, 96

C
CFSR (Configurable Fault Status Register), 421
CMSIS (Cortex Microcontroller Software Interface

Standard), 67, 95, 164–165, 185
areas of standardization, 165–166
benefit of, 168–169
core access functions, 186, 439–445
example, 168
intrinsic functions, 167, 444–445
MPU register names in, 218
organization of, 166
port existing applications using, 334
stopwatch example with interrupts, 327–333

Context Switching, 127
example, 128
in simple OS, 203

CONTROL (one of the special registers), 14, 31–32
CoreSight architecture, 21, 255

debugging hardware, 21
overview, 244–248

Cortex-A8, 5, 7
Cortex-M0, 278–281, 444
Cortex-M3

advantages, 1–2, 18, 22–24, 277–278
applications, 9, 334
barrier instructions, 67
bit-band operation

advantages, 87–90
in C programs, 90
of different data sizes, 90

breakpoint instruction in, 251–253
bus faults, 121
bus interfaces on, 17–18, 104–105
connection of AHB-AP in, 265
data transfers, 53
debugging components, 11
debugging features, 243

Index

453

454 Index

debugging functions in, 244
debugging support, 21–22
debug modes in, 248–250
debug systems in, 247
default configuration, 83
default ROM table values, 266
differences between Cortex-M0, 278–281
differences among other versions, 272–277
ETM in, 260–261
exception types and enables, 407–408
instructions, 19, 57, 58, 60, 70, 349
interrupt and exceptions, 19–21, 35–36
linker script for, 433–437
link register (LR), 28
memory attributes 82–83
memory map, 16–17, 79–82
MPU, 18

registers, 212–217
multiprocessor communication, 236–241
nested interrupt support in, 148
NVIC in, 15–16
operation modes, 14–15, 32–34, 285
priority levels, 111–116
privilege levels in, 15
processor-based microcontrollers, 2
program counter, 28
registers, 12–14, 25–26, 29–32
reset types and signals on, 107–108
simple timer, 141
sleep modes, 232–234
stack memory operations, 36–40
stack pointer (SP) in, 26–28
supporting endian modes, 95–97
tail chaining interrupt, 148–149
three-stage pipeline in, 99–101
trace interfaces in, 246
trace system in, 255–256
troubleshooting guide, 421
unaligned transfers in, 92–93
vector table definition in CS3, 302
vs. Cortex-M3-based MCUs, 3

Cortex-R4, 5, 7
CPI (Cycle Per Instruction), 257
CS3, 301, 302
CYCCNT (Cycle Counter in DWT), 256, 257

D
DAP (Debug Access Port), 21, 102, 104, 244, 245
D-Code bus, 17, 103, 273
Data abort, 121
Debug registers

DCRDR (Debug Core Register Data Register), 253,
254, 419

DCRSR (Debug Core Register Selector Register), 253,
254, 419

DEMCR (Debug Exception and Monitor Control Register),
249, 250, 419–420

DFSR (Debug Fault Status Register), 252, 254, 416, 428
DHCSR (Debug Halting Control and Status Register), 248,

249, 418
DP (Debug Port), 21, 244, 245
DWT (Data Watchpoint and Trace unit), 21, 80, 102, 256–258

and ETM, 260
and ITM, 260

E
Embedded Assembler, 163–164, 197, 288, 423
EPSR (Execution Program Status Register), 29, 152
ETM (Embedded Trace Macrocell), 21, 80, 102, 246, 256,

260–261, 267
Exception exit, 119, 147–148
Exception Return, 148, 149–151
Exceptions

ARM7TDMI mapping, 285
configuration registers, 137–138
exception handler, 14, 33, 88, 117, 121, 147, 149, 189,

327
exits, 147–148
fault exceptions, 120–126
handling, 19, 36, 125, 148, 149, 152, 204
and interrupts, 19–21, 35
PendSV, 126–129
PRIMASK register, 135–136
priority levels, 111–117
priority setup, 185
register updates, 147
return value, 149–151
stacking, 145–147, 408
SVC, 126–129
SYSTICK, 141, 229, 232, 328
types, 35, 109–111, 407
vector, 117, 147
vector table, 36, 117–118

