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Foreword

Progress in the ARM microcontroller community since the publication of the first edition of this book
has been impressive, significantly exceeding our expectations and it is no exaggeration to say that it is
revolutionizing the world of Microcontroller Units (MCUs). There are many thousands of end users
of ARM-powered MCUs, making it the fastest growing MCU technology on the market. As such, the
second edition of Joseph’s book is very timely and provides a good opportunity to present updated
information on MCU technology.

As a community, progress has been made in many important areas including the number of com-
panies building Cortex™-M3 processor-based devices (now over 30), development of the Cortex
Microcontroller Software Interface Standard (CMSIS) enabling simpler code portability between
Cortex processors and silicon vendors, improved versions of development tool chains, and the release
of the Cortex-MO processor to take ARM MCUs into even the lowest cost designs.

With such a rate of change it is certainly an exciting time to be developing embedded solutions
based on the Cortex-M3 processor!

—Richard York
Director of Product Marketing, ARM
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Foreword

Microcontroller programmers, by nature, are truly resourceful beings. From a fixed design, they create
fantastic new products by using the microcontroller in a unique way. Constantly, they demand highly
efficient computing from the most frugal of system designs. The primary ingredient used to perform
this alchemy is the tool chain environment, and it is for this reason that engineers from ARM’s own tool
chain division joined forces with CPU designers to form a team that would rationalize, simplify, and
improve the ARM7TDMI processor design.

The result of this combination, the ARM Cortex™-M3, represents an exciting development to the
original ARM architecture. The device blends the best features from the 32-bit ARM architecture with
the highly successful Thumb-2 instruction set design while adding several new capabilities. Despite
these changes, the Cortex-M3 retains a simplified programmer’s model that will be easily recognizable
to all existing ARM aficionados.

—Wayne Lyons
Director of Embedded Solutions, ARM
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Preface

This book is for both hardware and software engineers who are interested in the ARM Cortex™-M3
processor. The Cortex-M3 Technical Reference Manual (TRM) and the ARMv7-M Architecture Appli-
cation Level Reference Manual already provide lots of information on this processor, but they are very
detailed and can be challenging for novice readers.

This book is intended to be a lighter read for programmers, embedded product designers, system-
on-chip (SoC) engineers, electronics enthusiasts, academic researchers, and others who are investigat-
ing the Cortex-M3 processor, with some experience of microcontrollers or microprocessors. The text
includes an introduction to the architecture, an instruction set summary, examples of some instruc-
tions, information on hardware features, and an overview of the processor’s advanced debug system. It
also provides application examples, including basic steps in software development for the Cortex-M3
processor using ARM tools as well as the Gnu’s Not Unix tool chain. This book is also suitable for
engineers who are migrating their software from ARM7TDMI to the Cortex-M3 processor because it
covers the differences between the two processors, and the porting of application software from the
ARM7TDMI to the Cortex-M3.
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Conventions

Various typographical conventions have been used in this book, as follows:

XX

Normal assembly program codes:
MOV RO, R1; Move data from Register R1 to Register RO

Assembly code in generalized syntax; items inside < > must be replaced by real register names:
MRS <reg>, <special_reg>

C program codes:
for (i=0;1<3;i++) { funcl(); }

Pseudocode:
if (a > b) {

Values:

1. 4’hC, 0x123 are both hexadecimal values

2. #3 indicates item number 3 (e.g., IRQ #3 means IRQ number 3)
3. #immed_12 refers to 12-bit immediate data

Register bits:
Typically used to illustrate a part of a value based on bit position; for example, bit[15:12] means
bit number 15 down to 12.

Register access types are as follows:

1. R is Read only

2. W is Write only

3. R/W is Read or Write accessible

4. R/Wc is Readable and clear by a Write access



Terms and Abbreviations

Abbreviation Meaning

ADK AMBA Design Kit

AHB Advanced High-Performance Bus

AHB-AP AHB Access Port

AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus

ARM ARM ARM Architecture Reference Manual

ASIC Application-specific integrated circuit

ATB Advanced Trace Bus

BES Byte-invariant big endian mode

CMSIS Cortex Microcontroller Software Interface Standard
CPI Cycles per instruction

CPU Central processing unit

CS3 CodeSourcery Common Start-up Code Sequence
DAP Debug Access Port

DSP Digital Signal Processor/Digital Signal Processing
DWT Data Watchpoint and Trace unit

EABI/ABI Embedded application binary interface

ETM Embedded Trace Macrocell

FPB Flash Patch and Breakpoint unit

FPGA Field Programmable Gate Array

FSR Fault status register

HTM CoreSight AHB Trace Macrocell

ICE In-circuit emulator

IDE Integrated Development Environment

IRQ Interrupt Request (normally refers to external interrupts)
ISA Instruction set architecture

ISR Interrupt Service Routine

I™ Instrumentation Trace Macrocell

JTAG Joint Test Action Group (a standard of test/debug interfaces)
JTAG-DP JTAG Debug Port

LR Link register

LSB Least Significant Bit

LSU Load/store unit

MCU Microcontroller Unit

MDK-ARM Keil Microcontroller Development Kit for ARM
MMU Memory management unit

MPU Memory Protection Unit

MSB Most Significant Bit

MSP Main Stack Pointer

NMI Nonmaskable interrupt

XXi



XXii

NVIC
(N
PC
PMU
PSP
PPB
PSR
SCB
SCS
SIMD
SoC
SP
SRPG
SW
SW-DP
SWI-DP
SWV
TCM
TPA
TPIU
TRM
UAL
UART
WIC

Terms and Abbreviations

Nested Vectored Interrupt Controller
Operating system

Program counter

Power management unit

Process Stack Pointer

Private Peripheral Bus

Program Status Register

System control block

System control space

Single Instruction, Multiple Data
System-on-Chip

Stack pointer

State retention power gating

Serial-Wire

Serial-Wire Debug Port

Serial-Wire JTAG Debug Port

Serial-Wire Viewer (an operation mode of TPIU)
Tightly coupled memory (Cortex-M1 feature)
Trace Port Analyzer

Trace Port Interface Unit

Technical Reference Manual

Unified Assembly Language

Universal Asynchronous Receiver Transmitter
Wakeup Interrupt Controller
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WHAT IS THE ARM CORTEX-M3 PROCESSOR?

The microcontroller market is vast, with more than 20 billion devices per year estimated to be shipped
in 2010. A bewildering array of vendors, devices, and architectures is competing in this market. The
requirement for higher performance microcontrollers has been driven globally by the industry’s chang-
ing needs; for example, microcontrollers are required to handle more work without increasing a prod-
uct’s frequency or power. In addition, microcontrollers are becoming increasingly connected, whether
by Universal Serial Bus (USB), Ethernet, or wireless radio, and hence, the processing needed to support
these communication channels and advanced peripherals are growing. Similarly, general application
complexity is on the increase, driven by more sophisticated user interfaces, multimedia requirements,
system speed, and convergence of functionalities.

The ARM Cortex™-M3 processor, the first of the Cortex generation of processors released by ARM
in 2006, was primarily designed to target the 32-bit microcontroller market. The Cortex-M3 processor
provides excellent performance at low gate count and comes with many new features previously avail-
able only in high-end processors. The Cortex-M3 addresses the requirements for the 32-bit embedded
processor market in the following ways:

* Greater performance efficiency: allowing more work to be done without increasing the frequency
or power requirements

* Low power consumption: enabling longer battery life, especially critical in portable products
including wireless networking applications

Copyright © 2010, Elsevier Inc. All rights reserved. 1
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» Enhanced determinism: guaranteeing that critical tasks and interrupts are serviced as quickly as
possible and in a known number of cycles

» Improved code density: ensuring that code fits in even the smallest memory footprints

» Ease of use: providing easier programmability and debugging for the growing number of 8-bit and
16-bit users migrating to 32 bits

» Lower cost solutions: reducing 32-bit-based system costs close to those of legacy 8-bit and 16-bit
devices and enabling low-end, 32-bit microcontrollers to be priced at less than US$1 for the first time

»  Wide choice of development tools: from low-cost or free compilers to full-featured development
suites from many development tool vendors

Microcontrollers based on the Cortex-M3 processor already compete head-on with devices based
on a wide variety of other architectures. Designers are increasingly looking at reducing the system cost,
as opposed to the traditional device cost. As such, organizations are implementing device aggregation,
whereby a single, more powerful device can potentially replace three or four traditional 8-bit devices.

Other cost savings can be achieved by improving the amount of code reuse across all systems.
Because Cortex-M3 processor-based microcontrollers can be easily programmed using the C language
and are based on a well-established architecture, application code can be ported and reused easily,
reducing development time and testing costs.

It is worthwhile highlighting that the Cortex-M3 processor is not the first ARM processor to be used
to create generic microcontrollers. The venerable ARM7 processor has been very successful in this
market, with partners such as NXP (Philips), Texas Instruments, Atmel, OKI, and many other vendors
delivering robust 32-bit Microcontroller Units (MCUs). The ARM7 is the most widely used 32-bit
embedded processor in history, with over 1 billion processors produced each year in a huge variety of
electronic products, from mobile phones to cars.

The Cortex-M3 processor builds on the success of the ARM?7 processor to deliver devices that are
significantly easier to program and debug and yet deliver a higher processing capability. Additionally,
the Cortex-M3 processor introduces a number of features and technologies that meet the specific
requirements of the microcontroller applications, such as nonmaskable interrupts for critical tasks,
highly deterministic nested vector interrupts, atomic bit manipulation, and an optional Memory Protec-
tion Unit (MPU). These factors make the Cortex-M3 processor attractive to existing ARM processor
users as well as many new users considering use of 32-bit MCUs in their products.

BACKGROUND OF ARM AND ARM ARCHITECTURE
A Brief History

To help you understand the variations of ARM processors and architecture versions, let’s look at a little
bit of ARM history.

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer,
Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor family,
and VLSI became the initial licensee. Subsequently, additional companies, including Texas Instru-
ments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor designs, extending the
applications of ARM processors into mobile phones, computer hard disks, personal digital assistants
(PDAs), home entertainment systems, and many other consumer products.
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THE CORTEX-M3 PROCESSOR VERSUS CORTEX-M3-BASED MCUs

The Cortex-M3 processor is the central processing unit (CPU) of a microcontroller chip. In addition, a

number of other components are required for the whole Cortex-M3 processor-based microcontroller. After chip
manufacturers license the Cortex-M3 processor, they can put the Cortex-M3 processor in their silicon designs,
adding memory, peripherals, input/output (I/0), and other features. Cortex-M3 processor-based chips from
different manufacturers will have different memory sizes, types, peripherals, and features. This book focuses on
the architecture of the processor core. For details about the rest of the chip, readers are advised to check the
particular chip manufacturer's documentation.

OO00O00000000000000070
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[ Cortex-M3 Debug || | ARM
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FIGURE 1.1

The Cortex-M3 Processor versus the Cortex-M3-Based MCU.

Nowadays, ARM partners ship in excess of 2 billion ARM processors each year. Unlike many
semiconductor companies, ARM does not manufacture processors or sell the chips directly. Instead,
ARM licenses the processor designs to business partners, including a majority of the world’s leading
semiconductor companies. Based on the ARM low-cost and power-efficient processor designs, these
partners create their processors, microcontrollers, and system-on-chip solutions. This business model
is commonly called intellectual property (IP) licensing.

In addition to processor designs, ARM also licenses systems-level IP and various software IPs.
To support these products, ARM has developed a strong base of development tools, hardware, and
software products to enable partners to develop their own products.

Architecture Versions

Over the years, ARM has continued to develop new processors and system blocks. These include the
popular ARM7TDMI processor and, more recently, the ARM1176TZ(F)-S processor, which is used
in high-end applications such as smart phones. The evolution of features and enhancements to the
processors over time has led to successive versions of the ARM architecture. Note that architecture
version numbers are independent from processor names. For example, the ARM7TDMI processor is
based on the ARMVAT architecture (the T is for Thumb® instruction mode support).
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The ARMVSE architecture was introduced with the ARMOE processor families, including the
ARM926E-S and ARM946E-S processors. This architecture added “Enhanced” Digital Signal
Processing (DSP) instructions for multimedia applications.

With the arrival of the ARM11 processor family, the architecture was extended to the ARMv6. New
features in this architecture included memory system features and Single Instruction—-Multiple Data
(SIMD) instructions. Processors based on the ARMv6 architecture include the ARM1136J(F)-S, the
ARMI1156T2(F)-S, and the ARM1176JZ(F)-S.

Following the introduction of the ARM11 family, it was decided that many of the new technologies,
such as the optimized Thumb-2 instruction set, were just as applicable to the lower cost markets of micro-
controller and automotive components. It was also decided that although the architecture needed to be con-
sistent from the lowest MCU to the highest performance application processor, there was a need to deliver
processor architectures that best fit applications, enabling very deterministic and low gate count processors
for cost-sensitive markets and feature-rich and high-performance ones for high-end applications.

Over the past several years, ARM extended its product portfolio by diversifying its CPU develop-
ment, which resulted in the architecture version 7 or v7. In this version, the architecture design is
divided into three profiles:

» The A profile is designed for high-performance open application platforms.

* The R profile is designed for high-end embedded systems in which real-time performance is
needed.

» The M profile is designed for deeply embedded microcontroller-type systems.

Let’s look at these profiles in a bit more detail:

* A Profile (ARMv7-A): Application processors which are designed to handle complex applications
such as high-end embedded operating systems (OSs) (e.g., Symbian, Linux, and Windows
Embedded). These processors requiring the highest processing power, virtual memory system
support with memory management units (MMUs), and, optionally, enhanced Java support and a
secure program execution environment. Example products include high-end mobile phones and
electronic wallets for financial transactions.

* R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at the higher end
of the real-time' market—those applications, such as high-end breaking systems and hard drive
controllers, in which high processing power and high reliability are essential and for which low
latency is important.

* M Profile (ARMv7-M): Processors targeting low-cost applications in which processing efficiency is
important and cost, power consumption, low interrupt latency, and ease of use are critical, as well
as industrial control applications, including real-time control systems.

The Cortex processor families are the first products developed on architecture v7, and the Cortex-M3
processor is based on one profile of the v7 architecture, called ARM v7-M, an architecture specification
for microcontroller products.

""There is always great debate as to whether we can have a “real-time” system using general processors. By definition, “real
time” means that the system can get a response within a guaranteed period. In any processor-based system, you may or may
not be able to get this response due to choice of OS, interrupt latency, or memory latency, as well as if the CPU is running a
higher priority interrupt.
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FIGURE 1.2
The Evolution of ARM Processor Architecture.

This book focuses on the Cortex-M3 processor, but it is only one of the Cortex product families
that use the ARMv7 architecture. Other Cortex family processors include the Cortex-A8 (application
processor), which is based on the ARMv7-A profile, and the Cortex-R4 (real-time processor), which is
based on the ARMv7-R profile (see Figure 1.2).

The details of the ARMv7-M architecture are documented in The ARMv7-M Architecture Applica-
tion Level Reference Manual [Ref. 2]. This document can be obtained via the ARM web site through a
simple registration process. The ARMv7-M architecture contains the following key areas:

* Programmer’s model
* Instruction set

*  Memory model

* Debug architecture

Processor-specific information, such as interface details and timing, is documented in the Cortex-
M3 Technical Reference Manual (TRM) [Ref. 1]. This manual can be accessed freely on the ARM web
site. The Cortex-M3 TRM also covers a number of implementation details not covered by the architec-
ture specifications, such as the list of supported instructions, because some of the instructions covered
in the ARMv7-M architecture specification are optional on ARMv7-M devices.

Processor Naming

Traditionally, ARM used a numbering scheme to name processors. In the early days (the 1990s), suffixes
were also used to indicate features on the processors. For example, with the ARM7TDMI processor, the
T indicates Thumb instruction support, D indicates JTAG debugging, M indicates fast multiplier, and
I indicates an embedded ICE module. Subsequently, it was decided that these features should become
standard features of future ARM processors; therefore, these suffixes are no longer added to the new
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processor family names. Instead, variations on memory interface, cache, and tightly coupled memory
(TCM) have created a new scheme for processor naming.

For example, ARM processors with cache and MMUs are now given the suffix “26” or “36,”
whereas processors with MPUs are given the suffix “46” (e.g., ARM946E-S). In addition, other suf-
fixes are added to indicate synthesizable? (S) and Jazelle (J) technology. Table 1.1 presents a summary
of processor names.

With version 7 of the architecture, ARM has migrated away from these complex numbering schemes
that needed to be decoded, moving to a consistent naming for families of processors, with Cortex its
initial brand. In addition to illustrating the compatibility across processors, this system removes confu-
sion between architectural version and processor family number; for example, the ARM7TDMI is not
a v7 processor but was based on the v4T architecture.

Table 1.1 ARM Processor Names
Memory Management
Processor Name Architecture Version Features Other Features
ARM7TDMI ARMvAT
ARM7TDMI-S ARMvAT
ARM7EJ-S ARMV5E DSP, Jazelle
ARM920T ARMvAT MMU
ARMO22T ARMvAT MMU
ARMO26EJ-S ARMV5E MMU DSP, Jazelle
ARMO946E-S ARMVSE MPU DSP
ARMOI66E-S ARMVSE DSP
ARMO968E-S ARMV5SE DMA, DSP
ARMO966HS ARMV5E MPU (optional) DSP
ARM1020E ARMVSE MMU DSP
ARM1022E ARMVSE MMU DSP
ARM1026EJ-S ARMV5E MMU or MPU DSP, Jazelle
ARM1136J(F)-S ARMv6 MMU DSP, Jazelle
ARM1176JZ(F)-S ARMVG MMU + TrustZone DSP, Jazelle
ARM11 MPCore ARMv6E MMU + multiprocessor cache DSP, Jazelle
support
ARM1156T2(F)-S ARMv6 MPU DSP
Cortex-M0O ARMV6-M NVIC
Cortex-M1 ARMvB-M FPGA TCM interface NVIC
Cortex-M3 ARMvV7-M MPU (optional) NVIC

2A synthesizable core design is available in the form of a hardware description language (HDL) such as Verilog or VHDL
and can be converted into a design netlist using synthesis software.
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Table 1.1 ARM Processor Names Continued
Memory Management
Processor Name Architecture Version Features Other Features
Cortex-R4 ARMV7-R MPU DSP
Cortex-R4F ARMV7-R MPU DSP + Floating
point
Cortex-A8 ARMV7-A MMU + TrustZone DSP, Jazelle,
NEON + floating
point
Cortex-A9 ARMV7-A MMU + TrustZone + DSP, Jazelle,
multiprocessor NEON + floating
point
v4 v4T v5 Vv5E v6 v7
SIMD, v6
Enhanced memory
) DSE support
instructions added
ARM added
Thumb-2
technology
Thumb introduced
Thumb instructions
introduced

Architecture development

FIGURE 1.3
Instruction Set Enhancement.

INSTRUCTION SET DEVELOPMENT

Enhancement and extension of instruction sets used by the ARM processors has been one of the key
driving forces of the architecture’s evolution (see Figure 1.3).

Historically (since ARM7TDMI), two different instruction sets are supported on the ARM processor:
the ARM instructions that are 32 bits and Thumb instructions that are 16 bits. During program execution,
the processor can be dynamically switched between the ARM state and the Thumb state to use either
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one of the instruction sets. The Thumb instruction set provides only a subset of the ARM instructions,
but it can provide higher code density. It is useful for products with tight memory requirements.

As the architecture version has been updated, extra instructions have been added to both ARM
instructions and Thumb instructions. Appendix B provides some information on the change of Thumb
instructions during the architecture enhancements. In 2003, ARM announced the Thumb-2 instruction
set, which is a new superset of Thumb instructions that contains both 16-bit and 32-bit instructions.

The details of the instruction set are provided in a document called The ARM Architecture Reference Man-
ual (also known as the ARM ARM). This manual has been updated for the ARMvVS architecture, the ARMv6
architecture, and the ARMV7 architecture. For the ARMv7 architecture, due to its growth into different pro-
files, the specification is also split into different documents. For the Cortex-M3 instruction set, the complete
details are specified in the ARM v7-M Architecture Application Level Reference Manual [Ref. 2]. Appendix A
of this book also covers information regarding instruction sets required for software development.

THE THUMB-2 TECHNOLOGY AND INSTRUCTION
SET ARCHITECTURE

The Thumb-2? technology extended the Thumb Instruction Set Architecture (ISA) into a highly efficient
and powerful instruction set that delivers significant benefits in terms of ease of use, code size, and per-
formance (see Figure 1.4). The extended instruction set in Thumb-2 is a superset of the previous 16-bit
Thumb instruction set, with additional 16-bit instructions alongside 32-bit instructions. It allows more
complex operations to be carried out in the Thumb state, thus allowing higher efficiency by reducing
the number of states switching between ARM state and Thumb state.

Focused on small memory system devices such as microcontrollers and reducing the size of the proces-
sor, the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) instruction set. Instead of using
ARM instructions for some operations, as in traditional ARM processors, it uses the Thumb-2 instruction
set for all operations. As a result, the Cortex-M3 processor is not backward compatible with traditional

Thumb-2 technology
32-bit and 16-bit
Thumb instruction set

ARMv7-M
architecture

Thumb
instructions
(16 bits)

FIGURE 1.4
The Relationship between the Thumb Instruction Set in Thumb-2 Technology and the Traditional Thumb.

3 Thumb and Thumb-2 are registered trademarks of ARM.
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ARM processors. That is, you cannot run a binary image for ARM7 processors on the Cortex-M3 processor.
Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit Thumb instructions, including all
16-bit Thumb instructions supported on ARM?7 family processors, making application porting easy.

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there is no need
to switch the processor between Thumb state (16-bit instructions) and ARM state (32-bit instructions).
For example, in ARM7 or ARM9 family processors, you might need to switch to ARM state if you want
to carry out complex calculations or a large number of conditional operations and good performance is
needed, whereas in the Cortex-M3 processor, you can mix 32-bit instructions with 16-bit instructions
without switching state, getting high code density and high performance with no extra complexity.

The Thumb-2 instruction set is a very important feature of the ARMv7 architecture. Compared
with the instructions supported on ARM7 family processors (ARMv4T architecture), the Cortex-M3
processor instruction set has a large number of new features. For the first time, hardware divide instruc-
tion is available on an ARM processor, and a number of multiply instructions are also available on the
Cortex-M3 processor to improve data-crunching performance. The Cortex-M3 processor also supports
unaligned data accesses, a feature previously available only in high-end processors.

CORTEX-M3 PROCESSOR APPLICATIONS

With its high performance and high code density and small silicon footprint, the Cortex-M3 processor
is ideal for a wide variety of applications:

*  Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost microcontrollers,
which are commonly used in consumer products, from toys to electrical appliances. It is a highly
competitive market due to the many well-known 8-bit and 16-bit microcontroller products on
the market. Its lower power, high performance, and ease-of-use advantages enable embedded
developers to migrate to 32-bit systems and develop products with the ARM architecture.

* Automotive: Another ideal application for the Cortex-M3 processor is in the automotive industry.
The Cortex-M3 processor has very high-performance efficiency and low interrupt latency, allowing
it to be used in real-time systems. The Cortex-M3 processor supports up to 240 external vectored
interrupts, with a built-in interrupt controller with nested interrupt supports and an optional MPU,
making it ideal for highly integrated and cost-sensitive automotive applications.

* Data communications: The processor’s low power and high efficiency, coupled with instructions
in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for many communications
applications, such as Bluetooth and ZigBee.

* Industrial control: In industrial control applications, simplicity, fast response, and reliability are
key factors. Again, the Cortex-M3 processor’s interrupt feature, low interrupt latency, and enhanced
fault-handling features make it a strong candidate in this area.

*  Consumer products: In many consumer products, a high-performance microprocessor (or several of
them) is used. The Cortex-M3 processor, being a small processor, is highly efficient and low in power and
supports an MPU enabling complex software to execute while providing robust memory protection.

There are already many Cortex-M3 processor-based products on the market, including low-end
products priced as low as US$1, making the cost of ARM microcontrollers comparable to or lower than
that of many 8-bit microcontrollers.
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CHAPTER 1 Introduction

ORGANIZATION OF THIS BOOK

This book contains a general overview of the Cortex-M3 processor, with the rest of the contents divided
into a number of sections:

Chapters 1 and 2, Introduction and Overview of the Cortex-M3
Chapters 3 through 6, Cortex-M3 Basics

Chapters 7 through 9, Exceptions and Interrupts

Chapters 10 and 11, Cortex-M3 Programming

Chapters 12 through 14, Cortex-M3 Hardware Features

Chapters 15 and 16, Debug Supports in Cortex-M3

Chapters 17 through 21, Application Development with Cortex-M3
Appendices

FURTHER READING

This book does not contain all the technical details on the Cortex-M3 processor. It is intended to
be a starter guide for people who are new to the Cortex-M3 processor and a supplemental reference

for
pro

people using Cortex-M3 processor-based microcontrollers. To get further detail on the Cortex-M3
cessor, the following documents, available from ARM (www.arm.com) and ARM partner web sites,

should cover most necessary details:

The Cortex-M3 Technical Reference Manual (TRM) [Ref. 1] provides detailed information about
the processor, including programmer’s model, memory map, and instruction timing.

The ARMv7-M Architecture Application Level Reference Manual [Ref. 2] contains detailed
information about the instruction set and the memory model.

Refer to datasheets for the Cortex-M3 processor-based microcontroller products; visit the manufacturer
web site for the datasheets on the Cortex-M3 processor-based product you plan to use.

Cortex-M3 User Guides are available from MCU vendors. In some cases, this user guide is available
as a part of a complete microcontroller product manual. This document contains a programmer’s
model for the ARM Cortex-M3 processor, and instruction set details, and is customized by each
MCU vendors to match their microcontroller implementations.

Refer to AMBA Specification 2.0 [Ref. 4] for more detail regarding internal AMBA interface bus
protocol details.

C programming tips for Cortex-M3 can be found in the ARM Application Note 179: Cortex-M3
Embedded Software Development [Ref. 7].

This book assumes that you already have some knowledge of and experience with embedded

programming, preferably using ARM processors. If you are a manager or a student who wants to learn

the

basics without spending too much time reading the whole book or the TRM, Chapter 2 of this book

is a good one to read because it provides a summary on the Cortex-M3 processor.
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FUNDAMENTALS

The Cortex™-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register bank, and 32-bit
memory interfaces (see Figure 2.1). The processor has a Harvard architecture, which means that it has
a separate instruction bus and data bus. This allows instructions and data accesses to take place at the
same time, and as a result of this, the performance of the processor increases because data accesses do
not affect the instruction pipeline. This feature results in multiple bus interfaces on Cortex-M3, each
with optimized usage and the ability to be used simultaneously. However, the instruction and data
buses share the same memory space (a unified memory system). In other words, you cannot get 8§ GB
of memory space just because you have separate bus interfaces.

For complex applications that require more memory system features, the Cortex-M3 processor has
an optional Memory Protection Unit (MPU), and it is possible to use an external cache if it’s required.
Both little endian and big endian memory systems are supported.

The Cortex-M3 processor includes a number of fixed internal debugging components. These
components provide debugging operation supports and features, such as breakpoints and watchpoints.

Copyright © 2010, Elsevier Inc. All rights reserved. 1 1
DOI: 10.1016/B978-1-85617-963-8.00005-3
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FIGURE 2.1
A Simplified View of the Cortex-M3.

In addition, optional components provide debugging features, such as instruction trace, and various
types of debugging interfaces.

REGISTERS

The Cortex-M3 processor has registers RO through R15 (see Figure 2.2). R13 (the stack pointer) is
banked, with only one copy of the R13 visible at a time.

RO-R12: General-Purpose Registers

RO-R12 are 32-bit general-purpose registers for data operations. Some 16-bit Thumb® instructions can
only access a subset of these registers (low registers, RO-R7).

R13: Stack Pointers

The Cortex-M3 contains two stack pointers (R13). They are banked so that only one is visible at a time.
The two stack pointers are as follows:

*  Main Stack Pointer (MSP): The default stack pointer, used by the operating system (OS) kernel
and exception handlers
* Process Stack Pointer (PSP): Used by user application code

The lowest 2 bits of the stack pointers are always 0, which means they are always word aligned.
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Registers in the Cortex-M3.

R14: The Link Register

When a subroutine is called, the return address is stored in the link register.

R15: The Program Counter

The program counter is the current program address. This register can be written to control the
program flow.

Special Registers

The Cortex-M3 processor also has a number of special registers (see Figure 2.3). They are as

follows:

Program Status registers (PSRs)
Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)
Control register (CONTROL)

be used for normal data processing (see Table 2.1).

These registers have special functions and can be accessed only by special instructions. They cannot
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_/
FIGURE 2.3
Special Registers in the Cortex-M3.
Table 2.1 Special Registers and Their Functions
Register Function
xPSR Provide arithmetic and logic processing flags (zero flag and carry flag),
execution status, and current executing interrupt number

PRIMASK Disable all interrupts except the nonmaskable interrupt (NMI) and hard fault
FAULTMASK Disable all interrupts except the NMI
BASEPRI Disable all interrupts of specific priority level or lower priority level
CONTROL Define privileged status and stack pointer selection
For more information on these registers, see Chapter 3.

OPERATION MODES

The Cortex-M3 processor has two modes and two privilege levels. The operation modes (thread mode
and handler mode) determine whether the processor is running a normal program or running an excep-
tion handler like an interrupt handler or system exception handler (see Figure 2.4). The privilege levels
(privileged level and user level) provide a mechanism for safeguarding memory accesses to critical
regions as well as providing a basic security model.

When the processor is running a main program (thread mode), it can be either in a privileged state
or a user state, but exception handlers can only be in a privileged state. When the processor exits reset,
it is in thread mode, with privileged access rights. In the privileged state, a program has access to all
memory ranges (except when prohibited by MPU settings) and can use all supported instructions.

Software in the privileged access level can switch the program into the user access level using the
control register. When an exception takes place, the processor will always switch back to the privileged
state and return to the previous state when exiting the exception handler. A user program cannot change
back to the privileged state by writing to the control register (see Figure 2.5). It has to go through an
exception handler that programs the control register to switch the processor back into the privileged
access level when returning to thread mode.

The separation of privilege and user levels improves system reliability by preventing system config-
uration registers from being accessed or changed by some untrusted programs. If an MPU is available,
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Allowed Operation Mode Transitions.

it can be used in conjunction with privilege levels to protect critical memory locations, such as pro-
grams and data for OSs.

For example, with privileged accesses, usually used by the OS kernel, all memory locations can be
accessed (unless prohibited by MPU setup). When the OS launches a user application, it is likely to be exe-
cuted in the user access level to protect the system from failing due to a crash of untrusted user programs.

THE BUILT-IN NESTED VECTORED INTERRUPT CONTROLLER

The Cortex-M3 processor includes an interrupt controller called the Nested Vectored Interrupt Control-
ler (NVIC). It is closely coupled to the processor core and provides a number of features as follows:

* Nested interrupt support

* Vectored interrupt support

* Dynamic priority changes support
* Reduction of interrupt latency

* Interrupt masking

Nested Interrupt Support

The NVIC provides nested interrupt support. All the external interrupts and most of the system excep-
tions can be programmed to different priority levels. When an interrupt occurs, the NVIC compares
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the priority of this interrupt to the current running priority level. If the priority of the new interrupt is
higher than the current level, the interrupt handler of the new interrupt will override the current run-
ning task.

Vectored Interrupt Support

The Cortex-M3 processor has vectored interrupt support. When an interrupt is accepted, the starting
address of the interrupt service routine (ISR) is located from a vector table in memory. There is no need
to use software to determine and branch to the starting address of the ISR. Thus, it takes less time to
process the interrupt request.

Dynamic Priority Changes Support
Priority levels of interrupts can be changed by software during run time. Interrupts that are being ser-

viced are blocked from further activation until the ISR is completed, so their priority can be changed
without risk of accidental reentry.

Reduction of Interrupt Latency

The Cortex-M3 processor also includes a number of advanced features to lower the interrupt latency.
These include automatic saving and restoring some register contents, reducing delay in switching from
one ISR to another, and handling of late arrival interrupts. Details of these optimization features are
covered in Chapter 9.

Interrupt Masking

Interrupts and system exceptions can be masked based on their priority level or masked completely
using the interrupt masking registers BASEPRI, PRIMASK, and FAULTMASK. They can be used to
ensure that time-critical tasks can be finished on time without being interrupted.

THE MEMORY MAP

The Cortex-M3 has a predefined memory map. This allows the built-in peripherals, such as the inter-
rupt controller and the debug components, to be accessed by simple memory access instructions. Thus,
most system features are accessible in C program code. The predefined memory map also allows the
Cortex-M3 processor to be highly optimized for speed and ease of integration in system-on-a-chip
(SoC) designs.

Overall, the 4 GB memory space can be divided into ranges as shown in Figure 2.6.

The Cortex-M3 design has an internal bus infrastructure optimized for this memory usage. In addi-
tion, the design allows these regions to be used differently. For example, data memory can still be put
into the CODE region, and program code can be executed from an external Random Access Memory
(RAM) region.
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FIGURE 2.6
The Cortex-M3 Memory Map.

The system-level memory region contains the interrupt controller and the debug components. These
devices have fixed addresses, detailed in Chapter 5. By having fixed addresses for these peripherals,
you can port applications between different Cortex-M3 products much more easily.

THE BUS INTERFACE

There are several bus interfaces on the Cortex-M3 processor. They allow the Cortex-M3 to carry instruc-
tion fetches and data accesses at the same time. The main bus interfaces are as follows:

* Code memory buses
e System bus
* Private peripheral bus

The code memory region access is carried out on the code memory buses, which physically consist
of two buses, one called I-Code and other called D-Code. These are optimized for instruction fetches
for best instruction execution speed.

The system bus is used to access memory and peripherals. This provides access to the Static Ran-
dom Access Memory (SRAM), peripherals, external RAM, external devices, and part of the system-
level memory regions.
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The private peripheral bus provides access to a part of the system-level memory dedicated to private
peripherals, such as debugging components.

THE MPU

The Cortex-M3 has an optional MPU. This unit allows access rules to be set up for privileged access
and user program access. When an access rule is violated, a fault exception is generated, and the fault
exception handler will be able to analyze the problem and correct it, if possible.

The MPU can be used in various ways. In common scenarios, the OS can set up the MPU to protect
data use by the OS kernel and other privileged processes to be protected from untrusted user programs.
The MPU can also be used to make memory regions read-only, to prevent accidental erasing of data or
to isolate memory regions between different tasks in a multitasking system. Overall, it can help make
embedded systems more robust and reliable.

The MPU feature is optional and is determined during the implementation stage of the microcon-
troller or SoC design. For more information on the MPU, refer to Chapter 13.

THE INSTRUCTION SET

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important features of the
Cortex-M3 processor because it allows 32-bit instructions and 16-bit instructions to be used together
for high code density and high efficiency. It is flexible and powerful yet easy to use.

In previous ARM processors, the central processing unit (CPU) had two operation states: a 32-bit
ARM state and a 16-bit Thumb state. In the ARM state, the instructions are 32 bits and can execute all
supported instructions with very high performance. In the Thumb state, the instructions are 16 bits, so
there is a much higher instruction code density, but the Thumb state does not have all the functionality
of ARM instructions and may require more instructions to complete certain types of operations.

To get the best of both worlds, many applications have mixed ARM and Thumb codes. However, the
mixed-code arrangement does not always work best. There is overhead (in terms of both execution time
and instruction space, see Figure 2.7) to switch between the states, and ARM and Thumb codes might
need to be compiled separately in different files. This increases the complexity of software develop-
ment and reduces maximum efficiency of the CPU core.

With the introduction of the Thumb-2 instruction set, it is now possible to handle all process-
ing requirements in one operation state. There is no need to switch between the two. In fact, the
Cortex-M3 does not support the ARM code. Even interrupts are now handled with the Thumb state.
(Previously, the ARM core entered interrupt handlers in the ARM state.) Since there is no need to
switch between states, the Cortex-M3 processor has a number of advantages over traditional ARM
processors, such as:

* No state switching overhead, saving both execution time and instruction space

* No need to separate ARM code and Thumb code source files, making software development and
maintenance easier

» It’s easier to get the best efficiency and performance, in turn making it easier to write software,
because there is no need to worry about switching code between ARM and Thumb to try to get the
best density/performance
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Switching between ARM Code and Thumb Code in Traditional ARM Processors Such as the ARM7.

The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a few
examples:

e UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions

* UDIV and SDIV: Unsigned and signed divide instructions

» WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event; these allow the
processor to enter sleep mode and to handle task synchronization on multiprocessor systems

*  MSR and MRS: Move to special register from general-purpose register and move special register to
general-purpose register; for access to the special registers

Since the Cortex-M3 processor supports the Thumb-2 instruction set only, existing program code
for ARM needs to be ported to the new architecture. Most C applications simply need to be recompiled
using new compilers that support the Cortex-M3. Some assembler codes need modification and porting
to use the new architecture and the new unified assembler framework.

Note that not all the instructions in the Thumb-2 instruction set are implemented on the Cortex-M3.
The ARMv7-M Architecture Application Level Reference Manual [Ref. 2] only requires a subset of the
Thumb-2 instructions to be implemented. For example, coprocessor instructions are not supported on
the Cortex-M3 (external data processing engines can be added), and Single Instruction—-Multiple Data
(SIMD) is not implemented on the Cortex-M3. In addition, a few Thumb instructions are not supported,
such as Branch with Link and Exchange (BLX) with immediate (used to switch processor state from
Thumb to ARM), a couple of change process state (CPS) instructions, and the SETEND (Set Endian)
instructions, which were introduced in architecture v6. For a complete list of supported instructions,
refer to Appendix A.

INTERRUPTS AND EXCEPTIONS

The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-M architec-
ture. This exception model differs from the traditional ARM exception model, enabling very efficient
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exception handling. It has a number of system exceptions plus a number of external Interrupt Request
(IRQs) (external interrupt inputs). There is no fast interrupt (FIQ) (fast interrupt in ARM7/ARMY/
ARM10/ARM11) in the Cortex-M3; however, interrupt priority handling and nested interrupt support
are now included in the interrupt architecture. Therefore, it is easy to set up a system that supports
nested interrupts (a higher-priority interrupt can override or preempt a lower-priority interrupt handler)
and that behaves just like the FIQ in traditional ARM processors.

The interrupt features in the Cortex-M3 are implemented in the NVIC. Aside from supporting exter-
nal interrupts, the Cortex-M3 also supports a number of internal exception sources, such as system
fault handling. As a result, the Cortex-M3 has a number of predefined exception types, as shown in
Table 2.2.

Low Power and High Energy Efficiency

The Cortex-M3 processor is designed with various features to allow designers to develop low power
and high energy efficient products. First, it has sleep mode and deep sleep mode supports, which can
work with various system-design methodologies to reduce power consumption during idle period.

Table 2.2 Cortex-M3 Exception Types

Exception Priority (Default to

Number Exception Type 0 if Programmable) Description

0 NA NA No exception running

1 Reset -3 (Highest) Reset

2 NMI -2 NMI (external NMI input)

3 Hard fault -1 Al fault conditions, if the corresponding
fault handler is not enabled

4 MemManage fault Programmable Memory management fault; MPU
violation or access to illegal locations

5 Bus fault Programmable Bus error (prefetch abort or data abort)

6 Usage fault Programmable Program error

7-10 Reserved NA Reserved

11 SVCall Programmable Supervisor call

12 Debug monitor Programmable Debug monitor (break points,
watchpoints, or external debug request)

13 Reserved NA Reserved

14 PendSV Programmable Pendable request for system service

15 SYSTICK Programmable System tick timer

16 IRQ #0 Programmable External interrupt #0

17 IRQ #1 Programmable External interrupt #1

255 IRQ #239 Programmable External interrupt #239

The number of external interrupt inputs is defined by chip manufacturers. A maximum of 240 external interrupt inputs can

be supported. In addition, the Cortex-M3 also has an NMI interrupt input. When it is asserted, the NMI-ISR is executed

unconditionally.
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Second, its low gate count and design techniques reduce circuit activities in the processor to allow
active power to be reduced. In addition, since Cortex-M3 has high code density, it has lowered the
program size requirement. At the same time, it allows processing tasks to be completed in a short time,
so that the processor can return to sleep modes as soon as possible to cut down energy use. As a result,
the energy efficiency of Cortex-M3 is better than many 8-bit or 16-bit microcontrollers.

Starting from Cortex-M3 revision 2, a new feature called Wakeup Interrupt Controller (WIC) is
available. This feature allows the whole processor core to be powered down, while processor states are
retained and the processor can be returned to active state almost immediately when an interrupt takes
place. This makes the Cortex-M3 even more suitable for many ultra-low power applications that previ-
ously could only be implemented with 8-bit or 16-bit microcontrollers.

DEBUGGING SUPPORT

The Cortex-M3 processor includes a number of debugging features, such as program execution con-
trols, including halting and stepping, instruction breakpoints, data watchpoints, registers and memory
accesses, profiling, and traces.

The debugging hardware of the Cortex-M3 processor is based on the CoreSight™ architecture.
Unlike traditional ARM processors, the CPU core itself does not have a Joint Test Action Group (JTAG)
interface. Instead, a debug interface module is decoupled from the core, and a bus interface called the
Debug Access Port (DAP) is provided at the core level. Through this bus interface, external debuggers
can access control registers to debug hardware as well as system memory, even when the processor is
running. The control of this bus interface is carried out by a Debug Port (DP) device. The DPs currently
available are the Serial-Wire JTAG Debug Port (SWJ-DP) (supports the traditional JTAG protocol as
well as the Serial-Wire protocol) or the SW-DP (supports the Serial-Wire protocol only). A JTAG-DP
module from the ARM CoreSight product family can also be used. Chip manufacturers can choose to
attach one of these DP modules to provide the debug interface.

Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to allow instruction
trace. Trace information is output via the Trace Port Interface Unit (TPIU), and the debug host (usually
a Personal Computer [PC]) can then collect the executed instruction information via external trace-
capturing hardware.

Within the Cortex-M3 processor, a number of events can be used to trigger debug actions. Debug
events can be breakpoints, watchpoints, fault conditions, or external debugging request input signals.
When a debug event takes place, the Cortex-M3 processor can either enter halt mode or execute the
debug monitor exception handler.

The data watchpoint function is provided by a Data Watchpoint and Trace (DWT) unit in the
Cortex-M3 processor. This can be used to stop the processor (or trigger the debug monitor excep-
tion routine) or to generate data trace information. When data trace is used, the traced data can be
output via the TPIU. (In the CoreSight architecture, multiple trace devices can share one single
trace port.)

In addition to these basic debugging features, the Cortex-M3 processor also provides a Flash Patch
and Breakpoint (FPB) unit that can provide a simple breakpoint function or remap an instruction access
from Flash to a different location in SRAM.
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An Instrumentation Trace Macrocell (ITM) provides a new way for developers to output data to a
debugger. By writing data to register memory in the ITM, a debugger can collect the data via a trace
interface and display or process them. This method is easy to use and faster than JTAG output.

All these debugging components are controlled via the DAP interface bus on the Cortex-M3 or by a
program running on the processor core, and all trace information is accessible from the TPIU.

CHARACTERISTICS SUMMARY

Why is the Cortex-M3 processor such a revolutionary product? What are the advantages of using the
Cortex-M3? The benefits and advantages are summarized in this section.

High Performance

The Cortex-M3 processor delivers high performance in microcontroller products:

* Many instructions, including multiply, are single cycle. Therefore, the Cortex-M3 processor
outperforms most microcontroller products.

e Separate data and instruction buses allow simultaneous data and instruction accesses to be
performed.

* The Thumb-2 instruction set makes state switching overhead history. There’s no need to spend time
switching between the ARM state (32 bits) and the Thumb state (16 bits), so instruction cycles and
program size are reduced. This feature has also simplified software development, allowing faster
time to market, and easier code maintenance.

* The Thumb-2 instruction set provides extra flexibility in programming. Many data operations can
now be simplified using shorter code. This also means that the Cortex-M3 has higher code density
and reduced memory requirements.

* Instruction fetches are 32 bits. Up to two instructions can be fetched in one cycle. As a result,
there’s more available bandwidth for data transfer.

* The Cortex-M3 design allows microcontroller products to operate at high clock frequency (over
100 MHz in modern semiconductor manufacturing processes). Even running at the same frequency
as most other microcontroller products, the Cortex-M3 has a better clock per instruction (CPI)
ratio. This allows more work per MHz or designs can run at lower clock frequency for lower power
consumption.

Advanced Interrupt-Handling Features

The interrupt features on the Cortex-M3 processor are easy to use, very flexible, and provide high inter-
rupt processing throughput:

* The built-in NVIC supports up to 240 external interrupt inputs. The vectored interrupt feature
considerably reduces interrupt latency because there is no need to use software to determine which
IRQ handler to serve. In addition, there is no need to have software code to set up nested interrupt
support.
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* The Cortex-M3 processor automatically pushes registers RO-R3, R12, Link register (LR), PSR,
and PC in the stack at interrupt entry and pops them back at interrupt exit. This reduces the IRQ
handling latency and allows interrupt handlers to be normal C functions (as explained later in
Chapter 8).

* Interrupt arrangement is extremely flexible because the NVIC has programmable interrupt priority
control for each interrupt. A minimum of eight levels of priority are supported, and the priority can
be changed dynamically.

* Interrupt latency is reduced by special optimization, including late arrival interrupt acceptance and
tail-chain interrupt entry.

* Some of the multicycle operations, including Load-Multiple (LDM), Store-Multiple (STM),
PUSH, and POP, are now interruptible.

*  On receipt of an NMI request, immediate execution of the NMI handler is guaranteed unless the
system is completely locked up. NMI is very important for many safety-critical applications.

Low Power Consumption

The Cortex-M3 processor is suitable for various low-power applications:

* The Cortex-M3 processor is suitable for low-power designs because of the low gate count.

* It has power-saving mode support (SLEEPING and SLEEPDEEP). The processor can enter sleep
mode using WFI or WFE instructions. The design has separated clocks for essential blocks, so
clocking circuits for most parts of the processor can be stopped during sleep.

* The fully static, synchronous, synthesizable design makes the processor easy to be manufactured
using any low power or standard semiconductor process technology.

System Features

The Cortex-M3 processor provides various system features making it suitable for a large number of
applications:

* The system provides bit-band operation, byte-invariant big endian mode, and unaligned data access
support.

* Advanced fault-handling features include various exception types and fault status registers, making
it easier to locate problems.

*  With the shadowed stack pointer, stack memory of kernel and user processes can be isolated. With the
optional MPU, the processor is more than sufficient to develop robust software and reliable products.

Debug Supports

The Cortex-M3 processor includes comprehensive debug features to help software developers design
their products:

* Supports JTAG or Serial-Wire debug interfaces
* Based on the CoreSight debugging solution, processor status or memory contents can be accessed
even when the core is running
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Built-in support for six breakpoints and four watchpoints

Optional ETM for instruction trace and data trace using DWT

New debugging features, including fault status registers, new fault exceptions, and Flash Patch
operations, make debugging much easier

ITM provides an easy-to-use method to output debug information from test code

PC sampler and counters inside the DWT provide code-profiling information
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REGISTERS

As we’ve seen, the Cortex™-M3 processor has registers RO through R15 and a number of special
registers. RO through R12 are general purpose, but some of the 16-bit Thumb® instructions can only
access RO through R7 (low registers), whereas 32-bit Thumb-2 instructions can access all these reg-
isters. Special registers have predefined functions and can only be accessed by special register access
instructions.

General Purpose Registers RO through R7
The RO through R7 general purpose registers are also called low registers. They can be accessed by all
16-bit Thumb instructions and all 32-bit Thumb-2 instructions. They are all 32 bits; the reset value is
unpredictable.

General Purpose Registers R8 through R12

The R8 through R12 registers are also called high registers. They are accessible by all Thumb-2
instructions but not by all 16-bit Thumb instructions. These registers are all 32 bits; the reset value is
unpredictable (see Figure 3.1).

Copyright © 2010, Elsevier Inc. All rights reserved. 2 5
DOI: 10.1016/B978-1-85617-963-8.00006-5
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FIGURE 3.1
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Registers in the Cortex-M3.

Stack Pointer R13

R13 is the stack pointer (SP). In the Cortex-M3 processor, there are two SPs. This duality allows two
separate stack memories to be set up. When using the register name R13, you can only access the cur-
rent SP; the other one is inaccessible unless you use special instructions to move to special register from
general-purpose register (MSR) and move special register to general-purpose register (MRS). The two

SPs are as follows:

e Main Stack Pointer (MSP) or SP_main in ARM documentation: This is the default SP; it is used
by the operating system (OS) kernel, exception handlers, and all application codes that require

privileged access.

* Process Stack Pointer (PSP) or SP_process in ARM documentation: This is used by the base-level

application code (when not running an exception handler).
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STACK PUSH AND POP

Stack is a memory usage model. It is simply part of the system memory, and a pointer register (inside the
processor) is used to make it work as a first-in/last-out buffer. The common use of a stack is to save register
contents before some data processing and then restore those contents from the stack after the processing task
is done.

Stack PUSH operation to Stack POP operation to

back up register contents restore register contents
i i Register
Register contents
contents restored

Data processing
(original register
contents destroyed)

a=reN:
1

Memory

POP

—_

<
C
(2]}
T

|
______ J

I

Memory

FIGURE 3.2
Basic Concept of Stack Memory.

When doing PUSH and POP operations, the pointer register, commonly called stack pointer, is adjusted
automatically to prevent next stack operations from corrupting previous stacked data. More details on stack
operations are provided on later part of this chapter.