Exclusive accesses, 93–95
for semaphores, 177–179

EXC_RETURN, 147, 149–151, 153, 202

F
FAULTMASK, 14, 16, 30, 31, 135–136, 210
FPB (Flash Patch and Breakpoint Unit), 21, 103, 253,

255, 262–264

H
Halt mode debug, 250, 251, 254
Hard fault

avoiding lockup, 210

Cortex-M3 Continued

455Index

priority level, 111
status register, 125, 416, 428

HFSR (Hard Fault Status Register), 125, 416, 428
High registers, 25

I
I-Code interface bus, 17, 103
ICI (Interrupt-Continuable Instructions)

bit field in PSR, 30
Inline assembler, 163–164, 198–199, 288, 305
Instruction Barrier (ISB), 67
Instruction trace, 12, 21

ETM, 102, 260
Instrumentation Trace, 172
Intellectual property (IP) licensing, 3
Interrupt latency, 16, 22, 23, 152, 207
Interrupt return, 147–148, 284, 287
Intrinsic functions, 135, 163, 165, 167,

444–445
IPSR (Interrupt Program Status Register), 29, 168, 206
IRQ (Interrupt Request), 20, 131, 189
IT (IF-THEN), 65, 152, 393–394

assembler language, 65–66
Thumb-2 instructions, 70–72

ITM (Instrumentation Trace Macrocell)
ATB interface, 105
debugging component, 22, 258–260
functionalities, 258–259
hardware trace, 260
software trace, 259
timestamp feature, 260

L
LabVIEW, 335–336

for ARM porting, 345–347
application areas, 337
development of, 337–339
features in, 344–345
project, example of, 339–343
working, 343–344

Literal pool, 263
Load/store operations, 84, 152, 287, 427
Lockup, 422

situations, 208–210
Low registers, 25
LR (link register), 149

branch and link instructions, 60
R14, 13, 28
saving, 62
stacking, 145, 146
update, 147, 149
value, 421

LSU (Load Store Unit), 257

M
Memory Barrier Instructions, 67
Memory Management fault, 122–123, 137

MMAR, 416, 421
and MPU violation, 152, 218
status register, 415

Memory Map, 16–17, 67, 79–82, 83, 103, 161–163, 211,
284, 325

MFSR (Memory-management Fault Status Register), 123,
152, 426

MMAR (Memory-management Fault Address Register),
416, 421

Monitor exception, 21, 35, 110, 248, 251–253
MPU (Memory Protection Unit), 6, 9, 11, 18, 83, 102,

122, 211
registers, 212–217
setup, 218–224
system characteristics, 285

MSP (Main Stack Pointer), 12, 26, 28, 39, 40, 145, 183
MSTKERR (Memory Management Stacking Error), 152,

426
MUNSTKERR (Memory Management Unstacking Error),

153, 426

N
NMI (nonmaskable interrupt), 2, 23, 35

double fault situations, 209
and FIQ, 286

Nonbase Thread Enable, 205–206, 413
NVIC (Nested Vectored Interrupt Controller), 131

accessing, 186
and CPU core, 101–103
DCRDR, 253, 254
DCRSR, 253, 254
debugging features, 254
enabling and disabling interrupts, 187
fault status register, 121–122, 123, 124
features, 15–16
registers, 409
ROM table, 265–266
SCS, 81, 131
System Control register, 232
SYSTICK registers, 141–143, 229

P
PC (Program Counter)

R15, 13, 28
register updation, 147
stacked PC, 421
value, 288

PendSV
context switching, 128
and SVC, 126–129

456 Index

Pipeline, 99–100, 288
PPB (Private Peripheral Bus), 18

AHB, 80
APB, 80
external PPB, 104–105

Preempt Priority, 113, 114, 115, 116
Prefetch abort, 121
PRIMASK, 29, 135–136, 178

function, 14
interrupt masking, 16, 30, 31

Priority Group, 113, 114, 115, 116, 132, 193
Privileged mode, 70, 131, 178, 205
Profiling (Data Watchpoint and Trace unit),