It is not necessary to use both SPs. Simple applications can rely purely on the MSP. The SPs are used
for accessing stack memory processes such as PUSH and POP.

In the Cortex-M3, the instructions for accessing stack memory are PUSH and POP. The assembly
language syntax is as follows (text after each semicolon [;] is a comment):

PUSH {RO} ; R13=R13-4, then Memory[R13] = RO
POP {RO} ; RO = Memory[R13], then R13 = RI13 + 4

The Cortex-M3 uses a full-descending stack arrangement. (More detail on this subject can be found
in the “Stack Memory Operations” section of this chapter.) Therefore, the SP decrements when new
data is stored in the stack. PUSH and POP are usually used to save register contents to stack memory at
the start of a subroutine and then restore the registers from stack at the end of the subroutine. You can
PUSH or POP multiple registers in one instruction:

subroutine_1
PUSH {RO-R7, R12, R14} ; Save registers
- Do your processing
POP {RO-R7, R12, R14} ; Restore registers
BX R14 ; Return to calling function
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Instead of using R13, you can use SP (for SP) in your program codes. It means the same thing.
Inside program code, both the MSP and the PSP can be called R13/SP. However, you can access a
particular one using special register access instructions (MRS/MSR).

The MSP, also called SP_main in ARM documentation, is the default SP after power-up; it is used
by kernel code and exception handlers. The PSP, or SP_process in ARM documentation, is typically
used by thread processes in system with embedded OS running.

Because register PUSH and POP operations are always word aligned (their addresses must be 0x0,
0x4, 0x8, ...), the SP/R13 bit 0 and bit 1 are hardwired to 0 and always read as zero (RAZ).

Link Register R14

R14 is the link register (LR). Inside an assembly program, you can write it as either R/4 or LR. LR is
used to store the return program counter (PC) when a subroutine or function is called—for example,
when you’re using the branch and link (BL) instruction:

main ; Main program

BL functionl ; Call functionl using Branch with Link instruction.

; PC = functionl and
; LR = the next instruction in main
functionl
- ; Program code for function 1
BX LR ; Return

Despite the fact that bit O of the PC is always 0 (because instructions are word aligned or half word
aligned), the LR bit 0 is readable and writable. This is because in the Thumb instruction set, bit O is
often used to indicate ARM/Thumb states. To allow the Thumb-2 program for the Cortex-M3 to work
with other ARM processors that support the Thumb-2 technology, this least significant bit (LSB) is
writable and readable.

Program Counter R15

R15 is the PC. You can access it in assembler code by either R15 or PC. Because of the pipelined nature
of the Cortex-M3 processor, when you read this register, you will find that the value is different than the
location of the executing instruction, normally by 4. For example:

0x1000 : MOV RO, PC ; RO = 0x1004

In other instructions like literal load (reading of a memory location related to current PC value), the
effective value of PC might not be instruction address plus 4 due to alignment in address calculation.
But the PC value is still at least 2 bytes ahead of the instruction address during execution.

Writing to the PC will cause a branch (but LRs do not get updated). Because an instruction address
must be half word aligned, the LSB (bit 0) of the PC read value is always 0. However, in branching,
either by writing to PC or using branch instructions, the LSB of the target address should be set to 1
because it is used to indicate the Thumb state operations. If it is 0, it can imply trying to switch to the
ARM state and will result in a fault exception in the Cortex-M3.
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SPECIAL REGISTERS

The special registers in the Cortex-M3 processor include the following (see Figures 3.3 and 3.4):

* Program Status registers (PSRs)
* Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)
* Control register (CONTROL)

Special registers can only be accessed via MSR and MRS instructions; they do not have memory
addresses:

MRS <reg>, <special_reg>; Read special register
MSR <special_reg>, <reg>; write to special register

Program Status Registers
The PSRs are subdivided into three status registers:

* Application Program Status register (APSR)
* Interrupt Program Status register (IPSR)
» Execution Program Status register (EPSR)

The three PSRs can be accessed together or separately using the special register access instructions
MSR and MRS. When they are accessed as a collective item, the name xPSR is used.

You can read the PSRs using the MRS instruction. You can also change the APSR using the MSR
instruction, but EPSR and IPSR are read-only. For example:

MRS r0, APSR ; Read Flag state into RO

MRS ro, IPSR ; Read Exception/Interrupt state
MRS r0, EPSR ; Read Execution state

MSR APSR, rO ; Write Flag state

31| 30|29 |28 |27 |26:25|24|2320 | 19:16 | 15:10 | 9 8|17 | 6]|5 4:0

APSR N|fz|C|V]Q

IPSR Exception number

EPSR ICT | T ICUIT

FIGURE 3.3
Program Status Registers (PSRs) in the Cortex-M3.

3130|2928 |27 |26:25| 24| 2320 | 19:16 | 15:10 | 9 8|7 | 6|5 4:0

xPSR N|Z|C |V |[Q]|ICNT|T ICINT Exception number

FIGURE 3.4
Combined Program Status Registers (xPSR) in the Cortex-M3.
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Table 3.1 Bit Fields in Cortex-M3 Program Status Registers

Bit Description

N Negative

Z Zero

C Carry/borrow

\Y Overflow

Q Sticky saturation flag

ICI/T Interrupt-Continuable Instruction (ICl) bits, IF-THEN instruction status bit
T Thumb state, always 1; trying to clear this bit will cause a fault exception
Exception number Indicates which exception the processor is handling

31| 30 | 29| 28| 27 | 26:25 | 24 | 23:20 | 19:16 | 15:110 | 9 8 7 6 5 4:0
ARM . .
N z C \' Q IT J |Reserved| GE[3:0] IT E A | F T | M[4:0]
(general)
ARM7TDMI| N z C \ Reserved | F T | M[4:0]
FIGURE 3.5

Current Program Status Registers in Traditional ARM Processors.

In ARM assembler, when accessing xPSR (all three PSRs as one), the symbol PSR is used:

MRS r0, PSR ; Read the combined program status word
MSR PSR, r0 ; Write combined program state word

The descriptions for the bit fields in PSR are shown in Table 3.1.

If you compare this with the Current Program Status register (CPSR) in ARM?7, you might find
that some bit fields that were used in ARM7 are gone. The Mode (M) bit field is gone because
the Cortex-M3 does not have the operation mode as defined in ARM7. Thumb-bit (T) is moved to
bit 24. Interrupt status (I and F) bits are replaced by the new interrupt mask registers (PRIMASKSs),
which are separated from PSR. For comparison, the CPSR in traditional ARM processors is shown
in Figure 3.5.

PRIMASK, FAULTMASK, and BASEPRI Registers

The PRIMASK, FAULTMASK, and BASEPRI registers are used to disable exceptions (see
Table 3.2).

The PRIMASK and BASEPRI registers are useful for temporarily disabling interrupts in tim-
ing-critical tasks. An OS could use FAULTMASK to temporarily disable fault handling when a
task has crashed. In this scenario, a number of different faults might be taking place when a task
crashes. Once the core starts cleaning up, it might not want to be interrupted by other faults caused
by the crashed process. Therefore, the FAULTMASK gives the OS kernel time to deal with fault
conditions.
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Table 3.2 Cortex-M3 Interrupt Mask Registers
Register Name Description

PRIMASK A 1-bit register, when this is set, it allows nonmaskable interrupt (NMI) and the hard
fault exception; all other interrupts and exceptions are masked. The default value is
0, which means that no masking is set.

FAULTMASK A 1-bit register, when this is set, it allows only the NMI, and all interrupts and fault
handling exceptions are disabled. The default value is O, which means that no
masking is set.

BASEPRI A register of up to 8 bits (depending on the bit width implemented for priority level).
It defines the masking priority level. When this is set, it disables all interrupts of
the same or lower level (larger priority value). Higher priority interrupts can still be
allowed. If this is set to 0, the masking function is disabled (this is the default).

To access the PRIMASK, FAULTMASK, and BASEPRI registers, a number of functions are
available in the device driver libraries provided by the microcontroller vendors. For example, the
following:

x = __get_BASEPRI(); // Read BASEPRI register
x = __get_PRIMARK(); // Read PRIMASK register
x = __get_FAULTMASK(); // Read FAULTMASK register

_ set_BASEPRI(x); // Set new value for BASEPRI

_ set_PRIMASK(x); // Set new value for PRIMASK
__set_FAULTMASK(x); // Set new value for FAULTMASK
__disable_irq(); // Clear PRIMASK, enable IRQ
__enable_irq(); // Set PRIMASK, disable IRQ

Details of these core register access functions are covered in Appendix G. A detailed introduction of
Cortex Microcontroller Software Interface Standard (CMSIS) can be found in Chapter 10.
In assembly language, the MRS and MSR instructions are used. For example:

MRS r0, BASEPRI ; Read BASEPRI register into RO
MRS r0, PRIMASK ; Read PRIMASK register into RO
MRS r0, FAULTMASK ; Read FAULTMASK register into RO
MSR BASEPRI, r0 ; Write RO into BASEPRI register
MSR PRIMASK, ro0 ; Write RO into PRIMASK register
MSR FAULTMASK, r0 ; Write RO into FAULTMASK register

The PRIMASK, FAULTMASK, and BASEPRI registers cannot be set in the user access level.

The Control Register

The control register is used to define the privilege level and the SP selection. This register has 2 bits,
as shown in Table 3.3.

CONTROL[1]
In the Cortex-M3, the CONTROL[1] bit is always O in handler mode. However, in the thread or base
level, it can be either O or 1.
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Table 3.3 Cortex-M3 Control Register
Bit Function

CONTROL[1] Stack status:
1 = Alternate stack is used
0 = Default stack (MSP) is used
If it is in the thread or base level, the alternate stack is the PSP. There is no
alternate stack for handler mode, so this bit must be O when the processor is in
handler mode.
CONTROL[Q] 0 = Privileged in thread mode
1 = User state in thread mode
If in handler mode (not thread mode), the processor operates in privileged mode.

This bit is writable only when the core is in thread mode and privileged. In the user state or handler
mode, writing to this bit is not allowed. Aside from writing to this register, another way to change this
bit is to change bit 2 of the LR when in exception return. This subject is discussed in Chapter 8, where
details on exceptions are described.

CONTROL[O]
The CONTROL[O] bit is writable only in a privileged state. Once it enters the user state, the only way
to switch back to privileged is to trigger an interrupt and change this in the exception handler.

To access the control register in C, the following CMSIS functions are available in CMSIS compli-
ant device driver libraries:

x = __get_CONTROL(); // Read the current value of CONTROL
__set_CONTROL(x); // Set the CONTROL value to x

To access the control register in assembly, the MRS and MSR instructions are used:

MRS r0, CONTROL ; Read CONTROL register into RO
MSR CONTROL, rO ; Write RO into CONTROL register

OPERATION MODE

The Cortex-M3 processor supports two modes and two privilege levels (see Figure 3.6).

When the processor is running in thread mode, it can be in either the privileged or user level, but
handlers can only be in the privileged level. When the processor exits reset, it is in thread mode, with
privileged access rights.

In the user access level (thread mode), access to the system control space (SCS)—a part of the
memory region for configuration registers and debugging components—is blocked. Furthermore,
instructions that access special registers (such as MSR, except when accessing APSR) cannot be used.
If a program running at the user access level tries to access SCS or special registers, a fault exception
will occur.

Software in a privileged access level can switch the program into the user access level using the con-
trol register. When an exception takes place, the processor will always switch to a privileged state and
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Privileged User

Handler mode

(CONTROL[1]=0) (not allowed)

When running an exception handler

When not running an exception handler Thread mode Thread mode
(e.g., main program) (CONTROL[0] = 0) (CONTROL[0]=1)

M

CONTROL [1] can be either 0 or 1

FIGURE 3.6
Operation Modes and Privilege Levels in Cortex-M3.
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FIGURE 3.7
Switching of Operation Mode by Programming the Control Register or by Exceptions.

return to the previous state when exiting the exception handler. A user program cannot change back to
the privileged state directly by writing to the control register. It has to go through an exception handler
that programs the control register to switch the processor back into privileged access level when return-
ing to thread mode. (See Figures 3.7).

The support of privileged and user access levels provides a more secure and robust architecture. For
example, when a user program goes wrong, it will not be able to corrupt control registers in the Nested
Vectored Interrupt Controller (NVIC). In addition, if the Memory Protection Unit (MPU) is present, it
is possible to block user programs from accessing memory regions used by privileged processes.

In simple applications, there is no need to separate the privileged and user access levels. In these
cases, there is no need to use user access level and no need to program the control register.

You can separate the user application stack from the kernel stack memory to avoid the possibility of
crashing a system caused by stack operation errors in user programs. With this arrangement, the user
program (running in thread mode) uses the PSP, and the exception handlers use the MSP. The switching
of SPs is automatic upon entering or leaving the exception handlers (see section 3.6.3). This topic is
discussed in more detail in Chapter 8.

The mode and access level of the processor are defined by the control register. When the control reg-
ister bit 0 is 0, the processor mode changes when an exception takes place (see Figures 3.8 and 3.9).
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FIGURE 3.8

Simple Applications Do Not Require User Access Level in Thread Mode.
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Switching Processor Mode at Interrupt.
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FIGURE 3.10
Switching Processor Mode and Privilege Level at Interrupt.

When control register bit O is 1 (thread running user application), both processor mode and access
level change when an exception takes place (see Figure 3.10).

Control register bit 0 is programmable only in the privileged level (see Figure 2.5). For a user-level
program to switch to privileged state, it has to raise an interrupt (for example, supervisor call [SVC])
and write to CONTROL][0] within the handler.
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EXCEPTIONS AND INTERRUPTS

The Cortex-M3 supports a number of exceptions, including a fixed number of system exceptions and
a number of interrupts, commonly called /RQ. The number of interrupt inputs on a Cortex-M3 micro-
controller depends on the individual design. Interrupts generated by peripherals, except System Tick
Timer, are also connected to the interrupt input signals. The typical number of interrupt inputs is 16
or 32. However, you might find some microcontroller designs with more (or fewer) interrupt inputs.

Besides the interrupt inputs, there is also a nonmaskable interrupt (NMI) input signal. The actual
use of NMI depends on the design of the microcontroller or system-on-chip (SoC) product you use. In
most cases, the NMI could be connected to a watchdog timer or a voltage-monitoring block that warns
the processor when the voltage drops below a certain level. The NMI exception can be activated any
time, even right after the core exits reset.

The list of exceptions found in the Cortex-M3 is shown in Table 3.4. A number of the system
exceptions are fault-handling exceptions that can be triggered by various error conditions. The NVIC
also provides a number of fault status registers so that error handlers can determine the cause of the
exceptions.

More details on exception operations in the Cortex-M3 processor are discussed in Chapters 7 to 9.

Table 3.4 Exception Types in Cortex-M3

Exception

Number Exception Type Priority Function

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt

3 Hard fault -1 All classes of fault, when the corresponding fault

handler cannot be activated because it is currently
disabled or masked by exception masking

4 MemManage Settable Memory management fault; caused by MPU
violation or invalid accesses (such as an instruction
fetch from a nonexecutable region)

5 Bus fault Settable Error response received from the bus system;
caused by an instruction prefetch abort or data
access error

6 Usage fault Settable Usage fault; typical causes are invalid instructions
or invalid state transition attempts (such as trying to
switch to ARM state in the Cortex-M3)

7-10 — — Reserved

11 SVC Settable Supervisor call via SVC instruction
12 Debug monitor Settable Debug monitor

13 — — Reserved

14 PendSV Settable Pendable request for system service
15 SYSTICK Settable System tick timer

16-255 IRQ Settable IRQ input #0-239
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Table 3.5 Vector Table Definition after Reset

Exception Type Address Offset Exception Vector
18-255 0x48-0x3FF IRQ #2-239

17 Ox44 IRQ #1

16 0x40 IRQ #0

15 0x3C SYSTICK

14 0x38 PendSV

138 0x34 Reserved

12 0x30 Debug monitor

11 0x2C SVC

7-10 0x1C-0x28 Reserved

6 0x18 Usage fault

5 0x14 Bus fault

4 0x10 MemManage fault
3 0x0C Hard fault

2 0x08 NMI

1 0x04 Reset

0 0x00 Starting value of the MSP

VECTOR TABLES

When an exception event takes place on the Cortex-M3 and is accepted by the processor core, the
corresponding exception handler is executed. To determine the starting address of the exception han-
dler, a vector table mechanism is used. The vector table is an array of word data inside the system
memory, each representing the starting address of one exception type. The vector table is relocatable,
and the relocation is controlled by a relocation register in the NVIC (see Table 3.5). After reset, this
relocation control register is reset to 0; therefore, the vector table is located in address 0x0 after reset.

For example, if the reset is exception type 1, the address of the reset vector is 1 times 4 (each word
is 4 bytes), which equals 0x00000004, and NMI vector (type 2) is located in 2 x 4 = 0x00000008. The
address 0x00000000 is used to store the starting value for the MSP.

The LSB of each exception vector indicates whether the exception is to be executed in the Thumb
state. Because the Cortex-M3 can support only Thumb instructions, the LSB of all the exception vec-
tors should be set to 1.

STACK MEMORY OPERATIONS

In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the stack PUSH and POP
operations are also carried out automatically when entering or exiting an exception/interrupt handler.
In this section, we examine the software stack operations. (Stack operations during exception handling
are covered in Chapter 9.)
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Basic Operations of the Stack

In general, stack operations are memory write or read operations, with the address specified by an SP.
Data in registers is saved into stack memory by a PUSH operation and can be restored to registers later
by a POP operation. The SP is adjusted automatically in PUSH and POP so that multiple data PUSH
will not cause old stacked data to be erased.

The function of the stack is to store register contents in memory so that they can be restored later,
after a processing task is completed. For normal uses, for each store (PUSH), there must be a cor-
responding read (POP), and the address of the POP operation should match that of the PUSH opera-
tion (see Figure 3.11). When PUSH/POP instructions are used, the SP is incremented/decremented
automatically.

When program control returns to the main program, the RO-R2 contents are the same as before.
Notice the order of PUSH and POP: The POP order must be the reverse of PUSH.

These operations can be simplified, thanks to PUSH and POP instructions allowing multiple load
and store. In this case, the ordering of a register POP is automatically reversed by the processor (see
Figure 3.12).

You can also combine RETURN with a POP operation. This is done by pushing the LR to the stack
and popping it back to PC at the end of the subroutine (see Figure 3.13).

Cortex-M3 Stack Implementation

The Cortex-M3 uses a full-descending stack operation model. The SP points to the last data pushed
to the stack memory, and the SP decrements before a new PUSH operation. See Figure 3.14 for an
example showing execution of the instruction PUSH {RO0}.

Main program

; RO X, R1 Y, R2 Z

BL functionl Subroutine
\ functionl

PUSH {RO} ; store RO to stack & adjust SP

PUSH {R1} ; store Rl to stack & adjust SP

PUSH {R2} ; store R2 to stack & adjust SP

. ; Executing task (RO, Rl and R2
; could be changed)

POP {R2} ; restore R2 and SP re adjusted
POP {R1} ; restore Rl and SP re adjusted
POP {RO} ; restore RO and SP re adjusted

/ BX LR ; Return

; Back to main program
; RO X, RI Y, R2 7z
. ; next instructions

FIGURE 3.11
Stack Operation Basics: One Register in Each Stack Operation.




38 CHAPTER 3 Cortex-M3 Basics

Main program

; RO X, Rl Y, R2 7 Subroutine

BL function 1 ——

function 1
PUSH {RO R2} ; Store RO, R1, R2 to stack
; Executing task (RO, R1 and R2
; could be changed)
POP {RO R2} ; restore RO, R1, R2
BX LR ; Return

-

; Back to main program
; RO X, R1 Y, R2 Z
; next instructions

FIGURE 3.12

Stack Operation Basics: Multiple Register Stack Operation.

Main program

; RO X, Rl Y, R2 Z Subroutine

BL function 1 \

function 1
PUSH {RO R2, LR} ; Save registers
; including link register
; Executing task (RO, Rl and R2
; could be changed)
POP {RO R2, PC} ; Restore registers and

/ ; return

; Back to main program
; RO X, R1 Y, R2 Z
; next instructions

FIGURE 3.13

Stack Operation Basics: Combining Stack POP and RETURN.

RO 0x12345678

PUSH {RO}

Occupied Occupied
Memory Occupied Occupied
address Last pushed data [«— SP Occupied

0x12345678 «— SP

N - Stack
grow
FIGURE 3.14

Cortex-M3 Stack PUSH Implementation.
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Occupied POP {RO0} Occupied
Memory Occupied |:> Occupied ﬁ
address Occupied Occupied
0x12345678 — SP 0x12345678  [<+— SP
: — N\
|
RO | - | RO | 0x12345678 |

FIGURE 3.15
Cortex-M3 Stack POP Implementation.

For POP operations, the data is read from the memory location pointer by SP, and then, the SP is
incremented. The contents in the memory location are unchanged but will be overwritten when the next
PUSH operation takes place (see Figure 3.15).

Because each PUSH/POP operation transfers 4 bytes of data (each register contains 1 word, or 4 bytes),
the SP decrements/increments by 4 at a time or a multiple of 4 if more than 1 register is pushed or popped.

In the Cortex-M3, R13 is defined as the SP. When an interrupt takes place, a number of registers
will be pushed automatically, and R13 will be used as the SP for this stacking process. Similarly, the
pushed registers will be restored/popped automatically when exiting an interrupt handler, and the SP
will also be adjusted.

The Two-Stack Model in the Cortex-M3

As mentioned before, the Cortex-M3 has two SPs: the MSPS and the PSP. The SP register to be used is
controlled by the control register bit 1 (CONTROL[1] in the following text).

When CONTROL[1] is 0, the MSP is used for both thread mode and handler mode (see Figure 3.16).
In this arrangement, the main program and the exception handlers share the same stack memory region.
This is the default setting after power-up.

When the CONTROL[1] is 1, the PSP is used in thread mode (see Figure 3.17). In this arrangement,
the main program and the exception handler can have separate stack memory regions. This can prevent

Interrupt
exit
| Interrupt service !
Interrupt ! routine (ISR) !
event |
. :
Main | I
program | Stacking Unstacking |
: : -
| ! Time
Thread mode : Handler mode | Thread mode
(use MSP) : (use MSP) : (use MSP)

FIGURE 3.16
CONTROL[1]=0: Both Thread Level and Handler Use Main Stack.
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Interrupt
exit
: Interrupt service |
: |
Interrupt ! routine (ISR) !
event
|
|
Main |
program Stacking Unstacking

»

I
I
i
—
| Time
I
I
I
I

Thread mode Handler mode Thread mode
(use PSP) (use MSP) (use PSP)

FIGURE 3.17
CONTROLI[1]=1: Thread Level Uses Process Stack and Handler Uses Main Stack.

a stack error in a user application from damaging the stack used by the OS (assuming that the user
application runs only in thread mode and the OS kernel executes in handler mode).

Note that in this situation, the automatic stacking and unstacking mechanism will use PSP, whereas
stack operations inside the handler will use MSP.

It is possible to perform read/write operations directly to the MSP and PSP, without any confusion
of which R13 you are referring to. Provided that you are in privileged level, you can access MSP and

PSP values:
x = __get_MSP(); // Read the value of MSP
__set_MSP(x); // Set the value of MSP
x = _ get_PSP(); // Read the value of PSP

__set_PSP(x); // Set the value of PSP

In general, it is not recommended to change current selected SP values in a C function, as the stack
memory could be used for storing local variables. To access the SPs in assembly, you can use the MRS
and MSR instructions:

MRS RO, MSP ; Read Main Stack Pointer to RO
MSR MSP, RO ; Write RO to Main Stack Pointer
MRS RO, PSP ; Read Process Stack Pointer to RO
MSR PSP, RO ; Write RO to Process Stack Pointer

By reading the PSP value using an MRS instruction, the OS can read data stacked by the user
application (such as register contents before SVC). In addition, the OS can change the PSP pointer
value—for example, during context switching in multitasking systems.

RESET SEQUENCE

After the processor exits reset, it will read two words from memory (see Figure 3.18):

* Address 0x00000000: Starting value of R13 (the SP)
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* Address 0x00000004: Reset vector (the starting address of program execution; LSB should be set
to 1 to indicate Thumb state)

This differs from traditional ARM processor behavior. Previous ARM processors executed program code
starting from address 0x0. Furthermore, the vector table in previous ARM devices was instructions (you
have to put a branch instruction there so that your exception handler can be put in another location).

Fetch initial Fetch reset Instruction
SP value vector fetch
Reset Address = Address = Address = :
ese 0x00000000 | 0x00000004 reset vector |
- - ==L
Time
FIGURE 3.18

Reset Sequence.

Other memory
Initial SP value  <e——
0x20008000 Il 0x20008000
0x20007 FFC 1st stacked item
0x20007 FF8 2nd stacked item
Stack e
memory
| |
0x20007 C00 | |
Other memory
Flash
0x00000100 Boot code -
Other exception Reset
vectors vector
0x00000004 0x00000101 —
0x00000000 0x20008000

FIGURE 3.19

Initial Stack Pointer Value and Initial Program Counter Value Example.
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In the Cortex-M3, the initial value for the MSP is put at the beginning of the memory map, followed
by the vector table, which contains vector address values. (The vector table can be relocated to another
location later, during program execution.) In addition, the contents of the vector table are address values
not branch instructions. The first vector in the vector table (exception type 1) is the reset vector, which
is the second piece of data fetched by the processor after reset.

Because the stack operation in the Cortex-M3 is a full descending stack (SP decrement before
store), the initial SP value should be set to the first memory after the top of the stack region. For
example, if you have a stack memory range from 0x20007C00 to 0x20007FFF (1 KB), the initial stack
value should be set to 0x20008000.

The vector table starts after the initial SP value. The first vector is the reset vector. Notice that in
the Cortex-M3, vector addresses in the vector table should have their LSB set to 1 to indicate that they
are Thumb code. For that reason, the previous example has 0x101 in the reset vector, whereas the boot
code starts at address 0x100 (see Figure 3.19). After the reset vector is fetched, the Cortex-M3 can then
start to execute the program from the reset vector address and begin normal operations. It is necessary
to have the SP initialized, because some of the exceptions (such as NMI) can happen right after reset,
and the stack memory could be required for the handler of those exceptions.

Various software development tools might have different ways to specify the starting SP value and
reset vector. If you need more information on this topic, it’s best to look at project examples provided
with the development tools. Simple examples are provided in Chapters 10 and 20 for ARM tools and
in Chapter 19 for the GNU tool chain.
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This chapter provides some insight into the instruction set in the Cortex™-M3 and examples for a
number of instructions. You’ll also find more information on the instruction set in Appendix A of this
book. For complete details of each instruction, refer to the ARM v7-M Architecture Application Level
Reference Manual [Ref. 2] or user guides from microcontroller vendors.

ASSEMBLY BASICS

Here, we introduce some basic syntax of ARM assembly to make it easier to understand the rest of the
code examples in this book. Most of the assembly code examples in this book are based on the ARM
assembler tools, with the exception of those in Chapter 19, which focus on the Gnu’s Not Unix tool
chain.

Assembler Language: Basic Syntax
In assembler code, the following instruction formatting is commonly used:

Tabel
opcode operandl, operand2, ...; Comments

The label is optional. Some of the instructions might have a label in front of them so that the address
of the instructions can be determined using the label. Then, you will find the opcode (the instruction)
followed by a number of operands. Normally, the first operand is the destination of the operation. The
number of operands in an instruction depends on the type of instruction, and the syntax format of the

Copyright © 2010, Elsevier Inc. All rights reserved. 43
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operand can also be different. For example, immediate data are usually in the form #number, as shown
here:

MOV RO, #0x12 ; Set RO = 0x12 (hexadecimal)
MOV R1, #'A' ; Set R1 = ASCII character A

The text after each semicolon (;) is a comment. These comments do not affect the program operation,
but they can make programs easier for humans to understand.
You can define constants using EQU, and then use them inside your program code. For example,

NVIC_IRQ_SETENO EQU OxEOOOE100
NVIC_IRQO_ENABLE EQU Ox1

LDR RO,=NVIC_IRQ_SETENO; ; LDR here is a pseudo-instruction that
; convert to a PC relative Toad by

; assembler.

MOV RI1,#NVIC_IRQO_ENABLE ; Move immediate data to register

STR R1,[RO] ; Enable IRQ O by writing R1 to address
; in RO

A number of data definition directives are available for insertion of constants inside assembly code.
For example, DCI (Define Constant Instruction) can be used to code an instruction if your assembler
cannot generate the exact instruction that you want and if you know the binary code for the instruction.

DCI OxBEOO ; Breakpoint (BKPT 0), a 16-bit instruction

We can use DCB (Define Constant Byte) for byte size constant values, such as characters, and
Define Constant Data (DCD) for word size constant values to define binary data in your code.

LDR R3,=MY_NUMBER ; Get the memory address value of MY_NUMBER

LDR R4,[R3] ; Get the value code 0x12345678 in R4

LDR RO,=HELLO_TXT ; Get the starting memory address of
; HELLO_TXT

BL PrintText ; Call a function called PrintText to

; display string
MY_NUMBER
DCD 0x12345678

HELLO_TXT
DCB "Hello\n",0 ; null terminated string

Note that the assembler syntax depends on which assembler tool you are using. Here, the ARM
assembler tools syntax is introduced. For syntax of other assemblers, it is best to start from the code
examples provided with the tools.

Assembler Language: Use of Suffixes

In assembler for ARM processors, instructions can be followed by suffixes, as shown in Table 4.1.
For the Cortex-M3, the conditional execution suffixes are usually used for branch instructions.

However, other instructions can also be used with the conditional execution suffixes if they are inside

an IF-THEN instruction block. (This concept is introduced in a later part of this chapter.) In those
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Table 4.1 Suffixes in Instructions
Suffix Description

S Update Application Program Status register (APSR) (flags); for example:

ADDS RO, R1 ; this will update APSR
EQ, NE, LT, GT, and Conditional execution; EQ = Equal, NE = Not Equal, LT = Less Than, GT = Greater
SO on Than, and so forth. For example:

BEQ <Label> ; Branch if equal

cases, the S suffix and the conditional execution suffixes can be used at the same time. Fifteen condition
choices are available, as described later in this chapter.

Assembler Language: Unified Assembler Language

To support and get the best out of the Thumb®-2 instruction set, the Unified Assembler Language
(UAL) was developed to allow selection of 16-bit and 32-bit instructions and to make it easier to port
applications between ARM code and Thumb code by using the same syntax for both. (With UAL, the
syntax of Thumb instructions is now the same as for ARM instructions.)

ADD RO, R1 ; RO = RO + R1, using Traditional Thumb syntax
ADD RO, RO, R1 ; Equivalent instruction using UAL syntax

The traditional Thumb syntax can still be used. The choice between whether the instructions are
interpreted as traditional Thumb code or the new UAL syntax is normally defined by the directive in
the assembly file. For example, with ARM assembler tool, a program code header with “CODE16”
directive implies the code is in the traditional Thumb syntax, and “THUMB?” directive implies the code
is in the new UAL syntax.

One thing you need to be careful with reusing traditional Thumb is that some instructions change
the flags in APSR, even if the S suffix is not used. However, when the UAL syntax is used, whether the
instruction changes the flag depends on the S suffix. For example,

AND RO, RI1 ; Traditional Thumb syntax
ANDS RO, RO, R1 ; Equivalent UAL syntax (S suffix is added)

With the new instructions in Thumb-2 technology, some of the operations can be handled by either a
Thumb instruction or a Thumb-2 instruction. For example, RO = RO + 1 can be implemented as a 16-bit
Thumb instruction or a 32-bit Thumb-2 instruction. With UAL, you can specify which instruction you
want by adding suffixes:

ADDS RO, #1 ; Use 16-bit Thumb instruction by default
; for smaller size

ADDS.N RO, #1 ; Use 16-bit Thumb instruction (N=Narrow)

ADDS.W RO, #1 ; Use 32-bit Thumb-2 instruction (W=wide)

The W (wide) suffix specifies a 32-bit instruction. If no suffix is given, the assembler tool can
choose either instruction but usually defaults to 16-bit Thumb code to get a smaller size. Depending on
tool support, you may also use the .N (narrow) suffix to specify a 16-bit Thumb instruction.

Again, this syntax is for ARM assembler tools. Other assemblers might have slightly different syntax.
If no suffix is given, the assembler might choose the instruction for you, with the minimum code size.
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In most cases, applications will be coded in C, and the C compilers will use 16-bit instructions
if possible due to smaller code size. However, when the immediate data exceed a certain range or
when the operation can be better handled with a 32-bit Thumb-2 instruction, the 32-bit instruction will
be used.

The 32-bit Thumb-2 instructions can be half word aligned. For example, you can have a 32-bit
instruction located in a half word location.

0x1000 : LDR rO0,[rl] ;a 16-bit instructions (occupy 0x1000-0x1001)
0x1002 : RBIT.W rO ;a 32-bit Thumb-2 instruction (occupy
0x1002-0x1005)

Most of the 16-bit instructions can only access registers RO—R7; 32-bit Thumb-2 instructions do not
have this limitation. However, use of PC (R15) might not be allowed in some of the instructions. Refer

to the ARM v7-M Architecture Application Level Reference Manual [Ref. 2] (section A4.6) if you need
to find out more detail in this area.

INSTRUCTION LIST

The supported instructions are listed in Tables 4.2 through 4.9. The complete details of each instruction
are available in the ARM v7-M Architecture Application Level Reference Manual [Ref. 2]. There is also
information of the supported instruction sets in Appendix A.

Table 4.2 16-Bit Data Processing Instructions

Instruction Function

ADC Add with carry

ADD Add

ADR Add PC and an immediate value and put the result in a register

AND Logical AND

ASR Arithmetic shift right

BIC Bit clear (Logical AND one value with the logic inversion of another value)

CMN Compare negative (compare one data with two’s complement of another data and
update flags)

CMP Compare (compare two data and update flags)

CPY Copy (available from architecture v6; move a value from one high or low register to
another high or low register); synonym of MOV instruction

EOR Exclusive OR

LSL Logical shift left

LSR Logical shift right

MOV Move (can be used for register-to-register transfers or loading immediate data)

MUL Multiply

MVN Move NOT (obtain logical inverted value)

NEG Negate (obtain two’s complement value), equivalent to RSB
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Table 4.2 16-Bit Data Processing Instructions Continued

Instruction Function

ORR Logical OR

RSB Reverse subtract

ROR Rotate right

SBC Subtract with carry

SUB Subtract

TST Test (use as logical AND; Z flag is updated but AND result is not stored)

REV Reverse the byte order in a 32-bit register (available from architecture v6)

REV16 Reverse the byte order in each 16-bit half word of a 32-bit register (available from
architecture v6)

REVSH Reverse the byte order in the lower 16-bit half word of a 32-bit register and sign
extends the result to 32 bits (available from architecture v6)

SXTB Signed extend byte (available from architecture v6)

SXTH Signed extend half word (available from architecture v6)

UXTB Unsigned extend byte (available from architecture v6)

UXTH Unsigned extend half word (available from architecture v6)

Table 4.3 16-Bit Branch Instructions

Instruction Function

B Branch

B<cond> Conditional branch

BL Branch with link; call a subroutine and store the return address in LR (this is actually
a 32-bit instruction, but it is also available in Thumb in traditional ARM processors)

BLX Branch with link and change state (BLX <reg> only)"

BX <reg> Branch with exchange state

CBz Compare and branch if zero (architecture v7)

CBNZ Compare and branch if nonzero (architecture v7)

IT IF-THEN (architecture v7)

Table 4.4 16-Bit Load and Store Instructions

Instruction Function

LDR Load word from memory to register
LDRH Load half word from memory to register
LDRB Load byte from memory to register

Continued

'BLX with immediate is not supported because it will always try to change to the ARM state, which is not supported in the
Cortex-M3. Attempts to use BLX <reg> to change to the ARM state will also result in a fault exception.
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Instruction

LDRSH
LDRSB

STR

STRH

STRB
LDM/LDMIA
STM/STMIA
PUSH

POP

Table 4.4 16-Bit Load and Store Instructions Continued

Function

Load half word from memory, sign extend it, and put it in register
Load byte from memory, sign extend it, and put it in register
Store word from register to memory

Store half word from register to memory

Store byte from register to memory

Load multiple/Load multiple increment after

Store multiple/Store multiple increment after

Push multiple registers

Pop multiple registers

Instruction

SVC
SEV
WFE
WEFI
BKPT

NOP
CPSIE
CPSID

Table 4.5 Other 16-Bit Instructions

Function

Supervisor call

Send event

Sleep and wait for event
Sleep and wait for interrupt

Breakpoint; if debug is enabled, it will enter debug mode (halted), or if debug
monitor exception is enabled, it will invoke the debug exception; otherwise, it will
invoke a fault exception

No operation
Enable PRIMASK (CPSIE i)/FAULTMASK (CPSIE f) register (set the register to 0)
Disable PRIMASK (CPSID i)/ FAULTMASK (CPSID f) register (set the register to 1)

Instruction

ADC
ADD
ADDW
ADR
AND
ASR
BIC
BFC
BFI
CMN

Table 4.6 32-Bit Data Processing Instructions

Function

Add with carry

Add

Add wide (#immed_12)

Add PC and an immediate value and put the result in a register

Logical AND

Arithmetic shift right

Bit clear (logical AND one value with the logic inversion of another value)
Bit field clear

Bit field insert

Compare negative (compare one data with two’s complement of another data and
update flags)
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Table 4.6 32-Bit Data Processing Instructions Continued

Instruction

CMP
CLz
EOR
LSL
LSR
MLA
MLS
MOV
MOVW
MOVT
MVN
MUL
ORR
ORN
RBIT
REV
REV16
REVSH
ROR
RSB
RRX
SBC
SBFX
SDIV
SMLAL
SMULL
SSAT
SBC
SUB
SUBW
SXTB
SXTH
TEQ

TST
UBFX
ubIv
UMLAL
UMULL
USAT

Function

Compare (compare two data and update flags)
Count leading zero

Exclusive OR

Logical shift left

Logical shift right

Multiply accumulate

Multiply and subtract

Move

Move wide (write a 16-bit immediate value to register)
Move top (write an immediate value to the top half word of destination reg)
Move negative

Multiply

Logical OR

Logical OR NOT

Reverse bit

Byte reverse word

Byte reverse packed half word
Byte reverse signed half word
Rotate right

Reverse subtract

Rotate right extended

Subtract with carry

Signed bit field extract

Signed divide

Signed multiply accumulate long
Signed multiply long

Signed saturate

Subtract with carry

Subtract

Subtract wide (#immed_12)
Sign extend byte

Sign extend half word

Test equivalent (use as logical exclusive OR; flags are updated but result is n
stored)

Test (use as logical AND; Z flag is updated but AND result is not stored)
Unsigned bit field extract

Unsigned divide

Unsigned multiply accumulate long

Unsigned multiply long

Unsigned saturate

ot

Continued
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Instruction

UXTB
UXTH

Table 4.6 32-Bit Data Processing Instructions Continued

Function

Unsigned extend byte
Unsigned extend half word

Instruction

LDR
LDRT
LDRB
LDRBT
LDRH
LDRHT
LDRSB
LDRSBT

LDRSH
LDRSHT

LDM/LDMIA
LDMDB
LDRD

STR

STRT

STRB
STRBT
STRH
STRHT
STM/STMIA
STMDB
STRD
PUSH

POP

Table 4.7 32-Bit Load and Store Instructions

Function

Load word data from memory to register

Load word data from memory to register with unprivileged access

Load byte data from memory to register

Load byte data from memory to register with unprivileged access

Load half word data from memory to register

Load half word data from memory to register with unprivileged access

Load byte data from memory, sign extend it, and put it to register

Load byte data from memory with unprivileged access, sign extend it, and put it to
register

Load half word data from memory, sign extend it, and put it to register

Load half word data from memory with unprivileged access, sign extend it, and put
it to register

Load multiple data from memory to registers

Load multiple decrement before

Load double word data from memory to registers
Store word to memory

Store word to memory with unprivileged access
Store byte data to memory

Store byte data to memory with unprivileged access
Store half word data to memory

Store half word data to memory with unprivileged access
Store multiple words from registers to memory
Store multiple decrement before

Store double word data from registers to memory
Push multiple registers

Pop multiple registers

Instruction

B
B<cond>
BL

TBB
TBH

Table 4.8 32-Bit Branch Instructions

Function

Branch

Conditional branch

Branch and link

Table branch byte; forward branch using a table of single byte offset
Table branch half word; forward branch using a table of half word offset
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Instruction

LDREX
LDREXH
LDREXB
STREX
STREXH
STREXB
CLREX
MRS
MSR
NOP
SEV
WFE
WEFI

ISB

DSB
DMB

Table 4.9 Other 32-Bit Instructions

Function

Exclusive load word

Exclusive load half word

Exclusive load byte

Exclusive store word

Exclusive store half word

Exclusive store byte

Clear the local exclusive access record of local processor
Move special register to general-purpose register
Move to special register from general-purpose register
No operation

Send event

Sleep and wait for event

Sleep and wait for interrupt

Instruction synchronization barrier

Data synchronization barrier

Data memory barrier

Unsupported
Instruction

BLX label

SETEND

Table 4.10 Unsupported Thumb Instructions for Traditional ARM Processors

Function

This is branch with link and exchange state. In a format with immediate data, BLX
always changes to ARM state. Because the Cortex-M3 does not support the ARM
state, instructions like this one that attempt to switch to the ARM state will result in a

fault exception called usage fault.

This Thumb instruction, introduced in architecture v6, switches the endian
configuration during run time. Since the Cortex-M3 does not support dynamic
endian, using the SETEND instruction will result in a fault exception.

Unsupported Instructions

A number of Thumb instructions are not supported in the Cortex-M3; they are presented in Table 4.10.

A number of instructions listed in the ARM v7-M Architecture Application Level Reference Manual
are not supported in the Cortex-M3. ARM v7-M architecture allows Thumb-2 coprocessor instruc-
tions, but the Cortex-M3 processor does not have any coprocessor support. Therefore, executing
the coprocessor instructions shown in Table 4.11 will result in a fault exception (Usage Fault with

No-Coprocessor “NOCP” bit in Usage Fault Status Register in NVIC set to 1).

Some of the change process state (CPS) instructions are also not supported in the Cortex-M3 (see
Table 4.12). This is because the Program Status register (PSR) definition has changed, so some bits
defined in the ARM architecture v6 are not available in the Cortex-M3.
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Table 4.11 Unsupported Coprocessor Instructions

Unsupported

Instruction Function

MCR Move to coprocessor from ARM processor

MCR2 Move to coprocessor from ARM processor

MCRR Move to coprocessor from two ARM register

MRC Move to ARM register from coprocessor

MRC2 Move to ARM register from coprocessor

MRRC Move to two ARM registers from coprocessor

LDC Load coprocessor; load memory data from a sequence of consecutive memory
addresses to a coprocessor

STC Store coprocessor; stores data from a coprocessor to a sequence of consecutive

memory addresses

Table 4.12 Unsupported Change Process State Instructions

Unsupported Function

Instruction

CPS<IEID>.W A There is no A bit in the Cortex-M3

CPS.W #mode There is no mode bit in the Cortex-M3 PSR

Table 4.13 Unsupported Hint Instructions

Unsupported

Instruction Function

DBG A hint instruction to debug and trace system

PLD Preload data; this is a hint instruction for cache memory, however, since there is no
cache in the Cortex-M3 processor, this instruction behaves as NOP

PLI Preload instruction; this is a hint instruction for cache memory, however, since there
is no cache in the Cortex-M3 processor, this instruction behaves as NOP

YIELD A hint instruction to allow multithreading software to indicate to hardware that it is

doing a task that can be swapped out to improve overall system performance.

In addition, the hint instructions shown in Table 4.13 will behave as NOP in the Cortex-M3.
All other undefined instructions, when executed, will cause the usage fault exception to take place.

INSTRUCTION DESCRIPTIONS

Here, we introduce some of the commonly used syntax for ARM assembly code. Some of the instruc-
tions have various options such as barrel shifter; these will not be fully covered in this chapter.
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Assembler Language: Moving Data

One of the most basic functions in a processor is transfer of data. In the Cortex-M3, data transfers can
be of one of the following types:

* Moving data between register and register

* Moving data between memory and register

* Moving data between special register and register
* Moving an immediate data value into a register

The command to move data between registers is MOV (move). For example, moving data from register
R3 to register R8 looks like this:

MOV R8, R3

Another instruction can generate the negative value of the original data; it is called MVN (move
negative).

The basic instructions for accessing memory are Load and Store. Load (LDR) transfers data from
memory to registers, and Store transfers data from registers to memory. The transfers can be in different
data sizes (byte, half word, word, and double word), as outlined in Table 4.14.

Multiple Load and Store operations can be combined into single instructions called LDM (Load
Multiple) and STM (Store Multiple), as outlined in Table 4.15.

The exclamation mark (!) in the instruction specifies whether the register Rd should be updated after
the instruction is completed. For example, if R8 equals 0x8000:

STMIA.W R8!, {RO-R3} ; R8 changed to 0x8010 after store
; (increment by 4 words)
STMIA.W R8 , {RO-R3} ; R8 unchanged after store

ARM processors also support memory accesses with preindexing and postindexing. For preindex-
ing, the register holding the memory address is adjusted. The memory transfer then takes place with the
updated address. For example,

LDR.W RO,[R1, ffoffset]! ; Read memory[Rl+offset], with R1
; update to Rl+offset

Table 4.14 Commonly Used Memory Access Instructions

Example Description

LDRB Rd, [Rn, #offset] Read byte from memory location Rn + offset

LDRH Rd, [Rn, ffoffset] Read half word from memory location Rn + offset
LDR Rd, [Rn, ffoffset] Read word from memory location Rn + offset

LDRD Rd1,Rd2, [Rn, ffoffset] Read double word from memory location Rn + offset
STRB Rd, [Rn, ffoffset] Store byte to memory location Rn + offset

STRH Rd, [Rn, #offset] Store half word to memory location Rn + offset

STR Rd, [Rn, ftoffset] Store word to memory location Rn + offset

STRD Rd1,Rd2, [Rn, #offset] Store double word to memory location Rn + offset
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Table 4.15 Multiple Memory Access Instructions

Example Description

LDMIA Rd!,<reg 1ist> Read multiple words from memory location specified by Rd; address
increment after (IA) each transfer (16-bit Thumb instruction)

STMIA Rd!,<reg Tlist> Store multiple words to memory location specified by Rd; address

increment after (IA) each transfer (16-bit Thumb instruction)

LDMIA.W Rd(!),<reg list> Read multiple words from memory location specified by Rd; address
increment after each read (\W specified it is a 32-bit Thumb-2 instruction)

LDMDB.W Rd(!),<reg Tist> Read multiple words from memory location specified by Rd; address
Decrement Before (DB) each read (.\W specified it is a 32-bit Thumb-2
instruction)

STMIA.W Rd(!),<reg Tist> Write multiple words to memory location specified by Rd; address
increment after each read (\W specified it is a 32-bit Thumb-2 instruction)

STMDB.W Rd(!),<reg Tlist> Write multiple words to memory location specified by Rd; address DB
each read (\W specified it is a 32-bit Thumb-2 instruction)

Table 4.16 Examples of Preindexing Memory Access Instructions

Example Description
LDR.W Rd, [Rn, ffoffset]! Preindexing load instructions for various sizes (word, byte, half
LDRB.W Rd, [Rn, #offset]! word, and double word)

LDRH.W Rd, [Rn, ffoffset]!
LDRD.W Rd1l, Rd2,[Rn, foffset]!

LDRSB.W Rd, [Rn, #offset]! Preindexing load instructions for various sizes with sign extend
LDRSH.W Rd, [Rn, #offset]! (oyte, half word)

STR.W Rd, [Rn, foffset]! Preindexing store instructions for various sizes (word, byte, half
STRB.W Rd, [Rn, foffset]! word, and double word)

STRH.W Rd, [Rn, foffset]!
STRD.W Rdl, Rd2,[Rn, #offset]!

)

The use of the “!” indicates the update of base register R1. The “!” is optional; without it, the instruc-
tion would be just a normal memory transfer with offset from a base address. The preindexing memory
access instructions include load and store instructions of various transfer sizes (see Table 4.16).

Postindexing memory access instructions carry out the memory transfer using the base address
specified by the register and then update the address register afterward. For example,

LDR.W RO,[R1], foffset ; Read memory[R1], with Rl
updated to Rl+offset

)

When a postindexing instruction is used, there is no need to use the “!”” sign, because all postindex-
ing instructions update the base address register, whereas in preindexing you might choose whether to
update the base address register or not.

Similarly to preindexing, postindexing memory access instructions are available for different trans-
fer sizes (see Table 4.17).
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Table 4.17 Examples of Postindexing Memory Access Instructions

Example Description
LDR.W  Rd, [Rn], foffset Postindexing load instructions for various sizes (word, byte,
LDRB.W Rd, [Rn], #offset half word, and double word)

LDRH.W Rd, [Rnl, ffoffset
LDRD.W Rdl, Rd2,[Rn], #offset

LDRSB.W Rd, [Rnl, foffset Postindexing load instructions for various sizes with sign
LDRSH.W Rd, [Rnl, f#offset extend (byte, half word)

STR.W Rd, [Rn], ffoffset Postindexing store instructions for various sizes (word, byte,
STRB.W Rd, [Rn], foffset half word, and double word)

STRH.W Rd, [Rnl], #offset
STRD.W Rdl, Rd2,[Rnl, foffset

Two other types of memory operation are stack PUSH and stack POP. For example,

PUSH {RO, R4-R7, R9} ; Push RO, R4, R5, R6, R7, R9 into
; stack memory
POP {R2,R3} ; Pop R2 and R3 from stack

Usually a PUSH instruction will have a corresponding POP with the same register list, but this is not
always necessary. For example, a common exception is when POP is used as a function return:

PUSH {RO-R3, LR} ; Save register contents at beginning of
; subroutine

e ; Processing

POP {RO-R3, PC} ; restore registers and return

In this case, instead of popping the LR register back and then branching to the address in LR, we
POP the address value directly in the program counter.

As mentioned in Chapter 3, the Cortex-M3 has a number of special registers. To access these regis-
ters, we use the instructions MRS and MSR. For example,

MRS RO, PSR ; Read Processor status word into RO
MSR CONTROL, R1 ; Write value of Rl into control register

Unless you’re accessing the APSR, you can use MSR or MRS to access other special registers only in
privileged mode.

Moving immediate data into a register is a common thing to do. For example, you might want to
access a peripheral register, so you need to put the address value into a register beforehand. For small
values (8 bits or less), you can use MOVS (move). For example,

MOVS RO, #0x12 ; Set RO to 0x12

For a larger value (over 8 bits), you might need to use a Thumb-2 move instruction. For example,
MOVW.W RO, #0x789A ; Set RO to 0x789A

Or if the value is 32-bit, you can use two instructions to set the upper and lower halves:

MOVW.W RO,#0x789A ; Set RO Tower half to 0x789A
MOVT.W RO,#0x3456 ; Set RO upper half to 0x3456. Now
RO=0x3456789A
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Alternatively, you can also use LDR (a pseudo-instruction provided in ARM assembler). For
example,

LDR RO, =0x3456789A

This is not a real assembler command, but the ARM assembler will convert it into a PC relative
load instruction to produce the required data. To generate 32-bit immediate data, using LDR is recom-
mended rather than the MOVW.W and MOVT.W combination because it gives better readability and
the assembler might be able to reduce the memory being used if the same immediate data are reused in
several places of the same program.

LDR and ADR Pseudo-Instructions

Both LDR and ADR pseudo-instructions can be used to set registers to a program address value. They
have different syntaxes and behaviors. For LDR, if the address is a program address value, the assem-
bler will automatically set the LSB to 1. For example,

LDR RO, =addressl ; RO set to 0x4001

addressl ; address here is 0x4000
MOV RO, R1 ; addressl contains program code

You will find that the LDR instruction will put 0x4001 into R1; the LSB is set to 1 to indicate that
it is Thumb code. If addressl is a data address, LSB will not be changed. For example,

LDR RO, =addressl ; RO set to 0x4000

addressl ; address here is 0x4000
DCD 0x0 ; addressl contains data

For ADR, you can load the address value of a program code into a register without setting the LSB
automatically. For example,

ADR RO, addressl

addressl ; (address here is 0x4000)
MOV RO, R1 ; addressl contains program code

You will get 0x4000 in the ADR instruction. Note that there is no equal sign (=) in the ADR statement.

LDR obtains the immediate data by putting the data in the program code and uses a PC relative
load to get the data into the register. ADR tries to generate the immediate value by adding or subtract-
ing instructions (for example, based on the current PC value). As a result, it is not possible to create
all immediate values using ADR, and the target address label must be in a close range. However, using
ADR can generate smaller code sizes compared with LDR.

The 16-bit version of ADR requires that the target address must be word aligned (address value is a
multiple of 4). If the target address is not word aligned, you can use the 32-bit version of ADR instruc-
tion “ADR.W.” If the target address is more than 4095 bytes of current PC, you can use “ADRL”
pseudo-instruction, which gives £1 MB range.
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Assembler Language: Processing Data

The Cortex-M3 provides many different instructions for data processing. A few basic ones are
introduced here. Many data operation instructions can have multiple instruction formats. For example,
an ADD instruction can operate between two registers or between one register and an immediate data
value:

ADD RO, RO, RI ; RO = RO + R1
ADDS RO, RO, #0x12 ; RO = RO + 0x12
ADD.W RO, R1, R2 ; RO =Rl + R2

These are all ADD instructions, but they have different syntaxes and binary coding.

With the traditional Thumb instruction syntax, when 16-bit Thumb code is used, an ADD instruc-
tion can change the flags in the PSR. However, 32-bit Thumb-2 code can either change a flag or keep
it unchanged. To separate the two different operations, the S suffix should be used if the following
operation depends on the flags:

ADD.W RO, R1, R2 ; Flag unchanged
ADDS.W RO, RI, R2 ; Flag change

Aside from ADD instructions, the arithmetic functions that the Cortex-M3 supports include subtract
(SUB), multiply (MUL), and unsigned and signed divide (UDIV/SDIV). Table 4.18 shows some of the
most commonly used arithmetic instructions.

Table 4.18 Examples of Arithmetic Instructions

Instruction Operation

ADD Rd, Rn, Rm ; Rd = Rn + Rm ADD operation

ADD Rd, Rd, Rm ; Rd = Rd + Rm

ADD Rd, #Fimmed ;: Rd = Rd + #immed

ADD Rd, Rn, # immed ; Rd = Rn + #fimmed

ADC Rd, Rn, Rm ; Rd = Rn + Rm + carry ADD with carry

ADC Rd, Rd, Rm ;: Rd = Rd + Rm + carry

ADC Rd, {Fimmed ;: Rd = Rd + #immed + carry

ADDW Rd, Rn,#timmed ; Rd = Rn + ftimmed ADD register with 12-bit immediate value
SUB  Rd, Rn, Rm ; Rd = Rn — Rm SUBTRACT

SUB Rd, #immed ; Rd = Rd — #immed

SUB  Rd, Rn,#immed ; Rd = Rn — #immed

SBC Rd, Rm ; Rd = Rd = Rm — borrow SUBTRACT with borrow (not carry)
SBC.W Rd, Rn, #immed ; Rd = Rn — ffimmed — borrow

SBC.W Rd, Rn, Rm ; Rd = Rn = Rm — borrow

RSB.W Rd, Rn, #fimmed ; Rd = #fimmed -Rn Reverse subtract

RSB.W Rd, Rn, Rm ; Rd = Rm — Rn

MUL  Rd, Rm : Rd = Rd * Rm Multiply

MUL.W Rd, Rn, Rm ; Rd = Rn * Rm

UDIV Rd, Rn, Rm ; Rd = Rn/Rm Unsigned and signed divide
SDIV Rd, Rn, Rm ; Rd = Rn/Rm
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These instructions can be used with or without the “S” suffix to determine if the APSR should be
updated. In most cases, if UAL syntax is selected and if ““S” suffix is not used, the 32-bit version of the
instructions would be selected as most of the 16-bit Thumb instructions update APSR.

The Cortex-M3 also supports 32-bit multiply instructions and multiply accumulate instructions that
give 64-bit results. These instructions support signed or unsigned values (see Table 4.19).

Another group of data processing instructions are the logical operations instructions and logical
operations such as AND, ORR (or), and shift and rotate functions. Table 4.20 shows some of the most
commonly used logical instructions. These instructions can be used with or without the “S” suffix
to determine if the APSR should be updated. If UAL syntax is used and if “S” suffix is not used, the
32-bit version of the instructions would be selected as all of the 16-bit logic operation instructions
update APSR.

The Cortex-M3 provides rotate and shift instructions. In some cases, the rotate operation can be
combined with other operations (for example, in memory address offset calculation for load/store
instructions). For standalone rotate/shift operations, the instructions shown in Table 4.21 are pro-
vided. Again, a 32-bit version of the instruction is used if “S” suffix is not used and if UAL syntax
is used.

Table 4.19 32-Bit Multiply Instructions

Instruction Operation

SMULL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} = Rn * Rm 32-bit multiply instructions for signed
SMLAL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} += Rn * Rm values

UMULL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} = Rn * Rm 32-bit multiply instructions for
UMLAL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} += Rn * Rm unsigned values
Table 4.20 Logic Operation Instructions

Instruction Operation

AND Rd, Rn ; Rd = Rd & Rn Bitwise AND

AND.W Rd, Rn,#immed ; Rd = Rn & ftimmed

AND.W Rd, Rn, Rm ; Rd = Rn & Rd

ORRRd, Rn ; Rd = Rd | Rn Bitwise OR

ORR.W Rd, Rn,#immed ; Rd = Rn | #immed

ORR.W Rd, Rn, Rm ; Rd = Rn | Rd

BIC Rd, Rn ; Rd = Rd & (~Rn) Bit clear

BIC.W Rd, Rn,#immed ; Rd = Rn &(~fimmed)

BIC.W Rd, Rn, Rm ; Rd = Rn &(~Rd)

ORN.W Rd, Rn,#immed ; Rd = Rn | (~#immed) Bitwise OR NOT
ORN.W Rd, Rn, Rm ; Rd = Rn | (~Rd)

EOR Rd, Rn ; Rd = Rd ~ Rn Bitwise Exclusive OR
EOR.W Rd, Rn,#immed ; Rd = Rn | #immed

EOR.W Rd, Rn, Rm ; Rd = Rn | Rd
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Instruction

Table 4.21 Shift and Rotate Instructions

Operation

ASR Rd, Rn,#immed ; Rd = Rn » immed Arithmetic shift right
ASRRd, Rn ; Rd = Rd » Rn
ASR.W Rd, Rn, Rm ; Rd = Rn » Rm
LSLRd, Rn,#timmed ; Rd = Rn « immed Logical shift left
LSLRd, Rn ; Rd = Rd « Rn
LSL.W Rd, Rn, Rm ; Rd = Rn « Rm
LSRRd, Rn,{#immed ; Rd = Rn » immed Logical shift right
LSRRd, Rn ; Rd = Rd » Rn
LSR.W Rd, Rn, Rm ; Rd = Rn » Rm
ROR Rd, Rn ; Rd rot by Rn Rotate right
ROR.W Rd, Rn,#immed ; Rd = Rn rot by immed
ROR.W Rd, Rn, Rm ; Rd = Rn rot by Rm
RRX.W Rd, Rn ; {C, Rd} = {Rn, C} Rotate right extended
Logical Shift Left (LSL)
C |= Register le——20
Logical Shift Right (LSR)
0 —> Register >
Rotate Right (ROR)
> Register >
Arithmetic Shift Right (ASR)
> Register >
Rotate Right eXtended (RRX)
> Register >
FIGURE 4.1

Shift and Rotate Instructions.

In UAL syntax, the rotate and shift operations can also update the carry flag if the S suffix is used

(and always update the carry flag if the 16-bit Thumb code is used). See Figure 4.1.

If the shift or rotate operation shifts the register position by multiple bits, the value of the carry flag
C will be the last bit that shifts out of the register.
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WHY IS THERE ROTATE RIGHT BUT NO ROTATE LEFT?

The rotate left operation can be replaced by a rotate right operation with a different rotate offset. For example,
a rotate left by 4-bit operation can be written as a rotate right by 28-bit instruction, which gives the same
result and takes the same amount of time to execute.

Table 4.22 Sign Extend Instructions

Instruction Operation

SXTB Rd, Rm ; Rd = signext(Rm[7:01) Sign extend byte data into word
SXTH Rd, Rm ; Rd = signext(Rm[15:0]) Sign extend half word data into word

Table 4.23 Data Reverse Ordering Instructions

Instruction Operation

REV Rd, Rn ; Rd = rev(Rn) Reverse bytes in word

REV16 Rd, Rn ; Rd = revl16(Rn) Reverse bytes in each half word

REVSH Rd, Rn ; Rd = revsh(Rn) Reverse bytes in bottom half word and sign extend the
result

For conversion of signed data from byte or half word to word, the Cortex-M3 provides the two
instructions shown in Table 4.22. Both 16-bit and 32-bit versions are available. The 16-bit version can
only access low registers.

Another group of data processing instructions is used for reversing data bytes in a register (see
Table 4.23). These instructions are usually used for conversion between little endian and big endian
data. See Figure 4.2. Both 16-bit and 32-bit versions are available. The 16-bit version can only access
low registers.

The last group of data processing instructions is for bit field processing. They include the instruc-
tions shown in Table 4.24. Examples of these instructions are provided in a later part of this chapter.

Assembler Language: Call and Unconditional Branch
The most basic branch instructions are as follows:

B Tabel ; Branch to a labeled address
BX reg ; Branch to an address specified by a register

In BX instructions, the LSB of the value contained in the register determines the next state (Thumb/
ARM) of the processor. In the Cortex-M3, because it is always in Thumb state, this bit should be set
to 1. If it is zero, the program will cause a usage fault exception because it is trying to switch the proces-
sor into ARM state (See Figure 4.2.).

To call a function, the branch and link instructions should be used.

BL Tabel ; Branch to a labeled address and save return
; address in LR
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Bit Bit Bit Bit
[31:24] [23:16] [15:8] [7:0]

REV.W
(Reverse bytes in word) | | | | | | | |

REV16.W
(Reverse bytes in half word) | | | | |

REVSH.W
(Reverse bytes in bottom | | | |
half word and sign extend results)

sign extend |

|A
[

FIGURE 4.2
Operation of Reverse instructions.

Table 4.24 Bit Field Processing and Manipulation Instructions
Instruction Operation
BFC.W Rd, Rn, f<Kwidth> Clear bit field within a register
BFI.W Rd, Rn, #<1sb>, #<width> Insert bit field to a register
CLZ.W Rd, Rn Count leading zero
RBIT.W Rd, Rn Reverse bit order in register
SBFX.W Rd, Rn, #<1sb>, #<width> Copy bit field from source and sign extend it
UBFX.W Rd, Rn, #<1sb>, #<width> Copy bit field from source register
BLX reg ; Branch to an address specified by a register and

; save return
; address in LR.

With these instructions, the return address will be stored in the link register (LR) and the func-
tion can be terminated using BX LR, which causes program control to return to the calling process.
However, when using BLX, make sure that the LSB of the register is 1. Otherwise the processor will
produce a fault exception because it is an attempt to switch to the ARM state.

You can also carry out a branch operation using MOV instructions and LDR instructions. For example,

MOV R15, RO ; Branch to an address inside RO
LDR R15, [RO] ; Branch to an address in memory location
; specified by RO
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POP {R15} ; Do a stack pop operation, and change the
; program counter value
; to the result value.

When using these methods to carry out branches, you also need to make sure that the LSB of the
new program counter value is 0x1. Otherwise, a usage fault exception will be generated because it will
try to switch the processor to ARM mode, which is not allowed in the Cortex-M3 redundancy.

SAVE THE LR IF YOU NEED TO CALL A SUBROUTINE

The BL instruction will destroy the current content of your LR. So, if your program code needs the LR later, you
should save your LR before you use BL. The common method is to push the LR to stack in the beginning of
your subroutine. For example,

main
BL functionA

functionA
PUSH {LR} ; Save LR content to stack

BL functionB

POP {PC} ; Use stacked LR content to return to main
functionB

PUSH {LR}

POP {PC} ; Use stacked LR content to return to functionA

In addition, if the subroutine you call is a C function, you might also need to save the contents in RO-R3
and R12 if these values will be needed at a later stage. According to AAPCS [Ref. 5], the contents in these
registers could be changed by a C function.

Assembler Language: Decisions and Conditional Branches

Most conditional branches in ARM processors use flags in the APSR to determine whether a branch
should be carried out. In the APSR, there are five flag bits; four of them are used for branch decisions
(see Table 4.25).

There is another flag bit at bit[27], called the Q flag. It is for saturation math operations and is not
used for conditional branches.

Table 4.25 Flag Bits in APSR that Can Be Used for Conditional Branches

Flag PSR Bit Description

N 31 Negative flag (last operation result is a negative value)
Z 30 Zero (last operation result returns a zero value)

C 29 Carry (last operation returns a carry out or borrow)

\ 28 Overflow (last operation results in an overflow)
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FLAGS IN ARM PROCESSORS

Often, data processing instructions change the flags in the PSR. The flags might be used for branch decisions,
or they can be used as part of the input for the next instruction. The ARM processor normally contains at least
the Z, N, C, and V flags, which are updated by execution of data processing instructions.

e 7 (Zero) flag: This flag is set when the result of an instruction has a zero value or when a comparison of two
data returns an equal result.

e N (Negative) flag: This flag is set when the result of an instruction has a negative value (bit 31 is 1).

e C (Carry) flag: This flag is for unsigned data processing—for example, in add (ADD) it is set when an
overflow occurs; in subtract (SUB) it is set when a borrow did not occur (borrow is the invert of carry).

e V (Overflow) flag: This flag is for signed data processing; for example, in an add (ADD), when two positive
values added together produce a negative value, or when two negative values added together produce a
positive value.

These flags can also have special results when used with shift and rotate instructions. Refer to the ARM v7-M
Architecture Application Level Reference Manual [Ref. 2] for details.

With combinations of the four flags (N, Z, C, and V), 15 branch conditions are defined (see
Table 4.26). Using these conditions, branch instructions can be written as, for example,

BEQ Tabel ; Branch to address 'label' if 7 flag is set
You can also use the Thumb-2 version if your branch target is further away. For example,

BEQ.W Tabel ; Branch to address 'label' if Z flag is set

Table 4.26 Conditions for Branches or Other Conditional Operations

Symbol Condition Flag

EQ Equal Z set

NE Not equal Z clear

CS/HS Carry set/unsigned higher or same C set

CC/LO Carry clear/unsigned lower C clear

Mi Minus/negative N set

PL Plus/positive or zero N clear

VS Overflow V set

VC No overflow V clear

HI Unsigned higher C set and Z clear

LS Unsigned lower or same C clear or Z set

GE Signed greater than or equal N set and V set, or N clear and V clear (N == V)

LT Signed less than N set and V clear, or N clear and V set (N I=V)

GT Signed greater than Z clear, and either N set and V set, or N clear and
Vclear (Z==0,N==V)

LE Signed less than or equal Z set, or N set and V clear, or N clear and V set
Z==10orNI=V)

AL Always (unconditional) —
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The defined branch conditions can also be used in IF-THEN-ELSE structures. For example,

CMP RO, RI1 ; Compare RO and R1
ITTEE GT ; If RO > Rl Then
; if true, first 2 statements execute,
if false, other 2 statements execute

MOVGT R2, RO ; R2 = RO
MOVGT R3, RI1 ; R3 = R1
MOVLE R2, RO ; Else RZ = R1
MOVLE R3, RI1 ; R3 = RO

APSR flags can be affected by the following:

¢ Most of the 16-bit ALU instructions

e 32-bit (Thumb-2) ALU instructions with the S suffix; for example, ADDS.W
*  Compare (e.g., CMP) and Test (e.g., TST, TEQ)

*  Write to APSR/xPSR directly

Most of the 16-bit Thumb arithmetic instructions affect the N, Z, C, and V flags. With 32-bit Thumb-2
instructions, the ALU operation can either change flags or not change flags. For example,

ADDS.W RO, R1, RZ2 ; This 32-bit Thumb instruction updates flag
ADD.W RO, R1, R2 ; This 32-bit Thumb instruction does not
; update flag

Be careful when reusing program code from old projects. If the old project is in tradition Thumb
syntax; for example, “CODE16” directive is used with ARM assembler, then

ADD RO, RI1 ; This 16-bit Thumb instruction updates flag
ADD RO, #0x1 ; This 16-bit Thumb instruction updates flag

However, if you used the same code in UAL syntax; that is “THUMB” directive is used with ARM
assembler, then

ADD RO, RI ; This 16-bit Thumb instruction does not
; update flag

ADD RO, #0x1 ; This will become a 32-bit Thumb instruction
; that does not update flag

To make sure that the code works correctly with different tools, you should always use the S suffix
if the flags need to be updated for conditional operations such as conditional branches.

The compare (CMP) instruction subtracts two values and updates the flags (just like SUBS), but the
result is not stored in any registers. CMP can have the following formats:

CMP RO, R1 ; Calculate RO - R1 and update flag
CMP RO, #0x12 ; Calculate RO - 0x12 and update flag

A similar instruction is the CMN (compare negative). It compares one value to the negative (two’s
complement) of a second value; the flags are updated, but the result is not stored in any registers:

CMN RO, RI ; Calculate RO - (-R1) and update flag
CMN RO, #0x12 ; Calculate RO - (-0x12) and update flag

The TST (test) instruction is more like the AND instruction. It ANDs two values and updates the
flags. However, the result is not stored in any register. Similarly to CMP, it has two input formats:
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TST RO, R1 ; Calculate RO AND R1 and update flag
TST RO, #0x12 ; Calculate RO AND 0x12 and update flag

Assembler Language: Combined Compare and Conditional Branch

With ARM architecture v7-M, two new instructions are provided on the Cortex-M3 to supply a simple
compare with zero and conditional branch operations. These are CBZ (compare and branch if zero) and
CBNZ (compare and branch if nonzero).

The compare and branch instructions only support forward branches. For example,

i=05;
while (i I=0 ){
funcl(); ; call a function

i—;

}

This can be compiled into the following:

MOV RO, #5 ; Set loop counter
loopl CBZ RO,looplexit ; if loop counter = 0 then exit the loop
BL funcl ; call a function
SUB RO, #1 ; lToop counter decrement
B lToopl ; next loop
looplexit

The usage of CBNZ is similar to CBZ, apart from the fact that the branch is taken if the Z flag is not
set (result is not zero). For example,

status = strchr(email_address, '@');

if (status == 0){//status is 0 if @ is not in email_address
show_error_message();
exit(l);
}

This can be compiled into the following:

BL strchr

CBNZ RO, email_looks_okay ; Branch if result is not zero
BL show_error_message
BL exit

email_Tlooks_okay

The APSR value is not affected by the CBZ and CBNZ instructions.

Assembler Language: Conditional Execution Using IT Instructions
The IT (IF-THEN) block is very useful for handling small conditional code. It avoids branch penalties
because there is no change to program flow. It can provide a maximum of four conditionally executed
instructions.

In IT instruction blocks, the first line must be the IT instruction, detailing the choice of
execution, followed by the condition it checks. The first statement after the IT command must be
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TRUE-THEN-EXECUTE, which is always written as ITxyz, where T means THEN and E means
ELSE. The second through fourth statements can be either THEN (true) or ELSE (false):

IT<x><y><z> <cond> ; IT instruction (<x>, <y>,
; <z> can be T or E)
instrl<cond> <operands> ; 1t dinstruction (<cond>

; must be same as IT)
instr2<cond or not cond> <operands> ; 2" instruction (can be

; <cond> or <l!cond>
instr3<cond or not cond> <operands> ; 3 instruction (can be

; <cond> or <!cond>
instr4<cond or not cond> <operands> ; 4' instruction (can be

; <cond> or <!cond>

If a statement is to be executed when <cond> is false, the suffix for the instruction must be the
opposite of the condition. For example, the opposite of EQ is NE, the opposite of GT is LE, and so on.
The following code shows an example of a simple conditional execution:

if (R1<R2) then
R2=R2-R1
R2=R2/2
else
R1=R1-R2
R1=R1/2

In assembly,

CMP R1, R2 ; If R1 < R2 (less then)

ITTEE LT ; then execute instruction 1 and 2
; (indicated by T)
; else execute instruction 3 and 4
; (indicated by E)

SUBLT.W R2,R1 ; 1st dinstruction

LSRLT.W R2,#1 ; 2" instruction

SUBGE.W R1,R2 ; 3" instruction (notice the GE is
; opposite of LT)

LSRGE.W R1,#1 ; 4t instruction

You can have fewer than four conditionally executed instructions. The minimum is 1. You need to
make sure the number of T and E occurrences in the IT instruction matches the number of conditionally
executed instructions after the IT.

If an exception occurs during the IT instruction block, the execution status of the block will be
stored in the stacked PSR (in the I'T/Interrupt-Continuable Instruction [ICI] bit field). So, when the
exception handler completes and the IT block resumes, the rest of the instructions in the block can con-
tinue the execution correctly. In the case of using multicycle instructions (for example, multiple load
and store) inside an IT block, if an exception takes place during the execution, the whole instruction is
abandoned and restarted after the interrupt process is completed.
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Assembler Language: Instruction Barrier and Memory Barrier Instructions

The Cortex-M3 supports a number of barrier instructions. These instructions are needed as memory
systems get more and more complex. In some cases, if memory barrier instructions are not used, race
conditions could occur.

For example, if the memory map can be switched by a hardware register, after writing to the mem-
ory switching register you should use the DSB instruction. Otherwise, if the write to the memory
switching register is buffered and takes a few cycles to complete, and the next instruction accesses the
switched memory region immediately, the access could be using the old memory map. In some cases,
this might result in an invalid access if the memory switching and memory access happen at the same
time. Using DSB in this case will make sure that the write to the memory map switching register is
completed before a new instruction is executed.

The following are the three barrier instructions in the Cortex-M3:

 DMB
« DSB
« ISB

These instructions are described in Table 4.27.
The memory barrier instructions can be accessed in C using Cortex Microcontroller Software Inter-
face Standard (CMSIS) compliant device driver library as follows:

void __DMB(void); // Data Memory Barrier
void __DSB(void); // Data Synchronization Barrier
void __ISB(void); // Instruction Synchronization Barrier

The DSB and ISB instructions can be important for self-modifying code. For example, if a program
changes its own program code, the next executed instruction should be based on the updated program.
However, since the processor is pipelined, the modified instruction location might have already been
fetched. Using DSB and then ISB can ensure that the modified program code is fetched again.

Architecturally, the ISB instruction should be used after updating the value of the CONTROL regis-
ter. In the Cortex-M3 processor, this is not strictly required. But if you want to make sure your applica-
tion is portable, you should ensure an ISB instruction is used after updating to CONTROL register.

DMB is very useful for multi-processor systems. For example, tasks running on separate processors
might use shared memory to communicate with each other. In these environments, the order of memory
accesses to the shared memory can be very important. DMB instructions can be inserted between accesses
to the shared memory to ensure that the memory access sequence is exactly the same as expected.

Table 4.27 Barrier Instructions

Instruction Description

DMB Data memory barrier; ensures that all memory accesses are completed before
new memory access is committed

DSB Data synchronization barrier; ensures that all memory accesses are completed
before next instruction is executed

ISB Instruction synchronization barrier; flushes the pipeline and ensures that all
previous instructions are completed before executing new instructions
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More details about memory barriers can be found in the ARM v7-M Architecture Application Level
Reference Manual [Ref. 2].

Assembly Language: Saturation Operations

The Cortex-M3 supports two instructions that provide signed and unsigned saturation operations: SSAT
and USAT (for signed data type and unsigned data type, respectively). Saturation is commonly used
in signal processing—for example, in signal amplification. When an input signal is amplified, there is
a chance that the output will be larger than the allowed output range. If the value is adjusted simply
by removing the unused MSB, an overflowed result will cause the signal waveform to be completely
deformed (see Figure 4.3).

The saturation operation does not prevent the distortion of the signal, but at least the amount of
distortion is greatly reduced in the signal waveform.

The instruction syntax of the SSAT and USAT instructions is outlined here and in Table 4.28.

Without
saturation

Dynamic
range 0

.

With
signed
saturation
FIGURE 4.3
Signed Saturation Operation.
Table 4.28 Saturation Instructions
Instruction Description
SSAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for signed value
USAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for a signed value into an unsigned value

Rn: Input value

Shift: Shift operation for input value before saturation; optional, can be #LSL N or #ASR N
Immed: Bit position where the saturation is carried out

Rd: Destination register
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Besides the destination register, the Q-bit in the APSR can also be affected by the result. The Q
flag is set if saturation takes place in the operation, and it can be cleared by writing to the APSR (see
Table 4.29). For example, if a 32-bit signed value is to be saturated into a 16-bit signed value, the fol-
lowing instruction can be used:

SSAT.W R1, #16, RO

Similarly, if a 32-bit unsigned value is to saturate into a 16-bit unsigned value, the following instruc-
tion can be used:

USAT.W R1, #16, RO

This will provide a saturation feature that has the properties shown in Figure 4.4.

For the preceding 16-bit saturation example instruction, the output values shown in Table 4.30 can
be observed.

Saturation instructions can also be used for data type conversions. For example, they can be used
to convert a 32-bit integer value to 16-bit integer value. However, C compilers might not be able to
directly use these instructions, so intrinsic function or assembler functions (or embedded/inline assem-
bler code) for the data conversion could be required.

Table 4.29 Examples of Signed Saturation Results
Input (RO) Output (R1) Q Bit
0x00020000 0x00007FFF Set
0x00008000 0x00007FFF Set
0x00007FFF 0x00007FFF Unchanged
0x00000000 0x00000000 Unchanged
OxFFFF8000 OxFFFF8000 Unchanged
OxFFFF7FFF OxFFFF8000 Set
OxFFFEO000 OxFFFF8000 Set
. With
Dynamic . :
range Amplify unS|gn_ed
\ saturation
0 \ 0 0

FIGURE 4.4

Unsigned Saturation Operation.
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Table 4.30 Examples of Unsigned Saturation Results

Input (RO) Output (R1) Q Bit
0x00020000 OxOO00FFFF Set
0x00008000 0x00008000 Unchanged
0x00007FFF 0x00007FFF Unchanged
0x00000000 0x00000000 Unchanged
OxFFFF8000 0x00000000 Set
OxFFFF8001 0x00000000 Set
OxFFFFFFFF 0x00000000 Set

SEVERAL USEFUL INSTRUCTIONS IN THE CORTEX-M3

Several useful Thumb-2 instructions from the architecture v7 and v6 are introduced here.

MSR and MRS

These two instructions provide access to the special registers in the Cortex-M3. Here is the syntax of
these instructions:

MRS <Rn>, <SReg> ; Move from Special Register
MSR <SReg>, <Rn> ; Write to Special Register

where <SReg> could be one of the options shown in Table 4.31.
For example, the following code can be used to set up the process stack pointer:

LDR R0,=0x20008000 ; new value for Process Stack Pointer (PSP)
MSR PSP, RO

Unless accessing the APSR, the MRS and MSR instructions can be used in privileged mode only. Oth-
erwise the operation will be ignored, and the returned read data (if MRS is used) will be zero.

After updating the value of the CONTROL register using MSR instruction, it is recommended to
add an ISB instruction to ensure that the effect of the update takes place immediately. On the Cor-
tex-M3 processor this is not strictly required, but for software portability (if the software code is to be
used on other ARM processor) this is needed.

More on the IF-THEN Instruction Block

The IF-THEN instruction was introduced briefly in an earlier section in this chapter “Conditional Exe-
cution Using IT instruction.” In here, we will cover more details about this instruction.

The IF-THEN (IT) instructions allow up to four succeeding instructions (called an IT block) to be
conditionally executed. They are in the following formats as shown in Table 4.32, where,

* <x> specifies the execution condition for the second instruction

* <y> specifies the execution condition for the third instruction

* <> specifies the execution condition for the fourth instruction

* <cond> specifies the base condition of the instruction block; the first instruction following IT
executes if <cond> is true
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Symbol

IPSR
EPSR
APSR
IEPSR
IAPSR
EAPSR
PSR

MSP

PSP
PRIMASK
BASEPRI
BASEPRI_MAX

FAULTMASK
CONTROL

Table 4.31 Special Register Names for MRS and MSR Instructions

Description

Interrupt status register

Execution status register (read as zero)
Flags from previous operation

A composite of IPSR and EPSR

A composite of IPSR and APSR

A composite of EPSR and APSR

A composite of APSR, EPSR, and IPSR
Main stack pointer

Process stack pointer

Normal exception mask register
Normal exception priority mask register

Same as normal exception priority mask register, with conditional write (new
priority level must be higher than the old level)

Fault exception mask register (also disables normal interrupts)

Control register

instruction

Two conditional
instructions

instructions

Four conditional
instructions

Only one conditional

Three conditional

Table 4.32 Various Length of IT Instruction Block

IT Block (each of <x>, <y> and <z>

can either be T [true] or E [else]) Examples

IT <cond> IT EQ
instrl<cond> ADDEQ RO,
IT<x> <cond> ITE GE
instrl<cond> ADDGE RO,
instr2<cond or ~(cond)> ADDLT RO,
ITEX>Ky> <cond> ITET GT
instrl<cond> ADDGT RO,
instr2<cond or ~(cond)> ADDLE RO,
instr3<cond or ~(cond)> ADDGT R2,
IT<x><y><z> <cond> ITETT NE
instrl<cond> ADDNE RO,
instr2<cond or ~(cond)> ADDEQ RO,
instr3<cond or ~(cond)> ADDNE R2,
instr4<cond or ~(cond)> MOVNE R5,

RO,

RO,
RO,

RO,
RO,
R4,

RO,
RO,
R4,

R3

R1

R1
R3

R1
#1
R1

R3
#1

The <cond> part uses the same condition symbols as conditional branch. If “AL” is used as <cond>,
then you cannot use “E” in the condition control as it implies the instruction should never get executed.
Each of <x>, <y>, and <z> can be either T (THEN) or E (ELSE), which refers to the base condition
<cond>, whereas <cond> uses traditional syntax such as EQ, NE, GT, or the like.
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Here is an example of IT use:

if (RO equal R1) then {
R3 = R4 + R5
R3 = R3/2
I else
R3 = R6 + R7
R3 = R3/2

}

This can be written as follows:

CMP RO,

ITTEE
ADDEQ
ASREQ
ADDNE
ASRNE

EQ

R3,
R3,
R3,
R3,

R4,
R3,
R6,
R3,

R5
#1
R7
#1

; Compare RO and R1

If RO equal R1, Then-Then-Else-Else

; Add if equal

; Arithmetic shift right if equal

; Add if not equal

; Arithmetic shift right if not equal

Aside from using the IT instruction directly, the IT instruction also helps porting of assembly appli-
cation codes from ARM7TDMI to Cortex-M3. When ARM assembler (including KEIL RealView
Microcontroller Development Kit, which is covered in Chapter 20) is used, and if a conditional execu-
tion instruction is used in assembly code without IT instruction, the assembler can insert the required
IT instruction automatically. An example is shown in Table 4.33. This feature allows existing assembly
code to be reused on Cortex-M3 without modifications.

CMP
ADDEQ

Table 4.33 Automatic Insertion of IT Instruction in ARM Assembler
Original Assembly Code

RL, {#2

RO, R1, #1

Disassembled Assembly Code from Generated
Object File

CcMP R1, 2
IT EQ
ADDEQ RO, RI1, #1

Note that 16-bit data processing instructions does not update APSR if they are used inside an IT
instruction block. If you add the § suffix in the conditional executed instruction, the 32-bit version of
the instruction would be used by the assembler.

SDIV and UDIV

The syntax for signed and unsigned divide instructions is as follows:

SDIV.W <Rd>,
UDIV.W <Rd>,

<Rn>,
<Rn>,

<Rm>
<Rm>

The result is Rd = Rn/Rm. For example,

LDR R0,=300 ;
MOV R1,#5
UDIV.W R2, RO,

R1

Decimal 300

This will give you an R2 result of 60 (0x3C).
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You can set up the DIVBYZERO bit in the NVIC Configuration Control Register so that when a
divide by zero occurs, a fault exception (usage fault) takes place. Otherwise, <Rd> will become 0 if a
divide by zero takes place.

REV, REVH, and REVSH

REV reverses the byte order in a data word, and REVH reverses the byte order inside a half word. For
example, if RO is 0x12345678, in executing the following:

REV  RI1, RO
REVH R2, RO

R1 will become 0x78563412, and R2 will be 0x34127856. REV and REVH are particularly useful for
converting data between big endian and little endian.

REVSH is similar to REVH except that it only processes the lower half word, and then it sign
extends the result. For example, if RO is 0x33448899, running:

REVSH R1, RO
R1 will become OxFFFF9988.

Reverse Bit

The RBIT instruction reverses the bit order in a data word. The syntax is as follows:
RBIT.W <Rd>, <Rn>

This instruction is very useful for processing serial bit streams in data communications. For exam-
ple, if RO is 0xB4E10C23 (binary value 1011_0100_1110_0001_0000_1100_0010_0011), executing:

RBIT.W RO, R1
RO will become 0xC430872D (binary value 1100_0100_0011_0000_1000_0111_0010_1101).

SXTB, SXTH, UXTB, and UXTH

The four instructions SXTB, SXTH, UXTB, and UXTH are used to extend a byte or half word data into
a word. The syntax of the instructions is as follows:

SXTB <Rd>, <Rn>
SXTH <Rd>, <Rn>
UXTB <Rd>, <Rn>
UXTH <Rd>, <Rn>

For SXTB/SXTH, the data are sign extended using bit[7]/bit[15] of Rn. With UXTB and UXTH,
the value is zero extended to 32-bit.
For example, if RO is 0x55AA8765:

SXTB R1, RO ; RI 0x00000065
SXTH R1, RO ; RI OxFFFF8765
UXTB R1, RO ; Rl = 0x00000065
UXTH R1, RO ; RI 0x00008765
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Bit Field Clear and Bit Field Insert

Bit Field Clear (BFC) clears 1-31 adjacent bits in any position of a register. The syntax of the instruc-
tion is as follows:

BFC.W <Rd>, <{#1sb>, <Fwidth>
For example,

LDR  RO,=0x1234FFFF
BFC.W RO, #4, #8

This will give RO = 0x1234F00F.
Bit Field Insert (BFI) copies 1-31 bits (#width) from one register to any location (#Isb) in another
register. The syntax is as follows:

BFI.W <Rd>, <Rn>, <{1sb>, <Fwidth>
For example,

LDR  R0,=0x12345678
LDR  RI1,=0x3355AACC
BFI.W R1, RO, #8, #16 ; Insert RO[15:0] to R1[23:8]

This will give R1 = 0x335678CC.

UBFX and SBFX

UBFX and SBFX are the unsigned and signed bit field extract instructions. The syntax of the instruc-
tions is as follows:

UBFX.W <Rd>, <Rn>, <{#1sb>, <jwidth>
SBFX.W <Rd>, <Rn>, <{#l1sb>, <fwidth>

UBFX extracts a bit field from a register starting from any location (specified by #lsb) with any
width (specified by #width), zero extends it, and puts it in the destination register. For example,

LDR RO,=0x5678ABCD
UBFX.W R1, RO, #4, {#8

This will give R1 = 0x000000BC.
Similarly, SBFX extracts a bit field, but its sign extends it before putting it in a destination register.
For example,

LDR RO,=0x5678ABCD
SBFX.W R1, RO, #4, #8

This will give R1 = OxFFFFFFBC.

LDRD and STRD

The two instructions LDRD and STRD transfer two words of data from or into two registers. The syn-
tax of the instructions is as follows:

LDRD.W <Rxf>, <Rxf2>, [Rn, fH+/—offset]{!} ; Pre-indexed
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LDRD.W <Rxf>, <Rxf2>, [Rn], #+/-offset ; Post-indexed
STRD.W <Rxf>, <Rxf2>, [Rn, {#+/-offset]{!} ; Pre-indexed
STRD.W <Rxf>, <Rxf2>, [Rn], #+/-offset ; Post-indexed

where <Rxf> is the first destination/source register and <Rxf2> is the second destination/source regis-
ter. Avoid using same register for <Rn> and <Rxf> when using LDRD because of an erratum in Cortex-
M3 revision 0 to 2.

For example, the following code reads a 64-bit value located in memory address 0x1000 into RO
and R1:

LDR R2,=0x1000
LDRD.W RO, RI, [R2] ; This will gives RO = memory[0x10007,
; R1 = memory[0x1004]

Similarly, we can use STRD to store a 64-bit value in memory. In the following example, preindexed
addressing mode is used:

LDR R2,=0x1000 ; Base address
STRD.W RO, RI, [R2, #0x2071 ; This will gives memory[0x1020] = RO,
; memory[0x1024] = R1

Table Branch Byte and Table Branch Halfword

Table Branch Byte (TBB) and Table Branch Halfword (TBH) are for implementing branch tables. The
TBB instruction uses a branch table of byte size offset, and TBH uses a branch table of half word offset.
Since the bit O of a program counter is always zero, the value in the branch table is multiplied by two
before it’s added to PC. Furthermore, because the PC value is the current instruction address plus four,
the branch range for TBB is (2 x 255) + 4 = 514, and the branch range for TBH is (2 x 65535) + 4 =
131074. Both TBB and TBH support forward branch only.

TBB has this general syntax:

TBB.W [Rn, Rm]

where Rn is the base memory offset and Rm is the branch table index. The branch table item for
TBB is located at Rn + Rm. Assuming we used PC for Rn, we can see the operation as shown in
Figure 4.5.

For TBH instruction, the process is similar except the memory location of the branch table item is
located at Rn + 2 x Rm and the maximum branch offset is higher. Again, we assume that Rn is set to
PC, as shown in Figure 4.6.

If Rn in the table branch instruction is set to R15, the value used for Rn will be PC + 4 because of the
pipeline in the processor. These two instructions are more likely to be used by a C compiler to generate
code for switch (case) statements. Because the values in the branch table are relative to the current pro-
gram counter, it is not easy to code the branch table content manually in assembler as the address offset
value might not be able to be determined during assembly/compile stage, especially if the branch target
is in a separate program code file. The coding syntax for calculating TBB/TBH branch table content
could be dependent on the development tool. In ARM assembler (armasm), the TBB branch table can
be created in the following way:

TBB.W [pc, r0] ; when executing this instruction, PC equal
; branchtable
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branchtable
DCB ((destO0 — branchtable)/2) ; Note that DCB is used because
; the value is 8-bit
DCB ((destl — branchtable)/2)
DCB ((dest2 — branchtable)/2)

DCB ((dest3 — branchtable)/2)

destO
... ; Execute if r0 =0
destl
... ; Execute if r0 =1
dest?
... ; Execute if r0 =2
dest3
; Execute if r0 = 3
Program
Rm =N flow
PC TBB [PC, Rm]
Rn=(PC+4) VAL_0[7:0]
VAL_1[7:0]
Rn +Rm VAL_N[7:0]
New PC = (PC + 4) + 2 X VAL_N[7:0]
FIGURE 4.5
TBB Operation
Rm =N Program
flow
PC |TBH [PC, Rm, LSL #1]
Rn=(PC+4) VAL_0[15:0]
VAL_1[15:0]
Rn+2XRm VAL_N[15:0]
T~ _ .
New PC = (PC + 4) + 2 X VAL_N[15:0]

FIGURE 4.6

TBH Operation.
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When the TBB instruction is executed, the current PC value is at the address labeled as branchtable
(because of the pipeline in the processor). Similarly, for TBH instructions, it can be used as follows:

TBH.W [pc, r0, LSL #1]
branchtable
DCI ((dest0 — branchtable)/2) ; Note that DCI is used because
; the value is 16-bit
DCI ((destl — branchtable)/2)
DCI ((dest2 — branchtable)/2)
DCI ((dest3 — branchtable)/2)

dest0
; Execute if r0 =0

destl
; Execute if r0 =1

dest?
. ; Execute if r0 = 2

dest3
; Execute if r0 = 3
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MEMORY SYSTEM FEATURES OVERVIEW

The Cortex™-M3 processor has different memory architecture from that of traditional ARM proces-
sors. First, it has a predefined memory map that specifies which bus interface is to be used when a
memory location is accessed. This feature also allows the processor design to optimize the access
behavior when different devices are accessed.

Another feature of the memory system in the Cortex-M3 is the bit-band support. This provides
atomic operations to bit data in memory or peripherals. The bit-band operations are supported only in
special memory regions. This topic is covered in more detail later in this chapter.

The Cortex-M3 memory system also supports unaligned transfers and exclusive accesses. These
features are part of the v7-M architecture. Finally, the Cortex-M3 supports both little endian and big
endian memory configuration.

MEMORY MAPS

The Cortex-M3 processor has a fixed memory map (see Figure 5.1). This makes it easier to port soft-
ware from one Cortex-M3 product to another. For example, components described in previous sections,
such as Nested Vectored Interrupt Controller (NVIC) and Memory Protection Unit (MPU), have the

Copyright © 2010, Elsevier Inc. All rights reserved. 79
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0xEOOFF000 ROM table OxFFFFFFFF
OXEOOFEFFF
External private peripheral bus Vendor specific
0xE0042000
0xE0041000 ETM 0xE0100000
0xE0040000 TPIU Private peripheral bus: OxEOOFFFFF
Debug/external 0xE0040000
OXEOO03FFFF Private peripheral bus: OxEOO3FFFF
Reserved
0XEO00F000 Internal 0xE0000000
O0xEOOOE000 NVIC OxDFFFFFFF
O0xEOOODFFF
Reserved
0xE0003000
External device
0xE0002000 FPB
0xE0001000 DWT
0xE0000000 IT™ 1 GB | 0xA0000000
Ox9FFFFFFF
0x43FFFFFF
External RAM
Bit-band alias
0x42000000 | 32 MB 1 GB | 0x60000000
0x41FFFFFF Ox5FFFFFFF
0x40100000 | 31 MB )
Peripherals
Bit-band region
0x40000000 | 1 MB 0.5 GB | 0x40000000
O0x3FFFFFFF
SRAM
0x23FFFFFF
. . 0.5 GB | 0x20000000
Bit-band alias
Ox1FFFFFFF
0x22000000 | 32 MB
Code
0x21FFFFFF
0x20100000 | 31 MB 0.5 GB | 0x00000000

Bit-band region
0x20000000 | 1 MB

FIGURE 5.1
Cortex-M3 Predefined Memory Map.

same memory locations in all Cortex-M3 products. Nevertheless, the memory map definition allows
great flexibility so that manufacturers can differentiate their Cortex-M3-based product from others.

Some of the memory locations are allocated for private peripherals such as debugging components.
They are located in the private peripheral memory region. These debugging components include the
following:

* Fetch Patch and Breakpoint Unit (FPB)
» Data Watchpoint and Trace Unit (DWT)
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e Instrumentation Trace Macrocell (ITM)
¢  Embedded Trace Macrocell (ETM)

e Trace Port Interface Unit (TPIU)

* ROM table

The details of these components are discussed in later chapters on debugging features.

The Cortex-M3 processor has a total of 4 GB of address space. Program code can be located in the
code region, the Static Random Access Memory (SRAM) region, or the external RAM region. How-
ever, it is best to put the program code in the code region because with this arrangement, the instruction
fetches and data accesses are carried out simultaneously on two separate bus interfaces.

The SRAM memory range is for connecting internal SRAM. Access to this region is carried out
via the system interface bus. In this region, a 32-MB range is defined as a bit-band alias. Within the
32-bit-band alias memory range, each word address represents a single bit in the 1-MB bit-band
region. A data write access to this bit-band alias memory range will be converted to an atomic READ-
MODIFY-WRITE operation to the bit-band region so as to allow a program to set or clear individual
data bits in the memory. The bit-band operation applies only to data accesses not instruction fetches.
By putting Boolean information (single bits) in the bit-band region, we can pack multiple Boolean data
in a single word while still allowing them to be accessible individually via bit-band alias, thus saving
memory space without the need for handling READ-MODIFY-WRITE in software. More details on
bit-band alias can be found later in this chapter.

Another 0.5-GB block of address range is allocated to on-chip peripherals. Similar to the SRAM
region, this region supports bit-band alias and is accessed via the system bus interface. However,
instruction execution in this region is not allowed. The bit-band support in the peripheral region makes
it easy to access or change control and status bits of peripherals, making it easier to program peripheral
control.

Two slots of 1-GB memory space are allocated for external RAM and external devices. The differ-
ence between the two is that program execution in the external device region is not allowed, and there
are some differences with the caching behaviors.

The last 0.5-GB memory is for the system-level components, internal peripheral buses, external
peripheral bus, and vendor-specific system peripherals. There are two segments of the private periph-
eral bus (PPB):

* Advanced High-Performance Bus (AHB) PPB, for Cortex-M3 internal AHB peripherals only; this
includes NVIC, FPB, DWT, and ITM

* Advance Peripheral Bus (APB) PPB, for Cortex-M3 internal APB devices as well as external
peripherals (external to the Cortex-M3 processor); the Cortex-M3 allows chip vendors to add
additional on-chip APB peripherals on this private peripheral bus via an APB interface

The NVIC is located in a memory region called the system control space (SCS) (see Figure 5.2).
Besides providing interrupt control features, this region also provides the control registers for SYS-
TICK, MPU, and code debugging control.

The remaining unused vendor-specific memory range can be accessed via the system bus interface.
However, instruction execution in this region is not allowed.

The Cortex-M3 processor also comes with an optional MPU. Chip manufacturers can decide
whether to include the MPU in their products.
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Private System
peripheral bus control space
OXEOOFFFFF O0xEOOOEFFF
OxFFFFFFFF External NVIC, CPU
0xE0040000 PPB ID,
System level e SYSTICK,
.............. X Internal MPU, core
OxEOOFFFFF debua. et
PPB g, etc.
0xE0000000 0xE0000000 T 0xEO0OE000
FIGURE 5.2

The System Control Space.

What we have shown in the memory map is merely a template; individual semiconductor vendors
provide detailed memory maps including the actual location and size of ROM, RAM, and peripheral
memory locations.

MEMORY ACCESS ATTRIBUTES

The memory map shows what is included in each memory region. Aside from decoding which memory
block or device is accessed, the memory map also defines the memory attributes of the access. The
memory attributes you can find in the Cortex-M3 processor include the following:

* Bufferable: Write to memory can be carried out by a write buffer while the processor continues on
next instruction execution.

* Cacheable: Data obtained from memory read can be copied to a memory cache so that next time it
is accessed the value can be obtained from the cache to speed up the program execution.

* Executable: The processor can fetch and execute program code from this memory region.

* Sharable: Data in this memory region could be shared by multiple bus masters. Memory system
needs to ensure coherency of data between different bus masters in shareable memory region.