256–258
PSP (Process Stack Pointer)

ARM documentation, 26, 28
MRS and MSR instructions, 40
stacking, 145
two-stack model, 39–41

PSR (Program Status register), 29, 145
APSR, 29
bit fields, 30
EPSR, 29
flags, 62
IPSR, 29, 146, 147

Q
Q flag, 62, 69, 387

R
R13/SP, 28
Real time, 4
Reset

control, 254
fault handling method, 125
self-reset control, 241–242
signals, 107–108
vector, 41, 46, 295

Reset sequence, 41–42
Retargeting, 302–304, 315, 317
ROM Table, 103, 265–267
RXEV (Receive Event), 232, 237

S
Saturation

instructions, 68, 69
operation, 68–70

Semaphores
bit band, usage, 179–180
exclusive access, usage, 93, 177–179, 287

Serial-Wire Viewer, 172, 257
Serial-Wire, 102, 244, 245
Sleep modes, 20, 23, 232–234, 276
Sleep-On-Exit, 234

Software Trace (Instrumentation Trace
Macrocell), 259

Special registers, 14, 29, 70
accessing, 304
BASEPRI, 14, 30–31, 136–137
control register, 31–32
FAULTMASK, 14, 30–31, 135–136
for MRS and MSR instructions, 71
PRIMASK, 14, 30–31, 135–136
PSRs, 29–30

Stack alignment, 204, 275, 277
Stack Pointer (SP), 204, 206

R13, 12, 26–28
stack memory operations, 36
types, 26, 39
updating, 147

Stacking
error, 152
exception sequence, 145–147

STIR (Software Trigger Interrupt register), 131, 141, 420
STKERR (stacking error), 152
Subpriority, 113, 114
Subregion, 215, 225
SVC (Supervisor Call), 126–129, 193, 206, 210

handler, 205
for output functions, 194–197
and SWI, 127
user applications, 193–194
using with C, 197–199

SWI (Software Interrupt Instruction), 127, 287
SWJ-DP, Serial Wire JTAG – Debug Port, 21, 102, 274
System Control register, 233, 413
System Control Space (SCS), 32, 81, 131
SYSTICK

context switching, 127
registers, 141–143
stopwatch, example, 328
Timer, 102, 141–143, 229–232, 277

T
Table Branch, 75–77, 181

and SVC, 194
Timestamp, 260
TPIU (Trace Port Interface Unit), 21, 103, 246,

255, 261
Trace Enable (TRCENA), 256

debug, 250
in DEMCR, 259, 262

TXEV (Transmit Event), 105, 236

U
UFSR (Usage Fault Status Register), 124, 415, 427–428
Unaligned transfers, 92–93

and D-Code bus, 103

457Index

Unified Assembler Language (UAL), 49–50
Unstacking

and bus fault, 121
error, 153
interrupt return instruction, 147–148

UNSTKERR (Unstacking error), 153
Usage fault, 123–124, 137, 153
User mode, 131, 205

V
Vector catch (Debug event), 249
Vector fetch, 121, 147, 153, 207
Vector Table Offset register, 117, 132, 279, 412
Vector table relocation, 190–193
Vector table, 36, 190

and exceptions, 117–118
difference in traditional ARM cores, 286
modification, 326–327
remapping, 284
setup and enabling interrupt, 184–188

Virtual instrument (VI), 336, 337, 339, 340, 346

W
WIC (Wakeup Interrupt Controller), 21, 102, 234–236,

276, 277
Word-invariant big endian, 95, 96

X
xPSR – combined Program Status Register (PSR), 14,

29, 204, 287

	Cover

	Copyright page
	Foreword
	Foreword
	Preface
	Acknowledgments

	Conventions
	Terms and Abbreviations
	1 Introduction
	What Is the ARM Cortex-M3 Processor?
	Background of ARM and ARM Architecture
	A Brief History
	Architecture Versions
	Processor Naming

	Instruction Set Development
	The Thumb-2 Technology and Instruction Set Architecture
	Cortex-M3 Processor Applications
	Organization of This Book
	Further Reading