The Cortex-M3 bus interfaces output the memory access attributes information to the memory
system for each instruction and data transfer. The default memory attribute settings can be overridden
if MPU is present and the MPU region configurations are programmed differently from the default.
Though the Cortex-M3 processor does not have a cache memory or cache controller, a cache unit can
be added on the microcontroller which can use the memory attribute information to define the memory
access behaviors. In addition, the cache attributes might also affect the operation of memory control-
lers for on-chip memory and off-chip memory, depending on the memory controllers used by the chip
manufacturers.

The memory access attributes for each memory region are as follows:

* Code memory region (0x00000000-0x1FFFFFFF): This region is executable, and the cache
attribute is write through (WT). You can put data memory in this region as well. If data operations
are carried out for this region, they will take place via the data bus interface. Write transfers to this
region are bufferable.



5.4 Default Memory Access Permissions 83

*  SRAM memory region (0x20000000-0x3FFFFFFF): This region is intended for on-chip RAM.
Write transfers to this region are bufferable, and the cache attribute is write back, write allocated
(WB-WA). This region is executable, so you can copy program code here and execute it.

*  Peripheral region (0x40000000-0xSFFFFFFF): This region is intended for peripherals. The
accesses are noncacheable. You cannot execute instruction code in this region (Execute Never, or
XN in ARM documentation, such as the Cortex-M3 TRM).

* External RAM region (0x60000000-0x7FFFFFFF): This region is intended for either on-chip or
off-chip memory. The accesses are cacheable (WB-WA), and you can execute code in this region.

» External RAM region (0x80000000-0x9FFFFFFF): This region is intended for either on-chip or
off-chip memory. The accesses are cacheable (WT), and you can execute code in this region.

» External devices (0xA0000000-0xBFFFFFFF): This region is intended for external devices and/or
shared memory that needs ordering/nonbuffered accesses. It is also a nonexecutable region.

»  External devices (0xC0000000-0xDFFFFFFF): This region is intended for external devices and/or
shared memory that needs ordering/nonbuffered accesses. It is also a nonexecutable region.

»  System region (0OxE0000000—-OxFFFFFFFF): This region is for private peripherals and vendor-specific
devices. It is nonexecutable. For the PPB memory range, the accesses are strongly ordered (noncacheable,
nonbufferable). For the vendor-specific memory region, the accesses are bufferable and noncacheable.

Note that from Revision 1 of the Cortex-M3, the code region memory attribute export to external
memory system is hardwired to cacheable and nonbufferable. This cannot be overridden by MPU con-
figuration. This update only affects the memory system outside the processor (e.g., level 2 cache and
certain types of memory controllers with cache features). Within the processor, the internal write buffer
can still be used for write transfers accessing the code region.

DEFAULT MEMORY ACCESS PERMISSIONS

The Cortex-M3 memory map has a default configuration for memory access permissions. This prevents user
programs (non-privileged) from accessing system control memory spaces such as the NVIC. The default
memory access permission is used when either no MPU is present or MPU is present but disabled.

If MPU is present and enabled, the access permission in the MPU setup will determine whether user
accesses are allowed.

The default memory access permissions are shown in Table 5.1.

Table 5.1 Default Memory Access Permissions

Memory Region Address Access in User Program

Vendor specific 0xE0100000-0xFFFFFFFF Full access

ROM table OxEOOFFO00-OXEOOFFFFF Blocked; user access results in bus fault
External PPB 0xE0042000-0xEOOFEFFF Blocked; user access results in bus fault
ETM 0xE0041000-0xEO041FFF Blocked; user access results in bus fault

Continued
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Table 5.1 Default Memory Access Permissions Continued

Memory Region Address Access in User Program

TPIU 0xE0040000-0xEOQ040FFF Blocked; user access results in bus fault
Internal PPB OXxEOOOFO00-0OXEOO3FFFF Blocked; user access results in bus fault

NVIC OxEOOOEO00-OXEOOOEFFF Blocked; user access results in bus fault, except

Software Trigger Interrupt Register that can be
programmed to allow user accesses

FPB 0OxE0002000-0xEOOO3FFF Blocked; user access results in bus fault

DWT 0xE0001000-0xEO001FFF Blocked; user access results in bus fault

[T™ 0OxEO000000-0OXEOOOOFFF Read allowed; write ignored except for stimulus

ports with user access enabled

External device 0xAQ000000-OXDFFFFFFF Full access

External RAM 0x60000000-0x9FFFFFFF Full access

Peripheral 0x40000000-0x5FFFFFFF Full access

SRAM 0x20000000-0x3FFFFFFF Full access

Code 0x00000000-0x1FFFFFFF Full access

When a user access is blocked, the fault exception takes place immediately.

BIT-BAND OPERATIONS

Bit-band operation support allows a single load/store operation to access (read/write) to a single data
bit. In the Cortex-M3, this is supported in two predefined memory regions called bit-band regions. One
of them is located in the first 1 MB of the SRAM region, and the other is located in the first 1 MB of the
peripheral region. These two memory regions can be accessed like normal memory, but they can also
be accessed via a separate memory region called the bit-band alias (see Figure 5.3). When the bit-band
alias address is used, each individual bit can be accessed separately in the least significant bit (LSB) of
each word-aligned address.

For example, to set bit 2 in word data in address 0x20000000, instead of using three instructions
to read the data, set the bit, and then write back the result, this task can be carried out by a single
instruction (see Figure 5.4). The assembler sequence for these two cases could be like the one shown
in Figure 5.5.

Similarly, bit-band support can simplify application code if we need to read a bit in a memory loca-
tion. For example, if we need to determine bit 2 of address 0x20000000, we use the steps outlined in
Figure 5.6. The assembler sequence for these two cases could be like the one shown in Figure 5.7.

Bit-band operation is not a new idea; in fact, a similar feature has existed for more than 30 years on
8-bit microcontrollers such as the 8051. Although the Cortex-M3 does not have special instructions for
bit operation, special memory regions are defined so that data accesses to these regions are automati-
cally converted into bit-band operations.

Note that the Cortex-M3 uses the following terms for the bit-band memory addresses:

* Bit-band region: This is a memory address region that supports bit-band operation.
* Bit-band alias: Access to the bit-band alias will cause an access (a bit-band operation) to the
bit-band region. (Note: A memory remapping is performed.)
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Bit
31 24 16 8 0
ox200FFFFC | [ [ [ [ [[[[[[TILLILLTILTIITIITl]]
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region : '
address H !
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\ Bit-band alias —/
address
FIGURE 5.3
Bit Accesses to Bit-Band Region via the Bit-Band Alias.
Without bit-band With bit-band
Read data from
Read 0x20000000
o rogister / 0120000000t
Write 1 to Mapped to 2

S B 17 [ ED 0x22000008 | bus transfers

Write register to Write to
0x20000000 0x20000000 from
— buffer with bit 2 set
FIGURE 5.4

Write to Bit-Band Alias.

Without bit-band With bit-band
LDR RO, =0x20000000 ; Setup address LDR RO,=0x22000008 ; Setup add
LDR  R1, [RO] ; Read MOV RI1, #1 ; Setup dat
ORR.W R1, #0x4 ; Modify bit STR R1, [RO] ; Write
STR R1, [RO] ; Write back result

FIGURE 5.5
Example Assembler Sequence to Write a Bit with and without Bit-Band.

Within the bit-band region, each word is represented by an LSB of 32 words in the bit-band alias
address range. What actually happens is that when the bit-band alias address is accessed, the address
is remapped into a bit-band address. For read operations, the word is read and the chosen bit location
is shifted to the LSB of the read return data. For write operations, the written bit data are shifted to the
required bit position, and a READ-MODIFY-WRITE is performed.
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Without bit-band With bit-band
[Read 0x20000000 ’ Mapped to 1
to register bus transfers
o?f?gogggs _— Read data from
Shift bit 2 to LSB 0x20000000, and
and mask other bits extract bit 2 to
register
FIGURE 5.6
Read from the Bit-Band Alias.
Without bit-band With bit-band
LDR RO, =0x20000000 ; Setup address LDR RO, =0x22000008 ; Setup address
LDR R1, [RO] ; Read LDR  R1, [RO] ; Read

UBFX.W R1, RI1, #2, #1 ; Extract bit[2]

FIGURE 5.7
Read from the Bit-Band Alias.

Table 5.2 Remapping of Bit-Band Addresses in SRAM Region
Bit-Band Region Aliased Equivalent
0x20000000 bit[0] 0x22000000 bit[0]
0x20000000 bit[1] 0x22000004 bit[0]
0x20000000 bit[2] 0x22000008 bit[0]
0x20000000 bit[31] 0x2200007C bit[0]
0x20000004 bit[0] 0x22000080 bit[0]
0x20000004 bit[31] 0x220000FC bit[0]
Ox200FFFFC bit[31] Ox23FFFFFC bit[0]

There are two regions of memory for bit-band operations:

*  0x20000000-0x200FFFFF (SRAM, 1 MB)
*  0x40000000-0x400FFFFF (peripherals, 1 MB)

For the SRAM memory region, the remapping of the bit-band alias is shown in Table 5.2.
Similarly, the bit-band region of the peripheral memory region can be accessed via bit-band aliased
addresses, as shown in Table 5.3.



5.5 Bit-Band Operations

87

Bit-Band Region

0x40000000 bit[0]
0x40000000 bit[1]
0x40000000 bit[2]

0x40000000 bit[31]
0x40000004 bit[0]

0x40000004 bit[31]

Ox400FFFFC bit[31]

Table 5.3 Remapping of Bit-Band Addresses in Peripheral Memory Region

Aliased Equivalent

0x42000000 bit[0]
0x42000004 bit[0]
0x42000008 bit[0]

0x4200007C bit[0]
0x42000080 bit[0]

0x420000FC bit[0]

Ox43FFFFFC bit[0]

N —

Here’s a simple example:

. Set address 0x20000000 to a value of 0x3355AACC.
. Read address 0x22000008. This read access is remapped into read access to 0x20000000. The

return value is 1 (bit[2] of 0x3355AACC).

Write 0x0 to 0x22000008. This write access is remapped into a READ-MODIFY-WRITE to
0x20000000. The value 0x3355AACC is read from memory, bit 2 is cleared, and a result of
0x3355AACS is written back to address 0x20000000.

Now, read 0x20000000. That gives you a return value of 0x3355AAC8 (bit[2] cleared).

When you access bit-band alias addresses, only the LSB (bit[0]) in the data is used. In addition,

accesses to the bit-band alias region should not be unaligned. If an unaligned access is carried out to
bit-band alias address range, the result is unpredictable.

Advantages of Bit-Band Operations

So, what are the uses of bit-band operations? We can use them to, for example, implement serial data
transfers in general-purpose input/output (GPIO) ports to serial devices. The application code can be
implemented easily because access to serial data and clock signals can be separated.

BIT-BAND VERSUS BIT-BANG

In the Cortex-M3, we use the term bit-band to indicate that the feature is a special memory band (region) that
provides bit accesses. Bit-bang commonly refers to driving I/0O pins under software control to provide serial
communication functions. The bit-band feature in the Cortex-M3 can be used for bit-banging implementations,
but the definitions of these two terms are different.

Bit-band operation can also be used to simplify branch decisions. For example, if a branch should

be carried out based on 1 single bit in a status register in a peripheral, instead of

Reading the whole register
Masking the unwanted bits
Comparing and branching
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you can simplify the operations to

* Reading the status bit via the bit-band alias (get 0 or 1)
e Comparing and branching

Besides providing faster bit operations with fewer instructions, the bit-band feature in the Cortex-M3
is also essential for situations in which resources are being shared by more than one process. One of the
most important advantages or properties of a bit-band operation is that it is atomic. In other words, the
READ-MODIFY-WRITE sequence cannot be interrupted by other bus activities. Without this behav-
ior in, for example, using a software READ-MODIFY-WRITE sequence, the following problem can
occur: consider a simple output port with bit 0 used by a main program and bit 1 used by an interrupt
handler. A software-based READ-MODIFY-WRITE operation can cause data conflicts, as shown in
Figure 5.8.

With the Cortex-M3 bit-band feature, this kind of race condition can be avoided because the READ-
MODIFY-WRITE is carried out at the hardware level and is atomic (the two transfers cannot be pulled
apart) and interrupts cannot take place between them (see Figure 5.9).

Similar issues can be found in multitasking systems. For example, if bit O of the output port is
used by Process A and bit 1 is used by Process B, a data conflict can occur in software-based READ-
MODIFY-WRITE (see Figure 5.10).

Without bit-band operation
Handler mode

Thread mode / \

Bit 1 modified
by interrupt

/' handler\‘

Output port Write to

read output port
Interrupt handler A
Main program Ch de b
Bit 0 set Bit O clear imﬁ?ﬁ& nhqu\lnglery lost
by main by main
program™y /7 program N
Olrjégtéttgort Write to o:ggLéttgort Write to
register outputport - register outpetpor
v v Y
Output port
tout | 0x00 0x01 0x03|  0x00 |
Time
FIGURE 5.8

Data Are Lost When an Exception Handler Modifies a Shared Memory Location.
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Handler mode

Thread mode
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A

Interrupt handler

Bit 1 modified by interrupt
handler by write to bit-band
alias

Main program
Bit 0 set by main program
by write to bit-band alias

Locked read- l
modify-write( \?

Write to
output port via
bit-band alias

Locked read- Locked read-
modify-write( Y ("}modify-write

Output port 0x00 | 0x01 [0x00] 0x02
value
Time "
FIGURE 5.9
Data Loss Prevention with Locked Transfers Using the Bit-Band Feature.
Without bit-band operation
Current task | Task A | TaskB | TaskA | Task B | TaskA |
Bit 1 modified
/7 by task By
Output port Write to
Task B re‘z?d output port
Task A Change made by
Bit 0 set by Bit O clear by task B is lost
/' task A \‘ /' task A \‘
Output port Write to Output port Write to
read to register output port read to register output port
v v v
Output port 5,65 0x01 0x03| 0x00 |
value
Time -

FIGURE 5.10

Data Are Lost When a Different Task Modifies a Shared Memory Location.
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With bit-band operation

Current task Task A | TaskB TaskA |  TaskB | TaskA

Bit 1 modified by task B by

Task B write to bit-band alias
Task A
Write to
Bit O set by task A by write output port via
to bit-band alias bit-band alias
Locked read- Locked read-i Locked read-
modify-write Y modify-write Y "}modify-write
Output port ( ( (
value | 0x00 | 0x01 [0x00] 0x02
Time o
FIGURE 5.11

Data Loss Prevention with Locked Transfers Using the Bit-Band Feature.

Again, the bit-band feature can ensure that bit accesses from each task are separated so that no data
conflicts occur (see Figure 5.11).

Besides I/O functions, the bit-band feature can be used for storing and handling Boolean data in the
SRAM region. For example, multiple Boolean variables can be packed into one single memory location
to save memory space, whereas the access to each bit is still completely separated when the access is
carried out via the bit-band alias address range.

For system-on-chip (SoC) designers designing a bit-band-capable device, the device’s memory
address should be located within the bit-band memory, and the lock (HMASTLOCK) signal from the
AHB interface must be checked to make sure that writable register contents will not be changed except
by the bus when a locked transfer is carried out.

Bit-Band Operation of Different Data Sizes

Bit-band operation is not limited to word transfers. It can be carried out as byte transfers or half word
transfers as well. For example, when a byte access instruction (LDRB/STRB) is used to access a
bit-band alias address range, the accesses generated to the bit-band region will be in byte size. The
same applies to half word transfers (LDRH/STRH). When you use nonword transfers to bit-band alias
addresses, the address value should still be word aligned.

Bit-Band Operations in C Programs

There is no native support of bit-band operation in most C compilers. For example, C compilers do
not understand that the same memory can be accessed using two different addresses, and they do not
know that accesses to the bit-band alias will only access the LSB of the memory location. To use the
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bit-band feature in C, the simplest solution is to separately declare the address and the bit-band alias of
a memory location. For example:

Jfdefine DEVICE_REGO *((volatile unsigned lTong *) (0x40000000))
Jfdefine DEVICE_REGO_BITO *((volatile unsigned long *) (0x42000000))
Jfdefine DEVICE_REGO_BIT1 *((volatile unsigned long *) (0x42000004))

DEVICE_REGO

OxAB; // Accessing the hardware register by normal
// address

DEVICE_REGO

DEVICE_REGO | 0x2; // Setting bit 1 without using
// bitband feature

DEVICE_REGO_BIT1 = 0x1; // Setting bit 1 using bitband feature
// via the bit band alias address

It is also possible to develop C macros to make accessing the bit-band alias easier. For example, we
could set up one macro to convert the bit-band address and the bit number into the bit-band alias address
and set up another macro to access the memory location by taking the address value as a pointer:

// Convert bit band address and bit number into
// bit band alias address
Jdefine BITBAND(addr,bitnum) ((addr & O0xF0000000)+0x2000000+( (addr &

OXFFFFF)<<5)+(bitnum <<2))
// Convert the address as a pointer
jtdefine MEM_ADDR(addr) *((volatile unsigned long *) (addr))

Based on the previous example, we rewrite the code as follows:

Jfdefine DEVICE_REGO 0x40000000

ftdefine BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x02000000+( (addr &
OXFFFFF)<<5)+(bitnum<<2))

Jtdefine MEM_ADDR(addr) *((volatile unsigned long *) (addr))

MEM_ADDR(DEVICE_REGO) = OxAB; // Accessing the hardware
// register by normal address

// Setting bit 1 without using bitband feature
MEM_ADDR(DEVICE_REGO) = MEM_ADDR(DEVICE_REGO) \ 0x2;

// Setting bit 1 with using bitband feature
MEM_ADDR(BITBAND(DEVICE_REGO,1)) = Ox1;

Note that when the bit-band feature is used, the variables being accessed might need to be declared
as volatile. The C compilers do not know that the same data could be accessed in two different addresses,
so the volatile property is used to ensure that each time a variable is accessed, the memory location is
accessed instead of a local copy of the data inside the processor.

Starting from ARM RealView Development Suite version 4.0 and Keil MDK-ARM 3.80, bit band
support is provided by __attribute__((bitband)) language extension and __bitband command
line option (see reference 6). You can find further examples of bit-band accesses with C macros using
ARM RealView Compiler Tools in the ARM Application Note 179 [Ref. 7].
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UNALIGNED TRANSFERS

The Cortex-M3 supports unaligned transfers on single accesses. Data memory accesses can be defined
as aligned or unaligned. Traditionally, ARM processors (such as the ARM7/ARM9/ARM10) allow
only aligned transfers. That means in accessing memory, a word transfer must have address bit[1] and
bit[0] equal to 0, and a half word transfer must have address bit[0] equal to 0. For example, word data
can be located at 0x1000 or 0x1004, but it cannot be located in 0x1001, 0x1002, or 0x1003. For half
word data, the address can be 0x1000 or 0x1002, but it cannot be 0x1001.

So, what does an unaligned transfer look like? Figures 5.12 through 5.16 show some examples.
Assuming that the memory infrastructure is 32-bit (4 bytes) wide, an unaligned transfer can be any word
size read/write such that the address is not a multiple of 4, as shown in Figures 5.12-5.14, or when the
transfer is in half word size, and the address is not a multiple of 2, as shown in Figures 5.15 and 5.16.

All the byte-size transfers are aligned on the Cortex-M3 because the minimum address step is 1 byte.

Byte Byte Byte Byte
3 2 1 0
Address N+4 [31:24] | Unaligned word data
Address N [23:16] [15:8] [7:0] at address N+1

FIGURE 5.12
Unaligned Transfer Example 1.

Byte Byte Byte Byte
3 2 1 0
Address N+4 [31:24] | [23:16] | Unaligned word data
Address N [15:8] [7:0] at address N+2

FIGURE 5.13
Unaligned Transfer Example 2.

Byte Byte Byte Byte
3 2 1 0
Address N+4 [31:24] | [23:16] [15:8] Unaligned word data
Address N [7:0] at address N+3

FIGURE 5.14
Unaligned Transfer Example 3.

Byte Byte Byte Byte

Address N+4 Unaligned half word data
Address N [15:8] [7:0] at address N+1

FIGURE 5.15
Unaligned Transfer Example 4.
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Byte Byte Byte Byte
3 2 1 0
Address N+4 [15:8] Unaligned half word data
Address N [7:0] at address N+3

FIGURE 5.16
Unaligned Transfer Example 5.

In the Cortex-M3, unaligned transfers are supported in normal memory accesses (such as LDR,
LDRH, STR, and STRH instructions). There are a number of limitations:

* Unaligned transfers are not supported in Load/Store multiple instructions.

» Stack operations (PUSH/POP) must be aligned.

* Exclusive accesses (such as LDREX or STREX) must be aligned; otherwise, a fault exception
(usage fault) will be triggered.

* Unaligned transfers are not supported in bit-band operations. Results will be unpredictable if you
attempt to do so.

When unaligned transfers are used, they are actually converted into multiple aligned transfers by the
processor’s bus interface unit. This conversion is transparent, so application programmers do not have
to worry about it. However, when an unaligned transfer takes place, it is broken into separate transfers,
and as a result, it takes more clock cycles for a single data access and might not be good for situations
in which high performance is required. To get the best performance, it’s worth making sure that data
are aligned properly.

It is also possible to set up the NVIC so that an exception is triggered when an unaligned transfer
takes place. This is done by setting the UNALIGN_TRP (unaligned trap) bit in the configuration con-
trol register in the NVIC (OxEOOOED14). In this way, the Cortex-M3 generates usage fault exceptions
when unaligned transfers take place. This is useful during software development to test whether an
application produces unaligned transfers.

EXCLUSIVE ACCESSES

You might have noticed that the Cortex-M3 has no SWP instruction (swap), which was used for sema-
phore operations in traditional ARM processors like ARM7TDMI. This is now being replaced by
exclusive access operations. Exclusive accesses were first supported in architecture v6 (for example,
in the ARM1136).

Semaphores are commonly used for allocating shared resources to applications. When a shared
resource can only service one client or application processor, we also call it Mutual Exclusion
(MUTEX). In such cases, when a resource is being used by one process, it is locked to that process
and cannot serve another process until the lock is released. To set up a MUTEX semaphore, a memory
location is defined as the lock flag to indicate whether a shared resource is locked by a process. When
a process or application wants to use the resource, it needs to check whether the resource has been
locked first. If it is not being used, it can set the lock flag to indicate that the resource is now locked. In
traditional ARM processors, the access to the lock flag is carried out by the SWP instruction. It allows
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v

Exclusive Read

Read lock bit (e.g., LDREX)
Failed: Lock bit already set,
. 5 indicates the requested
Check lock bit set? resource is used by another
No Yes process or processor
. Exclusive Write
Set lock bit (e.g., STREX)
Failed: Memory region
fff,iuélituaéf'vi where the lock bit is could
write = 0 have been accessed by
(succe;s)'7 v No another process or another
? es

processor

Success. The lock bit is set
and the processor can have
access to the shared
resource

FIGURE 5.17

Using Exclusive Access in MUTEX Semaphores.

the lock flag read and write to be atomic, preventing the resource from being locked by two processes

at the same time.

In newer ARM processors, the read/write access can be carried out on separated buses. In such
situations, the SWP instructions can no longer be used to make the memory access atomic because
the read and write in a locked transfer sequence must be on the same bus. Therefore, the locked
transfers are replaced by exclusive accesses. The concept of exclusive access operation is quite
simple but different from SWP; it allows the possibility that the memory location for a semaphore
could be accessed by another bus master or another process running on the same processor (see

Figure 5.17).

To allow exclusive access to work properly in a multiple processor environment, an additional
hardware called “exclusive access monitor” is required. This monitor checks the transfers toward
shared address locations and replies to the processor if an exclusive access is success. The processor
bus interface also provides additional control signals' to this monitor to indicate if the transfer is an

exclusive access.

If the memory device has been accessed by another bus master between the exclusive read and the
exclusive write, the exclusive access monitor will flag an exclusive failed through the bus system when
the processor attempts the exclusive write. This will cause the return status of the exclusive write to
be 1. In the case of failed exclusive write, the exclusive access monitor also blocks the write transfer

from getting to the exclusive access address.

'Exclusive access signals are available on the system bus and the D-Code bus of the Cortex-M3 processor. They are EXREQD
and EXRESPD for the D-Code bus and EXREQS and EXRESPS for the system bus. The I-Code bus that is used for instruc-

tion fetch cannot generate exclusive accesses.
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Exclusive access instructions in the Cortex-M3 include LDREX (word), LDREXB (byte), LDREXH
(half word), STREX (word), STREXB (byte), and STREXH (half word). A simple example of the syn-
tax is as follows:

LDREX <Rxf>, [Rn, ffoffset]
STREX <Rd>, <Rxf>,[Rn, ffoffset]

Where Rd is the return status of the exclusive write (0 = success and 1 = failure).

Example code for exclusive accesses can be found in Chapter 10. You can also access exclusive
access instructions in C using intrinsic functions provided in Cortex Microcontroller Software Inter-
face Standard (CMSIS) compliant device driver libraries from microcontroller vendors: __ LDREX,
_ LEDEXH, __LDREXB, __STREX, __STREXH, __STREXB. More details of these functions are
covered in Appendix G.

When exclusive accesses are used, the internal write buffers in the Cortex-M3 bus interface will
be bypassed, even when the MPU defines the region as bufferable. This ensures that semaphore infor-
mation on the physical memory is always up to date and coherent between bus masters. SoC design-
ers using Cortex-M3 on multiprocessor systems should ensure that the memory system enforces data
coherency when exclusive transfers occur.

ENDIAN MODE

The Cortex-M3 supports both little endian and big endian modes. However, the supported memory
type also depends on the design of the rest of the microcontroller (bus connections, memory control-
lers, peripherals, and so on). Make sure that you check your microcontroller datasheets in detail before
developing your software. In most cases, Cortex-M3-based microcontrollers will be little endian. With
little endian mode, the first byte of a word size data is stored in the least significant byte of the 32-bit
memory location (see Table 5.4).

There are some microcontrollers that use big endian mode. In such a case, the first byte of a word
size data is stored in the most significant byte of the 32-bit address memory location (see Table 5.5).

The definition of big endian in the Cortex-M3 is different from the ARM7. In the ARM7TDM]I, the big
endian scheme is called word-invariant big endian, also referred as BE-32 in ARM documentation, whereas
in the Cortex-M3, the big endian scheme is called byte-invariant big endian, also referred as BE-8 (byte-
invariant big endian is supported on ARM architecture v6 and v7). The memory view of both schemes is the
same, but the byte lane usage on the bus interface during data transfers is different (see Tables 5.6 and 5.7).

Note that the data transfer on the AHB bus in BE-8 mode uses the same data byte lanes as in little
endian. However, the data byte inside the half word or word data is reversely ordered compared to little
endian (see Table 5.8).

Table 5.4 The Cortex-M3 Little Endian Memory View Example

Address Bits 31 - 24 Bits 23 - 16 Bits 15-8 Bits 7-0
0x1003 - 0x1000 Byte — 0x1003 Byte — 0x1002 Byte — 0x1001 Byte — 0x1000

0x1007 - 0x1004 Byte — 0x1007 Byte — 0x1006 Byte — 0x1005 Byte — 0x1004
Byte — 4xN+3 Byte — 4xN+2 Byte — 4xN+1 Byte — 4xN
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Table 5.5 The Cortex-M3 Big Endian Memory View Example

Address

0x10083 - 0x1000
0x1007 — 0x1004

Bits 31 - 24

Byte — 0x1000
Byte — 0x1004
Byte — 4xN

Bits 23 - 16

Byte — 0x1001
Byte — 0x1005
Byte — 4xN+1

Bits 15-8

Byte — 0x1002
Byte — 0x1006
Byte — 4xN+2

Bits 7-0

Byte — 0x1003
Byte — 0x1007
Byte — 4xN+3

Table 5.6 The Cortex-M3 (Byte-Invariant Big Endian, BE-8)—Data on the AHB Bus

Address, Size
0x1000, word

0x1000, half word
0x1002, half word

0x1000, byte
0x1001, byte
0x1002, byte
0x1003, byte

Bits 31 - 24
Data bit [7:0]

Data bit [7:0]

Data bit [7:0]

Bits 23 - 16
Data bit [15:8]

Data bit [15:8]

Data bit [7:0]

Bits 15-8

Data bit [23:16]
Data bit [7:0]
Data bit [7:0]

Bits 7-0

Data bit [31:24]
Data bit [15:8]

Data bit [7:0]

Table 5.7 ARM7TDMI (Word-Invariant Big Endian, BE-32)—Data on the AHB Bus

Address, Size Bits 31 - 24 Bits 23 - 16 Bits 15-8 Bits 7-0
0x1000, word Data bit [7:0] Data bit [15:8] Data bit [23:16] Data bit [31:24]
0x1000, half word Data bit [7:0] Data bit [15:8] — —

0x1002, half word — — Data bit [7:0] Data bit [15:8]
0x1000, byte Data bit [7:0] — — —

0x1001, byte — Data bit [7:0] — —

0x1002, byte — — Data bit [7:0] —

0x1003, byte — — — Data bit [7:0]
Table 5.8 The Cortex-M3 Little Endian—Data on the AHB Bus

Address, Size Bits 31 - 24 Bits 23 - 16 Bits 15-8 Bits 7-0
0x1000, word Data bit [31:24] Data bit [23:16] Data bit [15:8] Data bit [7:0]
0x1000, half word — — Data bit [15:8] Data bit [7:0]
0x1002, half word Data bit [15:8] Data bit [7:0] — —

0x1000, byte — — — Data bit [7:0]
0x1001, byte — — Data bit [7:0] —

0x1002, byte — Data bit [7:0] — —

0x1003, byte Data bit [7:0] — — —
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In the Cortex-M3 processor, the endian mode is set when the processor exits reset. The endian mode
cannot be changed afterward. (There is no dynamic endian switching, and the SETEND instruction is
not supported.) Instruction fetches are always in little endian as are data accesses in the system control
memory space (such as NVIC and FPB) and the external PPB memory range (memory range from
0xE0000000 to OxEOOFFFFF is always little endian).

In case your SoC does not support big endian but one or some of the peripherals you are using con-
tain big endian data, you can easily convert the data between little endian and big endian using some of
the data type conversion instructions in the Cortex-M3. For example, REV and REV 16 are very useful
for this kind of conversion.
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This chapter is mainly written for system-on-chip (SoC) designers who are interested in using the
Cortex™-M3 processor in their project. Normal microcontroller users do not need to learn these
details. However, for those who are interested in understanding the internal operations of the Cortex-
M3 processor, this chapter provides a good overview of the design.

THE PIPELINE

The Cortex-M3 processor has a three-stage pipeline. The pipeline stages are instruction fetch, instruc-
tion decode, and instruction execution (see Figure 6.1).

Some people might argue that there are four stages because of the pipeline behavior in the bus
interface when it accesses memory, but this stage is outside the processor, so the processor itself still
has only three stages.

When running programs with mostly 16-bit instructions, you will find that the processor might not
fetch instructions in every cycle. This is because the processor fetches up to two instructions (32-bit)
in one go, so after one instruction is fetched, the next one is already inside the processor. In this case,
the processor bus interface may try to fetch the instruction after the next or, if the buffer is full, the
bus interface could be idle. Some of the instructions take multiple cycles to execute; in this case, the
pipeline will be stalled.

In executing a branch instruction, the pipeline will be flushed. The processor will have to fetch
instructions from the branch destination to fill up the pipeline again. However, the Cortex-M3 processor

Copyright © 2010, Elsevier Inc. All rights reserved. 99
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Instruction N Fetch Decode | Execute
Instruction N + 1 Fetch Decode | Execute
Instruction N +2 Fetch Decode | Execute
Instruction N +3 Fetch Decode | Execute
FIGURE 6.1
The Three-Stage Pipeline in the Cortex-M3.
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supports a number of instructions in v7-M architecture, so some of the short-distance branches can be

avoided by replacing them with conditional execution codes.'

Because of the pipeline nature of the processor and to ensure that the program is compatible with
Thumb® codes, the read value will be the address of the instruction plus 4, when the program counter
is read during instruction execution. If the program counter is used for address generation for memory
accesses, the word aligned value of the instruction address plus 4 would be used. This offset is constant,
independent of the combination of 16-bit Thumb instructions and 32-bit Thumb-2 instructions. This

ensures consistency between Thumb and Thumb-2.

Inside the instruction prefetch unit of the processor core, there is also an instruction buffer (see
Figure 6.2). This buffer allows additional instructions to be queued before they are needed. This buffer

'For more information, refer to the “IF-THEN Instructions” section of Chapter 4.
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prevents the pipeline being stalled when the instruction sequence contains 32-bit Thumb-2 instructions
that are not word aligned. However, this buffer does not add an extra stage to the pipeline, so it does not
increase the branch penalty.

A DETAILED BLOCK DIAGRAM

The Cortex-M3 processor contains not only the processor core but also a number of components for system
management, as well as debugging support components (see Figure 6.3). These components are linked
together using an Advanced High-Performance Bus (AHB), and an Advanced Peripheral Bus (APB). The
AHB and APB are part of the Advanced Microcontroller Bus Architecture (AMBA) standards [Ref. 4].

Note that the MPU, WIC, and ETM blocks are optional blocks that can be included in the microcon-
troller system at the time of implementation. A number of new components are shown in Table 6.1.

The Cortex-M3 processor is released as a processor subsystem (see Figure 6.3). The CPU core itself
is closely coupled to the interrupt controller (NVIC) and various debug logic blocks:

*  CM3Core: The Cortex-M3 core contains the registers, ALU, data path, and bus interface.

* NVIC: The NVIC is a built-in interrupt controller. The number of interrupts is customized by chip
manufacturers. The NVIC is closely coupled to the CPU core and contains a number of system
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FIGURE 6.3

The Cortex-M3 Processor System Block Diagram.
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Table 6.1 Block Diagram Acronyms and Definitions

Name Description

CM3Core Central processing core of the Cortex-M3 processor
NVIC Nested Vectored Interrupt Controller

SYSTICK timer A simple timer that can be used by the operating system
WIC Wakeup Interrupt Controller (optional)

MPU Memory Protection Unit (optional)

BusMatrix Internal AHB interconnection

AHB to APB Bus bridge to convert AHB to APB

SW-DP/SWJ-DP interface

Serial Wire/Serial Wire Joint Test Action Group (JTAG) debug port (DP)

interface; debug interface connection implemented using either Serial Wire
Protocol or traditional JTAG Protocol (for SWJ-DP)

AHB-AP AHB Access Port; converts commands from SW/SWJ interface into AHB
transfers

ETM Embedded Trace Macrocell; a module to handle instruction trace for debug
(optional)

DWT Data Watchpoint and Trace unit; a module to handle the data watchpoint
function for debug

[TM Instrumentation Trace Macrocell

TPIU Trace Port Interface Unit; an interface block to send debug data to external
trace capture hardware

FPB Flash Patch and Breakpoint unit

ROM table A small lookup table that stores configuration information

control registers. It supports the nested interrupt handling, which means that with the Cortex-M3,
nested interrupt handling is very simple. It also comes with a vectored interrupt feature so that
when an interrupt occurs, it can enter the corresponding interrupt handler routine directly, without
using a shared handler to determine which interrupt has occurred.

*  SYSTICK Timer: The System Tick (SYSTICK) Timer is a basic countdown timer that can be used
to generate interrupts at regular time intervals, even when the system is in sleep mode. It makes
OS porting between Cortex-M3 devices much easier because there is no need to change the OS’s
system timer code. The SYSTICK Timer is implemented as part of the NVIC.

e  WIC: A module interface with NVIC but separated from the main processor design to allow the
system to wake up from interrupt events while the processor (including the NVIC) is completely
stopped or powered down. This module is new from the Cortex-M3 revision 2 and is optional.

*  MPU: The MPU block is optional. This means that some versions of the Cortex-M3 might have
the MPU and some might not. If it is included, the MPU can be used to protect memory contents
by, for example, making memory regions read-only or preventing user applications from accessing
privileged applications data.

* BusMatrix: A BusMatrix is used as the heart of the Cortex-M3 internal bus system. It is an AHB
interconnection network, allowing transfer to take place on different buses simultaneously unless
both bus masters are trying to access the same memory region. The BusMatrix also provides
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additional data transfer management, including a write buffer as well as bit-oriented operations
(bit-band).

* AHB to APB: An AHB-to-APB bus bridge is used to connect a number of APB devices such as
debugging components to the private peripheral bus in the Cortex-M3 processor. In addition, the
Cortex-M3 allows chip manufacturers to attach additional APB devices to the external private
peripheral bus (PPB) using this APB bus.

The rest of the components in the block diagram are for debugging support and normally should not be
used by application code.

o SW-DP/SWJ-DP: The Serial Wire Debug Port (SW-DP)/Serial Wire JTAG Debug Port (SWJ-DP)
work together with the AHB Access Port (AHB-AP) so that external debuggers can generate AHB
transfers to control debug activities. There is no JTAG scan chain inside the processor core of the
Cortex-M3; most debugging functions are controlled by the NVIC registers through AHB accesses.
SWI-DP supports both the Serial Wire Protocol and the JTAG Protocol, whereas SW-DP can
support only the Serial Wire Protocol.

* AHB-AP: The AHB-AP provides access to the whole Cortex-M3 memory through a few registers.
This block is controlled by the SW-DP/SWIJ-DP through a generic debug interface called the
Debug Access Port (DAP). To carry out debugging functions, the external debugging hardware
needs to access the AHB-AP through the SW-DP/SWIJ-DP to generate the required AHB
transfers.

e ETM: The ETM is an optional component for instruction trace, so some Cortex-M3 products might
not have real-time instruction trace capability. Trace information is output to the trace port through
TPIU. The ETM control registers are memory mapped, which can be controlled by the debugger
through the DAP.

* DWT: The DWT allows data watchpoints to be set up. When a data address or data value match
is found, the match hit event can be used to generate watchpoint events to activate the debugger,
generate data trace information, or activate the ETM.

e ITM: The ITM can be used in several ways. Software can write to this module directly to output
information to TPIU, or the DWT matching events can be used to generate data trace packets
through ITM for output into a trace data stream.

e TPIU: The TPIU is used to interface with external trace hardware such as trace port analyzers.
Internal to the Cortex-M3, trace information is formatted as Advanced Trace Bus (ATB) packets,
and the TPIU reformats the data to allow data to be captured by external devices.

* FPB: The FPB is used to provide Flash Patch and Breakpoint functionalities. Flash Patch means
that if an instruction access by the CPU matches a certain address, the address can be remapped to
a different location so that a different value is fetched. Alternatively, the matched address can be
used to trigger a breakpoint event. The Flash Patch feature is very useful for testing, such as adding
diagnosis program code to a device that cannot be used in normal situations unless the FPB is used
to change the program control.

*  ROM table: A small ROM table is provided. This is simply a small lookup table to provide memory
map information for various system devices and debugging components. Debugging systems use
this table to locate the memory addresses of debugging components. In most cases, the memory map
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should be fixed to the standard memory location, as documented in the Cortex-M3 Technical Reference
Manual (TRM) [Ref. 1], but because some of the debugging components are optional and additional
components can be added, individual chip manufacturers might want to customize their chip’s
debugging features. In this case, the ROM table must be customized and used for debugging software
to determine the correct memory map and hence detect the type of debugging components available.

BUS INTERFACES ON THE CORTEX-M3

Unless you are designing an SoC product using the Cortex-M3 processor, it is unlikely that you can
directly access the bus interface signals described here. Normally, the chip manufacturer will hook up
all the bus signals to memory blocks and peripherals, and in a few cases, you might find that the chip
manufacturer connected the bus to a bus bridge and allows external bus systems to be connected off-
chip. The bus interfaces on the Cortex-M3 processor are based on AHB-Lite and APB protocols, which
are documented in the AMBA Specification [Ref. 4].

The I-Code Bus

The I-Code bus is a 32-bit bus based on the AHB-Lite bus protocol for instruction fetches in memory
regions from 0x00000000 to Ox1FFFFFFF. Instruction fetches are performed in word size, even for
16-bit Thumb instructions. Therefore, during execution, the CPU core could fetch up to two Thumb
instructions at a time.

The D-Code Bus

The D-Code bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for data access in
memory regions from 0x00000000 to Ox1FFFFFFF. Although the Cortex-M3 processor supports
unaligned transfers, you won’t get any unaligned transfer on this bus, because the bus interface on the
processor core converts the unaligned transfers into aligned transfers for you. Therefore, devices (such
as memory) that attach to this bus need only support AHB-Lite (AMBA 2.0) aligned transfers.

The System Bus
The system bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for instruction fetch and

data access in memory regions from 0x20000000 to OxDFFFFFFF and 0xE0100000 to OxFFFFFFFE.
Similar to the D-Code bus, all the transfers on the system bus are aligned.

The External PPB

The External PPB is a 32-bit bus based on the APB bus protocol. This is intended for private periph-
eral accesses in memory regions 0xE0040000 to OxXEOOFFFFF. However, since some part of this APB
memory is already used for TPIU, ETM, and the ROM table, the memory region that can be used for
attaching extra peripherals on this bus is only 0xE0042000 to OxEOOFFO000. Transfers on this bus are
word aligned.
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The DAP Bus

The DAP bus interface is a 32-bit bus based on an enhanced version of the APB specification. This is
for attaching debug interface blocks such as SWJ-DP or SW-DP. Do not use this bus for other purposes.
More information on this interface can be found in Chapter 15, or in the ARM document CoreSight
Technology System Design Guide [Ref. 3].

OTHER INTERFACES ON THE CORTEX-M3

Apart from bus interfaces, the Cortex-M3 processor has a number of other interfaces for various pur-
poses. These signals are unlikely to appear on the pins of the silicon chip, because they are mostly for
connecting to various parts of the SoC or are unused. The details of the signals are contained in the
Cortex-M3 Technical Reference Manual [Ref. 1]. Table 6.2 contains a short summary of some of them.

THE EXTERNAL PPB

The Cortex-M3 processor has an External PPB interface. The External PPB interface is based on
the APB protocol in AMBA specification 2.0 (for Cortex-M3 revision 0 and revision 1) or 3.0 (for
Cortex-M3 revision 2). It is intended for system devices that should not be shared, such as debugging
components.

Table 6.2 Miscellaneous Interface Signals

Signal Group
Multiprocessor communication (TXEV, RXEV)

Sleep signals (SLEEPING, SLEEPDEEP)

Interrupt status signals (ETMINTNUM,
ETMINTSTATE, CURRPRI)

Reset request (SYSRESETREQ)
Lockup? and Halted status (LOCKUP, HALTED)

Endian input (ENDIAN)
ETM interface
[TM’s ATB interface

Function

Simple task synchronization signals between multiple
Processors

Sleep status for power management

Status of interrupt operation, for ETM operation and
debug usage

Resets request output from NVIC

Indicate that the processor core has entered a lockup
state (caused by error conditions within hard fault handler
or Nonmaskable Interrupt handler) or a halted state (for
debug operations)

Sets the endian of the Cortex-M3 when the core is reset
Connects to ETM for instruction trace

ATB is a bus protocol in ARM’s CoreSight debug
architecture for trace data transfer; here this interface
provides trace data output from Cortex-M3’s ITM, which
is connected to the TPIU

*More information on lockup is included in Chapter 12.
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This bus interface supports the use of CoreSight compliant debug components. To achieve this,
this interface is slightly different from normal APB—it contains an extra signal called PADDR31 that
indicates the source of a transfer. If this signal is O, it means that the transfer is generated from soft-
ware running on the Cortex-M3. If this signal is 1, it means that the transfer is generated by debugging
hardware. Based on this signal, a peripheral can be designed so that only a debugger can use it, or when
being used by software, only some of the features are allowed.

This bus is not intended for general use, as in peripherals. Although there is nothing to stop
chip designers from designing and attaching general peripherals on this bus, users might find it a
problem for programming later, because of privileged access-level management—for example, to
program the device in the user state or to separate the devices from other memory regions when the
MPU is used.

The External PPB does not support unaligned accesses. Because the data width of the bus is 32-bit
and APB based, when you’re designing peripherals for this memory region, it is necessary to make sure
that all register addresses in the peripheral are word aligned. In addition, when writing software access-
ing devices in this region, it is recommended that you make sure that all the accesses are in word size.
The PPB accesses are always in little endian.

TYPICAL CONNECTIONS

Because there are a number of bus interfaces on the Cortex-M3 processor, you might find it confusing
to see how it will connect with other devices such as memory or peripherals. Figure 6.4 shows a simpli-
fied example.

Since the Code memory region can be accessed by the instruction bus (if it is an instruction fetch)
and from the data bus (if it is a data access), an AHB bus switch called the BusMatrix* or an AHB
bus multiplexer is needed. With the BusMatrix, the Flash memory and the additional Static Random
Access Memory (SRAM) (if implemented) can be accessed by either bus interface. The BusMatrix is
available from ARM in the AMBA Design Kit* (ADK). When both data bus and instruction bus are
trying to access the same memory device at the same time, the data bus access could be given higher
priority for best performance.

Using the AHB BusMatrix, if the instruction bus and the data bus are accessing different memory
devices at the same time (for example, an instruction fetch from fetch and a data bus reading data from
the additional SRAM), the transfers can be carried out simultaneously. If a bus multiplexer is used,
however, the transfers cannot take place at the same time, but the circuit size would be smaller. Com-
mon Cortex-M3 microcontroller designs use system bus for SRAM connection.

The main SRAM block should be connected through the system bus interface, using the SRAM
memory address region. This allows data access to be carried out at the same time as instruction access.
It also allows setting up of Boolean data types by using the bit-band feature.

Some microcontrollers might have an external memory interface. That requires an external memory
controller because you cannot connect off chip memory devices directly to AHB. The external memory

3The BusMatrix required here is different from the internal BusMatrix inside the Cortex-M3 shown in Figure 6.4. The
Cortex-M3 internal BusMatrix is specially designed and is different from standard AMBA Design Kit (ADK) version.

*ADK is a collection of AMBA components and example systems in VHDL/Verilog.
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FIGURE 6.4
The Cortex-M3 Processor System Block Diagram.

controller can be connected to the system bus of the Cortex-M3. Additional AHB devices can also be
easily connected to the system bus without the need for a BusMatrix.

Simple peripherals can be connected to the Cortex-M3 through an AHB-to-APB bridge. This allows
the use of the simpler bus protocol APB for peripherals.

The diagram shown in Figure 6.4 is just a very simple example; chip designers might choose
different bus connection designs. For software/firmware development, you will only need to know the
memory map.

Design blocks shown in the diagram, such as the BusMatrix, AHB-to-APB bus bridge, memory
controller, I/O interface, timer, and universal asynchronous receiver/transmitter (UART), are all avail-
able from ARM and a number of Internet Protocol providers. Because microcontrollers can have dif-
ferent providers for the peripherals, you need to access your microcontroller’s datasheet for the correct
programmer model when you’re developing software for Cortex-M3 systems.

RESET TYPES AND RESET SIGNALS

There are a number of different reset types on a Cortex-M3 system. Some Cortex-M3 product might
have more reset types depending on the design of reset circuitry on the Cortex-M3 microcontroller or
SoC (see Figure 6.5). In general, there are at least three types of reset as shown in Table 6.3.
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Table 6.3 Common Reset Types on Cortex-M3 Microcontrollers

Reset Signal on the
Reset Type Cortex-M3 Processor Description

Power on reset PORESETN Reset that should be asserted when the device is
powered up; resets processor core, peripherals, and
debugging system
Activate by power up sequence of the device

System reset SYSRESETNn System reset; affects the whole system including
processor core, NVIC (except debug control registers),
MPU, peripherals but not the debugging system;
activate by power up sequence of the device, reset
request from debugger through NVIC register “AIRCR”

Processor reset VECTRESET bit in Reset processor core only; affect the processor system
the NVIC AIRCR including processor core, NVIC (except debug control
register registers), MPU, but not the debugging system;

activate reset request from debugger through NVIC
register “AIRCR”"—intended to be used by debugger

JTAG reset nTRST Reset for JTAG tap controller (only if JTAG interface is
available)
External SYSRESETNn
reset signal Reset PORESETh
> generator Processor core
System
reset Cortex-M3
request
Built-in
nTRST »| Debug debug system
(from JTAG) interface |
Optional

debug system

Microcontroller/SoC

FIGURE 6.5
Generation of Internal Reset Signals in a Typical Cortex-M3 Microcontroller.

The details of the reset signals on the processor can be found in the Cortex-M3 Technical Reference
Manual [Ref. 1]. The reset signals on the processors are connected to the reset generator inside the
microcontroller or SoC. Externally you may find only one or two reset signals.
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EXCEPTION TYPES

The Cortex™-M3 provides a feature-packed exception architecture that supports a number of system
exceptions and external interrupts. Exceptions are numbered 1-15 for system exceptions and 16 and
above for external interrupt inputs. Most of the exceptions have programmable priority, and a few have
fixed priority.

Cortex-M3 chips can have different numbers of external interrupt inputs (from 1 to 240) and dif-
ferent numbers of priority levels. This is because chip designers can configure the Cortex-M3 design
source code for different needs.

Exception types 1-15 are system exceptions (there is no exception type 0), as outlined in Table 7.1.
Exceptions of type 16 or above are external interrupt inputs (see Table 7.2).

The value of the current running exception is indicated by the special register Interrupt Program
Status register (IPSR), or from the Nested Vectored Interrupt Controllers (NVICs) Interrupt Control
State register (the VECTACTIVE field).

Note that here the interrupt number (e.g., Interrupt #0) refers to the interrupt inputs to the Cortex-
M3 NVIC. In actual microcontroller products or system-on-chips (SoCs), the external interrupt input
pin number might not match the interrupt input number on the NVIC. For example, some of the first
few interrupt inputs might be assigned to internal peripherals, and external interrupt pins could be
assigned to the next couple of interrupt inputs. Therefore, you need to check the chip manufacturer’s
datasheets to determine the numbering of the interrupts.

Copyright © 2010, Elsevier Inc. All rights reserved. 1 09
DOI: 10.1016/B978-1-85617-963-8.00010-7



110 CHAPTER 7 Exceptions

Description

Reset

Nonmaskable interrupt (external NMI input)
All fault conditions if the corresponding fault
handler is not enabled

Memory management fault; Memory
Protection Unit (MPU) violation or access

to illegal locations

Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

Supervisor Call

Debug monitor (breakpoints, watchpoints, or
external debug requests)

Pendable Service Call
System Tick Timer

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority

1 Reset -3 (Highest)

2 NMI -2

3 Hard fault -1

4 MemManage fault ~ Programmable
5 Bus fault Programmable
6 Usage fault Programmable
7-10 Reserved NA

11 SVC Programmable
12 Debug monitor Programmable
13 Reserved NA

14 PendSV Programmable
15 SYSTICK Programmable
Table 7.2 List of External Interrupts

Exception Number Exception Type

16 External Interrupt #0
17 External Interrupt #1
255 External Interrupt #239

Priority

Programmable
Programmable

Programmable

When an enabled exception occurs but cannot be carried out immediately (for instance, if a higher-pri-
ority interrupt service routine is running or if the interrupt mask register is set), it will be pended (except
for some fault exceptions'). This means that a register (pending status) will hold the exception request
until the exception can be carried out. This is different from traditional ARM processors. Previously, the

IThere are a few exceptions for the exception-pending behavior. If a fault takes place and the corresponding fault handler
cannot be executed immediately because a higher-priority handler is running, the hard fault handler (highest priority fault
handler) might be executed instead. More details on this topic are covered later in this chapter, where we look at fault excep-
tions; full details can be found in the ARM v7-M Architecture Application Level Reference Manual.
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devices that generate interrupts, such as interrupt request (IRQ)/fast interrupt request (FIQ), must hold
the request until they are served. Now, with the pending registers in the NVIC, an occurred interrupt will
be handled even if the source requesting the interrupt deasserts its request signal.

DEFINITIONS OF PRIORITY

In the Cortex-M3, whether and when an exception can be carried out can be affected by the priority
of the exception. A higher-priority (smaller number in priority level) exception can preempt a lower-
priority (larger number in priority level) exception; this is the nested exception/interrupt scenario.
Some of the exceptions (reset, NMI, and hard fault) have fixed priority levels. They are negative num-
bers to indicate that they are of higher priority than other exceptions. Other exceptions have program-
mable priority levels.

The Cortex-M3 supports three fixed highest-priority levels and up to 256 levels of programmable
priority (a maximum of 128 levels of preemption). However, most Cortex-M3 chips have fewer sup-
ported levels—for example, 8, 16, 32, and so on. When a Cortex-M3 chip or SoC is being designed,
designers can customize it to obtain the number of levels required. This reduction of levels is imple-
mented by cutting out the Least Significant Bit (LSB) part of the priority configuration registers.

For example, if only 3 bits of priority level are implemented in the design, a priority-level configu-
ration register will look like Figure 7.1.

Because bit 4 to bit 0 are not implemented, they are always read as zero, and writes to these bits will
be ignored. With this setup, we have possible priority levels of 0x00 (high priority), 0x20, 0x40, 0x60,
0x80, 0xAO0, 0xCO0, and 0xEO (the lowest).

Similarly, if 4 bits of priority level are implemented in the design, a priority-level configuration
register will look like Figure 7.2.

Bit7 | Bit6 | Bits | Bit4 | Bit3 | Bit2 | Bit1 | BitO

Implemented Not implemented

FIGURE 7.1
A Priority Level Register with 3 Bits Implemented.

Bit7 | Bit6 | Bits | Bit4 | Bit3 | Bit2 | Bit1 | Bit0

Implemented Not implemented

FIGURE 7.2
A Priority Level Register with 4 Bits Implemented.
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Implemented levels Implemented levels
Highest priority for Cortex-M3 with for Cortex-M3 with
3 bits priority width 4 bits priority width

A
S | ) 3
i i O
-1 — Hard fault —x— —1 —x— —1

0 0
] ° —X— 0x10
0x20 — —X—0x20 —X— 0x20
] —>— 0x30
0x40 — —X—0x40 —>x— 0x40
] —>x— 0x50
0x60 — —X—0x60 —X— 0x60
n Programmable T a0
0x80 —| exceptions —>X—0x80 —>%— 0x80
] —>x— 0x90
O0xA0 — —X—0xA0 —X— 0xA0
] —>*—0xB0
0xCO — —X—0xCO0 —>—0xCO0
] —>*—0xD0
OxE0O — —x—0xEOQ —><—0xEO0
] —><— 0xFO

OxFF Vv

Lowest priority

FIGURE 7.3
Available Priority Levels with 3-Bit or 4-Bit Priority Width.

If more bits are implemented, more priority levels will be available (see Figure 7.3). However, more
priority bits can also increase gate counts and hence the power consumption. For the Cortex-M3, the
minimum number of implemented priority register widths is 3 bits (eight levels).

The reason for removing the LSB of the register instead of the Most Significant Bit (MSB) is to
make it easier to port software from one Cortex-M3 device to another. In this way, a program written
for devices with 4-bit priority configuration registers is likely to be able to run on devices with 3-bit
priority configuration registers. If the MSB is removed instead of the LSB, you might get an inversion
of priority arrangement when porting an application from one Cortex-M3 chip to another. For example,
if an application uses priority level 0x05 for IRQ #0 and level 0x03 for IRQ #1, IRQ #1 should have
higher priority. But when MSB bit 2 is removed, IRQ #0 will become level 0x01 and have a higher
priority than IRQ #1.
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Examples of available exception priority levels for devices with 3-bit, 5-bit, and 8-bit priority reg-
isters are shown in Table 7.3.

Some readers might wonder whether, if the priority level configuration registers are 8 bits wide,
why there are only 128 preemption levels? This is because the 8-bit register is further divided into two
parts: preempt priority and subpriority.

Using a configuration register in the NVIC called Priority Group (a part of the Application
Interrupt and Reset Control register in the NVIC, see Table 7.4), the priority-level configuration
registers for each exception with programmable priority levels is divided into two halves. The
upper half (left bits) is the preempt priority, and the lower half (right bits) is the subpriority (see
Table 7.5).

Table 7.3 Available Priority Levels for Devices with 3-Bit, 5-Bit, and 8-Bit Priority Level Registers
Devices with Devices with Devices with
3-Bit Priority 5-Bit Priority 8-Bit Priority
Configuration Configuration Configuration

Priority Level Exception Type Registers Registers Registers

-3 (Highest) Reset -3 -3 -3

-2 NMI -2 -2 -2

-1 Hard fault -1 -1 -1

0,1, ... OxFF Exceptions with 0x00, 0x20, ... 0x00, 0x08, ... 0x00, 0x01, Ox02,

programmable OxEO OxF8 0x03, ... OxFE,
priority level OxFE

Table 7.4 Application Interrupt and Reset Control Register (Address OXEOOOEDQC)
Bits Name Type Reset Value Description

31:16 VECTKEY R/W — Access key; OxO5FA must be written to this field
to write to this register, otherwise the write will
be ignored; the read-back value of the upper half
word is OxFA05

15 ENDIANNESS R — Indicates endianness for data: 1 for big endian
(BE8) and O for little endian; this can only change
after a reset

10:8 PRIGROUP R/W 0 Priority group
2 SYSRESETREQ W — Requests chip control logic to generate a reset
1 VECTCLRACTIVE W — Clears all active state information for exceptions;

typically used in debug or OS to allow system to
recover from system error (Reset is safer)

0 VECTRESET W — Resets the Cortex-M3 processor (except debug
logic), but this will not reset circuits outside the
processor
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Table 7.5 Definition of Preempt Priority Field and Subpriority Field in a Priority Level Register
in Different Priority Group Settings

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

The preempt priority level defines whether an interrupt can take place when the processor is already
running another interrupt handler. The subpriority level value is used only when two exceptions with
the same preempt priority level occurred at the same time. In this case, the exception with higher sub-
priority (lower value) will be handled first.

As a result of the priority grouping, the maximum width of preempt priority is 7, so there can be
128 levels. When the priority group is set to 7, all exceptions with a programmable priority level will
be in the same level, and no preemption between these exceptions will take place, except that hard fault,
NMI, and reset, which have priority of —1, =2, and -3, respectively, can preempt these exceptions.

When deciding the effective preempt priority level and subpriority level, you must take the follow-
ing factors into account:

* Implemented priority-level configuration registers
* Priority group setting

For example, if the width of the configuration registers is 3 (bit 7 to bit 5 are available) and priority
group is set to 5, you can have four levels of preempt priority levels (bit 7 to bit 6), and inside each
preempt level there are two levels of subpriority (bit 5).

With the setting as shown in Figure 7.4, the available priority levels are illustrated in Figure 7.5. For
the same design, if the priority group is set to Ox1, there can be only eight preempt priority levels and
no further subpriority levels inside each preempt level. (Bit [1:0] of preempt priority is always 0.) The
definition of the priority level configuration registers is shown in Figure 7.6, and the available priority
levels are illustrated in Figure 7.7.

Bit7 | Bité | Bits | Bit4 | Bit3 | Bit2 | Bit1 | BitO

Preempt Sub-

priority priority Not implemented

FIGURE 7.4
Definition of Priority Fields in a 3-Bit Priority Level Register with Priority Group Set to 5.
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Implemented levels Preempt levels
Highest priority for _Cort(_ex-_M3 with with priority group
A 3-bits priority width setto 5

o A Rest_] % -3 —x— -3

-2 —H[__ N ] —X— -2 —x— -2 Subpriority levels

-1 — Hard fault —X— -1 —X— -1

0 i 0
0 0
0x20 — —>X— 0x20 —X— 0x20
0x40 — —>X— 0x40 —>X— 0x40 i —>X— 0x40
0x60 — —><— 0x60 —>*— 0x60
o Programmable

0x80 —| exceptions —><— 0x80 —><— 0x80 i —>*— 0x80
0XA0 — —>*— 0xA0 —>X— O0xA0
0xCO — —>*— 0xCO0 —>— 0xCO0 Y —X— 0xCO0
OXE0 — —><— OxEO —>X— OxEO
OxFF —

Ty

Lowest priority
FIGURE 7.5

Available Priority Levels with 3-Bit Priority Width and Priority Group Set to 5.

Bit7 | Bit6 Bit 5 Bit4 | Bit3 | Bit2 [ Bit1 | Bit0O
. . Sub-
Preempt priority [5:3] TSI POl e priority [1:0]
(always 0)
(always 0)

FIGURE 7.6
Definition of Priority Fields in an 8-Bit Priority Level Register with Priority Group Set to 1.

If a Cortex-M3 device has implemented all 8 bits in the priority-level configuration registers, the
maximum number of preemption levels it can have is only 128, using a priority group setting of 0. The
priority fields definition is shown in Figure 7.8.
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Implemented levels Preempt levels
Highest priority for _Com_ax-_MS v_vith with priority group
A 3-bits priority width setto 1

ofmm ] s o

—2 — II| —x— -2 —xX— -2 Subpriority levels

-1 — Hard fault —x— —1 —x— -1

0 —> 0
0 0
0x20 — —>x— 0x20 —X—0x20 —Pp» —X— 0x20
0x40 — —>x— 0x40 —X— 0x40 —Pp» —X— 0x40
0x60 — —>X<— 0x60 —X— 0x60 —Pp» —>X— 0x60
O Programmable
0x80 — exceptions —><— 0x80 —X— 0x80 —P» —>X— 0x80
0xAO0 — —><— 0xA0 —xX— 0xA0 —P» —X— 0xA0
0xC0O — —><— 0xCO0 —xX—0xCO —P» —X— 0xCO
OxEO0 — —><— OxEO —x—O0xE0O —Pp» —X— OxEO
OxFF
Ty
Lowest priority
FIGURE 7.7

Available Priority Levels with 3-Bit Priority Width and Priority Group Set to 1.

Bit7 | Bit6 Bit 5 Bit4 | Bit3 | Bit2 | Bit1 Bit0

Preempt priority Subpriority

FIGURE 7.8
Definition of Priority Fields in an 8-Bit Priority Level Register with Priority Group Set to O.

When two interrupts are asserted at the same time with exactly the same preempt priority level as
well as subpriority level, the interrupt with the smaller exception number has higher priority. (IRQ #0
has higher priority than IRQ #1.)

To avoid unexpected changes of priority levels for interrupts, be careful when writing to the
Application Interrupt and Reset Control register (address 0OXEOOOEDOC). In most cases, after the
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priority group is configured, there is no need to use this register except to generate a reset (see
Table 7.4).

VECTOR TABLES

When an exception takes place and is being handled by the Cortex-M3, the processor will need to
locate the starting address of the exception handler. This information is stored in the vector table in the
memory. By default, the vector table starts at memory address 0, and the vector address is arranged
according to the exception number times four (see Table 7.6).

Since the address 0x0 should be boot code, usually it will be either Flash memory or ROM devices,
and the value cannot be changed at run time. However, the vector table can be relocated to other
memory locations in the code or Random Access Memory (RAM) region where the RAM is so that
we can change the handlers during run time. This is done by setting a register in the NVIC called the
vector table offset register (address 0xEOOOEDO8). The address offset should be aligned to the vector
table size, extended to the next larger power of 2. For example, if there are 32 IRQ inputs, the total
number of exceptions will be 32 + 16 (system exceptions) = 48. Extending it to the power of 2 makes
it 64. Multiplying it by 4 (4 bytes per vector) makes it 256 bytes (0x100). Therefore, the vector table
offset can be programmed as 0x0, 0x100, 0x200, and so on. The vector table offset register contains the
items shown in Table 7.7.

In applications where you want to allow dynamic changing of exception handlers, in the beginning
of the boot image, you need to have the following (at a minimum):

* [Initial main stack pointer value
* Reset vector

e NMI vector

e Hard fault vector

Table 7.6 Exception Vector Table After Power Up

Address Exception Number Value (Word Size)
0x00000000 — MSP initial value
0x00000004 1 Reset vector (program counter initial value)
0x00000008 2 NMI handler starting address
3 Hard fault handler starting address

0x0000000C
Other handler starting address

Table 7.7 Vector Table Offset Register (Address OxEOOOEDOS8)

Bits Name Type Reset Value Description
29 TBLBASE R/W 0 Table base in code (0) or RAM (1)
287 TBLOFF R/W 0 Table offset value from code

region or RAM region
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These are required because the NMI and hard fault can potentially occur during your boot process.
Other exceptions cannot take place until they are enabled.

When the booting process is done, you can define a part of your Static Random Access Memory as
the new vector table and relocate the vector table to the new one, which is writable.

INTERRUPT INPUTS AND PENDING BEHAVIOR

This section describes the behavior of IRQ inputs and pending behavior. It also applies to NMI input,
except that an NMI will be executed immediately in most cases, unless the core is already executing an
NMI handler, halted by a debugger, or locked up because of some serious system error.

When an interrupt input is asserted, it will be pended, which means it is put into a state of waiting
for the processor to process the request. Even if the interrupt source deasserts the interrupt, the pended
interrupt status will still cause the interrupt handler to be executed when the priority is allowed. Once the
interrupt handler is started, the pending status is cleared automatically. This is shown in Figure 7.9.

However, if the pending status is cleared before the processor starts responding to the pended inter-
rupt (for example, the interrupt was not taken immediately because PRIMASK/FAULTMASK is set
to 1, and the pending status was cleared by software writing to NVIC interrupt control registers), the
interrupt can be cancelled (Figure 7.10). The pending status of the interrupt can be accessed in the
NVIC and is writable, so you can clear a pending interrupt or use software to pend a new interrupt by
setting the pending register.

Interrupt
request \'
Interrupt

pending status
Processor Thread
mode mode

Interrupt
request

/ Handler mode

FIGURE 7.9
Interrupt Pending.

Interrupt

pending status

t Pending status

cleared by software
Processor Thread

mode mode

FIGURE 7.10
Interrupt Pending Cleared Before Processor Takes Action.
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When the processor starts to execute an interrupt, the interrupt becomes active and the pending bit
will be cleared automatically (Figure 7.11). When an interrupt is active, you cannot start processing
the same interrupt again, until the interrupt service routine is terminated with an interrupt return (also
called an exception exit, as discussed in Chapter 9). Then the active status is cleared, and the interrupt
can be processed again if the pending status is 1. It is possible to repend an interrupt before the end of
the interrupt service routine.

If an interrupt source continues to hold the interrupt request signal active, the interrupt will be
pended again at the end of the interrupt service routine as shown in Figure 7.12. This is just like the
traditional ARM7TDMI.

If an interrupt is pulsed several times before the processor starts processing it, it will be treated as
one single interrupt request as illustrated in Figure 7.13. If an interrupt is deasserted and then pulsed
again during the interrupt service routine, it will be pended again as shown in Figure 7.14.

Interrupt request
Interrupt

clear by software
request

Interrupt

pending status

Interrupt ‘
active status A

Handler mode N Interrupt return
Processor Thread
mode  mode
FIGURE 7.11

Interrupt Active Status Set as Processor Enters Handler.

Interrupt Interrupt request stay active

request

Interrupt

pending status

]

Interrupt
active status Interrupt return
Handler mode \

Processor Thread \A\
mode mode Interrupt reentered
FIGURE 7.12

Continuous Interrupt Request Pends Again After Interrupt Exit.

=
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Multiple interrupt pulses
Interrupt  before entering ISR

request

Interrupt

pending status

Interrupt

active status

Handler mode

Processor  Thread
mode mode Interrupt return
FIGURE 7.13

Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler.

Interrupt request
Interrupt pulsed again

request
Interrupt pended

Interrupt again

pending status

Interrupt L

active status
Handler mode

Processor  Thread Interrupt return/'\/ﬁ
mode __ mode

Interrupt reentered

FIGURE 7.14
Interrupt Pending Occurs Again during the Handler.

Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can then trigger
the interrupt sequence when the enable is set later. As a result, before enabling an interrupt, it could be useful
to check whether the pending register has been set. The interrupt source might have been activated previously
and have set the pending status. If necessary, you can clear the pending status before you enable an interrupt.

FAULT EXCEPTIONS

A number of system exceptions are useful for fault handling. There are several categories of faults:

* Bus faults

* Memory management faults
» Usage faults

* Hard faults
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Bus Faults

Bus faults are produced when an error response is received during a transfer on the AHB interfaces. It
can happen at these stages:

* Instruction fetch, commonly called prefetch abort
* Data read/write, commonly called data abort

In the Cortex-M3, bus faults can also occur during the following:

» Stack PUSH in the beginning of interrupt processing, called a stacking error

» Stack POP at the end of interrupt processing, called an unstacking error

* Reading of an interrupt vector address (vector fetch) when the processor starts the interrupt-
handling sequence (a special case classified as a hard fault)

When these types of bus faults (except vector fetches) take place and if the bus fault handler is
enabled and no other exceptions with the same or higher priority are running, the bus fault handler will
be executed. If the bus fault handler is enabled but at the same time the core receives another exception
handler with higher priority, the bus fault exception will be pending. Finally, if the bus fault handler is
not enabled or when the bus fault happens in an exception handler that has the same or higher priority
than the bus fault handler, the hard fault handler will be executed instead. If another bus fault takes
place when running the hard fault handler, the core will enter a lockup state.?

WHAT CAN CAUSE AHB ERROR RESPONSES?

Bus faults occur when an error response is received on the AHB bus. The common causes are as follows:

e Attempts to access an invalid memory region (for example, a memory location with no memory attached)

e The device is not ready to accept a transfer (for example, trying to access SDRAM without initializing the
SDRAM controller)

e Attempts to carry out a transfer with a transfer size not supported by the target device (for example, doing a
byte access to a peripheral register that must be accessed as a word)

e The device does not accept the transfer for various reasons (for example, a peripheral that can only be
programmed at the privileged access level)

To enable the bus fault handler, you need to set the BUSFAULTENA bit in the System Handler
Control and State register in the NVIC. Before doing that, make sure that the bus fault handler starting
address is set up in the vector table if the vector table has been relocated to RAM.

Hence, how do you find out what went wrong when the processor entered the bus fault handler?
The NVIC has a number of Fault Status registers (FSRs). One of them is the Bus Fault Status register
(BFSR). From this register, the bus fault handler can find out if the fault was caused by data/instruction
access or an interrupt stacking or unstacking operation.

For precise bus faults, the offending instruction can be located by the stacked program counter,
and if the BFARVALID bit in BFSR is set, it is also possible to determine the memory location that
caused the bus fault. This is done by reading another NVIC register called the Bus Fault Address

“More information on the lockup state is covered in Chapter 12.
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register (BFAR). However, the same information is not available for imprecise bus faults because by
the time the processor receives the error, the processor could have already executed a number of other
instructions.

PRECISE AND IMPRECISE BUS FAULTS

Bus faults caused by data accesses can be further classified as precise or imprecise. In imprecise bus faults,
the fault is caused by an already completed operation (such as a buffered write) that might have occurred

a number of clock cycles ago. Precise bus faults are caused by the last completed operation—for example,

a memory read is precise on the Cortex-M3 because the instruction cannot be completed until it receives
the data.

The programmer’s model for BFSR is as follows: It is 8 bits wide and can be accessed through
byte transfer to address OxEOOOED29 or with a word transfer to address 0OXEOOOED28 with BFSR in
the second byte (see Table 7.8). The error indication bit is cleared when a 1 is written to it.

Table 7.8 Bus Fault Status Register (OXEOOOED29)

Bits Name Type Reset Value Description

7 BFARVALID — 0 Indicates BFAR is valid

6:5 — — — —

4 STKERR R/Wc 0 Stacking error

3 UNSTKERR R/Wc 0 Unstacking error

2 IMPRECISERR R/Wc 0 Imprecise data access violation
1 PRECISERR R/Wc 0 Precise data access violation

0 IBUSERR R/Wc 0 Instruction access violation

Memory Management Faults

Memory management faults can be caused by memory accesses that violate the setup in the MPU or
by certain illegal accesses (for example, trying to execute code from nonexecutable memory regions),
which can trigger the fault, even if no MPU is presented.

Some of the common MPU faults include the following:

* Access to memory regions not defined in MPU setup
*  Writing to read-only regions
* An access in the user state to a region defined as privileged access only

When a memory management fault occurs and if the memory management handler is enabled,
the memory management fault handler will be executed. If the fault occurs at the same time a higher-
priority exception takes place, the other exceptions will be handled first and the memory management
fault will be pended. If the processor is already running an exception handler with the same or higher
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priority or if the memory management fault handler is not enabled, the hard fault handler will be
executed instead. If a memory management fault takes place inside the hard fault handler or the NMI
handler, the processor will enter the lockup state.

Like the bus fault handler, the memory management fault handler needs to be enabled. This is done
by the MEMFAULTENA bit in the System Handler Control and State register in the NVIC. If the vec-
tor table has been relocated to RAM, the memory management fault handler starting address should be
set up in the vector table first.

The NVIC contains a Memory Management Fault Status register (MFSR) to indicate the cause
of the memory management fault. If the status register indicates that the fault is a data access viola-
tion (DACCVIOL bit) or an instruction access violation (IACCVIOL bit), the offending code can be
located by the stacked program counter. If the MMARVALID bit in the MFSR is set, it is also possible
to determine the memory address location that caused the fault from the Memory Management Address
register (MMAR) in the NVIC.

The programmer’s model for the MFSR is shown in Table 7.9. It is 8 bits wide and can be accessed
through byte transfer or with a word transfer to address 0OXEOOOED28, with the MFSR in the lowest
byte. As with other FSRs, the fault status bit can be cleared by writing 1 to the bit.

Table 7.9 Memory Management Fault Status Register (OXEOOOED28)

Bits Name Type Reset Value Description

7 MMARVALID — 0 Indicates the MMAR s
valid

6:5 — — — —

4 MSTKERR R/Wc 0 Stacking error

3 MUNSTKERR R/Wc 0 Unstacking error

2 — — — —

1 DACCVIOL R/Wc 0 Data access violation

0 IACCVIOL R/Wc 0 Instruction access violation

Usage Faults

Usage faults can be caused by a number of things:

* Undefined instructions

* Coprocessor instructions (the Cortex-M3 processor does not support a coprocessor, but it is
possible to use the fault exception mechanism to run software compiled for other Cortex processors
through coprocessor emulation)

* Trying to switch to the ARM state (software can use this faulting mechanism to test whether the
processor it is running on supports the ARM code; because the Cortex-M3 does not support the
ARM state, a usage fault takes place if there’s an attempt to switch)

* Invalid interrupt return (link register contains invalid/incorrect values)

* Unaligned memory accesses using multiple load or store instructions
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It is also possible, by setting up certain control bits in the NVIC, to generate usage faults for the
following:

* Divide by zero
* Any unaligned memory accesses

When a usage fault occurs and if the usage fault handler is enabled, normally the usage fault handler
will be executed. However, if at the same time a higher-priority exception takes place, the usage fault
will be pended. If the processor is already running an exception handler with the same or higher priority
or if the usage fault handler is not enabled, the hard fault handler will be executed instead. If a usage fault
takes place inside the hard fault handler or the NMI handler, the processor will enter the lockup state.

The usage fault handler is enabled by setting the USGFAULTENA bit in the System Handler Control
and State register in the NVIC. If the vector table has been relocated to RAM, the usage fault handler
starting address should be set up in the vector table first.

The NVIC provides a Usage Fault Status register (UFSR) for the usage fault handler to determine
the cause of the fault. Inside the handler, the program code that causes the error can also be located
using the stacked program counter value.

ACCIDENTALLY SWITCHING TO THE ARM STATE

One of the most common causes of usage faults is accidentally trying to switch the processor to ARM mode.
This can happen if you load a new value to PC with the LSB equal to O—for example, if you try to branch to
an address in a register using the BX or BLX instruction without setting the LSB of the target address, have
zero in the LSB of a vector in the exception vector table, or the stacked PC value to be read by POP {PC} is
modified manually, leaving the LSB cleared. When these situations happen, the usage fault exception will take
place with the INVSTATE bit in the UFSR set.

The UFSR is shown in Table 7.10. It occupies 2 bytes and can be accessed by half word transfer to
address OXEOOOED2A, or as a word transfer to address OXEOOOED28 with the UFSR in the upper half
word. As with other FSRs, the fault status bit can be cleared by writing 1 to the bit.

Table 7.10 Usage Fault Status Register (OXEOOOED2A)

Bits Name Type Reset Value Description

9 DIVBYZERO R/Wc 0 Indicates a divide by zero has taken place
(can be set only if DIV_O_TRP is set)

8 UNALIGNED R/MWc 0 Indicates that an unaligned access fault has
taken place

7:4 — — — —

3 NOCP R/Wc 0 Attempts to execute a coprocessor instruction

2 INVPC R/Wc 0 Attempts to do an exception with a bad value
in the EXC_RETURN number

1 INVSTATE R/Wc 0 Attempts to switch to an invalid state (e.g.,
ARM)

0 UNDEFINSTR  R/Wc 0 Attempts to execute an undefined instruction
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Hard Faults

The hard fault handler can be caused by usage faults, bus faults, and memory management faults if their
handler cannot be executed. In addition, it can also be caused by a bus fault during vector fetch (reading
of a vector table during exception handling). In the NVIC, there is a hard fault status register that can
be used to determine whether the fault was caused by a vector fetch. If not, the hard fault handler will
need to check the other FSRs to determine the cause of the hard fault.

Details of the Hard Fault Status register (HFSR) are shown in Table 7.11. As with other FSRs, the
fault status bit can be cleared by writing 1 to the bit.

Table 7.11 Hard Fault Status Register (OXEOOOED2C)

Bits Name Type Reset Value Description

31 DEBUGEVT R/Wc 0 Indicates hard fault is triggered by debug event

30 FORCED R/Wc 0 Indicates hard fault is taken because of bus fault,
memory management fault, or usage fault

29:2 — — — —

1 VECTBL R/Wc 0 Indicates hard fault is caused by failed vector
fetch

0 — — — —

Dealing with Faults

During software development, we can use the FSRs to determine the causes of errors in the program
and correct them. A troubleshooting guide is included in Appendix E of this book for common causes
of various faults. In a real running system, the situation is different. After the cause of a fault is deter-
mined, the software will have to decide what to do next. In systems that run an OS, the offending tasks
or applications could be terminated. In some other cases, the system might need a reset. The require-
ments of fault recovery depend on the target application. Doing it properly could make the product
more robust, but it is best to prevent the faults from happening in the first place. The following are some
fault-handling methods:

* Reset: This can be carried out using the SYSRESETREQ control bit in the Application Interrupt
and Reset Control register in the NVIC. This will reset most parts of the system apart from the
debug logic. Depending on the application, if you do not want to reset the whole system, you could
reset just the processor using the VECTRESET bit.

* Recovery: In some cases, it might be possible to resolve the problem that caused the fault
exception. For example, in the case of coprocessor instructions, the problem can be resolved using
coprocessor emulation software.

» Task termination: For systems running an OS, it is likely that the task that caused the fault will be
terminated and restarted if needed.

The FSRs retain their status until they are cleared manually. Fault handlers should clear the fault
status bit they have dealt with. Otherwise, the next time another fault takes place, the fault handler will
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be invoked again and could mistake that the first fault still exists and so will try to deal with it again.
The FSRs use a write-to-clear mechanism (clear by writing 1 to the bits that need to be cleared).

Chip manufacturers can also include an auxiliary FSR in the chip to indicate other fault situations.
The implementation of an AFSR depends on individual chip design requirements.

SUPERVISOR CALL AND PENDABLE SERVICE CALL

Supervisor Call (SVC) and Pendable Service Call (PendSV) are two exceptions targeted at software and
operating systems. SVC is for generating system function calls. For example, instead of allowing user
programs to directly access hardware, an operating system may provide access to hardware through
an SVC. So when a user program wants to use certain hardware, it generates the SVC exception using
SVC instructions, and then the software exception handler in the operating system is executed and
provides the service the user application requested. In this way, access to hardware is under the control
of the OS, which can provide a more robust system by preventing the user applications from directly
accessing the hardware.

SVC can also make software more portable because the user application does not need to know
the programming details of the hardware. The user program will only need to know the application
programming interface (API) function ID and parameters; the actual hardware-level programming is
handled by device drivers (see Figure 7.15).

SVC exception is generated using the SVC instruction. An immediate value is required for this
instruction, which works as a parameter-passing method. The SVC exception handler can then extract
the parameter and determine what action it needs to perform. For example,

SVC #0x3 ; Call SVC function 3
The traditional syntax for SVC is also acceptable (without the “#7):
SVC 0x3 ; Call SVC function 3

For C language development, the SVC instruction can be generated using __svc function (for ARM
RealView C Compiler or KEIL Microcontroller Development Kit for ARM), or using inline assembly
in other C compilers.

Privileged
- I I
Unprivileged : Kernel : Hardware
I I
User | \ JC |, J1C | \
Device .
program SVC API . Peripherals
drivers
R/ %
I I
: Operating system :
I I

FIGURE 7.15
SVC as a Gateway for OS Functions.
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When the SVC handler is executed, you can determine the immediate data value in the SVC instruc-
tion by reading the stacked program counter value, then reading the instruction from that address and
masking out the unneeded bits. If the system uses a Process Stack Pointer for user applications, you
might need to determine which stack was used first. This can be determined from the link register
value when the handler is entered. (This topic is covered in more depth in Chapter 8).

SVC AND SOFTWARE INTERRUPT INSTRUCTION (ARM7)

If you have used traditional ARM processors (such as the ARM7), you might know that they have a software
interrupt instruction (SWI). The SVC has a similar function, and in fact the binary encoding of SVC instructions
is the same as SWI in ARM7. However, since the exception model has changed, this instruction is renamed to
make sure that programmers will properly port software code from ARM7 to the Cortex-M3.

Because of the interrupt priority model in the Cortex-M3, you cannot use SVC inside an SVC han-
dler (because the priority is the same as the current priority). Doing so will result in a usage fault. For
the same reason, you cannot use SVC in an NMI handler or a hard fault handler.

PendSV (Pendable Service Call) works with SVC in the OS. Although SVC (by SVC instruction)
cannot be pended (an application calling SVC will expect the required task to be done immediately),
PendSV can be pended and is useful for an OS to pend an exception so that an action can be performed
after other important tasks are completed. PendSV is generated by writing 1 to the PENDSVSET bit in
the NVIC Interrupt Control State register.

A typical use of PendSV is context switching (switching between tasks). For example, a system
might have two active tasks, and context switching can be triggered by the following:

e Calling an SVC function
e The system timer (SYSTICK)

Let’s look at a simple example of having only two tasks in a system, and a context switch is trig-
gered by SYSTICK exceptions (see Figure 7.16).

If an interrupt request takes place before the SYSTICK exception, the SYSTICK exception will
preempt the IRQ handler. In this case, the OS should not carry out the context switching. Otherwise the

Priorit Context Context Context
¥ switching switching switching
svsTic £ IS £
| | ' |

| | | |
: I t ! | ! t
IRQ | I | ! | I |
I I | ! ! I |
I I I : | I I

I I
Thread V TaskB ) ! TaskA ) v

Time -

FIGURE 7.16
A Simple Scenario Using SYSTICK to Switch between Two Tasks.
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Usage fault: return to
Thread with active interrupt

o Context
Priority switching Context switching

SYSTICK
|
| |
IRQ | RQ)
| |
| |
Thread V(TaskB )

Time

\/

N

IRQ processing

delayed
FIGURE 7.17
Problem with Context Switching at the IRQ.
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SYSTICK d
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,"[6] \\[8]
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ends ,’l (3] 4] | \110]
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Thread L ) — |
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FIGURE 7.18

Example Context Switching with PendSV.

IRQ handler process will be delayed, and for the Cortex-M3, a usage fault could be generated if the OS
tries to switch to thread mode when an interrupt is active (see Figure 7.17).

To avoid the problem of delaying the IRQ processing, some OS implementations carry out only
context switching if they detect that none of the IRQ handlers are being executed. However, this can
result in a very long delay for task switching, especially if the frequency of an interrupt source is close

to that of the SYSTICK exception.
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The PendSV exception solves the problem by delaying the context-switching request until all other
IRQ handlers have completed their processing. To do this, the PendSV is programmed as the lowest
priority exception. If the OS detects that an IRQ is currently active (IRQ handler running and preempted
by SYSTICK), it defers the context switching by pending the PendSV exception. Figure 7.18 illustrates
a context switching example with the following event sequence:

Task A calls SVC for task switching (for example, waiting for some work to complete).

The OS receives the request, prepares for context switching, and pends the PendSV exception.
When the CPU exits SVC, it enters PendSV immediately and does the context switch.

When PendSV finishes and returns to the thread level, it executes Task B.

An interrupt occurs and the interrupt handler is entered.

While running the interrupt handler routine, a SYSTICK exception (for OS tick) takes place.
The OS carries out the essential operation, then pends the PendSV exception and gets ready for
the context switch.

When the SYSTICK exception exits, it returns to the interrupt service routine.

When the interrupt service routine completes, the PendSV starts and does the actual context
switch operations.

10. When PendSV is complete, the program returns to the thread level; this time it returns to Task A
and continues the processing.

NogahrowdN~
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NESTED VECTORED INTERRUPT CONTROLLER OVERVIEW

As we’ve seen, the Nested Vectored Interrupt Controller (NVIC) is an integrated part of the Cortex™-M3
processor. It is closely linked to the Cortex-M3 CPU core logic. Its control registers are accessible
as memory-mapped devices. Besides control registers and control logic for interrupt processing, the
NVIC unit also contains control registers for the SYSTICK Timer, and debugging controls. In this
chapter, we’ll examine the control logic for interrupt processing. Memory Protection Unit and debug-
ging control logic are discussed in later chapters.

The NVIC supports 1-240 external interrupt inputs (commonly known as interrupt request [IRQs]).
The exact number of supported interrupts is determined by the chip manufacturers when they develop
their Cortex-M3 chips. In addition, the NVIC also has a Nonmaskable Interrupt (NMI) input. The
actual function of the NMI is also decided by the chip manufacturer. In some cases, this NMI cannot
be controlled from an external source.

The NVIC can be accessed in the System Control Space (SCS) address range, which is memory
location OxEOOOEQOO. Most of the interrupt control/status registers are accessible only in privileged
mode, except the Software Trigger Interrupt register (STIR), which can be set up to be accessible in
user mode. The interrupt control/status register can be accessed in word, half word, or byte transfers.

In addition, a few other interrupt-masking registers are also involved in the interrupts. They
are the “special registers” covered in Chapter 3 and are accessed through special registers access
instructions: move special register to general-purpose register (MRS) and move to special register
from general-purpose register (MSR) instructions.

Copyright © 2010, Elsevier Inc. All rights reserved. 1 3 1
DOI: 10.1016/B978-1-85617-963-8.00011-9
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THE BASIC INTERRUPT CONFIGURATION

Each external interrupt has several registers associated with it.

* Enable and Clear Enable registers

» Set-Pending and Clear-Pending registers
* Priority level

* Active status

In addition, a number of other registers can also affect the interrupt processing:

* Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)
* Vector Table Offset register

« STIR

* Priority group

Interrupt Enable and Clear Enable

The Interrupt Enable register is programmed through two addresses. To set the enable bit, you need to
write to the SETENA register address; to clear the enable bit, you need to write to the CLRENA register
address. In this way, enabling or disabling an interrupt will not affect other interrupt enable states. The
SETENA/CLRENA registers are 32 bits wide; each bit represents one interrupt input.

As there could be more than 32 external interrupts in the Cortex-M3 processor, you might find
more than one SETENA and CLRENA register—for example, SETENAO, SETENAL, and so on (see
Table 8.1). Only the enable bits for interrupts that exist are implemented. So, if you have only 32 inter-
rupt inputs, you will only have SETENAO and CLRENAO. The SETENA and CLRENA registers can
be accessed as word, half word, or byte. As the first 16 exception types are system exceptions, external
Interrupt #0 has a start exception number of 16 (see Table 7.2).

Interrupt Set Pending and Clear Pending

If an interrupt takes place but cannot be executed immediately (for instance, if another higher-priority
interrupt handler is running), it will be pended. The interrupt-pending status can be accessed through
the Interrupt Set Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) registers. Similarly to
the enable registers, the pending status controls might contain more than one register if there are more
than 32 external interrupt inputs.

The values of pending status registers can be changed by software, so you can cancel a current
pended exception through the CLRPEND register, or generate software interrupts through the SET-
PEND register (see Table 8.2).

Priority Levels

Each external interrupt has an associated priority-level register, which has a maximum width of 8 bits
and a minimum width of 3 bits. As described in the previous chapter, each register can be further
divided into preempt priority level and subpriority level based on priority group settings. The priority-
level registers can be accessed as byte, half word, or word. The number of priority-level registers
depends on how many external interrupts the chip contains (see Table 8.3). The priority level configura-
tion registers details can be found in Appendix D, Table D.19.
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Table 8.1 Interrupt Set Enable Registers and Interrupt Clear Enable Registers
(OxEOOOE100-0xEOOOE11C, OXEOOOE180-0xEOOOE19C)

Address
OxEOOOE100

OxEOOOE104

OxEOOOE108

OxEOOOE180

OxEOOOE184

OxEOOOE188

Name

SETENAO

SETENA1

SETENA2

CLRENAO

CLRENA1

CLRENA2

Type
R/W

R/W

R/W

RW

R/W

R/W

Reset Value

0

Description

Enable for external Interrupt #0-31
bit[0] for Interrupt #0 (exception #16)
bit[1] for Interrupt #1 (exception #17)

bit[31] for Interrupt #31 (exception #47)
Write 1 to set bit to 1; write O has no effect
Read value indicates the current status

Enable for external Interrupt #32-63
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

Enable for external Interrupt #64-95
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

Clear enable for external Interrupt #0-31
bit[0] for Interrupt #0
bit[1] for Interrupt #1

bit[31] for Interrupt #31

Write 1 to clear bit to O;

write O has no effect

Read value indicates the current enable status

Clear enable for external Interrupt #32-63
Write 1 to clear bit to O; write 0 has no effect
Read value indicates the current enable status
Clear enable for external Interrupt #64-95
Write 1 to clear bit to O; write O has no effect
Read value indicates the current enable status

Table 8.2 Interrupt Set-Pending Registers and Interrupt Clear-Pending Registers
(OxEOOOE200-0xEO00E21C, OXEOOOE280-0xEOOOE29C)

Address
OxEOO0E200

OxEOOOE204

Name

SETPENDO

SETPEND1

Type
R/W

RW

Reset Value

0

Description

Pending for external Interrupt #0-31
bit[0] for Interrupt #0 (exception #16)
bit[1] for Interrupt #1 (exception #17)

bit[31] for Interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status
Pending for external Interrupt #32-63
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

Continued
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Table 8.2 Interrupt Set-Pending Registers and Interrupt Clear-Pending Registers
(OxEOOOE200-0xEO00E21C, OXEOOOE280-0xEOOQOE29C) Continued

Address Name Type Reset Value Description

OxEOOOE208 SETPEND2 R/W 0 Pending for external Interrupt #64-95
Write 1 to set bit to 1; write 0 has no effect
Read value indicates the current status

OxEOOOE280 CLRPENDO R/W 0 Clear pending for external Interrupt #0-31
bit[0] for Interrupt #0 (exception #16)
bit[1] for Interrupt #1 (exception #17)

bit[31] for Interrupt #31 (exception #47)
Write 1 to clear bit to O; write O has no effect
Read value indicates the current pending status
OxEOOOE284 CLRPEND1 R/W 0 Clear pending for external Interrupt #32-63
Write 1 to clear bit to O; write O has no effect
Read value indicates the current pending status
OxEOOOE288 CLRPEND2 R/W 0 Clear pending for external Interrupt #64-95
Write 1 to clear bit to O; write O has no effect
Read value indicates the current pending status

Table 8.3 Interrupt Priority-Level Registers (OxEOOOE400-OxEOOOE4EF)

Address Name Type Reset Value Description

OxEOOOE400 PRI_O R/W 0 (8 bit) Priority-level external Interrupt #0
OxEOOOE401 PRI_1 R/W 0 (8 bit) Priority-level external Interrupt #1
OxEOOOE41F PRI_31 R/W 0 (8 bit) Priority-level external Interrupt #31

Active Status

Each external interrupt has an active status bit. When the processor starts the interrupt handler, the bit
is set to 1 and cleared when the interrupt return is executed. However, during an Interrupt Service Rou-
tine (ISR) execution, a higher-priority interrupt might occur and cause preemption. During this period,
although the processor is executing another interrupt handler, the previous interrupt is still defined as
active. The active registers are 32 bit but can also be accessed using half word or byte-size transfers. If
there are more than 32 external interrupts, there will be more than one active register. The active status
registers for external interrupts are read-only (see Table 8.4).
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Table 8.4 Interrupt Active Status Registers (OXEOOOE300-0xEOQOOE31C)
Address Name Type Reset Value  Description

OxEOOOE300 ACTIVEO R 0 Active status for external Interrupt #0-31
bit[0] for Interrupt #0
bit[1] for Interrupt #1

bit[31] for Interrupt #31
OxEOOOE304 ACTIVE1 R 0 Active status for external Interrupt #32-63

PRIMASK and FAULTMASK Special Registers

The PRIMASK register is used to disable all exceptions except NMI and hard fault. It effectively
changes the current priority level to O (highest programmable level). In C programming, you can use
the intrinsic functions provided in Cortex Microcontroller Software Interface Standard (CMSIS) com-
pliant device driver libraries or provided in the compiler to set and clear PRIMASK:

void __enable_irq(); // Clear PRIMASK

void __disable_irq(); // Set PRIMASK

void __set_PRIMASK(uint32_t priMask); // Set PRIMASK to value
uint32_t __get_PRIMASK(void); // Read the PRIMASK value

For assembly language users, you can change the current status of PRIMASK using Change Pro-
cess State (CPS) instructions:

CPSIE I ; Clear PRIMASK (Enable interrupts)
CPSID I ; Set PRIMASK (Disable interrupts)

This register is also programmable using MRS and MSR instructions. For example,

MOV RO, #1
MSR ~ PRIMASK, RO ; Write 1 to PRIMASK to disable all
; interrupts

and

MOV RO, #0

MSR ~ PRIMASK, RO ; Write O to PRIMASK to allow interrupts
PRIMASK is useful for temporarily disabling all interrupts for critical tasks. When PRIMASK is set,
if a fault takes place, the hard fault handler will be executed.

FAULTMASK is just like PRIMASK except that it changes the effective current priority level
to —1, so that even the hard fault handler is blocked. Only the NMI can be executed when FAULT-
MASK is set. It can be used by fault handlers to raise its priority to —1, so that they can have access
to some features for hard fault exception (more information on this is provided in Chapter 12). In C
programming with CMSIS compliant driver libraries, you can use the intrinsic functions provided in
device driver libraries to set and clear FAULTMASK as follows:

void __set_FAULTMASK(uint32_t faultMask);
uint32_t _ get_FAULTMASK(void);
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For assembly language users, you can change the current status of FAULTMASK using CPS
instructions as follows:

CPSIE F ; Clear FAULTMASK
CPSID F ; Set FAULTMASK

You can also access the FAULTMASK register using MRS and MSR instructions.
FAULTMASK is cleared automatically upon exiting the exception handler except return from NMI
handler. Both FAULTMASK and PRIMASK registers cannot be set in the user state.

The BASEPRI Special Register

In some cases, you might want to disable interrupts only with priority lower than a certain level. In this
case, you could use the BASEPRI register. To do this, simply write the required masking priority level
to the BASEPRI register. For example, if you want to block all exceptions with priority level equal to
or lower than 0x60, you can write the value to BASEPRI:

__set_BASEPRI(0x60); // Disable interrupts with priority
// 0x60-0xFF using CMSIS

Or in assembly language:

MOV RO, #0x60
MSR ~ BASEPRI, RO ; Disable interrupts with priority

; Ox60-0xFF
You can also read back the value of BASEPRI:
x = __get_BASEPRI(void); // Read value of BASEPRI

Or in assembly language:
MRS RO, BASEPRI
To cancel the masking, just write O to the BASEPRI register:
__set_BASEPRI(O0x0); // Turn off BASEPRI masking

Or in assembly language:

MOV RO, {#0x0
MSR  BASEPRI, RO ; Turn off BASEPRI masking

The BASEPRI register can also be accessed using the BASEPRI_MAX register name. It is actually
the same register, but when you use it with this name, it will give you a conditional write operation.
(As far as hardware is concerned, BASEPRI and BASEPRI_MAX are the same register, but in the
assembler code they use different register name coding.) When you use BASEPRI_MAX as a register,
the processor hardware automatically compares the current value and the new value and only allows
the update if it is to be changed to a higher priority level; it cannot be changed to lower priority levels.
For example, consider the following instruction sequence:

MOV RO, #0x60
MSR  BASEPRI_MAX, RO ; Disable interrupts with priority
; 0x60, 0x61,..., etc
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MOV RO, #0xFO

MSR  BASEPRI_MAX, RO ; This write will be ignored because
; 1t is Tower
; level than 0x60

MOV RO, #0x40

MSR  BASEPRI_MAX, RO ; This write is allowed and change the
; masking Tevel to 0x40

To change to a lower masking level or disable the masking, the BASEPRI register name should be
used. The BASEPRI/ BASEPRI_MAX register cannot be set in the user state.

As with other priority-level registers, the formatting of the BASEPRI register is affected
by the number of implemented priority register widths. For example, if only 3 bits are imple-
mented for priority-level registers, BASEPRI can be programmed as 0x00, 0x20, 0x40 ... 0xCO,
and 0xEOQ.

Configuration Registers for Other Exceptions

Usage faults, memory management faults, and bus fault exceptions are enabled by the System Handler
Control and State register (OXEOOOED24). The pending status of faults and active status of most system
exceptions are also available from this register (see Table 8.5).

Table 8.5 The System Handler Control and State Register (OXEOOOED24)

Bits Name Type Reset Value Description

18 USGFAULTENA R/W 0 Usage fault handler enable

17 BUSFAULTENA R/W 0 Bus fault handler enable

16 MEMFAULTENA R/W 0 Memory management fault handler enable

15 SVCALLPENDED R/W 0 SVC pended; SVC was started but was replaced

by a higher-priority exception

Bus fault pended; bus fault handler was started

but was replaced by a higher-priority exception

13 MEMFAULTPENDED R/W 0 Memory management fault pended; memory
management fault started but was replaced by a
higher-priority exception

12 USGFAULTPENDED  R/W 0 Usage fault pended; usage fault started but was
replaced by a higher-priority exception

14 BUSFAULTPENDED  R/W

o

11 SYSTICKACT R/W 0 Read as 1 if SYSTICK exception is active
10 PENDSVACT R/W 0 Read as 1 if PendSV exception is active
8 MONITORACT R/W 0 Read as 1 if debug monitor exception is active
7 SVCALLACT R/W 0 Read as 1 if SVC exception is active
3 USGFAULTACT R/W 0 Read as 1 if usage fault exception is active
1 BUSFAULTACT R/W 0 Read as 1 if bus fault exception is active
0 MEMFAULTACT R/W 0 Read as 1 if memory management fault is active

Note: Bit 12 (USGFAULTPENDED) is not available on revision O of Cortex-Ma3.
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Table 8.6 Interrupt Control and State Register (OXEOOOEDO4)

Bits Name Type Reset Value Description
31 NMIPENDSET R/W 0 NMI pended
28 PENDSVSET R/W 0 Write 1 to pend system call
Read value indicates pending status
27 PENDSVCLR W 0 Write 1 to clear PendSV pending status
26 PENDSTSET R/W 0 Write 1 to pend SYSTICK exception
Read value indicates pending status
25 PENDSTCLR w 0 Write 1 to clear SYSTICK pending status
23 ISRPREEMPT R 0 Indicates that a pending interrupt is going to be

active in the next step (for debug)

22 ISRPENDING R 0 External interrupt pending (excluding system
exceptions such as NMI for fault)

21:12  VECTPENDING R 0 Pending ISR number

11 RETTOBASE R 0 Set to 1 when the processor is running an

exception handler; will return to thread level if
interrupt return and no other exceptions pending

9:0 VECTACTIVE R 0 Current running ISR

Be cautious when writing to this register; make sure that the active status bits of system exceptions
are not changed accidentally. Otherwise, if an activated system exception has its active state cleared by
accident, a fault exception will be generated when the system exception handler generates an excep-
tion exit.