	2 Overview of the Cortex-M3
	Fundamentals
	Registers
	R0–R12: General-Purpose Registers
	R13: Stack Pointers
	R14: The Link Register
	R15: The Program Counter
	Special Registers

	Operation Modes
	The Built-In Nested Vectored Interrupt Controller
	Nested Interrupt Support
	Vectored Interrupt Support
	Dynamic Priority Changes Support
	Reduction of Interrupt Latency
	Interrupt Masking

	The Memory Map
	The Bus Interface
	The MPU
	The Instruction Set
	Interrupts and Exceptions
	Low Power and High Energy Efficiency

	Debugging Support
	Characteristics Summary
	High Performance
	Advanced Interrupt-Handling Features
	Low Power Consumption
	System Features
	Debug Supports

	3 Cortex-M3 Basics
	Registers
	General Purpose Registers R0 through R7
	General Purpose Registers R8 through R12
	Stack Pointer R13
	Link Register R14
	Program Counter R15

	Special Registers
	Program Status Registers
	PRIMASK, FAULTMASK, and BASEPRI Registers
	The Control Register

	Operation Mode
	Exceptions and Interrupts
	Vector Tables
	Stack Memory Operations
	Basic Operations of the Stack
	Cortex-M3 Stack Implementation
	The Two-Stack Model in the Cortex-M3

	Reset Sequence

	4 Instruction Sets
	Assembly Basics
	Assembler Language: Basic Syntax
	Assembler Language: Use of Suffixes
	Assembler Language: Unified Assembler Language

	Instruction List
	Unsupported Instructions

	Instruction Descriptions
	Assembler Language: Moving Data
	LDR and ADR Pseudo-Instructions
	Assembler Language: Processing Data
	Assembler Language: Call and Unconditional Branch
	Assembler Language: Decisions and Conditional Branches
	Assembler Language: Combined Compare and Conditional Branch
	Assembler Language: Instruction Barrier and Memory Barrier Instructions
	Assembly Language: Saturation Operations

	Several Useful Instructions In the Cortex-M3
	MSR and MRS
	More on the IF-THEN Instruction Block
	SDIV and UDIV
	REV, REVH, and REVSH
	Reverse Bit
	SXTB, SXTH, UXTB, and UXTH
	Bit Field Clear and Bit Field Insert
	UBFX and SBFX
	LDRD and STRD
	Table Branch Byte and Table Branch Halfword

	5 Memory Systems
	Memory System Features Overview
	Memory Maps
	Memory Access Attributes
	Default Memory Access Permissions
	Bit-Band Operations
	Advantages of Bit-Band Operations
	Bit-Band Operation of Different Data Sizes
	Bit-Band Operations in C Programs

	Unaligned Transfers
	Exclusive Accesses
	Endian Mode

	6 Cortex-M3 Implementation Overview
	The Pipeline
	A Detailed Block Diagram
	Bus Interfaces on the Cortex-M3
	The I-Code Bus
	The D-Code Bus
	The System Bus
	The External PPB
	The DAP Bus

	Other Interfaces on the Cortex-M3
	The External PPB
	Typical Connections
	Reset Types and Reset Signals

	7 Exceptions
	Exception Types
	Definitions of Priority
	Vector Tables
	Interrupt Inputs and Pending Behavior
	Fault Exceptions
	Bus Faults
	Memory Management Faults
	Usage Faults
	Hard Faults
	Dealing with Faults

	Supervisor Call and Pendable Service Call

	8 The Nested Vectored Interrupt Controller and Interrupt Control
	Nested Vectored Interrupt Controller Overview
	The Basic Interrupt Configuration
	Interrupt Enable and Clear Enable
	Interrupt Set Pending and Clear Pending
	Priority Levels
	Active Status
	PRIMASK and FAULTMASK Special Registers
	The BASEPRI Special Register
	Configuration Registers for Other Exceptions

	Example Procedures In Setting Up an Interrupt
	Software Interrupts
	The SYSTICK Timer