Pending for NMI, the SYSTICK Timer, and PendSV is programmable through the Interrupt Control
and State register. In this register, quite a number of the bit fields are for debugging purposes. In most
cases, only the pending bits would be useful for application development (see Table 8.6).

EXAMPLE PROCEDURES IN SETTING UP AN INTERRUPT

For most simple applications, the application is stored in ROM and there is no need to change the
exception handlers, we can have the whole vector table coded in the beginning of ROM in the Code
region (0x00000000). This way, the vector table offset will always be 0 and the interrupt vector is
already in ROM. The only steps required to set up an interrupt will be as follows:

1. Set up the priority group setting. This step is optional. By default priority group setting is zero—
only bit O of the priority level register is used for subpriority.

2. Set up the priority level of the interrupt. This step is optional. By default, all interrupts are at
priority level O (highest).

3. Enable the interrupt.

Here is a simple example procedure for setting up an interrupt:

NVIC_SetPriorityGrouping(5);
NVIC_SetPriority(7, 0xC0); // Set IRQ#7 priority level to 0xCO
NVIC_EnableIRQ(7);
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In addition, make sure that you have enough stack memory if you allow a large number of nested inter-
rupt levels. Because exception handlers always use the Main Stack Pointer, the main stack memory
should contain enough space for the largest number of nesting interrupts.

If the interrupt handlers need to be changed at different stage of the application, we might need to
relocate the vector table to Static Random Access Memory (SRAM), so that we can modify the excep-
tion vectors. In this case, the following extra steps would be required:

1. When the system boots up, the priority group register might need to be set up. By default, the
priority group 0 is used (bit[7:1] of priority level is the preemption level and bit[0] is the subpriority
level).

Copy the hard fault, NMI handlers and other required vector to a new vector table location in
SRAM.

Set up the Vector Table Offset register (Table 7.7) to point to the new vector table.

Set up the interrupt vector for the interrupt in the new vector table.

Set up the priority level for the interrupt.

Enable the interrupt.

N

oarw

For example, this can be done in C programming with a CMSIS compliant device driver library,
assume the starting address of the new vector table is defined as "NEW_VECT_TABLE":

// HW_REG is a macro to convert address value to pointer

Jdefine HW_REG(addr) (*((volatile unsigned long *)(addr)))

Jkdefine NEW_VECT_TABLE 0x20008000 // An SRAM region for vector table
NVIC_SetPriorityGrouping(5);

HW_REG((NEW_VECT_TABLE +0x8)) = HW_REG(0x8); // Copy NMI vector
HW_REG((NEW_VECT_TABLE +0xC)) = HW_REG(0xC); // Copy HardFault

SCB->VTOR = NEW_VECT_TABLE; // Relocate vector table to SRAM
HW_REG(4*(7+16)) = (unsigned) IRQ7_Handler; // Setup vector
NVIC_SetPriority(7, 0xC0); // Set IRQ#7 priority level to 0xCO

NVIC_EnablelIRQ(7);

The program in assembly might be something like this:

LDR RO, =0xEO00EDOC ; Application Interrupt and Reset
; Control Register

LDR R1, =0x05FA0500 ; Priority Group 5 (2/6)

STR R1, [RO] ; Set Priority Group

MOV R4,{#8 ; Vector Table in ROM

LDR R5,=(NEW_VECT_TABLE+8)

LDMIA R4!,{RO-R1} ; Read vectors address for NMI and
; Hard Fault

STMIA R5!,{RO-R1} ; Copy vectors to new vector table

LDR RO,=0xEQ00EDO8 ; Vector Table Offset Register

LDR R1,=NEW_VECT_TABLE
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STR R1,[RO] ; Set vector table to new location

LDR RO,=IRQ7_Handler ; Get starting address of IRQ#7 handler

LDR R1,=0xE000EDO8 ; Vector Table Offset Register

LDR R1,[R1]

ADD R1, RI1, #(4*(7+16)) ; Calculate IRQ#7 handler vector
; address

STR RO, [R1] ; Setup vector for IRQ{#7

LDR RO,=0xE000E400 ; External IRQ priority base

MOV R1, #0x0

STRB R1,[RO,#7] : Set IRQ#7 priority to 0x0

LDR RO,=0xE000E100 ; SETEN register

MOV R1,#(1<<7) ; IRQ#7 enable bit (value 0x1 shifted
; by 7 bits)

STR R1,[RO] ; Enable the interrupt

In cases where the software needs to be able to run on a number of hardware devices, it might be
necessary to determine the following:

* The number of interrupts supported in the design
* The number of bits in priority-level registers

The Cortex-M3 has an Interrupt Controller Type register that gives the number of interrupt inputs
supported, in granularities of 32 (see Table 8.7). Alternatively, you can detect the exact number of
external interrupts by performing a read/write test to interrupt configuration registers such as SETEN
or priority registers.

To determine the number of bits implemented for interrupt priority-level registers, you can write
OxFF to one of the priority-level registers, then read it back and see how many bits are set. The mini-
mum number is three. In that case you should get a read-back value of 0xEOQ.

SOFTWARE INTERRUPTS

Software interrupts can be generated in more than one way. The first one is to use the SETPEND reg-
ister; the second solution is to use the STIR, outlined in Table 8.8.
For example, you can generate Interrupt #3 by writing the following code in C:

NVIC->STIR = 3; /* NVIC->STIR is defined in CMSIS compliant device driver
library */

This is functionally equivalent to using SETPEND register using CMSIS function:
NVIC_SetPendingIRQ(3);

System exceptions (NMI, faults, PendSV, and so on) cannot be pended using this register. By default,
a user program cannot write to the NVIC; however, if it is necessary for a user program to write to this
register, the bit 1 (USERSETMPEND) of the NVIC Configuration Control register (OXEOOOED14) can
be set to allow user access to the NVIC’s STIR.
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Table 8.7 Interrupt Controller Type Register (OXEOOOE004)

Bits Name Type Reset Value  Description

4:0 INTLINESNUM R — Number of interrupt inputs in step of 32
0=11t032
1=33t064

Table 8.8 Software Trigger Interrupt Register (OXEOOOEF00)
Bits Name Type Reset Value  Description

8:0 INTID W — Writing the interrupt number sets the
pending bit of the interrupt; for example,
write 0 to pend external Interrupt #0

THE SYSTICK TIMER

The SYSTICK Timer is integrated with the NVIC and can be used to generate a SYSTICK exception
(exception type #15). In many operating systems, a hardware timer is used to generate interrupts so that
the OS can carry out task management—for example, to allow multiple tasks to run at different time
slots and to make sure that no single task can lock up the whole system. To do that, the timer needs to
be able to generate interrupts, and if possible, it should be protected from user tasks so that user appli-
cations cannot change the timer behavior.

The Cortex-M3 processor includes a simple timer. Because all Cortex-M3 chips have the same
timer, porting software between different Cortex-M3 products is simplified. The timer is a 24-bit down
counter. It can use the internal free running processor clock signal on the Cortex-M3 processor or an
external reference clock (documented as the STCLK signal on the Cortex-M3 TRM). However, the
source of the STCLK will be decided by chip designers, so the clock frequency might vary between
products. You should check the chip’s datasheet carefully when selecting a clock source.

The SYSTICK Timer can be used to generate interrupts. It has a dedicated exception type and
exception vector. It makes porting operating systems and software easier because the process will be
the same across different Cortex-M3 products. The SYSTICK Timer is controlled by four registers,
shown in Tables 8.9-8.12.

The Calibration Value register provides a solution for applications to generate the same SYS-
TICK interrupt interval when running on various Cortex-M3 products. To use it, just write the value
in TENMS to the reload value register. This will give an interrupt interval of about 10 ms. For other
interrupt timing intervals, the software code will need to calculate a new suitable value from the cali-
bration value. However, the TENMS field might not be available in all Cortex-M3 products (the cali-
bration input signals to the Cortex-M3 might have been tied low), so check with your manufacturer’s
datasheets before using this feature.

Aside from being a system tick timer for operating systems, the SYSTICK Timer can be used in
a number of ways: as an alarm timer, for timing measurement, and more. Note that the SYSTICK



142 CHAPTER 8 The Nested Vectored Interrupt Controller and Interrupt Control

Table 8.9 SYSTICK Control and Status Register (OxEOOOEQ10)
Bits Name Type Reset Value Description

16 COUNTFLAG R 0 Read as 1 if counter reaches 0 since last time
this register is read; clear to O automatically when
read or when current counter value is cleared

2 CLKSOURCE R/W 0 0 = External reference clock (STCLK)
1 = Use processor free running clock

1 TICKINT R/W 0 1 = Enable SYSTICK interrupt generation when
SYSTICK Timer reaches O
0 = Do not generate interrupt

0 ENABLE R/W 0 SYSTICK Timer enable

Table 8.10 SYSTICK Reload Value Register (OxEOOOEQ14)
Bits Name Type Reset Value Description

23:0 RELOAD R/W 0 Reload value when timer reaches O

Table 8.11 SYSTICK Current Value Register (OxXEOOOEQ18)
Bits Name Type Reset Value Description

23:0 CURRENT R/Wc 0 Read to return current value of the timer.
Write to clear counter to 0. Clearing of current
value also clears COUNTFLAG in SYSTICK
Control and Status register

Table 8.12 SYSTICK Calibration Value Register (OXEOOOEQ1C)

Bits Name Type Reset Value Description

31 NOREF R — 1 = No external reference clock (STCLK not
available)
0 = External reference clock available

30 SKEW R — 1 = Calibration value is not exactly 10 ms
0 = Calibration value is accurate

23:0 TENMS R/W 0 Calibration value for 10 ms; chip designer should

provide this value through Cortex-M3 input
signals. If this value is read as 0, calibration value
is not available
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Timer stops counting when the processor is halted during debugging. Depending on the design of the
microcontroller, the SYSTICK Timer could also be stopped when the processor enters certain type of
sleep modes.

To set up the SYSTICK Timer, the recommended programming sequence is as follows:

* Disable SYSTICK by writing O to the SYSTICK Control and Status register.

e Write new reload value to the SYSTICK Reload Value register.

e Write to the SYSTICK Current Value register to clear the current value to 0.

*  Write to the SYSTICK Control and Status register to start the SYSTICK timer.

This programming sequence can be used on all Cortex-M3 processors. More details of the SYSTICK
setup is covered in Chapter 14.
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INTERRUPT/EXCEPTION SEQUENCES

When an exception takes place, a number of things happen, such as

» Stacking (pushing eight registers’ contents to stack)
* Vector fetch (reading the exception handler starting address from the vector table)
* Update of the stack pointer, link register (LR), and program counter (PC)

Stacking

When an exception takes place, the registers RO-R3, R12, LR, PC, and Program Status (PSR) are
pushed to the stack. If the code that is running uses the Process Stack Pointer (PSP), the process stack
will be used; if the code that is running uses the Main Stack Pointer (MSP), the main stack will be used.
Afterward, the main stack will always be used during the handler, so all nested interrupts will use the
main stack.

The block of eight words of data being pushed to the stack is commonly called a stack frame. Prior
to Cortex™-M3 revision 2, the stack frame was started in any word address by default. In Cortex-M3
revision 2, the stack frame is aligned to double word address by default, although the alignment feature
can be turned off by programming the STKALIGN bit in Nested Vectored Interrupt Controller (NVIC)
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Configuration Control register to zero. The stack frame feature is also available in Cortex-M3 revision
1, but it needs to be enabled by writing 1 to the STKALIGN bit. More details on this register can be
found in Chapter 12.

The data arrangement inside an exception stack frame is shown in Figure 9.1. The order of stack-
ing is shown in Figure 9.2 (assuming that the stack pointer [SP] value is N after the exception). Due to
the pipeline nature of the Advanced High-Performance Bus (AHB) interface, the address and data are
offset by one pipeline state.

The values of PC and PSR are stacked first so that instruction fetch can be started early (which
requires modification of PC) and the Interrupt Program Status register (IPSR) can be updated early.
After stacking, SP will be updated, and the stacked data arrangement in the stack memory will look
like Figure 9.1.

The reason the registers RO-R3, R12, LR, PC, and PSR are stacked is that these are caller-saved
registers, according to C standards (C/C++ standard Procedure Call Standard for the ARM Architecture,

Stack align adjustment not required Stack align adjustment required
) Address A Address
Previous Previous
Previous SP stacked  previous SP stacked
location data location data
xPSR (with bit 9 equal 0) Not used
PC xPSR (with bit 9 equal 1)
LR PC
R12 LR
R3 R12
R2 R3
R1 R2
locaton B0 i
Free New _SP —p RO
stack location
space Free
p stack
Previous stack point at double word space

address or STKALIGN is 0 Previous stack point not at double

word address and STKALIGN is 1

FIGURE 9.1
Exception Stack Frame.

Addressbus [N+t24 [N+28] N | N+4 | N+8 [N+12 | N+16 | N+20 |

NN

PC JPSR] RO | Ri | R2 | R3 | Ri2 | LR |

Data bus

\

Time
FIGURE 9.2
Stacking Sequence.
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AAPCS [Ref. 5]). This arrangement allows the interrupt handler to be a normal C function because reg-
isters that could be changed by the exception handler are saved in the stack.

The general registers (RO-R3 and R12) are located at the end of the stack frame so that they can be
easily accessed using SP-related addressing. As a result, it’s easy to pass parameters to software inter-
rupts using stacked registers.

Vector Fetches

Although the data bus is busy stacking the registers, the instruction bus carries out another important
task of the interrupt sequence: It fetches the exception vector (the starting address of the exception
handler) from the vector table. Since the stacking and vector fetch are performed on separate bus inter-
faces, they can be carried out at the same time.

Register Updates

After the stacking and vector fetch are completed, the exception vector will start to execute. On entry
of the exception handler, a number of registers will be updated. They are as follows:

* SP: The SP (either the MSP or the PSP) will be updated to the new location during stacking. During
execution of the interrupt service routine, the MSP will be used if the stack is accessed.

* PSR: The IPSR (the lowest part of the PSR) will be updated to the new exception number.

e PC: This will change to the vector handler as the vector fetch completes and starts fetching
instructions from the exception vector.

* LR: The LR will be updated to a special value called EXC_RETURN.! This special value drives the
interrupt return operation. The last 4 bits of the LR is used to provide exception return information.
This is covered later in this chapter.

A number of other NVIC registers will also be updated. For example, the pending status of the
exception will be cleared and the active bit of the exception will be set.

EXCEPTION EXITS

At the end of the exception handler, an exception exit (known as an interrupt return in some proces-
sors) is required to restore the system status so that the interrupted program can resume normal execu-
tion. There are three ways to trigger the interrupt return sequence; all of them use the special value
stored in the LR in the beginning of the handler (see Table 9.1).

Some microprocessor architectures use special instructions for interrupt returns (for example, reti
in 8051). In the Cortex-M3, a normal return instruction is used so that the whole interrupt handler can
be implemented as a C subroutine.

When the interrupt return instruction is executed, the unstacking and the NVIC registers update
processes that are listed in Table 9.1 are carried out.

'EXC_RETURN has bit 31 to 4 all set to one (i.e., Oxfffffffx). The last 4 bits define the return information. More information
on the EXC_RETURN value is covered later in this chapter.
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Table 9.1 Instructions That Can Be Used for Triggering Exception Return

Return Instruction Description

BX reg If the EXC_RETURN value is still in LR, we can use the BX LR
instruction to perform the interrupt return.

POP {PC}, or POP {..., PC} Very often the value of LR is pushed to the stack after entering the

exception handler. We can use the POP instruction, either a single
POP or multiple POPs, to put the EXC_RETURN value to the program
counter. This will cause the processor to perform the interrupt return.

Load (LDR) or Load multiple (LDM) It is possible to produce an interrupt return using the LDR or LDM
instruction with PC as the destination register.

1. Unstacking: The registers pushed to the stack will be restored. The order of the POP will be the
same as in stacking. The stack pointer will also be changed back.

2. NVIC register update: The active bit of the exception will be cleared. For external interrupts, if the
interrupt input is still asserted, the pending bit will be set again, causing it to reenter the interrupt
handler.

NESTED INTERRUPTS

Nested interrupt support is built into the Cortex-M3 processor core and the NVIC. There is no need to
use assembler wrapper code to enable nested interrupts. In fact, you do not have to do anything apart
from setting up the appropriate priority level for each interrupt source. First, the NVIC in the Cortex-
M3 processor sorts out the priority decoding for you. So when the processor is handling an exception,
all other exceptions with the same or lower priority will be blocked. Second, the automatic hardware
stacking and unstacking allow the nested interrupt handler to execute without risk of losing data in
registers.

However, one thing needs to be taken care of: Make sure that there is enough space in the main
stack if several nested interrupts are allowed. Since each exception level will use eight words of stack
space and the exception handler code might require extra stack space, it might end up using more stack
memory than expected.

Reentrant exceptions are not allowed in the Cortex-M3. Since each exception has a priority level
assigned and, during exception handling, exceptions with the same or lower priority will be blocked,
the same exception cannot be carried out until the handler is ended. For this reason, Supervisor Call
(SVC) instructions cannot be used inside an SVC handler, since doing so will cause a fault exception.

TAIL-CHAINING INTERRUPTS

The Cortex-M3 uses a number of methods to improve interrupt latency. The first one we’ll look at is
tail chaining (see Figure 9.3).

When an exception takes place but the processor is handling another exception of the same or higher
priority, the exception will enter pending state. When the processor has finished executing the current
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FIGURE 9.3
Tail Chaining of Exceptions.

exception handler, it can then process the pended interrupt. Instead of restoring the registers back from
the stack (unstacking) and then pushing them onto the stack again (stacking), the processor skips the
unstacking and stacking steps and enters the exception handler of the pended exception as soon as pos-
sible. In this way, the timing gap between the two exception handlers is considerably reduced.

LATE ARRIVALS

Another feature that improves interrupt performance is late arrival exception handling. When an
exception takes place and the processor has started the stacking process, and if during this delay a new
exception arrives with higher preemption priority, the late arrival exception will be processed first.

For example, if Exception #1 (lower priority) takes place a few cycles before Exception #2 (higher
priority), the processor will behave as shown in Figure 9.4, such that Handler #2 is executed as soon
as the stacking completes.

MORE ON THE EXCEPTION RETURN VALUE

When entering an exception handler, the LR is updated to a special value called EXC_RETURN, with
the upper 28 bits all set to 1. This value, when loaded into the PC at the end of the exception handler
execution, will cause the processor to perform an exception return sequence.

The instructions that can be used to generate exception returns are as follows:

« POP/LDM
* LDR with PC as a destination
* BX with any register

The EXC_RETURN value has bit (31:4) all set to 1, and bit (3:0) provides information required by
the exception return operation (see Table 9.2). When the exception handler is entered, the LR value is
updated automatically, so there is no need to generate these values manually.
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FIGURE 9.4
Late Arrival Exception Behavior.

Table 9.2 Description of Bit Fields in EXC_RETURN Value

Bits 31:4 3 2 1 0
Descriptions  OxFFFFFFF Return mode Return stack Reserved; Process state
(thread/handler) must be 0 (Thumb/ARM)

Table 9.3 Allowed EXC_RETURN Values on Cortex-M3

Value Condition

OxFFFFFFF1 Return to handler mode

OxFFFFFFFO Return to thread mode and on return use the main stack
OxFFFFFFFD Return to thread mode and on return use the process stack

Bit 0 indicates the process state being used after the exception return. Since the Cortex-M3 supports
only the Thumb® state, bit 0 must be 1. The valid values (for the Cortex-M3) are shown in Table 9.3.

If the thread is using the MSP (main stack), the value of LR will be set to OxXFFFFFFF9 when it
enters an exception, and OxFFFFFFF1 when a nested exception is entered, as shown in Figure 9.5. If
the thread is using PSP (process stack), the value of LR would be 0xFFFFFFFD when entering the first
exception and OxFFFFFFF]1 for entering a nested exception, as shown in Figure 9.6.

As aresult of the EXC_RETURN number format, you cannot perform interrupt returns to an address
in the OxFFFFFFFO-OxFFFFFFFF memory range. However, since this address is in a nonexecutable
region anyway, it is not a problem.
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LR Set to EXC_RETURN at Exception (Main Stack Used in Thread Mode).
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INTERRUPT LATENCY

The term interrupt latency refers to the delay from the start of the interrupt request to the start of
interrupt handler execution. In the Cortex-M3 processor, if the memory system has zero latency, and
provided that the bus system design allows vector fetch and stacking to happen at the same time, the
interrupt latency can be as low as 12 cycles. This includes stacking the registers, vector fetch, and fetch-
ing instructions for the interrupt handler. However, this depends on memory access wait states and a
few other factors.

For tail-chaining interrupts, since there is no need to carry out stacking operations, the latency of
switching from one exception handler to another exception handler can be as low as six cycles.

When the processor is executing a multicycle instruction, such as divide, the instruction could be
abandoned and restarted after the interrupt handler completes. This also applies to load double (LDRD)
and store double (STRD) instructions.

To reduce exception latency, the Cortex-M3 processor allows exceptions in the middle of Mul-
tiple Load and Store instructions (LDM/STM). If the LDM/STM instruction is executing, the current
memory accesses will be completed, and the next register number will be saved in the stacked xPSR
(Interrupt-Continuable Instruction [ICI] bits). After the exception handler completes, the multiple load/
store will resume from the point at which the transfer stopped. There is a corner case: If the multiple
load/store instruction being interrupted is part of an IF-THEN (IT) instruction block, the load/store
instruction will be cancelled and restarted when the interrupt is completed. This is because the ICI bits
and IT execution status bits share the same space in the Execution Program Status Register (EPSR).

In addition, if there is an outstanding transfer on the bus interface, such as a buffered write, the
processor will wait until the transfer is completed. This is necessary to ensure that a bus fault handler
preempts the correct process.

Of course, the interrupt could be blocked if the processor is already executing another exception
handler of the same or higher priority or if the Interrupt Mask register was masking the interrupt request.
In these cases, the interrupt will be pended and will not be processed until the blocking is removed.

FAULTS RELATED TO INTERRUPTS

Various faults can be caused by exception handling. Let’s take a look at these now.

Stacking

If a bus fault takes place during stacking, the stacking sequence will be terminated and the bus fault
exception will be triggered or pended. If the bus fault is disabled, the hard fault handler will be executed.
Otherwise, if the bus fault handler has higher priority than the original exception, the bus fault handler
will be executed; if not, it will be pended until the original exception is completed. This scenario, called
a stacking error, is indicated by the STKERR (bit 4) in the Bus Fault Status register (OXEOOOED29).

If the stacking error is caused by a Memory Protection Unit (MPU) violation, the memory man-
agement fault handler will be executed and the MSTKERR (bit 4) in the Memory Management Fault
Status register (0xXEOOOED28) will be set to indicate the problem. If the memory management fault is
disabled, the hard fault handler will be executed.
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Unstacking

If a bus fault takes place during unstacking (an interrupt return), the unstacking sequence will be termi-
nated and the bus fault exception will be triggered or pended. If the bus fault is disabled, the hard fault
handler will be executed. Otherwise, if the bus fault handler has higher priority than the current priority
of the executing task (the core could already be executing another exception in a nested interrupt case),
the bus fault handler will be executed. This scenario, called an unstacking error, is indicated by the
UNSTKERR (bit 3) in the Bus Fault Status register (OxXEOOOED29).

Similarly, if the stacking error is caused by an MPU violation, the memory management fault han-
dler will be executed and the MUNSTKERR (bit 3) in the Memory Management Fault Status register
(0xEOOOED28) will be set to indicate the problem. If the memory management fault is disabled, the
hard fault handler will be executed.

Vector Fetches

If a bus fault or memory management fault takes place during a vector fetch, the hard fault handler will
be executed. This is indicated by VECTTBL (bit 1) in the Hard Fault Status register (OXEOOOED2C).

Invalid Returns

If the EXC_RETURN number is invalid or does not match the state of the processor (as in using
OxFFFFFFF]1 to return to thread mode), it will trigger the usage fault. If the usage fault handler is not
enabled, the hard fault handler will be executed instead. The INVPC bit (bit 2) or INVSTATE (bit 1)
bit in the Usage Fault Status register (OxEOOOED2A) will be set, depending on the actual cause of the
fault.
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OVERVIEW

The Cortex™-M3 can be programmed using either assembly language, C language, or other high-level
languages like National Instruments LabVIEW. For most embedded applications using the Cortex-M3
processor, the software can be written entirely in C language. There are of course some people who pre-
fer to use assembly language or a combination of C and assembly language in their projects. The pro-
cedure of building and downloading the resultant image files to the target device is largely dependent
on the tool chain used. Although this is not the main focus of this book, some simple examples showing
how to use the Gnu’s Not Unix (GNU) and Keil tool chains are provided in Chapters 19 and 20, and an
introduction of using LabVIEW on Cortex-M3 is covered in Chapter 21.

A TYPICAL DEVELOPMENT FLOW

Various software programs are available for developing Cortex-M3 applications. The concepts of code
generation flow in terms of these tools are similar. For the most basic uses, you will need assembler, a
C compiler, a linker, and binary file generation utilities. For ARM solutions, the RealView Develop-
ment Suite (RVDS) or RealView Compiler Tools (RVCT) provide a file generation flow, as shown in

Copyright © 2010, Elsevier Inc. All rights reserved. 1 55
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C files (.c) Object files (.0)
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FIGURE 10.1
Example Flow Using ARM Development Tools.

Figure 10.1. The scatter-loading script is optional but often required when the memory map becomes
more complex.

Besides these basic tools, RVDS also contains a large number of utilities, including an Integrated
Development Environment (IDE) and debuggers. Please visit the ARM web site (www.arm.com) for
details.

USING C

For beginners in embedded programming, using C language for software development on the Cortex-M3
processor is the best choice. Programming in C with the Cortex-M3 processor is made even easier as
most microcontroller vendors provide device driver libraries written in C to control peripherals. These
can then be included into your project. Since modern C compilers can generate very efficient code, it
is better to program in C than spending a lot of time to try to develop complex routines in assembly
language, which is error prone and less portable.

In this chapter, we will have a quick look at a simple example of using C language to create a simple
program image. Then, we will have a look at some C language development areas including using
device driver libraries and the Cortex Microcontroller Software Interface Standard (CMSIS).

C has the advantage of being portable and easier for implementing complex operations, compared
with assembly language. Since it’s a generic computer language, C does not specify how the processor
is initialized. For these areas, tool chains can have different approaches. The best way to get started is to
look at example codes. For users of ARM C compiler products, such as RVDS or Keil Real View Micro-
controller Development Kit (MDK-ARM), a number of Cortex-M3 program examples are already
included in the installation. For users of the GNU tool chain, Chapter 19 provides a simple C example
based on the CodeSourcery GNU tool chain for ARM.
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Example of a Simple C Program Using RealView Development Site

A normal program for the Cortex-M3 contains at least the “main” program and a vector table. Let’s
start with the most basic main program that toggles an Light Emitting Diode (LED):

Jkdefine LED *((volatile unsigned int *)(0xDFFF000C))

int main (void)

{

int 1; /* loop counter for delay function */

volatile int j; /* dummy volatile variable to prevent
C compiler from optimize the delay away */

while (1) {
LED = 0x00; /* toogle LED */
for (i=0;i<10;i++) {j=0;} /* delay */
LED = 0x01; /* toogle LED */
for (i=0;i<10;i++) {j=0;} /* delay */
}

return 0;

}

This file is named “blinky.c.” For the vector table, we create a separate C program called “vectors.c.”
The file “vectors.c” contains the vector table, as well as a number of dummy exception handlers (these
can be customized for target application later on):

typedef void(* const ExecFuncPtr)(void) __irqg;
extern int _main(void);

/*
* Dummy handlers Exception Handlers
*/
__irg void NMI_Handler(void)
{ while(l); }
__irq void HardFault_Handler(void)
{ while(l); }
__irq void SVC_Handler(void)
{ while(l); }
__irqg void DebugMon_Handler(void)
{ while(l); }
__irq void PendSV_Handler(void)
{ while(l); }
__irq void SysTick_Handler(void)
{ while(l); }
__irqg void ExtInt0_IRQHandler(void)
{ while(l); }
__irqg void ExtIntl_IRQHandler(void)
{ while(l); }
__irq void ExtInt2_IRQHandler(void)
{ while(l); }
__irg void ExtInt3_IRQHandler(void)
{ while(l); }

#fpragma arm section rodata="exceptions_area"
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ExecFuncPtr exception_tablel] = { /* vector table */
(ExecFuncPtr)0x20002000,
(ExecFuncPtr)__main,
NMI_Handler, /* NMI */
HardFault_Handler,
0, /* MemManage_Handler in Cortex-M3 */
0, /* BusFault_Handler in Cortex-M3 */
0, /* UsageFault_Handler in Cortex-M3 */

/* Reserved */

/* Reserved */

/* Reserved */

, /* Reserved */

SVC_Handler,

0, /* DebugMon_Handler in Cortex-M3 */
0, /* Reserved */

PendSV_Handler,

SysTick_Handler,

O O O o

/* External Interrupts*/
ExtIntO_IRQHandler,
ExtIntl_IRQHandler,
ExtInt2_IRQHandler,
ExtInt3_IRQHandler

1

#fpragma arm section

Assuming you are using RVDS, you can compile the program using the following command line:

$> armcc -c -g -W blinky.c -o blinky.o
$> armcc -c -g -W vectors.c -o vectors.o

Then the linker can be used to generate the program image. A scatter loading file “led.scat” is used to
tell the linker the memory layout and to put the vector table in the starting of the program image. The
“led.scat” is

jtdefine HEAP_BASE 0x20001000
ffdefine STACK_BASE 0x20002000
jtdefine HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
jtdefine STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

LOAD_REGION 0x00000000 0x00200000
{
VECTORS 0x0 0xCO
{
Provided by the user in vectors.c
* (exceptions_area)
}

CODE 0xCO FIXED
{

* (+R0O)

}

DATA 0x20000000 0x00010000
{

* (+#RW, +Z1)

}
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;; Heap starts at 4KB and grows upwards
ARM_LIB_HEAP HEAP_BASE EMPTY HEAP_SIZE
{
}

;; Stack starts at the end of the 8KB of RAM
;3 And grows downwards for 2KB
ARM_LIB_STACK STACK_BASE EMPTY -STACK_SIZE
{
}
}

And the command line for the linker is

$> armlink -scatter led.scat "--keep=vectors.o(exceptions_area)"
bTinky.o vectors.o -o blinky.elf

The executable image b1inky.elf is now generated. We can convert it to binary file and disassem-
bly file using fromelf.

/* create binary file */

$> fromelf --bin blinky.elf -output blinky.bin
/* Create disassembly output */

$> fromelf -c blinky.elf > Tist.txt

Previously in ARM processors, because there is a Thumb® state and an ARM state, the code for differ-
ent states has to be compiled differently. In the Cortex-M3, there is no such need because everything is
in the Thumb state, and project file management is much simpler.

When you’re developing applications in C, it is recommended that you use the double word
stack alignment function (configured by the STKALIGN bit in the Nested Vectored Interrupt
Controller [NVIC] Configuration Control register). For users of Cortex-M3 revision 2 or future
products, the STKALIGN bit is set by default at reset so there is no need to set up this bit in the
software. Users of Cortex-M3 revision 1 can enable this feature by setting this bit in the beginning
of their applications, for example. The details of STKALIGN feature are covered in Chapter 9.

SCB->CCR = SCB->CCR | 0x200; /* Set STKALIGN */
/* SCB->CCR is defined in device driver library. */

If you are not using a CMSIS compliant device driver, you can use the following code instead.

Jdefine NVIC_CCR *((volatile unsigned long *)(0xEOOO0ED14))
NVIC_CCR = NVIC_CCR \ 0x200; /* Set STKALIGN */

Using this feature ensures that the system conforms to Procedure Call Standards for the ARM
Architecture (AAPCS). Additional information on this subject is covered in Chapter 12.

Compile the Same Example Using Keil MDK-ARM

For users of Keil MDK-ARM, it is possible to compile the same program as in RVDS. However, the
command line options and a few symbols in the linker script (scatter loading file) have to be modified.
Based on the example in Section 10.3.1, scatter loading file “led.scat” needed to be modified to



160 CHAPTER 10 Cortex-M3 Programming

jtdefine HEAP_BASE 0x20001000
jtdefine STACK_BASE 0x20002000
jtdefine HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
ftdefine STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

LOAD_REGION 0x00000000 0x00200000
{
VECTORS 0x0 0xCO
{
; Provided by the user in vectors.c
* (exceptions_area)

}

CODE 0xCO FIXED
{

* (+R0O)
}

DATA 0x20000000 0x00010000
{

* (+#RW, +Z1)
}

;; Heap starts at 4KB and grows upwards
Heap_Mem HEAP_BASE EMPTY HEAP_SIZE

{

}

;; Stack starts at the end of the 8KB of RAM
;5 And grows downwards for 2KB
Stack_Mem STACK_BASE EMPTY -STACK_SIZE
{
}
}

And the compile sequence can be created in a DOS batch file

SET PATH=C:\Keil\ARM\BIN4QO\;%PATH%

SET RVCT40INC=C:\Keil\ARM\RV3I\INC

SET RVCT40LIB=C:\Keil\ARM\RV31\LIB

SET CPU_TYPE=Cortex-M3

SET CPU_VENDOR=ARM

SET UV2_TARGET=Target 1

SET CPU_CLOCK=0x00000000

C:\KeiT\ARM\BIN4O\armcc -¢c -03 -W -g -Otime --device DLM vectors.c

C:\KeiT\ARM\BIN40\armcc -c¢ -03 -W -g -Otime --device DLM blinky.c

C:\KeiT\ARM\BIN40\armlink --device DLM "--keep=Startup.o(RESET)"
"--first=Startup.o(RESET)" -scatter Ted.scat --map vectors.o
blinky.o -o blinky.elf

C:\KeiT\ARM\BIN4O\fromelf --bin blinky.elf -o blinky.bin

In general, it is much easier to use the uVision IDE to create and compile projects rather than using
command lines. Chapter 20 is ideal for beginners who want to start using the Cortex-M3 microcon-
trollers with the Keil Microcontroller Development Kit for ARM (MDK-ARM).
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Accessing Memory-Mapped Registers in C

There are various ways to access memory-mapped peripheral registers in C language. For illustration,
we will use the System Tick (SYSTICK) Timer in the Cortex-M3 as an example peripheral to demon-
strate different access methods in C language. The SYSTICK is a 24-bit timer which contains only four
registers. The functionality of the SYSTICK will be covered in Chapter 14. In the previous examples,
we have already illustrated the easiest method—defining each register as a pointer. To apply the same
solution to the SYSTICK, we can define each register separately. This is illustrated in Figure 10.2.

Based on the same method, we can define a macro to convert address values to C pointer. The
C-code looks a bit different, but the generated code is the same as previous implementation. This is
illustrated in Figure 10.3.

Method 2 is to define the registers as a data structure, and then define a pointer of the defined structure.
This is the method used in CMSIS compliant device driver libraries. This is illustrated in Figure 10.4.

Method 3 also uses data structure, but the base address of the peripheral is defined using a scatter
loading file (or linker script) during linking stage. This is illustrated in Figure 10.5.

#define SYSTICK_CTRL (*((volatile unsigned long *)(0OxEOOOE010)))
#define SYSTICK_LOAD (*((volatile unsigned long *)(0OXEOOOE014)))
#define SYSTICK_VAL (*((volatile unsigned long *)(0OxEOOOE018)))
#define SYSTICK_CALIB (*((volatile unsigned long *)(0xEOOOEO01C)))
/* Setup SYSTICK */ CALIB 0xEO00E01C
SYSTICK_LOAD = OxFFFF; // Set reload value : VALUE OXEO0OE018  SYSTICK
SYSTICK_VAL =0x0; //Clear current value Timer
SYSTICK_CTRL =0x5; // Enable SYSTICK and select core clock RELOAD OXEOOOEO14  registers
CTRL 0xEO00E010
FIGURE 10.2
Accessing Peripheral Registers as Pointers.
#define HW_REG(addr) (*((volatile unsigned long *)(addr)))
#define SYSTICK_CTRL OxEO00E010
#define SYSTICK_LOAD OxEOOOE014
#define SYSTICK_VAL O0xEO00EO018
#define SYSTICK_CALIB 0xEOOOEO1C
> CALIB 0xEO00EO1C
/* Setup SysTick */ I VALUE OXEOO0E018 S\_/rSTlCK
HW_REG(SYSTICK_LOAD) = OxFFFF;// Set reload value — imer
HW_REG(SYSTICK_VAL) =0x0; / Clear current value RELOAD OXBO0OEOT4  registers
HW_REG(SYSTICK_CTRL) =0x5; //Enable SYSTICK and select core clock | 9| CTRL 0xEO00E010
FIGURE 10.3

Alternative Way of Accessing Peripheral Registers as Pointers.
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typedef struct
{

volatile unsigned long CTRL;  /* SysTick Control and Status register */ SYSTICK_Type

volatile unsigned long LOAD; /* SysTick Reload Value register ~ */ /

volatile unsigned long VAL;  /* SysTick Current Value register ~ */

volatile unsigned long CALIB; /* SysTick Calibration register */
} SysTick_Type;

CALIB 0xEO000E01C

VALUE OxEO00E018 ~ SYSTICK

X ) ) * * : * Timer
#define SysTick ((SysTick_Type *) 0OXEO00E010) /* SysTick struct */ RELOAD OXEOQOEOQ14 registers

CTRL 0xEO00EO010

/* Setup SysTick */

SysTick->LOAD = OxFFFF; // Set reload value

SysTick->VAL =0x0; // Clear current value

SysTick->CTRL =0x5; // Enable SYSTICK and select core clock

FIGURE 10.4
Accessing Peripheral Registers as Pointers to Elements in a Data Structure.

In the C file, define the data structure as

__attribute__ ((zero_init)) struct {
volatile unsigned long CTRL; /* systick control */
volatile unsigned long RELOAD; /* systick reload */
volatile unsigned long VAL; /* systick value */ SYSTICK_struct
volatile unsigned long CALIB; /* systick calibration */ ~|
} systick_struct; L

CALIB O0xEO00E01C

VALUE OXEO00EO18  SYSTICK
Timer

Then create a scatter loading file to place the data structure RELOAD O0xEOOOEO014 registers
to specific address CTRL OXEO00E010

LOAD_FLASH 0x0000

{
’ SYSTICK 0xE000E010 UNINIT
{
systick_reg.o ( +ZI)\_/

}

FIGURE 10.5
Defining Peripheral-Based Address Using Scatter Loading File.

In this case (method is shown in Figure 10.5), the program code using the peripheral has to define
the peripheral as a C pointer in an external object. The code for accessing the register is the same as in
the second method.

Method 1 (shown in Figures 10.2 and 10.3) is the simplest, however, it can result in less efficient
code compared with the others as the address value for the registers are stored separately as constant.
As a result, the code size can be larger and might be slower as it requires more accesses to the program
memory to set up the address values. However, for peripheral control code that only access to one
register, the efficiency of method 1 is identical to others.

Method 2 (using data structure and a pointer defined in the C-code) is possibly the most com-
monly used. It allows the registers in a peripheral to share just one constant for base address value.
The immediate offset address mode can be used for access of each register. This is the method used in
CMSIS, which will be covered later in this chapter.
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Method 3 (using scatter loading file or linker script, as shown in figure 10.5) has the same efficiency
as method 2, but it is less portable due to the use of a scatter loading file (scatter loading file syntax is tool
chain specific). Method 3 is required when you are developing a device driver library for a peripheral that
is used in multiple devices, and the base address of the peripheral is not known until in the linking stage.

Intrinsic Functions

Use of the C language can often speed up application development, but in some cases, we need to
use some instructions that cannot be generated using normal C-code. Some C compilers provide
intrinsic functions for accessing these special instructions. Intrinsic functions are used just like normal
C functions. For example, ARM compilers (including RealView C Compilers and Keil MDK-ARM)
provide the intrinsic functions listed in Table 10.1 for commonly used instructions.

Embedded Assembler and Inline Assembler

As an alternative to using intrinsic functions, we can also directly access assembly instructions in
C-code. This is often necessary in low-level system control or when you need to implement a timing
critical routine and decide to implement it in assembly for the best performance. Most ARM C compil-

ers allow you to include assembly code in form of inline assembler.

Table 10.1 Intrinsic Functions Provided in ARM Compilers

Assembly Instructions ARM Compiler Intrinsic Functions

Clz unsigned char __clz(unsigned int val)
CLREX void __clrex(void)

CPSID | void __disable_irg(void)

CPSIE | void __enable_irg(void)

CPSID F void __disable_fig(void)

CPSIE F void __enable_fig(void)
LDREX/LDREXB/LDREXH unsigned int __Idrex(volatile void *ptr)
LDRT/LDRBT/LDRSBT/LDRHT/LDRSHT unsigned int __Idrt(const volatile void *ptr)
NOP void __nop(void)

RBIT unsigned int __rbit(unsigned int val)

REV unsigned int __rev(unsigned int val)

ROR unsigned int __ror(unsigned int val, unsigned int shift)
SSAT int __ssat(int val, unsigned int sat)

SEV void __sev(void)

STREX/STREXB/STREXH int __strex(unsigned int val, volatile void *ptr)
STRT/STRBT/STRHT void int __strt(unsigned int val, const volatile void *ptr)
USAT int __usat(unsigned int val, unsigned int sat)
WFE void __wfe(void)

WFI void __wfi(void)

BKPT void __breakpoint(int val)
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In the ARM compiler, you can add assembly code inside the C program. Traditionally, inline
assembler is used, but the inline assembler in RealView C Compiler does not support instructions in
Thumb-2 technology. Starting with Real View C Compiler version 3.0, a new feature called the Embed-
ded Assembler is included, and it supports the instruction set in Thumb-2. For example, you can insert
assembly functions in your C programs this way:

__asm void SetFaultMask(unsigned int new_value)

{
// Assembly code here
MSR FAULTMASK, new_value // Write new value to FAULTMASK
BX LR // Return to calling program

}

Detailed descriptions of Embedded Assembler in RealView C Compiler can be found in the RVCT
4.0 Compilation Tools Compiler Guide [Ref. 6].

For the Cortex-M3, Embedded Assembler is useful for tasks, such as direct manipulation of the
stacks and timing critical processing task (codec software).

CMSIS
Background of CMSIS

The Cortex-M3 microcontrollers are gaining momentum in the embedded application market, as more
and more products based on the Cortex-M3 processor and software that support the Cortex-M3 proces-
sor are emerging. At the end of 2008, there were more than five C compiler vendors, and more than
15 embedded Operating Systems (OS) supporting the Cortex-M3 processor. There are also a num-
ber of companies providing embedded software solutions, including codecs, data processing libraries,
and various software and debug solutions. The CMSIS was developed by ARM to allow users of the
Cortex-M3 microcontrollers to gain the most benefit from all these software solutions and to allow
them to develop their embedded application quickly and reliably (see Figure 10.6).

Microcontroller
Software Device driver library hardware

Application  ~_]
software |~

Cortex-M3/
Emboe(SidEd CMSIS | :> Cortex-M0/
Cortex-M1

\

Middleware | —1

FIGURE 10.6
CMSIS Provides a Standardized Access Interface for Embedded Software Products.
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The CMSIS was started in 2008 to improve software usability and inter-operability of ARM micro-
controller software. It is integrated into the driver libraries provided by silicon vendors, providing a
standardized software interface for the Cortex-M3 processor features, as well as a number of common
system and I/O functions. The library is also supported by software companies including embedded OS
vendors and compiler vendors.

The aims of CMSIS are to:

* improve software portability and reusability

* enable software solution suppliers to develop products that can work seamlessly with device
libraries from various silicon vendors

* allow embedded developers to develop software quicker with an easy-to-use and standardized
software interface

* allow embedded software to be used on multiple compiler products

» avoid device driver compatibility issues when using software solutions from multiple sources

The first release of CMSIS was available from fourth quarter of 2008 and has already become part of
the device driver library from microcontroller vendors. The CMSIS is also available for Cortex-MO.

Areas of Standardization
The scope of CMSIS involves standardization in the following areas:

* Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This includes standardized
register definitions for NVIC, System Control Block registers, SYSTICK register, MPU registers,
and a number of NVIC and core feature access functions.

» Standardized system exception names: This allows OS and middleware to use system exceptions
easily without compatibility issues.

» Standardized method of header file organization: This makes it easier for users to learn new Cortex
microcontroller products and improve software portability.

»  Common methodfor system initialization: Each Microcontroller Unit (MCU) vendor provides a SystemlInit()
function in their device driver library for essential setup and configuration, such as initialization of clocks.
Again, this helps new users to start to use Cortex-M microcontrollers and aids software portability.

» Standardized intrinsic functions: Intrinsic functions are normally used to produce instructions
that cannot be generated by IEC/ISO C." By having standardized intrinsic functions, software
reusability and portability are considerably improved.

* Common access functions for communication: This provides a set of software interface functions
for common communication interfaces including universal asynchronous receiver/transmitter
(UART), Ethernet, and Serial Peripheral Interface (SPI). By having these common access functions
in the device driver library, reusability and portability of embedded software are improved. At the
time of writing this book, it is still under development.

» Standardized way for embedded software to determine system clock frequency: A software variable
called SystemFrequency is defined in device driver code. This allows embedded OS to set up the
SYSTICK unit based on the system clock frequency.

*C/C++ features are specified in a standard document “ISO/IEC 14882” prepared by the International Organization for
Standards (ISO) and the International Electrotechnical Commission (IEC).
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The CMSIS defines the basic requirements to achieve software reusability and portability. MCU
vendors can include additional functions for each peripheral to enrich the features of their software
solution. So using CMSIS does not limit the capability of the embedded products.

Organization of CMSIS
The CMSIS is divided into multiple layers as follows:

Core Peripheral Access Layer
* Name definitions, address definitions, and helper functions to access core registers and core peripherals

Middleware Access Layer

*  Common method to access peripherals for the software industry (work in progress)

e Targeted communication interfaces include Ethernet, UART, and SPI.

* Allows portable software to perform communication tasks on any Cortex microcontrollers that
support the required communication interface

Device Peripheral Access Layer (MCU specific)
* Name definitions, address definitions, and driver code to access peripherals

Access Functions for Peripherals (MCU specific)
* Optional additional helper functions for peripherals

The role of these layers is summarized in Figure 10.7.

User Application code
Real-time Middleware
RTOS kernel components
Core peripheral Middleware Dgwce
. . peripheral
functions access functions functions
CMSIS

Peripheral registers and interrupt/exception vector definitions

2. 8 85 8 B

NVIC
yeU Processor g%%{ﬁg Nested Vector Debug/trace Other
core imer (nterrupt Interface peripherals

Cortex-M processor

FIGURE 10.7
CMSIS Structure.
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Using CMSIS

Since the CMSIS is incorporated inside the device driver library, there is no special setup requirement
for using CMSIS in projects. For each MCU device, the MCU vendor provides a header file, which
pulls in additional header files required by the device driver library, including the Core Peripheral
Access Layer defined by ARM (see Figure 10.8).

The file core_cm3.h contains the peripheral register definitions and access functions for the
Cortex-M3 processor peripherals like NVIC, System Control Block registers, and SYSTICK registers.
The core_cm3.h file also contains declaration of CMSIS intrinsic functions to allow C applications to
access instructions that cannot be generated using IEC/ISO C language. In addition, this file also con-
tains a function for outputting a debug message via the Instrumentation Trace Module (ITM).

Note that in some cases, the intrinsic functions in CMSIS could have similar names compared with
the intrinsic functions provided in the C compilers, whereas the CMSIS intrinsic functions are compiler
independent.

The file core_cm3.c contains implementation of CMSIS intrinsic functions that cannot be imple-
mented in core_cm3.h using simple definitions.

The system_<device>.h file contains microcontroller specific interrupt number definitions, and
peripheral register definitions. The system_<device>.c file contains a microcontroller specific function
called Systemlnit for system initialization.

In addition, CMSIS compliant device drivers also contain start-up code (which contains the vector
table) for various supported compilers, and CMSIS version of intrinsic functions to allow embedded
software access to all processor core features on different C compiler products.

Examples of using CMSIS can be found on the microcontroller vendor’s web site. You might also
find examples in the device driver libraries itself. Alternatively, you can download the ARM CMSIS

Core peripheral
access layer

core_cm3.h

Core intrinsic function
implementations

<device>.h N\ Interrupt number and
system_<device>.h peripheral registers

definitions

core_cm3.c

System functions
including initialization

system_<device>.c

‘ Startup code files

N

C Device peripheral

access layer and

additional access
functions

Different startup code for Other header files
different tool chain

FIGURE 10.8
CMSIS Files.
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ffinclude "vendor_device.h" // For example,
// 1m3s_cmsis.h for LuminaryMicro devices
// LPC17xx.h for NXP devices

// stm32fl0x.h for ST devices Common name for
system initialization code

void main(void) {/ (from CMSIS v1.30, this function
SystemInit(); is called from startup code)

NVIC setup by core access
NVIC_SetPriority(UARTI_IRQn, OxO);}/ PN
NVIC_EnableIRQ(UARTI_IRQN);

\\/_ Interrupt numbers defined in

} system_<device>.h

void UART1_IRQHandler {

o Peripheral interrupt names are
device specific, define in device

void SysTick_Handler(void) f{ specific startup code

}

System exception handler
names are common to all
Cortex microcontrollers

FIGURE 10.9
CMSIS Example.

package from www.onarm.com, which contains examples and documentation. Documentation of the
common functions can also be found in this package.

A simple example of using CMSIS in your application development is shown in Figure 10.9. To use
the CMSIS to set up interrupts and exceptions, you need to use the exception/interrupt constants defined
in the system_<device>.h. These exception and interrupt constants are different from the exception
number used in the core internal registers (e.g., Interrupt Program Status Register [[PSR]). For CMSIS,
negative numbers are for system exceptions and positive numbers are for peripheral interrupts.

For development of portable code, you should use the core access functions to access core function-
alities and middleware access functions to access peripheral. This allows the porting of software to be
minimized between different Cortex microcontrollers.

Details of common CMSIS access functions and intrinsic functions can be found in Appendix G.

Benefits of CMSIS

So what does CMSIS mean to end users?

The main advantage is much better software portability and reusability. Besides easy migration
between different Cortex-M3 microcontrollers, it also allows software to be quickly ported between
Cortex-M3 and other Cortex-M processors, reducing time to market.

For embedded OS vendors and middleware providers, the advantages of the CMSIS are signifi-
cant. By using the CMSIS, their software products can become compatible with device drivers from
multiple microcontroller vendors, including future microcontroller products that are yet to be released
(see Figure 10.10). Without the CMSIS, the software vendors either have to include a small library for
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o Embedded OS/ o Embedded
Application middleware Application oS/
middleware
[ - - g
Driver library from Driver library from Driver lib f
microcontroller OS/middleware . river iorary from
microcontroller vendors with CMSIS
vendors vendor
- L - L - L - L
Peripherals Processor Peripherals Processor
core core
Without CMSIS, embedded OS or With CMSIS, embedded OS or
middleware needs to include processor middleware can use standardized
core access functions and might core access functions in the driver library
need to include a few peripheral drivers
FIGURE 10.10

CMSIS Avoids Overlapping Driver Code.

Cortex-M3 core functions or develop multiple configurations of their product so that it can work with
device libraries from different microcontroller vendors.

The CMSIS has a small memory footprint (less than 1 KB for all core access functions and a few
bytes of RAM). It also avoids overlapping of core peripheral driver code when reusing software code
from other projects.

Since CMSIS is supported by multiple compiler vendors, embedded software can compile and
run with different compilers. As a result, embedded OS and middleware can be MCU vendor inde-
pendent and compiler tool vendor independent. Before availability of CMSIS, intrinsic functions
were generally compiler specific and could cause problems in retargetting the software in a different
compiler.

Since all CMSIS compliant device driver libraries have a similar structure, learning to use different
Cortex-M3 microcontrollers is even easier as the software interface has similar look and feel (no need
to relearn a new application programming interface).

CMSIS is tested by multiple parties and is Motor Industry Software Reliability Association (MISRA)
compliant, thus reducing the validation effort required for developing your own NVIC or core feature
access functions.

USING ASSEMBLY

For small projects, it is possible to develop the whole application in assembly language. However, this
is often much harder for beginners. Using assembler, you might be able to get the best optimization
you want, though it might increase your development time, and it could be easy to make mistakes. In
addition, handling complex data structures or function library management can be extremely difficult
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in assembler. Yet even when the C language is used in a project, in some situations part of the program
is implemented in assembly language as follows:

* Functions that cannot be implemented in C, such as direct manipulation of stack data or special
instructions that cannot be generated by the C compiler in normal C-code

* Timing-critical routines

* Tight memory requirements, causing part of the program to be written in assembly to get the
smallest memory size

The Interface hetween Assembly and C

In various situations, assembly code and the C program interact. For example,

*  When embedded assembly (or inline assembler, in the case of the GNU tool chain) is used in C
program code

*  When C program code calls a function or subroutine implemented in assembler in a separate file

*  When an assembly program calls a C function or subroutine

In these cases, it is important to understand how parameters and return results are passed between the
calling program and the function being called. The mechanisms of these interactions are specified in
the ARM Architecture Procedure Call Standard [AAPCS, [Ref. 5]].

For simple cases, when a calling program needs to pass parameters to a subroutine or function, it
will use registers RO—R3, where RO is the first parameter, R1 is the second, and so on. Similarly, RO
is used for returning a value at the end of a function. RO-R3 and R12 can be changed by a function or
subroutine whereas the contents of R4—R11 should be restored to the previous state before entering the
function, usually handled by stack PUSH and stack POP.

To make them easier to understand, the examples in this book do not strictly follow AAPCS prac-
tices. If a C function is called by an assembly code, the effect of a possible register change to RO-R3
and R12 will need to be taken into account. If the contents of these registers are needed at a later stage,
these registers might need to be saved on the stack and restored after the C function completes. Since
the example codes mostly only call assembly functions or subroutines that affect a few registers or
restore the register contents at the end, it’s not necessary to save registers RO-R3 and R12.

The First Step in Assembly Programming

This chapter reviews a few examples in assembly language. In most cases, you will be programming
in C, but by looking into some assembler examples, we can gain a better understanding of how to use
the Cortex-M3 processor. The examples here are based on ARM assembler tools (armasm) in RVDS.
For users of Keil MDK-ARM, the command line options are slightly different. For other assembler
tools, the file format and instruction syntax will also need to be modified. In addition, some develop-
ment tools will actually do the startup code for you, so you might not need to worry about creating your
assembly startup code.
The first simple program can be something like this

STACK_TOP EQU 0x20002000; constant for SP starting value

AREA |Header Code |, CODE
DCD STACK_TOP ; Stack top
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DCD Start ; Reset vector
ENTRY ; Indicate program execution start here
Start ; Start of main program
initialize registers

MOV r0, {10 ; Starting loop counter value
MOV r1, #0 ; starting result
; Calculated 10+9+8+...+1
loop
ADD r1, r0 ; Rl = R1 + RO
SUBS r0, #1 ; Decrement RO, update flag ("S" suffix)
BNE Toop ; If result not zero jump to loop
Result is now in R1
deadloop
B deadloop ; Infinite loop
END ; End of file

This simple program contains the initial stack pointer (SP) value, the initial program counter (PC)
value, and setup registers and then does the required calculation in a loop.

Assuming you are using ARM RealView compilation tools, this program can be assembled
using

$> armasm --cpu cortex-m3 -o testl.o testl.s

The -o option specifies the output file name. The testl.o is an object file. We then need to use a linker
to create an executable image (ELF). This can be done by

$> armlink --rw_base 0x20000000 --ro_base 0x0 --map -o testl.elf testl.o

Here, --ro-base 0x0 specifies that the read-only region (program ROM) starts at address 0x0; --rw-
base specifies that the read/write region (data memory) starts at address 0x20000000. (In this example
testl.s, we did not have any RAM data defined.) The --map option creates an image map, which is use-
ful for understanding the memory layout of the compiled image.

Finally, we need to create the binary image

$> fromelf --bin --output testl.bin testl.elf

For checking that the image looks like what we wanted, we can also generate a disassembled code list
file by

$> fromelf -c --output testl.list testl.elf

If everything works fine, you can then load your ELF image or binary image into your hardware or
instruction set simulator for testing.

Producing Outputs

It is always more fun when you can connect your microcontroller to the outside world. The simplest
way to do that is to turn on/off the LEDs. However, this practice is quite limiting because it can only rep-
resent very limited information. One of the most common output methods is to send text messages to a
console. In embedded product development, this task is often handled by a UART interface connecting
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RS-232

. serial cable
v y 1
Hyper-Terminal
.Cortex-M:i - Lr%e' - running on
microcontroller shifter windows

FIGURE 10.11
A Low-Cost Test Environment for Outputting Text Messages.

to a personal computer. For example, a computer running a Windows' system with the Hyper-Terminal
program acting as a console can be a handy way to produce outputs (see Figure 10.11).

The Cortex-M3 processor does not contain a UART interface, but most Cortex-M3 microcontrollers
come with UART provided by the chip manufacturers. The specification of the UART can differ among
various devices, so we won’t attempt to cover the topic in this book. Our next example assumes that a
UART is available and has a status flag to indicate whether the transmit buffer is ready for sending out
new data. A level shifter is needed in the connection because RS-232 has a different voltage level than
the microcontroller I/O pins.

UART is not the only solution to output text messages. A number of features are implemented on
the Cortex-M3 processor to help output debugging messages:

* Semihosting: Depending on the debugger and code library support, semihosting (outputting printf
messages via a debug probe device) can be done via debug register in the NVIC. More information
on this topic is covered in Chapter 15. In these cases, you can use printf within your C program,
and the output will be displayed on the console/standard output (STDOUT) of the debugger
software.

» [Instrumentation trace: If the Cortex-M3 microcontroller provides a trace port and an external Trace
Port Analyzer (TPA) is available, instead of using UART to output messages, we can use the ITM.
The trace port works much faster than UART and can offer more data channels.

» Instrumentation trace via Serial-Wire Viewer (SWV): Alternatively, the Cortex-M3 processor
(revision 1 and later) also provides an SWV operation mode on the Trace Port Interface Unit
(TPIU). This interface allows outputs from I'TM to be captured using low-cost hardware instead of
a TPA. However, the bandwidth provided with the SWV mode is limited, so it is not ideal for large
amounts of data (e.g., instruction trace operation).

The “Hello World” Example

Before we try to write a “Hello world” program, we should figure out how to send one character
through the UART. The code used to send a character can be implemented as a subroutine, which can

'Windows and Hyper-Terminal are trademarks of Microsoft Corporation.
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be called by other message output codes. If the output device changes, we only need to change this
subroutine and all the text messages can be output by a different device. This modification is usually
called retargetting.

A simple routine to output a character could be something like this

UARTO_BASE EQU 0x4000C€000
UARTO_FLAG EQU UARTO_BASE+0x018
UARTO_DATA EQU UARTO_BASE+0x000

Putc ; Subroutine to send a character via UART
; Input RO = character to send
PUSH {R1,R2, LR} ; Save registers
LDR R1,=UARTO_FLAG
PutcWaitlLoop
LDR R2,[R1] ; Get status flag
TST R2, {#f0x20 ; Check transmit buffer full flag
; bit
BNE PutcWaitlLoop ; If busy then loop
LDR R1,=UARTO_DATA ; otherwise
STRB RO, [R1] ; Output data to transmit buffer
POP {R1,R2, PC} ; Return

The register addresses and bit definitions here are just examples; you might need to change the value
for your device. In addition, some UART might require a more complex status-checking process before
the character is output to the transmit buffer. Furthermore, another subroutine call (UartOlnitialize in
the following example) is required to initialize the UART, but this depends on the UART specification
and will not be covered in this chapter. An example of UART initialization in C for Luminary Micro
LM3S811 devices is covered in Chapter 20.

Now, we can use this subroutine to build a number of functions to display messages:

Puts ; Subroutine to send string to UART
; Input RO = starting address of string.
; The string should be null terminated

PUSH {RO ,RI1, LR} ; Save registers
MOV R1, RO ; Copy address to R1, because RO will
; be used
PutsLoop ; as input for Putc
LDRB RO,[R11,%#1 ; Read one character and increment
; address
CBZ RO, PutsLoopExit ; if character is null, goto end
BL Putc ; Output character to UART
B PutsLoop ; Next character
PutsLoopExit
POP {RO, R1, PC} ; Return

With this subroutine, we are ready for our first “Hello world” program:

STACK_TOP EQU 0x20002000; constant for SP starting value
UARTO_BASE EQU 0x4000C000

UARTO_FLAG EQU UARTO_BASE+0x018

UARTO_DATA EQU UARTO_BASE+0x000
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Start

deadend

Puts

PutslLoop

PutslLoopExit

Putc

PutcWaitlLoop

UartOInitial

HELLO_TXT

AREA | Header Code|, CODE

DCD STACK_TOP ; Stack Pointer initial value
DCD Start ; Reset vector

ENTRY

; Start of main program

MOV r0, 40 ; initialize registers
MOV rl1, 40

MOV r2, #0

MOV r3, 40

MOV r4, 40

BL UartOInitialize ; Initialize the UARTO
LDR r0,=HELLO_TXT ; Set RO to starting address of string
BL Puts

B deadend ; Infinite loop

Subroutine to send string to UART
;Input RO = starting address of string.
; The string should be null terminated

PUSH {RO ,R1, LR} ; Save registers
MOV R1, RO ; Copy address to R1, because RO will
; be used
; as input for Putc
LDRB RO, [R17,#1 ; Read one character and increment
; address
CBZ RO, PutslLoopExit ; if character is null, goto end
BL Putc ; Output character to UART
B PutslLoop ; Next character
POP {RO, R1, PC} ; Return

Subroutine to send a character via UART
Input RO = character to send

PUSH {R1,R2, LR} ; Save registers

LDR R1,=UARTO_FLAG

LDR R2,[R1] ; Get status flag

TST R2, #f0x20 ; Check transmit buffer full flag bit
BNE PutcWaitLoop ; If busy then Toop

LDR R1,=UARTO_DATA ; otherwise

STR RO, [R1] ; Output data to transmit buffer

POP {R1,R2, PC} ; Return

ize
; Device specific, not shown here
BX LR ; Return

DCB "Hello world\n",0 ; Null terminated Hello
; world string
END ; End of file
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The only thing you need to add to this code is the details for the UartOlnitialize subroutine and modify
the UART register address constants at the top of the file.

It will also be useful to have subroutines that output register values as well. To make things easier,
they can all be based on Putc and Puts subroutines we have already done. The first subroutine is to
display hexadecimal values.

PutHex ; Output register value in hexadecimal format
Input RO = value to be displayed
PUSH {RO-R3,LR}
MOV R3, RO ; Save register value to R3 because RO is used
; for passing input parameter
MOV RO,#'0' ; Starting the display with "O0x"

BL Putc
MOV RO,#'x"
BL Putc
MOV R1, #8 ; Set loop counter
MOV R2, #28 ; Rotate offset
PutHexlLoop
ROR R3, R2 ; Rotate data value Teft by 4 bits
; (right 28)
AND RO, R3,#fOxF ; Extract the lowest 4 bit
CMP RO, {OxA ; Convert to ASCII
ITE GE
ADDGE RO, #55 ; If larger or equal 10, then convert
; to A-F
ADDLT RO, #48 ; otherwise convert to 0-9
BL Putc ; Output 1 hex character
SUBS R1, #1 ; decrement loop counter
BNE PutHexLoop ; 1f all 8 hexadecimal character been
; display then
POP {RO-R3,PC} ; return, otherwise process next 4-bit

This subroutine is useful for outputting register values. However, sometimes we also want to output
register values in decimal. This sounds like a rather complex operation, but in the Cortex-M3 it is easy
because of the hardware multiply and divide instructions. One of the other main problems is that during
calculation, we will get output characters in reverse order, so we need to put the output results in a text
buffer first, wait until the whole text is ready to display, and then use the Puts function to display the
whole result. In this example, a part of the stack memory is used as the text buffer:

PutDec ; Subroutine to display register value in decimal
; Input RO = value to be displayed.
; Since it is 32 bit, the maximum number of character
; in decimal format, including null termination is 11

PUSH {RO-R5, LR} ; Save register values

MOV R3, SP ; Copy current Stack Pointer to R3
SUB SP, SP, #12 ; Reserved 12 bytes as text buffer
MOV R1, #0 ; Null character

STRB R1,[R3, #-11!; Put null character at end of text
; buffer,pre-indexed
MOV R5, #10 ; Set divide value
PutDecloop
UDIV R4, RO, R5 ; R4 = RO / 10
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MUL R1, R4, R5 ; Rl = R4 * 10
SUB R2, RO, RI1 ; R2 = RO - (R4 * 10) = remainder
ADD R2, #48 ; convert to ASCII (R2 can only be 0-9)

STRB R2,[R3, #-11! ; Put ascii character in text
; buffer, pre-indexed

MOVS RO, R4 ; Set RO = Divide result and set Z flag

; if R4=0

BNE PutDecloop ; If RO(R4) is already 0, then there
; 1s no more digit

MOV RO, R3 ; Put RO to starting Tocation of text
; buffer

BL Puts ; Display the result using Puts

ADD SP, SP, #12 ; Restore stack location

POP {RO-R5, PC} ; Return

With various features in the Cortex-M3 instruction set, the processing to convert values into deci-
mal format display can be implemented in a very short subroutine.

Using Data Memory

Back to our first example: When we were doing the linking stage, we specified the read/write memory
region. How do we put data there? The method is to define a data region in your assembly file. Using
the same example from the beginning, we can store the data in the data memory at 0x20000000 (the
SRAM region). The location of the data section is controlled by a command-line option when you run

the linker:
STACK_TOP EQU 0x20002000 ; constant for SP starting value
AREA | Header Code|, CODE
DCD STACK_TOP ; SP initial value
DCD Start ; Reset vector
ENTRY
Start ; Start of main program
; initialize registers
MOV rO, #10 ; Starting loop counter value
MOV rl, #0 ; starting result
; Calculated 10+9+8+.+1
loop
ADD rl1, roO ; Rl =Rl + RO
SUBS r0, #1 ; Decrement RO, update flag ("S"
3 suffix)
BNE Toop ; If result not zero jump to loop
Result is now in RI1
LDR r0,=MyDatal ; Put address of MyDatal into RO
STR r1,[r0] ; Store the result in MyDatal
deadloop
B deadloop ; Infinite Toop
AREA | Header Data|, DATA
ALIGN 4
MyDatal DCD O ; Destination of calculation result
MyData?2 DCD 0

END ; End of file
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During the linking stage, the linker will put the DATA region into read/write memory, so the address
for MyDatal will be 0x20000000 in this case.

USING EXCLUSIVE ACCESS FOR SEMAPHORES

Exclusive access instructions are used for semaphore operations—for example, a MUTEX (Mutual
Exclusion) to make sure that a resource is used by only one task. For instance, let’s say that a data vari-
able DeviceALocked in memory can be used to indicate that Device A is being used. If a task wants
to use Device A, it should check the status by reading the variable DeviceALocked. If it is zero, it can
write a 1 to DeviceALocked to lock the device. After it’s finished using the device, it can then clear the
DeviceALocked to zero so that other tasks can use it.

What will happen if two tasks try to access Device A at the same time? In that case, possibly both
tasks will read the variable DeviceALocked, and both will get zero. Then both of them will try writing
back 1 to the variable DeviceALocked to lock the device, and we’ll end up with both tasks believing
that they have exclusive access to Device A. That is where exclusive accesses are used. The STREX
instruction has a return status, which indicates whether the exclusive store has been successful. If two
tasks try to lock a device at the same time, the return status will be 1 (exclusive failed) and the task can
then know that it needs to retry the lock.

Chapter 5 provided some background on the use of exclusive accesses. The flowchart in that earlier
discussion is shown in Figure 10.12.

v

Exclusive Read

Read lock bit

(e.g., LDREX)
Failed. Lock bit already set
. indicates the requested resource is
?
Check lock bit set? Yes used by another process or
No processor
. Exclusive Write
Set lock bit ‘ (e.., STREX)
Failed. The memory region where
eRf;rJgi\,S;a\}VL;ﬁ;rgns the lock bit could have been
(success)? No accessed by another process or
’ Yes another processor

Success. The lock bit is set and
the processor can have access to
the shared resource

FIGURE 10.12
Using Exclusive Access for Semaphore Operations.
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The operation can be carried out by the following C-code using intrinsic functions from CMSIS.
Note that the data write operation of STREX will not be carried out if the exclusive monitor returns a
fail status, preventing a lock bit being set when the exclusive access fails:

volatile unsigned int DeviceAlocked; // lock variable

int LockDeviceA(void){
unsigned int status; // variable to hold STREX status
// Get the lock status and see if it is already locked
if (__LDREXW(&DeviceAlLocked) = 0) {
// if not locked, try set lock to 1
status = __ STREXW(1, &DeviceAlocked);
if (status!=0) return (1); // return fail status
else return(0); // return success status
} else {
return(l); // return fail status
}
}

The same operation can also be carried out by the following assembly code:

LockDeviceA
; A simple function to try to lock Device A
; Output RO : O = Success, 1 = failed
If successful, value of 1 will be written to variable
; DeviceAlocked
PUSH {R1, R2, LR}

TryToLockDeviceA
LDR R1,=DeviceAlocked ; Get the Tock status
LDREX R2,[R1]
CMP  R2,#0 ; Check if it is locked
BNE LockDeviceAFailed

DeviceAlsNotLocked

MOV RO,#1 ; Try to write 1 to
; DeviceAlocked

STREX R2,R0,[R1] ; Exclusive write

CMP R2, #0

BNE LockDeviceAFailed ; STREX Failed
LockDeviceASucceed

MOV RO, {0 ; Return success status

POP {R1, R2, PC} ; Return
LockDeviceAFailed

MOV RO,#1 ; Return fail status

POP {R1, R2, PC} ; Return

If the return status of this function is 1 (exclusive failed), the application tasks should wait a bit and
retry later. In single-processor systems, the common cause of an exclusive access failing is an Interrupt
occurring between the exclusive load and the exclusive store. If the code is run in privileged mode, this
situation can be prevented by setting an Interrupt Mask register, such as PRIMASK, for a short time to
increase the chance of getting the resource locked successfully.

In multiprocessor systems, aside from interrupts, the exclusive store could also fail if another
processor has accessed the same memory region. To detect memory accesses from different processors,
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the bus infrastructure requires exclusive access monitor hardware to detect whether there is an access
from a different bus master to a memory between the two exclusive accesses. However, in most low-cost
Cortex-M3 microcontrollers, there is only one processor, so this monitor hardware is not required.

With this mechanism, we can be sure that only one task can have access to certain resources. If the
application cannot gain the lock to the resource after a number of times, it might need to quit with a
timeout error. For example, a task that locked a resource might have crashed and the lock remained set.
In these situations, the OS should check which task is using the resource. If the task has completed or
terminated without clearing the lock, the OS might need to unlock the resource.

If the process has started an exclusive access using LDREX and then found that the exclusive
access is no longer needed, it can use the CLREX instruction to clear the local record in the exclusive
access monitor. This can be done with CMSIS function:

void __CLREX(void);
If assembly language is used, the CLREX instruction can be used:
CLREX
or
CLREX.W

For the Cortex-M3 processor, all exclusive memory transfers must be carried out sequentially.
However, if the exclusive access control code has to be reused on other ARM Cortex processors, the
Data Memory Barrier (DMB) instruction might need to be inserted between exclusive transfers to
ensure correct ordering of the memory accesses. Example code of using barrier instructions with exclu-
sive accesses can be found in Section 14.3, Multiprocessor Communication.

USING BIT BAND FOR SEMAPHORES

It is possible to use the bit-band feature to carry semaphore operations, provided that the memory
system supports locked transfers or only one bus master is present on the memory bus. With bit band,
it is possible to carry out the semaphore in normal C-code, but the operation is different from using
exclusive access. To use bit band as a resource allocation control, a memory location (such as word
data) with a bit-band memory region is used, and each bit of this variable indicates that the resource is
used by a certain task.

Since the bit-band alias writes are locked READ-MODIFY-WRITE transfers (the bus master can-
not be switched to another one between the transfers), provided that all tasks only change the lock bit
representing themselves, the lock bits of other tasks will not be lost, even if two tasks try to write to the
same memory location at the same time. Unlike using exclusive accesses, it is possible for a resource to
be “locked” simultaneously by two tasks for a short period of time until one of them detects the conflict
and releases the lock (see Figure 10.13).

Using bit band for semaphores can work only if all the tasks in the system change only the lock bit
they are assigned to using the bit-band alias. If any of the tasks change the lock variable using a normal
write, the semaphore can fail because another task sets a lock bit just before the write to the lock vari-
able, the previous lock bit set by the other task will be lost.
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Mutex Implemented Using Bit Band as a Semaphore Control.
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Bit Field Decoder: Example Use of UBFX and TBB Instructions.
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WORKING WITH BIT FIELD EXTRACT AND TABLE BRANCH

We examined the unsigned bit field extract (UBFX) and Table Branch (TBB/TBH) instructions in
Chapter 4. These two instructions can work together to form a very powerful branching tree. This
capability is very useful in data communication applications where the data sequence can have differ-
ent meanings with different headers. For example, let’s say that the following decision tree based on
Input A is to be coded in assembler (see Figure 10.14).

DecodeA
LDR RO,=A ; Get the value of A from memory
LDR RO,[RO]
UBFX R1, RO, #6, #2 ; Extract bit[7:6] into Rl
TBB [PC, R1]
BrTablel
DCB  ((PO -BrTablel)/2) ; Branch to PO if A[7:6] = 00
DCB ((DecodeAl-BrTablel)/2) ; Branch to DecodeAl if A[7:6] = 01
DCB  ((P1 -BrTablel)/2) ; Branch to Pl if A[7:6] = 10
DCB ((DecodeA2-BrTablel)/2) ; Branch to DecodeAl if A[7:6] = 11
DecodeAl

UBFX R1, RO, #3, #2 ; Extract bit[4:3] into RI
TBB [PC, R1]

BrTable?
DCB ((P2 -BrTable2)/2) ; Branch to P2 if A[4:3] = 00
DCB  ((P3 -BrTable2)/2) ; Branch to P3 if A[4:3] = 01
DCB  ((P4 -BrTable2)/2) ; Branch to P4 if A[4:3] = 10
DCB  ((P4 -BrTable2)/2) ; Branch to P4 if A[4:3] = 11

DecodeA?
TST RO, #4 ; Only 1 bit is tested, so no need to use UBFX
BEQ P5
B P6

PO ... ; Process 0

P1 ... ; Process 1

P2 ... ; Process 2

P3 ... ; Process 3

P4 ... ; Process 4

P5 ... ; Process 5

P6 ... ; Process 6

This code completes the decision tree in a short assembler code sequence. If the branch target
addresses are at a larger offset, some of the TBB instructions would have to be replaced by TBH
instructions.
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USING INTERRUPTS

Interrupts are used in almost all embedded applications. In the Cortex™-M3 processor, the interrupt
controller Nested Vectored Interrupt Controller (NVIC) handles a number of processing tasks for you,
including priority checking and stacking/unstacking of registers. However, a number of tasks have to
be prepared before interrupts can be used:

* Stack setup

* Vector table setup

* Interrupt priority setup
* Enable the interrupt

Stack Setup

For simple application development, you can use the Main Stack Pointer (MSP) for the whole program.
That way you need to reserve memory that’s just large enough and set the MSP to the top of the stack.
When determining the stack size required, besides checking the stack level that could be used by the
software, you also need to check how many levels of nested interrupts can occur.

For each level of nested interrupts, you need at least eight words of stack. The processing inside
interrupt handlers might need extra stack space as well.

Copyright © 2010, Elsevier Inc. All rights reserved. 1 83
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Peripherals
Stack
' ! ' .p.omter
! | initial value
\ 1
Stack
SRAM
Data
Memory
address

Flash
as } Program

FIGURE 11.1
A Simple Memory Usage Example.

Because the stack operation in the Cortex-M3 is full descending, it is common to put the stack
initial value at the end of the static memory so that the free space in the Static Random Access Memory
(SRAM) is not fragmented (see Figure 11.1).

For applications that use separate stacks for user code and kernel code, the main stack should have
enough memory for the nested interrupt handlers as well as the stack memory used by the kernel code.
The process stack should have enough memory for the user application code plus one level of stack-
ing space (eight words). This is because stacking from the user thread to the first level of the interrupt
handler uses the process stack.

Vector Table Setup

For simple applications that have fixed interrupt handlers, the vector table can be coded in Flash or
ROM. In this case, there is no need to set up the vector table during run time. However, in some appli-
cations, it is necessary to change the interrupt handlers for different situations. Then, you will need to
relocate the vector table to writable memory.

Before the vector table is relocated, you might need to copy the existing vector table content to the
new vector table location. This includes vector addresses for fault handlers, the nonmaskable interrupt
(NMI), system calls, and so on. Otherwise, invalid vector addresses will be fetched by the processor if
these exceptions take place after the vector table relocation.

After the necessary vector table items are set up and the vector table is relocated, we can add new vectors
to the vector table. For users of Cortex Microcontroller Software Interface Standard (CMSIS) compliant driver
libraries, the vector table offset register can be accessed by “SCB->VTOR” in the core peripheral definition.

void SetVector(unsigned int ExcpType, unsigned int VectorAddress)
{ // Calculate vector location = VTOR + (Exception_Type * 4)
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*((volatile unsigned int *) (SCB->VTOR + (ExcpType << 2))) =
VectorAddress | 0x1;
// LSB of vector set to 1 to indicate Thumb
return;
}

For users who prefer programming in assembly, this can be done by the following code example:

; Subroutine for setting vector of an exception based on
; exception type
(For IRQs add 16 : IRQ #0 = exception type 16)
SetVector
Input RO = exception type
Input Rl = vector address value

PUSH {R2, LR}
LDR R2,=0xE000EDO8 ; Vector table offset register
LDR R2, [R2]
ORR R1, R1, #1 ; Set LSB of vector to indicate Thumb
STR R1, [R2, RO, LSL #2]1 ; Write vector to VectThl0ffset+
; ExcpType*4d
POP {R2, PC} ; Return

The setting of least significant bit (LSB) to 1 in the vector is not necessary in most case, as the
compiler or assembler should recognize the address as a Thumb® instruction address and set it
automatically.

Interrupt Priority Setup

By default, after a reset, all exceptions with programmable priority are in priority level 0. For hard fault
exceptions and NMI, the priority levels are —1 and —2, respectively. For users of CMSIS compliant
device driver libraries, you can use the CMSIS function to set priority level value. For example, to set
the priority of interrupt request (IRQ) #4 to 0xCO0, you can use

NVIC_SetPriority(IRQ4_IRQn, 0xC); // This function
// automatically shifts the priority value to implemented bits
// in the priority level registers

The constant IRQ4_IRQn above is just an example of an interrupt identifier. When using CMSIS
interrupt control functions, it is recommended to use the interrupt identifiers defined in the header file
(device.h as shown in Figure 10.8) to help readability and portability.

You can use the NVIC_SetPriority function with another CMSIS function that calculates the prior-
ity level value based on the preempt priority, subpriority and priority group setting:

NVIC_SetPriority(IRQ4_IRQn, NVIC_EncodePriority(PriorityGroup,
PreemptPriority, SubPriority));

Additional details on these functions are described in Appendix G.
If you are programming in assembly language, to program priority-level registers, we can take
advantage of the fact that the registers are byte addressable, making the coding easier. For example:

; Setting IRQ #4 priority to 0xCO
LDR RO, =0xEOQ00E400 ; External Interrupt Priority Reg starting
; address
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LDR R1, =0xCO ; Priority Tevel
STRB R1, [RO, #4] ; Set IRQ #4 priority (Byte write)

In the Cortex-M3, the width of the interrupt priority configuration registers is specified by chip
manufacturers. The minimum width is 3 bits, and the maximum width is 8 bits. In a CMSIS compliant
device driver, the width of a priority level register is specified by __NVIC_PRIO_BITS. You can deter-
mine the implemented width by writing OXFF to one of the priority configuration registers and reading
it back. For example, you can do it in assembly with the following code:

; Determine the implemented priority width

LDR RO,=0xE000E400 ; Priority Configuration register for
; external interrupt #0

LDR R1,=0xFF

STRB R1,[RO] : Write OxFF (note : byte size write)
LDRB R1,[RO] ; Read back (e.g. OxEO for 3-bits)
RBIT R2, R1 ; Bit reverse R2 (e.g. 0x07000000 for
; 3-bits)
CLZ RI1, R2 ; Count Tleading zeros (e.g. 0x5 for 3-bits)
MOV R2, #8

SUB Rz, R2, R1 ; Get implemented width of priority
; (e.g. 8-5=3 for 3-bits)

MOV RI1, #0x0

STRB R1,[RO] ; Restore to reset value (0x0)

If your application needs to be portable, it is best to use priority levels 0x00, 0x20, 0x40, 0x60,
0x80, 0xA0, 0xCO0, and 0XxEO only. This is because all Cortex-M3 devices have these priority levels.

Do not forget to set up the priority for system exceptions and fault handler exceptions as well. If it
is necessary for some of the important interrupts to have higher priority than other system exceptions or
fault handlers, you will need to reduce the priority level of these system exceptions and fault handlers
so that the important interrupts can preempt these handlers.

Enable the Interrupt

After the vector table and interrupt priority are set up, it’s time to enable the interrupt. However, two
steps might be required before you actually enable the interrupt:

1. If the vector table is located in a memory region that is write buffered, a Data Synchronization
Barrier (DSB) instruction might be needed to ensure that the vector table memory is updated. In

ACCESSING NVIC INTERRUPT REGISTERS

For best software compatibility, CMSIS core peripheral access functions should be used for accessing the NVIC
registers including interrupt configurations. Details of the CMSIS core peripheral access function are covered in
Appendix G.

You can also develop your own NVIC interrupt control function if necessary; selecting the right transfer size
can make your program development easier. For the Cortex-M3 processor, most registers in the NVIC can be
accessed using word, half word, or byte transfers. For example, priority-level registers are best programmed with
byte transfers. In this way, there is no need to worry about accidentally changing the priority of other exceptions.
However, this method will not work with Cortex-MO because the NVIC registers in Cortex-MO only accept word
size transfers.
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most cases, the memory write should be completed within a few clock cycles. However, if your
software needs to be portable between different ARM processors, this step ensures that the core

will get the updated vector if the interrupt takes place immediately after being enabled.

2. An interrupt might already be pended or asserted beforehand, so it might be needed to clear the
pending status. For example, signal glitches during power-up might have accidentally triggered
some interrupt generation logic. In addition, in some peripherals such as a universal asynchronous
receiver/transmitter (UART), noise from the UART receiver before connection might be mistaken
as data and can cause an interrupt to be pended. Therefore, it can be safer to check and clear the
pending status of an interrupt before enabling it. Depending on the peripheral design, the peripheral
might also need some reinitialization if the pending status was set already.

Inside the NVIC, two separate register addresses are used for enabling and disabling interrupts. This
duality ensures that each interrupt can be enabled or disabled without affecting or losing the other inter-
rupt enable status. Otherwise, through software-based READ-MODIFY-WRITE, changes in enable
register status carried out by interrupt handlers could be lost. To set an enable, the software needs to
compute the correct bit location in the SETEN registers in the NVIC and write 1 to it. Similarly, to clear

an interrupt, the software needs to write a 1 to the corresponding bit in the CLREN registers:

For users of CMSIS compliant driver libraries, the interrupt enable/disable feature can be accessed
by the “NVIC_EnablelRQ” and “NVIC_DisableIRQ” functions. For example:

NVIC_EnableIRQ(UART1_IRQN);

// Enable UART#1 interrupt
// UART1_IRQn is MCU specific and is defined
// in the device driver Tibrary

NVIC_DisableIRQ(UARTI_IRQn); // Disable UART#1 interrupt

Details of these functions are described in Appendix G.
Assembly language users can create an assembly function to carry out the same operation:

; A subroutine to enable an IRQ based on IRQ number

EnableIRQ

Input RO = IRQ number

PUSH
AND . W

MOV
LSL
AND. W
LSR
LDR

STR RZ,
POP

{RO-R2, LR}
R1, RO, {fOx1F
R2, #1

R2, R2, Rl

R1, RO, #0xEO

R1, RI1, #3

s

Generate enable bit pattern for

; the IRQ

Bit pattern = (0x1 << (N & Ox1F))
Generate address offset if IRQ number

; is above 31

R0O,=0xEO00EI00 ;

[RO, RI1]
{RO-R2, PC}

Address offset = (N/32)*4 (Each word
has 32 IRQ enable)

SETEN register for external interrupt
#31-40

Write bit pattern to SETEN register
Restore registers and Return

Likewise, we can write another subroutine for disabling IRQ:

; A subroutine to disable an IRQ based on IRQ number

DisablelIRQ

Input RO = IRQ number
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PUSH {R0O-R2, LR}

AND.W RI1, RO, #O0x1F ; Generate Disable bit pattern for
; the IRQ

MOV R2, #1

LSL R2, R2, R1 ; Bit pattern = (0x1 << (N & Ox1F))

AND. W R1, RO, ffOXE0 ; Generate address offset if IRQ number
; is above 31

LSR R1, R1, #3 ; Address offset = (N/32)*4 (Each word
; has 32 IRQ enable)

LDR RO,=0xEOO00E180 ; CLREN register for external interrupt

; #3140
STR R2, [RO, R1] ; Write bit pattern to CLREN register
POP {RO-R2, PC} ; Restore registers and Return

Similar subroutines can be developed for setting and clearing IRQ pending status registers.

EXCEPTION/INTERRUPT HANDLERS

In the Cortex-M3, interrupt handlers can be programmed completely in C, whereas in ARM?7, an
assembly handler is commonly used to ensure that all registers are saved, and in cases of systems with
nested interrupt support, the processor needs to switch to a different mode to prevent losing informa-
tion. These steps are not required in the Cortex-M3, making programming much easier.

In C language, an interrupt handler could be like

void UARTI_Handler(void) {
// processing task for the peripheral
return;
}

For users of the CMSIS compliant device driver library, the interrupt handler name should match the
interrupt handler name defined by the Microcontroller Unit (MCU) vendor to ensure that the vector is set
up in the vector table correctly. You can find the handler function name in the vector table inside the start-
up codes. For example, for a Keil Microcontroller Development Kit user, the file is startup_<device>.s.

For users of ARM RealView Compilers or the Keil Microcontroller Development Kit, for clarity,
you can add the optional __irq keyword. For example:

__irq void UART1_Handler(void) {
// process IRQ request for the peripheral
// Deassert IRQ request in peripheral
return;

}
In assembler, a simple exception handler might look like this:

irgl_handler
Process IRQ request

; Deassert IRQ request in peripheral

; Interrupt return
BX LR
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The deassertion of an IRQ inside the interrupt service routine depends on the peripheral design. If
the peripheral generates IRQs in the form of pulses, this step is not required. With the Cortex-M3, if a
peripheral generates IRQs in the form of pulses, the NVIC can store the request as a pending request
status. Once the processor enters the exception handler, the pending status is cleared automatically.
This is different from traditional ARM processors that a peripheral has to maintain its IRQ until it is
served because the interrupt controllers designed for previous ARM cores like ARM7TDMI do not
have the pending memory.

In some cases, where the peripheral can generate multiple IRQs in a short period, the deassertion of
the IRQ in the peripheral might have to be done conditionally to ensure that no requests are missed.

In many cases, the interrupt handler requires more than RO-R3 and R12 to process the interrupt, so we
might need to save some other registers as well. For C language users, there is no need to worry about this,
as the C function saves additional registers automatically if required. For assembly language users, their
interrupt handlers have to perform stack PUSH and POP to ensure the values of R4-R11 are preserved.

The following example saves all registers that are not saved during the stacking process, but if some
of the registers are not used by the exception handler, they can be omitted from the saved register list:

irgl_handler
PUSH {R4-R11, LR} ; Save all registers that are not saved
; during stacking
; Process IRQ request

; Deassert IRQ request in peripheral (optional)
POP {R4-R11, PC} ; Restore registers and Interrupt return

Because POP is one of the instructions that can start interrupt returns, we can combine the register
restore and interrupt return in the same instruction.

Depending on the design of a peripheral, it might be necessary for an exception handler to program
the peripheral to deassert the exception request. If the exception request from the peripheral to the
NVIC is a pulse signal, then there is no need for the exception handler to clear the exception request.
Otherwise, the exception handler needs to clear the exception request so that it won’t be pending again
immediately after exception exits. In traditional ARM processors, a peripheral has to maintain its IRQ
until it is served because the interrupt controllers designed for previous ARM cores do not have the
pending memory.

With the Cortex-M3, if a peripheral generates IRQs in the form of pulses, the NVIC can store the
request as a pending request status. Once the processor enters the exception handler, the pending status
is cleared automatically. In this way, the exception handler does not have to program the peripheral to
clear the IRQ.

SOFTWARE INTERRUPTS

There are various ways to trigger an interrupt:

» External interrupt input
» Setting an interrupt pending register in the NVIC (see Chapter 8)
* Via the Software Trigger Interrupt register (STIR) in the NVIC (see Chapter 8)
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In most cases, some of the interrupts are unused and can be used as software interrupts. Soft-
ware interrupts can work similar to supervisor call (SVC), allowing accesses to system services.
However, by default, user programs cannot access the NVIC; they can only access the NVIC’s STIR
if the USERSETMPEND bit in the NVIC Configuration Control register is set (see Table D.18 in
Appendix D).

Unlike the SVC, software interrupts are not precise. In other words, the interrupt preemption does
not necessarily happen immediately, even when there is no blocking from Interrupt Mask registers or
other interrupt service routines. As a result, if the instruction immediately following the write to the
NVIC STIR depends on the result of the software interrupt, the operation could fail because the soft-
ware interrupt could invoke after the instruction is executed.

To solve this problem, use the DSB instruction. For example, users of CMSIS compliant device
driver libraries can use the following code:

NVIC_SetPendingIRQ(SOFTWARE_INTERRUPT_NUMBER);
__DSB();

For assembly language users:

MOV RO, #SOFTWARE_INTERRUPT_NUMBER

LDR R1,=0xEOQQ0EFO0 ; NVIC Software Interrupt Trigger
; Register address

STR RO, [R1] ; Trigger software interrupt

DSB ; Data synchronization barrier

However, there is still another possible problem. If the Interrupt Mask register is set or if the pro-
gram code generating the software interrupt is an exception handler itself, there could be a chance that
the software interrupt cannot execute. Therefore, the program code generating the software interrupt
should check to see whether the software interrupt has been executed. This can be done by having a
software flag set by the software interrupt handler.

Finally, setting USERSETMPEND can lead to another problem. After this is set, user programs can
trigger any software interrupt except system exceptions. As a result, if the USERSETMPEND is used
and the system contains untrusted user programs, exception handlers need to check whether the excep-
tion is allowed because it could have been triggered from user programs. Ideally, if a system contains
untrusted user programs, it is best to provide system services only via SVC.

EXAMPLE OF VECTOR TABLE RELOCATION

In Chapter 7, we mentioned that the starting vector table should contain a reset vector, an NMI vector,
and a hard fault vector because the NMI and hard fault handler can take place without any exception
enabling. After the program starts, we can then relocate the vector table to a different place in the
SRAM if necessary. In most simple applications, there is no need to relocate the vector table.

If it is necessary to relocate the vector table, then the following steps would be required:

* Reserve a memory space for the new vector table: You might need to use linker scripts to reserve
the memory space. The vector table address should be aligned to the vector table size, extended to
the next larger power of 2.
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* Copy the existing vector table to the new vector table: Before relocating the vector table, you
need to ensure that the new vector table contains valid vector entries for all required exceptions
including NMI, hard fault, and all enabled exceptions.

*  Write the new exception vector into the new vector table and write to Vector Table Offset Register
to relocate the vector table.

An example of relocating the vector table is covered in Chapter 8. In the following assembly exam-
ple, we demonstrate reservation of memory space for the vector table in the beginning of SRAM and
then the other data variables following it:

STACK_TOP EQU 0x20002000 ; constant for the SP starting value
NVIC_SETEN EQU OxEOOQOE100 ; NVIC Interrupt Set Enable Registers
; base address
NVIC_VECTTBL EQU OxEOOOEDO8 ; Vector Table Offset Register
NVIC_AIRCR EQU OxEOOQEDOC ; Application Interrupt and Reset
; Control Register
NVIC_IRQPRI EQU OxEOOQOE400 ; Interrupt Priority Level register
AREA | Header Code , CODE
DCD STACK_TOP ; SP initial value
DCD Start ; Reset vector
DCD Nmi_Handler ; NMI handler
DCD Hf_Handler ; Hard fault handler
ENTRY
Start ; Start of main program
; initialize registers
MOV r0, #0 ; initialize registers

MOV rl, 0

; Copy old vector table to new vector table
LDR ro,=0

LDR rl,=VectorTableBase

LDMIA rO!,{r2-rb} ; Copy 4 words

STMIA rl1!,{r2-r5}

DSB ; Data synchronization barrier.

; Set vector table offset register
LDR r0,=NVIC_VECTTBL

LDR rl,=VectorTableBase

STR rl,[r0]

; Setup Priority group register

LDR r0,=NVIC_AIRCR

LDR r1,=0x05FA0500 ; Priority group 5
STR R1,[r0]

; Setup IRQ O vector

MOV ro, #0 ; IRQ#0
LDR rl, =Irq0_Handler

BL SetupIrgHandler
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; Setup priority

LDR r0,=NVIC_IRQPRI

LDR r1,=0xC0 ; IRQ#0 priority

STRB rl,[r0,#0] ; Set IRQO priority at offset=0.
; Note : Byte store
; (IRQ#1 will have offset = 1)

DSB ; Data synchronization barrier. Make sure
; everything ready before enabling interrupt

MOV rO, {0 ; select IRQ#0

BL EnablelIRQ

functions

SetupIrgHandler

; Input RO = IRQ number
R1 = IRQ handler

PUSH {RO, R2, LR}
LDR R2,=NVIC_VECTTBL ; Get vector table offset
LDR R2,[R2]
ADD RO, #16 ; Exception number = IRQ number + 16
LSL RO, RO, {2 ; Times 4 (each vector is 4 bytes)
ADD R2, RO ; Find vector address
STR R1,[R2] ; store vector handler
POP {RO, R2, PC} ; Return
EnableIRQ

Input RO = IRQ number
PUSH {RO - R3, LR}
AND R1, RO, #0x1F ; Get lower 5 bit to find bit pattern
MOV R2, #1
LSL R2, R2, R1 ; Bit pattern in R2
BIC RO, #0x1F
LSR RO, 43 ; word offset. (IRQ number can be

; higher than 32)

LDR R1, =NVIC_SETEN
STR R2,[R1, RO] ; Set enable bit
POP {RO - R3, PC} ; Return

Exception handlers

Hf_Handler

... ; insert your code here
BX LR ; Return

Nmi_Handler

... ; insert your code here
BX LR ; Return

Irq0_Handler

... ; insert your code here
BX LR ; Return

AREA | Header Data|, DATA

ALIGN 4

; Relocated vector table

VectorTableBase SPACE 256 ; Number of bytes
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VectorTableEnd ; (256 / 4 = up to 64 exceptions)
MyDatal DCD 0O ; Variables
MyData?2 DCD O

END ; End of file

This is a slightly long example. Let’s start from the end, the data region, first.

In the data memory region (almost the end of the program), we define a space of 256 bytes as a
vector table (SPACE 256). This allows up to 64 exception vectors to be stored here. You might want to
change the size if you want less or more space for the vector table. The other software variables follow
the vector table space, so the variable MyDatal is now in address 0x20000100.

At the beginning of the code, we defined a number of address constants for the rest of the program. So,
instead of using numbers, we can use these constant names to make the program easier to understand.

The initial vector table now contains the reset vector, the NMI vector, and the hard fault handler
vector. The preceding example code illustrates how to set up the exception vectors and does not contain
actual NMI, hard fault, or IRQ handlers. Depending on the actual application, these handlers will have
to be developed. The example uses branch with exchange state (BX) Link register (LR) as the excep-
tion return, but that could be replaced by other valid exception return instructions.

After the initialization of registers, we copy the vector handlers to the new vector table in the
SRAM. This is done by one multiple load and one multiple store instruction. If more vectors need to be
copied, we can simply add extra load/store multiple instructions or increase the number of words to be
copied for each pair of load and store instructions.

After the vector table is ready, we can relocate the vector table to the new one in the SRAM. How-
ever, to ensure that the transfer of the vector handler is complete, the DSB instruction is used.

We then need to set up the rest of the interrupt setting. The first one is the priority group setup. This
needs to be done only once. In the example, two subroutines called SetuplrqHandler and EnableIRQ
have been developed to make it easier to set up interrupts. Using the same code and simply changing
the NVIC_SETEN to NVIC_CLREN, we can also add a similar function called DisableIRQ. After the
handler and priority level have been set up, the IRQ can then be enabled.

USING SVC

SVC is a common way to allow user applications to access the application programming interface
(API) in an OS. This is because the user applications only need to know what parameters to pass to the
OS; they don’t need to know the memory address of API functions.

SVC instructions contain a parameter, which is 8-bit immediate data inside the instruction. The
value is required for using the SVC instruction. For example:

SVC #3 ; Call system service number 3
The alternative syntax can also be used (without the “#”):
SVC 3 ; Call system service number 3

Inside the SVC handler, the parameter can be extracted back from the instruction by locating the
executed SVC instruction from the stacked PC. To do this, the procedures illustrated in Figure 11.2 can
be used.
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Determine which stack
was used in calling
process using the LR
value (bit[2])

Locate stacked Locate stacked
PC using MSP PC using PSP

Extract immediate

value from stacked PC

FIGURE 11.2
One Way to Extract the SVC Parameter.