	9 Interrupt Behavior
	Interrupt/Exception Sequences
	Stacking
	Vector Fetches
	Register Updates

	Exception Exits
	Nested Interrupts
	Tail-Chaining Interrupts
	Late Arrivals
	More on the Exception Return Value
	Interrupt Latency
	Faults Related to Interrupts
	Stacking
	Unstacking
	Vector Fetches
	Invalid Returns

	10 Cortex-M3 Programming
	Overview
	A Typical Development Flow
	Using C
	Example of a Simple C Program Using RealView Development Site
	Compile the Same Example Using Keil MDK-ARM
	Accessing Memory-Mapped Registers in C
	Intrinsic Functions
	Embedded Assembler and Inline Assembler

	CMSIS
	Background of CMSIS
	Areas of Standardization
	Organization of CMSIS
	Using CMSIS
	Benefits of CMSIS

	Using Assembly
	The Interface between Assembly and C
	The First Step in Assembly Programming
	Producing Outputs
	The “Hello World” Example
	Using Data Memory

	Using Exclusive Access for Semaphores
	Using Bit Band for Semaphores
	Working with Bit Field Extract and Table Branch

	11 Exception Programming
	Using Interrupts
	Stack Setup
	Vector Table Setup
	Interrupt Priority Setup
	Enable the Interrupt

	Exception/Interrupt Handlers
	Software Interrupts
	Example of Vector Table Relocation
	Using SVC
	SVC Example: Use for Text Message Output Functions
	Using SVC with C

	12 Advanced Programming Features and System Behavior
	Running a System with Two Separate Stacks
	Double-Word Stack Alignment
	Nonbase Thread Enable
	Performance Considerations
	Lockup Situations
	What Happens During Lockup?
	Avoiding Lockup

	FAULTMASK

	13 The Memory Protection Unit
	Overview
	MPU Registers
	Setting Up the MPU
	Typical Setup
	Example Use of the Subregion Disable

	14 Other Cortex-M3 Features
	The SYSTICK Timer
	Power Management
	Sleep Modes
	Sleep-On-Exit Feature
	Wakeup Interrupt Controller

	Multiprocessor Communication
	Self-Reset Control

	15 Debug Architecture
	Debugging Features Overview
	CoreSight Overview
	Processor Debugging Interface
	The Debug Host Interface
	DP Module, AP Module, and DAP
	Trace Interface
	CoreSight Characteristics

	Debug Modes
	Debugging Events
	Breakpoint in the Cortex-M3
	Accessing Register Content in Debug
	Other Core Debugging Features

	16 Debugging Components
	Introduction
	The Trace System in the Cortex-M3

	Trace Components: DWT
	 Trace Components: ITM
	Software Trace with the ITM
	Hardware Trace with ITM and DWT
	ITM Timestamp

	Trace Components: ETM
	Trace Components: TPIU
	The Flash Patch and Breakpoint Unit
	Breakpoint Feature
	Flash Patch Feature
	Comparators

	The Advanced High-Performance Bus Access Port
	ROM Table

	17 Getting Started with the Cortex-M3 Processor
	Choosing a Cortex-M3 Product
	Development Tools
	C Compiler and Debuggers
	Embedded OS Support

	Differences between the Cortex-M3 Revision 0 and Revision 1
	Revision 1 Change: Moving from JTAG-DP to SWJ-DP

	Differences between the Cortex-M3 Revision 1 and Revision 2
	Default Configuration of Double Word Stack Alignment
	Auxiliary Control Register
	ID Register Values Updates
	Debug Features
	Sleep Features

	Benefits and Effects of the Revision 2 New Features
	Differences between the Cortex-M3 and Cortex-M0
	Programmer’s Model
	Exceptions and NVIC
	Instruction Set
	Memory System Features
	Debug Features
	Compatibility

	18 Porting Applications from the ARM7 to the Cortex-M3
	Overview
	System Characteristics
	Memory Map
	Interrupts
	MPU
	System Control
	Operation Modes

	Assembly Language Files
	Thumb State
	ARM State

	C Program Files
	Precompiled Object Files
	Optimization

	19 Starting Cortex-M3 Development Using the GNU Tool Chain
	Background
	Getting the GNU Tool Chain
	Development Flow
	Examples
	Example 1: The First Program
	Example 2: Linking Multiple Files
	Example 3: A Simple “Hello World” Program
	Example 4: Data in RAM
	Example 5: C Program
	Example 6: C with Retargeting
	Example 7: Implement Your Own Vector Table

	Accessing Special Registers
	Using Unsupported Instructions
	Inline Assembler in the GNU C Compiler

	20 Getting Started with the Keil RealView Microcontroller Development Kit
	Overview
	Getting Started with ?Vision
	Outputting the “Hello World” Message Via Universal Asynchronous Receiver/Transmitter
	Testing the Software
	Using the Debugger
	The Instruction Set Simulator
	Modifying the Vector Table
	Stopwatch Example with Interrupts with CMSIS
	Porting Existing Applications to Use CMSIS

	21 Programming the Cortex-M3 Microcontrollers in NI LabVIEW
	Overview
	Typical Application Areas
	What You Need to Use LabVIEW and ARM

	What Is LabVIEW
	Development Flow
	Example of a LabVIEW Project
	Create the Project
	Define Inputs and Outputs
	Create the Program
	Build the Design and Test the Application

	How It Works
	Additional Features in LabVIEW
	Porting to Another ARM Processor

	Appendix A The Cortex-M3 Instruction Set, Reference Material
	Instruction Set Summary
	About the Instruction Descriptions
	Operands
	Restrictions When Using PC or SP
	Flexible Second Operand
	Shift Operations
	Address Alignment
	PC-Relative Expressions
	Conditional Execution
	Instruction Width Selection

	Memory Access InstructIons
	ADR
	LDR and STR, Immediate Offset
	LDR and STR, Register Offset
	LDR and STR, Unprivileged
	LDR, PC-Relative
	LDM and STM
	PUSH and POP
	LDREX and STREX
	CLREX

	General Data-Processing Instructions
	ADD, ADC, SUB, SBC, and RSB
	AND, ORR, EOR, BIC, and ORN
	ASR, LSL, LSR, ROR, and RRX
	CLZ
	CMP and CMN
	MOV and MVN
	MOVT
	REV, REV16, REVSH, and RBIT
	TST and TEQ

	Multiply and Divide Instructions
	MUL, MLA, and MLS
	UMULL, UMLAL, SMULL, and SMLAL
	SDIV and UDIV

	Saturating Instructions
	SSAT and USAT

	Bitfield Instructions
	BFC and BFI
	SBFX and UBFX
	SXT and UXT

	Branch and Control Instructions
	B, BL, BX, and BLX
	CBZ and CBNZ
	IT
	TBB and TBH

	Miscellaneous Instructions
	BKPT
	CPS
	DMB
	DSB
	ISB
	MRS
	MSR
	NOP
	SEV
	SVC
	WFE
	WFI

	Appendix B The 16-Bit Thumb Instructions and Architecture Versions
	Appendix C Cortex-M3 Exceptions Quick Reference
	Exception Types and Enables
	Stack Contents After Exception Stacking

	Appendix D Nested Vectored Interrupt Controller and System Control Block Registers Quick Reference
	Appendix E Cortex-M3 Troubleshooting Guide
	Overview
	Developing Fault Handlers
	Report Fault Status Registers
	Report Stacked PC and Other Stacked Registers
	Read Fault Address Register
	Others

	Understanding the Cause of the Fault
	Other Possible Problems

	Appendix F Example Linker Script for CodeSourcery G++
	Example Linker Script for Cortex-M3

	Appendix G CMSIS Core Access Functions Reference
	Exception and Interrupt Numbers
	NVIC Access Functions
	System and SysTick Functions
	Core Registers Access Functions
	CMSIS Intrinsic Functions
	Debug Message Output Function

	Appendix H Connectors for Debug and Tracers
	Overview
	The 20-Pin Cortex Debug + ETM Connector
	The 10-Pin Cortex Debug Connector
	Legacy 20-Pin IDC Connector
	Legacy 38-Pin Mictor Connector

	References
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