Here’s some simple assembly code to do this:

svc_handler

TST LR, #0x4 ; Test EXC_RETURN number in LR bit 2

ITE EQ ; 1f zero (equal) then

MRSEQ RO, MSP ; Main Stack was used, put MSP in RO

MRSNE RO, PSP ; else, Process Stack was used, put PSP
s in RO

LDR R1,[RO,#24] ; Get stacked PC from stack

LDRB RO, [R1,#-2] ; Get the immediate data from the

; instruction
; Now the immediate data is in RO

BX LR ; Return to calling function

Once the calling parameter of the SVC is determined, the corresponding SVC function can be exe-
cuted. An efficient way to branch into the correct SVC service code is to use table branch instructions
such as Table Branch Byte (TBB) and Table Branch Halfword (TBH). However, if the table branch
instruction is used, unless it is certain that the SVC calling parameter contains a correct value, you
should do a value check on the parameter to prevent invalid SVC calling from crashing the system.

Note that passing of parameters to the SVC handler and the return value from the SVC handler has
to be carried out via stack frame. The reason for this is covered in the next section.

Because an SVC cannot request another SVC service via the exception mechanism, the SVC han-
dler should directly call another SVC function (for example, BL).

SVC EXAMPLE: USE FOR TEXT MESSAGE OUTPUT FUNCTIONS

Previously we developed various subroutines for output functions. Sometimes it is not good enough
to use BL to call the subroutines—for example, when the software code is running in nonprivileged
access level and the text output I/O need privileged accesses. In these cases, we might want to use
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SVC to act as an entry point for the output functions. For example, a user program can use SVC with
different parameters to access different services:

LDR
SvC
MOV
SvC
LDR
SvVC
MOV
SvC

RO
#t0
RO
#1
RO
{2
RO
13

,=HELLO_TXT

; Display string pointed to by RO
AT

; Display character in RO
,=0xC123456

; Display hexadecimal value in RO
#1234

; Display decimal value in RO

To use SVC, we might need to set up the SVC handler if the vector table is relocated to SRAM.
We can modify the function that we have created to handle the interrupt (SetuplrqHandler function in
previous section). The only difference is that this function takes an exception type as input (SVC is
exception type 11). In addition, this time we have further optimized the code to use the 32-bit Thumb
instruction features:

SetupExcpHandler ; Setup vector in relocated vector table in SRAM
;Input RO = Exception number

R1 = Exception handler

PUSH {RO, RZ, LR}

LDR
LDR
STR
POP

R2,=NVIC_VECTTBL ; Get vector table offset
R2,[R2]

W R1,[R2, RO, LSL #2171 ; store vector handler in [R2+R0<<2]
{RO, R2, PC} ; Return

For svc_handler, the SVC calling number can be extracted as in the previous example, and the
parameter passed to the SVC can be accessed by reading from the stack. In addition, the decision
branches to reach various functions are added:

svc_handler

TST LR, #0x4 ; Test EXC_RETURN number in LR bit 2

ITTEE EQ ; if zero (equal) then

MRSEQ R1, MSP ; Main Stack was used, put MSP in R1

MRSNE R1, PSP ; else, Process Stack was used, put PSP
; in R1

LDR RO, [R1,4#0] ; Get stacked RO from stack

LDR R1,L[R1,#24] ; Get stacked PC from stack

LDRB R1,[R1,4#-2] ; Get the immediate data from the
; instruction

; Now the immediate data is in R1, input parameter is in RO

PUSH {LR} ; Store LR to stack

CBNZ R1,svc_handler_1

BL Puts ; Branch to Puts

B svc_handler_end

svc_handler_1

CMP R1,{#1

BNE svc_handler_2

BL Putc ; Branch to Putc

B

svc_handler_end
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svc_handler_2

CMP R1,{#2
BNE svc_handler_3
BL PutHex ; Branch to PutHex
B svc_handler_end
svc_handler_3
CMP R1,#3
BNE svc_handler_4
BL PutDec ; Branch to PutDec
B svc_handler_end
svc_handler_4
B error ; input not known

svc_handler_end
POP {PC} ; Return

The svc_handler code should be put close together with the outputting functions so that we can

ensure that they are within the allowed branch range.

Notice that instead of the current contents of the register bank, the stacked register contents

are used for parameter passing. This is because if a higher-priority interrupt takes place when the
SVC is executed, the SVC starts immediately after other interrupt handlers (tail chaining), and the
contents of RO-R3 and R12 might be changed by the executed interrupt handler. This is caused
by the characteristic that unstacking is not carried out if there is tail chaining of interrupts. For
example:

H WON =

. A parameter is put in RO.

. SVC is executed at the same time as a higher-priority interrupt takes place.

. Stacking is carried out, and RO-R3, R12, LR, PC, and xPSR are saved to the stack.

. The interrupt handler is executed. RO-R3 and R12 can be changed by the handler. This is acceptable

because these registers will be restored by hardware unstacking.

. The SVC handler tail chains the interrupt handler. When SVC is entered, the contents in RO—R3 and

R12 can be different from the value when SVC is called. However, the correct parameter is stored
in the stack and can be accessed by the SVC handler.

MAKE THE MOST OF THE ADDRESSING MODES

From the code examples of the SetuplrqHandler and SetupExcpHandler routines, we find that the code can be
shortened a lot if we use the addressing mode feature in the Cortex-M3. In SetuplrgHandler, the destination
address of the IRQ vector is calculated, and then, the store is carried out:

SetupIrgHandler /* RO = IRQ number, R1 = handler address */
PUSH {RO, RZ2, LR}

LDR  R2,=NVIC_VECTTBL ; Get vector table offset ; Step 1
LDR R2,[R2] ; Step 2
ADD RO, #16 ; Exception number = IRQ number + 16 ; Step 3
LSL RO, RO, #2 ; Times 4 (each vector is 4 bytes) ; Step 4
ADD R2, RO ; Find vector address ; Step b
STR RI1,[R2] ; store vector handler ; Step 6

POP {RO, R2, PC} ; Return
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PUSH {RO, RZ, LR}
LDR  R2,=NVIC_VECTTBL
LDR  R2,[R2]
STR.W R1,[R2, RO, LSL #2] ;
; [R2+R0<K2]
POP {RO, R2, PC} ; Return

® Rn + (2AN) x Rm
® Rn +/- immediate_offset

SetupExcpHandler /* RO = exception number, R1 =

In SetupExcpHandler, the operation Steps 4-6 are reduced to just one step:

handler address */

; Get vector table offset

store vector handler in

In general, we can reduce the number of instructions required if the data address is like one of these:

For the SetuplrqHandler routine, the shortest code we can get is this:

SetupIrgHandler
PUSH (RO, R2, LR}
LDR R2,=NVIC_VECTTBL ; Get vector table offset ; Step 1
LDR  R2,[R2] ; Step 2
ADD  R2, #(16*4) ; Get IRQ vector start ; Step 3
STR.W R1,[R2, RO, LSL #21 ; Store vector handler ; Step 4
POP {RO, R2, PC} ; Return

USING SVC WITH C

In most cases, an assembler handler code is needed for parameter passing to SVC functions. This is
because the parameters should be passed by the stack, not by registers, as explained earlier. If the SVC
handler is to be developed in C, a simple assembly wrapper code can be used to obtain the stacked
register location and pass it on to the SVC handler. The SVC handler can then extract the SVC number
and parameters from the stack pointer information. Assuming that the RealView Development Suite
(RVDS) or Keil Microcontroller Development Kit for ARM (MDK-ARM) is used, the assembler wrap-
per can be implemented with an Embedded Assembler:

// Assembler wrapper for extracting stack frame starting location.
// Starting address of stack frame is put into RO and then branch

// to the actual SVC handler.
__asm void svc_handler_wrapper(void)
{

TST LR, #4
ITE EQ

MRSEQ RO, MSP
MRSNE RO, PSP

B __cpp(svc_handler)

} // No need to add return (BX LR) at the end of this wrapper

// because return of svc_handler will
// SVC is called from

return execution to where

The rest of the SVC handler can then be implemented in C using RO as input (stack frame starting
location), which is used to extract the SVC number and passing parameters (RO-R3):
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// SVC handler in C, with stack frame location as an input parameter
// used as a memory pointer to an array of arguments.
// svc_args[0] = RO , svc_args[1l] = R1
// svc_args[2] = R2 , svc_args[3] R3
// svc_args[4] R12, svc_args[5] = LR
// svc_args[6] = Return address (Stacked PC)
// svc_args[7] xPSR
void svc_handler(unsigned int * svc_args)
{
unsigned int svc_number;
unsigned int svc_r0;
unsigned int svc_rl;
unsigned int svc_r2;
unsigned int svc_r3;

svc_number = ((char *) svc_args[6]1)[-21; // Memory[(Stacked PC)-2]
svc_r0 = ((unsigned long) svc_args[01);
svc_rl = ((unsigned long) svc_args[1]);
svc_r2 = ((unsigned long) svc_args[2]);
svc_r3 ((unsigned Tong) svc_args[3]);

printf ("SVC number = %xn", svc_number);

printf ("SVC parameter 0 = %x\n", svc_r0);
printf ("SVC parameter 1 = %x\n", svc_rl);
printf ("SVC parameter 2 = %x\n", svc_r2);
printf ("SVC parameter 3 = %x\n", svc_r3);

return;
}

Note that SVC cannot return results to the calling program in the same way as in normal C functions.
Normal C functions return values by defining the function with a data type such as unsigned int func( )
and use return to pass the return value, which actually puts the value in register RO. If an SVC handler
put return values in register RO-R3 when exiting the handler, the register values would be overwritten
by the unstacking sequence. Therefore, if an SVC has to return results to a calling program, it must
directly modify the stack frame so that the value can be loaded into the register during unstacking.

To call an SVC inside a C program for ARM RVDS or Keil MDK-ARM, we can use the _ _svc
compiler keyword. For example, if four variables are to be passed to an SVC function number 3, an
SVC named call_svc_3 can be declared as

void __svc(0x03) call_svc_3(unsigned long svc_r0, unsigned long
svc_rl, unsigned Tong svc_r2, unsigned long svc_r3);

This will then allow the C program code to call the SVC function by

int main(void)
{
unsigned long pO, pl, p2, p3; // parameters to pass to SVC handler

call_svc_3(p0, pl, p2, p3); // call SVC number 3, with parameters
// p0, pl, p2, p3 pass to the SVC
return;
}
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Detailed information on using the _ _svc keyword in RVDS or RealView C Compiler can be found
in the RVCT 4.0 Compilation Tools Compiler Reference Guide [Ref. 8].

For users of the Gnu’s Not Unix (GNU) tool chain, because there is no _ _svc keyword in GNU
C Compiler (GCC), the SVC has to be accessed by an inline assembler. For example, if the SVC call
number 3 is needed with one input variable and it returns one variable via register RO (according to the
AAPCS [Ref. 5], the first passing variable uses register R0), the following inline assembler code can
be used to call the SVC:

int MyDataln = 0x123;
__asm __volatile ("mov RO, %0\n"
"svc 3 \n" : "" : ""r" (MyDataln) );

This inline assembler code can be broken down into the following parts, with input data specified by r
(MyDataln) and no output field (indicated as " " in the preceding code):

__asm ( assembler_code : output_Tlist : input_list )

More examples using inline assembler in the GNU tool chain can be found in Chapter 19.
For complete details on passing parameters to or from inline assembler, refer to the GNU tool chain
documentation.
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RUNNING A SYSTEM WITH TWO SEPARATE STACKS

One of the important features of ARMv7-M architecture is the capability to allow the user application
stack to be separated from the privileged/kernel stack. If the optional Memory Protection Unit (MPU)
is implemented, it could be used to block user applications from accessing kernel stack memory so that
they cannot crash the kernel by memory corruption.

Typically, a robust system based on the Cortex™-M3 has the following properties:

» Exception handlers using Main Stack Pointer (MSP)

» Kernel code invoked by a System Tick (SYSTICK) exception at regular intervals, running in the
privileged access level for task scheduling and system management

» User applications running as threads with the user access level (nonprivileged); these applications
use Process Stack Pointer (PSP)

» Stack memory for kernel and exception handlers is pointed to by the MSP, and the stack memory
is restricted to privileged accesses only, if the MPU is available

» Stack memory for user applications is pointed to by the PSP

Assume that the system memory has a Static Random Access Memory (SRAM) memory and a
Memory Protection Unit (MPU), we could set up the MPU so that the SRAM is divided into two
regions for user and privileged access (see Figure 12.1). Each region is used by application data, as well
as by stack memory space. Since stack operation in the Cortex-M3 is full descending, the initial value
of stack pointers needs to be pointed to the top of the regions.

Copyright © 2010, Elsevier Inc. All rights reserved. 20 1
DOI: 10.1016/B978-1-85617-963-8.00015-6
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A Main stack pointer
initial value

Privileged
stack
Privileged
access only

Privileged
Memory SRAM data Process stack
address pointer initial value

User stack
User accessible

User data

FIGURE 12.1
Example Memory Use with Privileged Data and User Application Data.

After power-up, only the MSP is initialized (by fetching address 0x0 in the power-up sequence).
Additional steps are required to set up a completely robust two-stack system. For applications in assem-
bly code, it can simply be

; Start at privileged level (this code locates in user
; accessible memory)

BL MpuSetup ; Setup MPU regions and enable memory

; protection
LDR RO,=PSP_TOP ; Setup Process SP to top of process stack
MSR PSP, RO
BL SystickSetup ; Setup Systick and systick exception to

; invoke 0S kernel at regular intervals
MOV RO, #0x3 ; Setup CONTROL register so that user

; program use PSP,
MSR CONTROL, RO ; and switch current access level to user
ISB ; Instruction Synchronization Barrier
B UserApplicationStart ; Now we are in user access
; level. Start user code

This arrangement is fine for assembler, but for C programs, switching stack pointers in the middle
of a C function can cause loss of local variables (because in C functions or subroutines, local variables
may be put onto stack memory). The Cortex-M3 Technical Reference Manual (TRM) [Ref. 1] suggests
that we use an interrupt service routine (ISR) like Supervisor Call (SVC) to invoke the kernel, and then
change the stack pointer by modifying the EXC_RETURN value (see Figure 12.2).

In most cases, EXC_RETURN modification and stack switching are included in the operating
system (OS). After the user application starts, the SYSTICK exception can be used regularly to invoke
the OS for system management and possibly arrange context switching, if needed (see Figure 12.3).
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FIGURE 12.2
Initialization of Multiple Stacks in a Simple OS.
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FIGURE 12.3

Context Switching in a Simple OS.

Note that context switching is carried out in PendSV (a low-priority exception) to prevent context
switching at the middle of an interrupt handler.

However, many applications do not require an OS, but it is still helpful to use separate stacks for
different sections of application code as a way to improve reliability. One possible way to handle this is
to start Cortex-M3 with the MSP pointed to a process stack region. This way the initialization is done
with the process stack region but using MSP. Before starting the user application, the following code
is executed:

Start at privileged level, MSP point to User stack

MpuSetup(); // Setup MPU regions and enable memory protection
SystickSetup(); // Setup Systick and systick exception for routine
// system management code
SwitchStackPointer(); // Call an assembly subroutine to switch SP

/x5 - Inside SwitchStackPointer -----

PUSH {RO, RI1, LR}
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MRS RO, MSP ; Save current stack pointer
LDR R1, =MSP_TOP ; Change MSP to new location
MSR MSP, R1
MSR PSP, RO ; Store current stack pointer in PSP
MOV RO, #0x3
MSR CONTROL, RO ; Switch to user mode, and use PSP as
; current stack
POP {RO, R1, PC} ; Return
e Back to C program ----- */
; Now we are in User mode, using PSP and the Tlocal variables
; still here
UserApplicationStart(); // Start application code in user mode

DOUBLE-WORD STACK ALIGNMENT

In applications that conform to AAPCS', it is necessary to ensure that the stack pointer value at function
entry should be aligned to the double word address. To achieve this requirement, the stacking address
of registers at exception handling is adjusted accordingly. This is a configurable option on the Cortex-
M3 processor. To enable this feature, the STKALIGN bit in the Nested Vectored Interrupt Controller
(NVIC) Configuration Control register needs to be set (see Table D.18 in Appendix D). For example, if
CMSIS compliant device driver is used in C language project

SCB->CCR = SCB->CCR | 0x200;
If the project is in C but CMSIS is not used,

Jdefine NVIC_CCR *((volatile unsigned long *) (0xEOO00ED14))
NVIC_CCR = NVIC_CCR \ 0x200; /* Set STKALIGN in NVIC */

This can also be done in assembly language

LDR RO,=0xEQQ0ED14 ; Set RO to be address of NVIC CCR
LDR R1, [RO]

ORR.W R1, R1, #0x200 ; Set STKALIGN bit

STR R1, [RO] ; Write to NVIC CCR

When the STKALIGN bit is set during exception stacking, bit 9 of the stacked xPSR (combined
Program Status Register) is used to indicate whether a stack pointer adjustment has been made to align
the stacking. When unstacking, the stack pointer (SP) adjustment checks bit 9 of the stacked xPSR and
adjusts the SP accordingly.

To prevent stack data corruption, the STKALIGN bit must not be changed within an exception
handler. This can cause a mismatch of stack pointer location before and after the exception.

This feature is available from Cortex-M3 revision 1 onward. Early Cortex-M3 products based on
revision 0 do not have this feature. In Cortex-M3 revision 2, this feature is enabled by default whereas
in revision 1, this needs to be turned on by software.

This feature should be used if the AAPCS conformation is required.

"Procedure Call Standard for the ARM Architecture (AAPCS) [Ref. 5]. An advisory note has been published on the ARM web
site regarding SP alignment and AAPCS; see http://infocenter.arm.com/help/topic/com.arm.doc.ihi0046a/ITHI0046A_ABI_
Advisory_1.pdf.
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NONBASE THREAD ENABLE

In the Cortex-M3, it is possible to switch a running interrupt handler from privileged level to user
access level. This is needed when the interrupt handler code is part of a user application and should
not be allowed to have privileged access. This feature is enabled by the Nonbase Thread Enable
(NONBASETHRDENA) bit in the NVIC Configuration Control register.

USE THIS FEATURE WITH CAUTION

Because of the need to manually adjust the stack and modify the stacked data, this feature should be avoided
in normal application programming. If it is necessary to use this feature, it must be done very carefully, and
the system designer must ensure that the interrupt service routine is terminated correctly. Otherwise, it could
cause some interrupts with the same or lower priority levels to be masked.

To use this feature, an exception handler redirection is involved. The vector in the vector table
points to a handler running in privileged mode but located in user mode accessible memory

redirect_handler

PUSH {LR}

SVC 0 ; A SVC function to change from privileged to
; user mode

BL User_IRQ_Handler

SVC 1 ; A SVC function to change back from user to
; privileged mode

POP {PC} ; Return

The SVC handler is divided into three parts as follows:

* Determine the parameter when calling SVC.

* SVC service #0 enables the NONBASETHRDENA, adjusts the user stack and EXC_RETURN
value, and returns to the redirect handler in user mode, using the process stack.

*  SVC service #1 disables the NONBASETHRDENA, restores the user stack pointer position, and
returns to the redirect handler in privileged mode, using the main stack.

svc_handler

TST LR, 40x4 ; Test EXC_RETURN bit 2

ITE EQ ; 1f zero then

MRSEQ RO, MSP ; Get correct stack pointer to RO
MRSNE RO, PSP

LDR R1,[RO, {24] ; Get stacked PC

LDRB RO,[RL, #-21 ; Get parameter at stacked PC - 2
CBZ r0, svc_service_0

CMP ro, 41

BEQ svc_service_1l

B.W Unknown_SVC_Request

svc_service_0 ; Service to switch handler from privileged mode to
; user mode
MRS RO, PSP ; Adjust PSP



206 CHAPTER 12 Advanced Programming Features and System Behavior

SUB RO, RO, #0x20 ; PSP = PSP - 0x20
MSR PSP, RO
MOV R1, #0x20 ; Copy stack frame from main stack to

; process stack

svc_service_0_copy_Tloop
SUBS R1, R1, #4
LDR R2,[SP, R1]
STR RZ2,[RO, R1]
CMP R1, #0

BNE svc_service_0_copy_Tloop
STRB R1,[RO, #0x1C] ; Clear stacked IPSR of user stack to 0
LDR RO, =0xEOQ00ED14 ; Set Non-base thread enable in CCR

LDR rl,[r0]
ORR rl, #1
STR r1,[r0]

ORR LR, #0xC ; Change LR to return to thread, using PSP
BX LR
svc_service_1l ; Service to switch handler back from user mode to

; privileged mode

MRS RO, PSP ; Update stacked PC in privileged
; stack so that it

LDR R1,[RO, #0x18] ; return to the instruction after 2nd
; SVC in redirect

STR R1,[SP, #0x18] ; handler

MRS RO, PSP ; Adjust PSP back to what it was

; before 1st SVC

ADD RO, RO, #0x20

MSR PSP, RO

LDR RO, =0xEOQ00ED14 ; Clear Non-base thread enable in CCR

LDR rl,[r0]

BIC rl, #1

STR rl,[r0]

BIC LR, {OxC ; Return to handler mode, using main
; stack

BX LR

The SVC services are used because the only way you can change the Interrupt Status register
(IPSR) is via an exception return. Other exceptions, such as software-triggered interrupts, could be
used, but they are not recommended because they are imprecise and could be masked, which means
that there is a possibility that the required stack copying and switch operation is not carried out imme-
diately. The sequence of the code is illustrated in Figure 12.4, which shows the stack pointer changes
and the current exception priority.

In this figure, the manual adjustment of the PSP inside the SVC services is highlighted by circles
indicated by dotted lines.

PERFORMANCE CONSIDERATIONS

To get the best out of the Cortex-M3, a few aspects need to be considered. First, we need to avoid
memory wait states. During the design stage of the microcontroller or SoC, the designer should
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Operation of NONBASETHRDENA.

optimize the memory system design to allow instruction and data accesses to be carried out at
the same time, and use 32-bit memories, if possible. For developers, the memory map should be
arranged so that program code is executed from the code region and the majority of data accesses is
done via the system bus. This way data accesses can be carried out at the same time as instruction
fetches.

Second, the interrupt vector table should also be put into the code region, if possible. Thus, vector
fetch and stacking can be carried out at the same time. If the vector table is located in the SRAM, extra
clock cycles might result in interrupt latency because both vector fetch and stacking could share the
same system bus (unless the stack is located in the code region, which uses a D-Code bus).

If possible, avoid using unaligned transfers. An unaligned transfer might take two or more Advanced
High-Performance Bus (AHB) transfers to complete and will slow program performance, so plan your
data structure carefully. In assembly language with ARM tools, you can use the ALIGN directive to
ensure that a data location is aligned.

Most of you might be using C language for development, but for those who are using assembly, you
can use a few tricks to speed up parts of the program.
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1. Use memory access instruction with offset. When multiple memory locations in a small region are
to be accessed, instead of writing

LDR RO, =0xEQ00E400 ; Set interrupt priority #3,#2,#1,#0
LDR R1, =0xE0C02000 ; priority levels

STR R1,[RO]

LDR RO, =0xE000E404 ; Set interrupt priority #7,#6,#5,#4
LDR R1, =0xEOQOEOEOQEQ ; priority levels

STR R1,[RO]
you can reduce the program code to the following:

LDR RO, =0xE000E400 ; Set interrupt priority #3,#2,#1,#0
LDR R1, =0xE0C02000 ; priority levels

STR R1,[RO]

LDR R1,=0xEOEQEOQEO ; priority levels

STR R1,[RO,#4] ; Set interrupt priority #7,#6,#5,#4

The second store uses an offset of the first address and hence reduces the number of instructions.

2. Combine multiple memory accesses into Load/Store Multiple instructions (LDM/STM). The
preceding example can be further reduced by using STM instruction as follows:

LDR RO,=0xEO000E400 ; Set interrupt priority base
LDR R1,=0xE0C02000 ; priority Tevels #3,#2,4#1,40
LDR R2,=0xEOEQEQEQ ; priority levels #7,#6,#5,4#4

STMIA RO, {R1, RZ}

3. Use IF-THEN (IT) instruction blocks to replace small conditional branches. Since the Cortex-M3 is
a pipelined processor, a branch penalty happens when a branch operation is taken. If the conditional
branch operation is used to skip a few instructions, this can be replaced by the IT instruction block,
which might save a few clock cycles.

4. If an operation can be carried out by either two Thumb® instructions or a single Thumb-2 instruction,
the Thumb-2 instruction method should be used because it gives a shorter execution time, despite
the fact that the memory size is the same.

LOCKUP SITUATIONS

When an error condition occurs, the corresponding fault handler will be triggered. If another fault takes
place inside the usage fault/bus fault/memory management fault handler, the hard fault handler will be
triggered. However, what if we get another fault inside the hard fault handler? In this case, a lockup
situation will take place (see Figure 12.5).

What Happens During Lockup?

During lockup, the program counter will be forced to OxXFFFFFFFX and will keep fetching from that
address. In addition, an output signal called LOCKUP from the Cortex-M3 will be inserted to indicate
the situation. Chip designers might use this signal to trigger a reset at the system reset generator.
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Lockup can take place when

e Faults occur inside the hard fault handler (double fault)
* Faults occur inside the nonmaskable interrupt (NMI) handler
* Bus faults occur during the reset sequence (initial SP or program counter (PC) fetch)

For double-fault situations, it is still possible for the core to respond to an NMI and execute the NMI
handler. But after the handler completes, it will return to the lockup state, with the program counter
restored to OXFFFFFFFX. In this case, the system locks up and the current priority level is held at —1.
If an NMI occurs, the processor will still preempt and execute the NMI handler because the NMI has
a higher priority (-2) than the current priority level (—1). When the NMI is complete and returns to the
lockup state, the current exception priority is returned to —1.

Normally, the best way to exit a lockup is to perform a reset. Alternatively, for a system with a
debugger attached, it is possible to halt the core, change the PC to a different value, and start the pro-
gram execution from there. In most cases this might not be a good idea, since a number of registers,
including the interrupt system, might need reinitialization before the system can be returned to normal
operation.

You might wonder why we do not simply reset the core when a lockup takes place. You might want
to do that in a live system, but during software development, we should first try to find out the cause
of the problem. If we reset the core immediately, we might not be able to analyze what went wrong
because registers will be reset and hardware status will be changed. In most Cortex-M3 microcon-
trollers, a watchdog timer can be used to reset the core if it enters the lockup state.

Note that a bus fault that occurs during stack when entering a hard fault handler or NMI handler
does not cause lockup, but the bus fault handler will be pended.

Faults that take place here cause
Priority ~ Faults that take place LOCKUP Faults that take place

A here do not cause here do not cause
LOCKUP LOCKUP
—-1/-2
0to 255
+ Hard fault or NMI handler +
Stacking Unstacking
Time o
FIGURE 12.5

Only a Fault Occurring During a Hard Fault or NMI Handler Will Cause Lockup.
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Avoiding Lockup

It is important to take extra care to prevent lockup problems when you’re developing an NMI or hard
fault handler. For example, we can avoid unnecessary stack accesses in a hard fault handler unless we
know that the memory is functioning correctly and the stack pointer is still valid. In developing com-
plex systems, one of the possible causes of a bus fault or memory fault is stack pointer corruption. If
we start the hard fault handler with something like this

hard_fault_handler
PUSH {R4-R7,LR} ; Bad idea unless you are sure that the
; stack is safe to use!

and if the fault was caused by a stack error, we could enter lockup in our hard fault handler straight
away. In general, when programming hard fault, bus fault, and memory management fault handlers, it
might be worth checking whether the stack pointer is in a valid range before we carry out more stack
operations. For coding NMI handlers, we can try to reduce risk caused by stack operation by using
RO-R3 and R12 only, since they are already stacked.

One approach for developing hard fault and NMI handlers is to carry out only the essential tasks
inside the handlers, and the rest of the tasks, such as error reporting, can be pended using a separate
exception, such as PendSV or a software interrupt. This helps to ensure that the hard fault handler or
NMI is small and robust.

Furthermore, we should ensure that the NMI and hard fault handler code will not try to use SVC instruc-
tions. Since SVC always has lower priority than hard fault and NMI, using SVC in these handlers will cause
lockup. This might look simple, but when your application is complex and you call functions from different
files in your NMI and hard fault handler, you might accidentally call a function that contains an SVC instruc-
tion. Therefore, before you develop your software, you need to carefully plan the SVC implementation.

FAULTMASK

FAULTMASK is used to escalate a configurable fault handler (bus fault, usage fault or memory man-
agement fault) to hard fault level without the need to invoke hard fault by a real fault. This allows the
configurable fault handler to pretend to be the hard fault handler. By doing this, the fault handler can
have the ability to

1. Mask bus fault by setting HFHFNMIGN in Configuration Control register. It can be used to probe
the bus system without causing lockup. For example, for checking if a bus bridge is working
correctly.

2. Bypass the MPU. This allows the fault handler to access an MPU protected memory location
without reprogramming the MPU just to carry out a few transfers to fix faults.

The FAULTMASK usage is different from PRIMASK. PRIMASK is generally used in timing
critical code, but it doesn’t have the ability to mask bus fault or bypass MPU. With PRIMASK set, all
configurable faults will be escalated to hard fault handler. FAULTMASK is used to allow a configurable
fault handler to solve memory-related problems by using features normally only available for a hard
fault handler. However, when FAULTMASK is set, faults such as incorrect undefined instruction, or
using SVC in the wrong priority level, can still cause lockup.
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The Memory Protection Unit
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OVERVIEW

The Cortex™-M3 design includes an optional Memory Protection Unit (MPU). Including the MPU in
the microcontrollers or system-on-chip (SoC) products provides memory protection features, which can
make the developed products more robust. The MPU needs to be programmed and enabled before use.
If the MPU is not enabled, the memory system behavior is the same as though no MPU is present.

The MPU can improve the reliability of an embedded system by

* Preventing user applications from corrupting data used by the operating system

» Separating data between processing tasks by blocking tasks from accessing others’ data
* Allowing memory regions to be defined as read-only so that vital data can be protected
* Detecting unexpected memory accesses (for example, stack corruption)

In addition, the MPU can also be used to define memory access characteristics such as caching and
buffering behaviors for different regions.

The MPU sets up the protection by defining the memory map as a number of regions. Up to eight
regions can be defined, but it is also possible to define a default background memory map for privileged
accesses. Accesses to memory locations that are not defined in the MPU regions or not permitted by the
region settings will cause the memory management fault exception to take place.

MPU regions can be overlapped. If a memory location falls on two regions, the memory access
attributes and permission will be based on the highest-numbered region. For example, if a trans-
fer address is within the address range defined for region 1 and region 4, the region 4 settings will
be used.

Copyright © 2010, Elsevier Inc. All rights reserved. 2 1 1
DOI: 10.1016/B978-1-85617-963-8.00016-8
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MPU REGISTERS

The MPU contains a number of registers. The first one is the MPU Type register. The MPU Type
register can be used to determine whether the MPU is fitted. If the DREGION field is read as 0, the
MPU is not implemented (see Table 13.1).

The MPU is controlled by a number of registers. The first one is the MPU Control register (see
Table 13.2). This register has three control bits. After reset, the reset value of this register is zero, which
disables the MPU. To enable the MPU, the software should set up the settings for each MPU regions,
and then, set the ENABLE bit in the MPU Control register.

By using PRIVDEFENA and if no other regions are set up, privileged programs will be able to
access all memory locations, and only user programs will be blocked. However, if other MPU regions
are programmed and enabled, they can override the background region. For example, for two systems
with similar region setups but only one with PRIVDEFENA set to 1 (the right-hand side in Figure 13.1),
the one with PRIVDEFENA set to 1 will allow privileged access to background regions.

Setting the enable bit in the MPU Control register is usually the last step in the MPU setup code.
Otherwise, the MPU might generate faults by accident before the region configuration is done. In some
situations, it might be worth clearing the MPU Enable at the start of the MPU configuration routine to
make sure that the MPU faults won’t be triggered by accident during setup of MPU regions.

Table 13.1 MPU Type Register (OxEOOOED90)

Reset

Bits Name Type Value Description

23:16 IREGION R 0 Number of instruction regions supported by this MPU;
because ARMv7-M architecture uses a unified MPU, this is
always O

15:8 DREGION R Oor8 Number of regions supported by this MPU; in the Cortex-
M8, this is either O (MPU not present) or 8 (MPU present)

0 SEPARATE R 0 This is always 0, as the MPU is unified

Table 13.2 MPU Control Register (OXEOOOED94)

Reset
Bits Name Type Value Description
2 PRIVDEFENA R/W 0 Privileged default memory map enable; when set to 1 and if

the MPU is enabled, the default memory map will be used
for privileged accesses as a background region. If this bit is
not set, the background region is disabled and any access
not covered by any enabled region will cause a fault.

1 HFNMIENA R/W 0 If set to 1, it enables the MPU during the hard fault handler
and nonmaskable interrupt (NMI) handler; otherwise, the
MPU is not enabled (bypassed) for the hard fault handler
and NMI.

0 ENABLE R/W 0 It enables the MPU if set to 1.
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PRIVDEFENA =0 PRIVDEFENA =1
4GB Access not 4GB . .
- allowed < Privileged
Region 1 accesses only
Region 3 Region 3
permission permission
override override
Region 3 region 2 Region 3 —{ region2
) Region 2 . Region 2
Region 2 4{ permission ] Region 2 4[ permission }
. Region 1 ) Region 1
Access not -
- allowed Region 1 -+ inleged
accesses only
Region0 gl Region 0 Region0 gl Region 0
permission permission
0 0
FIGURE 13.1

The Effect of PRIVDEFENA.

Bits
7:0

Name Type

REGION RW

Table 13.3 MPU Region Number Register (OXEOOOED98)

Reset

Value Description

Select the region that is being programmed. Because eight
regions are supported in the Cortex-M3 MPU, only bit [2:0]

of this register is implemented.

The next MPU control register is the MPU Region Number register (see Table 13.3), before each
region is set up, write to this register to select the region to be programmed.
The starting address of each region is defined by the MPU Region Base Address register (see Table
13.4). Using the VALID and REGION fields in this register, we can skip the step of programming the
MPU Region Number register. This might reduce the complexity of the program code, especially if the
whole MPU setup is defined in a lookup table.
We also need to define the properties of each region. This is controlled by the MPU Region Base
Attribute and Size register (see Table 13.5).
The REGION SIZE field (5 bits) in the MPU Region Base Attribute and Size register determines
the size of the region (see Table 13.6).
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Bits
31:N

4

3:0

Reset
Name Type Value
ADDR R/W —
VALID R/W —
REGION R/W —

Table 13.4 MPU Region Base Address Register (OxEOOOED9C)

Description

Base address of the region; N is dependent on the region
size—for example, a 64 KB size region will have a base
address field of [31:16].

If this is 1, the REGION defined in bit [3:0] will be used in
this programming step; otherwise, the region selected by
the MPU Region Number register is used.

This field overrides the MPU Region Number register if VALID
is 1; otherwise, it is ignored. Because eight regions are
supported in the Cortex-M3 MPU, the region number override
is ignored if the value of the REGION field is larger than 7.

Bits

31:29
28

27
26:24
23:22
21:19
18
17
16
15:8
7:6
5:1

Table 13.5 MPU Region

Name Type Reset
Value

Reserved — —

XN R/W —

Reserved — —

AP R/W —

Reserved — —

TEX R/W —

S R/W —

C R/W —

B R/W —

SRD R/W —

Reserved — —

REGION SIZE R/W —

ENABLE R/W —

Base Attribute and Size Register (OXEOOOEDAO)

Description

Instruction Access Disable (1 = disable instruction fetch
from this region; an attempt to do so will result in a memory
management fault)

Data Access Permission field

Type Extension field
Shareable

Cacheable

Bufferable

Subregion disable

MPU Protection Region size
Region enable

Table 13.6 Encoding of REGION Field for Different Memory Region Sizes

REGION Size

00000
b00001
b00010
b00011

Size

Reserved
Reserved
Reserved
Reserved
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Continued
REGION Size

00100

00101
b00110
b00111
01000
01001
01010
p01011
01100
01101
01110
p01111
10000
110001
10010
10011
10100
10101
10110
b10111
11000
11001
11010
b11011
11100
b11101
b11110
b11111

Size
32 bytes

64 bytes
128 bytes
256 bytes
512 bytes
1KB

2 KB

4 KB

8 KB

16 KB

32 KB

64 KB
128 KB
256 KB
512 KB

1 MB

2 MB

4 MB

8 MB

16 MB
32 MB
64 MB
128 MB
256 MB
512 MB
1GB
2GB
4GB

Table 13.6 Encoding of REGION Field for Different Memory Region Sizes

The subregion disable field (bit [15:8] of the MPU Region Base Attribute and Size register) is used
to divide a region into eight equal subregions and then to define each as enabled or disabled. If a sub-
region is disabled and overlaps another region, the access rules for the other region are applied. If the
subregion is disabled and does not overlap any other region, access to this memory range will result in
a memory management fault. Subregions cannot be used if the region size is 128 bytes or less. The data
Access Permission (AP) field (bit [26:24]) defines the AP of the region (see Table 13.7).

The XN (Execute Never) field (bit [28]) decides whether an instruction fetch from this region is
allowed. When this field is set to 1, all instructions fetched from this region will generate a memory
management fault when they enter the execution stage.
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Table 13.7 Encoding of AP Field for Various Access Permission Configurations
AP Value Privileged Access User Access Description
000 No access No access No access
001 Read/write No access Privileged access only
010 Read/write Read only Write in a user program
generates a fault
011 Read/write Read/write Full access
100 Unpredictable Unpredictable Unpredictable
101 Read only No access Privileged read only
110 Read only Read only Read only
111 Read only Read only Read only
Table 13.8 ARMv7-M Memory Attributes
TEX (o B Description Region Shareability
b000 0 0 Strongly ordered (transfers Shareable
carry out and complete in
programmed order)
b000 0 1 Shared device (write can be Shareable
buffered)
b000 1 0 Outer and inner write-through; [S]
no write allocate
b000 1 1 Quter and inner write-back; no [S]
write allocate
001 0 0 Outer and inner non cacheable [S]
p001 0 1 Reserved Reserved
p001 1 0 Implementation defined -
b001 1 1 Outer and inner write-back; [S]
write and read allocate
b010 0 0 Nonshared device Not shared
b010 0 1 Reserved Reserved
b010 1 X Reserved Reserved
b1BB A A Cached memory; BB = outer [S]
policy, AA = inner policy
Note: [S] indicates that shareability is determined by the S bit field (shared by multiple processors).

The TEX, S, B, and C fields (bit [21:16]) are more complex. Despite that the Cortex-M3 processor
does not have cache, its implementation follows ARMv7-M architecture, which can support external
cache and more advanced memory systems. Therefore, the region access properties can be programmed
to support different types of memory management models.
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C=0,B=1,TEX=0,S =1
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Commonly Used Memory Attributes in Microcontrollers.

In v6 and v7 architecture, the memory system can have two cache levels: inner cache and outer
cache. They can have different caching policies. Because the Cortex-M3 processor itself does not have
a cache controller, the cache policy only affects write buffering in the internal BusMatrix and possibly
the memory controller (see Table 13.8). For most microcontrollers, the usage of memory attributes can
be simplified to just a few memory types (see Figure 13.2).

If you are using a microcontroller with cache memory, then you should program the MPU according
to the cache policy you want to use (e.g., cache disable/write through cache/write back cache). When
TEX][2] is 1, the cache policy for outer cache and inner cache is as shown in Table 13.9.

For more information on cache behavior and cache policy, refer to the ARM Architecture Applica-
tion Level Reference Manual [Ref. 2].

(AA and BB)

00
01
10
1

Table 13.9 Encoding of Inner and Outer Cache Policy When
Most Significant Bit of TEX Is Set to 1

Memory Attribute Encoding

Cache Policy

Noncacheable

Write back, write, and read allocate
Write through, no write allocate
Write back, no write allocate
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SETTING UP THE MPU

The MPU register might look complicated, but as long as you have a clear idea of the memory regions
that are required for your application, it should not be difficult. Typically, you need to have the follow-
ing memory regions:

* Program code for privileged programs (for example, OS kernel and exception handlers)

* Program code for user programs

* Data memory for privileged and user programs in various memory regions (e.g., data and stack
of the application situated in the SRAM (Static Random Access Memory) memory region--
0x20000000 to 0x3FFFFFFF)

* Other peripherals

It is not necessary to set up a region for the memory in the private peripheral bus range. The MPU
automatically recognizes the private peripheral bus memory addresses and allows privileged software
to perform data accesses in this region.

For Cortex-M3 products, most memory regions can be set up with TEX = b000, C =1, B = 1.
System devices such as the Nested Vectored Interrupt Controller (NVIC) should be strongly ordered,
and peripheral regions can be programmed as shared devices (TEX = b000, C = 0, B = 1). However,
if you want to make sure that any bus faults occurring in the region are precise bus faults, you should
use a strongly ordered memory attribute (TEX = b000, C = 0, B = 0) so that write buffering is disabled.
However, doing so can reduce system performance.

For users of a Cortex Microcontroller Software Interface Standard (CMSIS) compliant device
driver, the MPU registers can be accessed using the following register names as shown in Table 13.10.
A simple flow for an MPU setup routine is shown in Figure 13.3 on page 220.

Before the MPU is enabled and if the vector table is relocated to RAM, remember to set up the fault
handler for the memory management fault in the vector table, and enable the memory management
fault in the System Handler Control and State register. They are needed to allow the memory manage-
ment fault handler to be executed if an MPU violation takes place.

Table 13.10 MPU Register Names in CMSIS

Register Names MPU Register Address
MPU->TYPE MPU Type register OxEOOOED90
MPU->CTRL MPU Control register OxEOOOED94
MPU->RNR MPU Region Number register OxEOOOED98
MPU->RBAR MPU Region Base Address register OxEOOOED9C
MPU->RASR MPU Region Attribute and Size register OxEOOOEDAO
MPU->RBAR_A1 MPU Alias 1 Region Base Address register OxEOOOEDA4
MPU->RBAR_A2 MPU Alias 2 Region Base Address register OxEOOOEDAC
MPU->RBAR_A3 MPU Alias 3 Region Base Address register OxEOOOEDB4
MPU->RASR_A1 MPU Alias 1 Region Attribute and Size register OxEOOOEDAS8
MPU->RASR_A2 MPU Alias 2 Region Attribute and Size register OxEOOOEDBO
MPU->RASR_A3 MPU Alias 3 Region Attribute and Size register OxEOOOEDBS8
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For a simple case of only four required regions, the MPU setup code (without the region checking
and enabling) looks like this:

MPU->RNR

MPU->RBAR

MPU->RASR

MPU->RNR

MPU->RBAR
MPU->RASR

MPU->RNR

MPU->RBAR
MPU->RASR

MPU->RNR

MPU->RBAR
MPU->RASR =

MPU->CTRL

0;

0x00000000;

0x0307002F;

1.

0x20000000;
0x03070033;

2 .

0x40000000;
0x03050033;

3 .

0xA0000000;
0x01040027;

1;

// MPU Region Number Register
// select region 0

MPU Region Base Address Register
Base Address = 0x00000000
Region Attribute and Size Register

R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
select region 1

Base Address = 0x20000000

R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
select region 2

Base Address = 0x40000000

R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1

select region 3

Base Address = 0xA0000000
Privileged R/W, TEX=0,S=1,C=0,B=0,
IMB, Enable=1

MPU Control register - Enable MPU

This can also be coded in assembly language:

LDR
MOV
STR
LDR
STR
LDR
STR
MOV
STR
LDR
STR
LDR
STR
MOV
STR
LDR
STR
LDR
STR
MOV
STR
LDR
STR
LDR

STR
MOV
STR

RO
R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

,=0xEO0OED98
110
R1,

[RO]

,=0x00000000
R,

[RO, 4]

,=0x0307002F
R1,
.
R1,

(RO, #8]

[RO]

,=0x20000000
R,

[RO, 4]

,=0x03070033
R1,
k2
R1,

(RO, #8]

[RO]

,=0x40000000
R,

[RO, 4]

,=0x03050033
R1,
L3
R1,

(RO, #8]

[RO]

,=0xA0000000
R,

[RO, 4]

,=0x01040027

R,
.
R1,

R1

[RO, #8]

[RO,-4]

Region number register

; Select region 0

; Base Address = 0x00000000
; MPU Region Base Address Register

R/W, TEX=0,5=1,C=1,B=1, 16MB, Enable=1

; MPU Region Attribute and Size Register
; Select region 1

; Base Address = 0x20000000
; MPU Region Base Address Register

R/W, TEX=0,5=1,C=1,B=1, 64MB, Enable=1

; MPU Region Attribute and Size Register
; Select region 2

; Base Address = 0x40000000
; MPU Region Base Address Register

R/W, TEX=0,5=1,C=0,B=1, 64MB, Enable=1

; MPU Region Attribute and Size Register
; Select region 3

; Base Address = 0xA0000000
; MPU Region Base Address Register

Privileged R/W, TEX=0,S=1,C=0,B=0, 1MB,
Enable=1

; MPU Region Attribute and Size Register

; MPU Control

Enable MPU
register
(0OxEOO0ED98-4=0xE000ED94)
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Check MPU Type register
to see if MPU exists and Error
there are enough regions No

Yes

| Disable MPU |

L]

Select region #0

Region selection and
programming of region
registers can be combined
in one step

Program region
base address
and configuration

L]

Select region #1

Program region
base address
and configuration

T |
| Setup for other |
: regions i

Select region #N

Program region
base address
and configuration

L]

| Enable MPU |

MPU setup
completed

FIGURE 13.3

Example Steps to Set Up the MPU.

This provides four regions:

¢ Code: 0x00000000—-0x00FFFFFF (16 MB), full access, cacheable

e Data: 0x20000000-0x02003FFFF (64 MB), full access, cacheable

*  Peripheral: 0x40000000-0xSFFFFFFF (64 MB), full access, shared device

» External device: 0xA0000000-0x AOOFFFFF (1 MB), privileged access, strongly ordered, XN
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By combining region selection and writing to the base address register, we can shorten the code to this:

MPU->RBAR = 0x00000010;
MPU->RASR = 0x0307002F;
MPU->RBAR = 0x20000011;
MPU->RASR = 0x03070033;
MPU->RBAR = 0x40000012;
MPU->RASR = 0x03050033;
MPU->RBAR = 0xA0000013;
MPU->RASR = 0x01040027;
MPU->CTRL = 1;
Or, in assembly:

LDR RO,=0XxE000EDIC
LDR R1,=0x00000010
STR R1, [RO, {0]
LDR R1,=0x0307002F
STR R1, [RO, #4]
LDR R1,=0x20000011
STR R1, [RO, #0]
LDR R1,=0x03070033
STR R1, [RO, {4]
LDR R1,=0x40000012
STR R1, [RO, {01
LDR R1,=0x03050033
STR R1, [RO, 4]
LDR R1,=0xA0000013
STR R1, [RO, {0]
LDR R1,=0x01040027
STR R1, [RO, #4]
MOV R1,#1

STR R1, [RO,#-8]

/!
/7
/7

MPU Region Base Address Register

Base Address = 0x00000000, valid, region O

Region Attribute and Size Register
R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1

Base Address = 0x20000000, valid, region 1

R/W, TEX=0,5=1,C=1,B=1, 64MB, Enable=1

Base Address = 0x40000000, valid, region 2

R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1

Base Address = 0xA0000000, valid, region 3

Privileged R/W, TEX=0,S=1,C=0,B=0,
IMB, Enable=1
MPU Control register - Enable MPU

Region Base Address register

; Base Address = 0x00000000, region 0,

valid=1

MPU Region Base Address Register

R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
MPU Region Attribute and Size Register
Base Address = 0x20000000, region 1,

; valid=1

MPU Region Base Address Register
R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1

; MPU Region Attribute and Size Register

Base Address = 0x40000000, region 2,
valid=1

; MPU Region Base Address Register

R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
MPU Region Attribute and Size Register

; Base Address = 0xA0000000, region 3,

B

valid=1
MPU Region Base Address Register
R/W, TEX=0,S=1,C=0,B=0, IMB, Enable=1

; MPU Region Attribute and Size Register

Enable MPU

; MPU Control register

B

(OXEOOOED9C-8=0xEQ00ED94)

We’ve shortened the code quite a bit. However, you can make further enhancements to create even
faster setup code. This is done using MPU aliased register addresses (see Table D.34 in Appendix D).
The aliased register addresses follow the MPU Region Attribute and Size registers and are aliased
to the MPU Base Address register and the MPU Region Attribute and Size register. They produce a
continuous address of eight words, making it possible to use Load/Store Multiple (LDM and STM)

instructions:

LDR
LDR

RO,=0xEOO0OED9C

R1,=MPUconfig

Region Base Address register

; Table of predefined MPU setup variables
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LDMIA R1!, {R2, R3, R4, R5}; Read 4 words from table
STMIA RO!, {R2, R3, R4, R5}; write 4 words to MPU
LDMIA R1!, {R2, R3, R4, R5}; Read next 4 words from table
STMIA RO!, {R2, R3, R4, R5}; write next 4 words to MPU
B MPUconfigEnd
ALIGN 4 ; This is needed to make sure the following table
is word aligned
MPUconfig ; so that we can use load multiple instruction
DCD 0x00000010 ; Base Address = 0x00000000, region O,
; valid=1

DCD 0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
DCD 0x20000011 ; Base Address = 0x08000000, region 1,

; valid=l
DCD 0x03070033 ; R/W, TEX=0,S=1,C=1,B=1, 64MB, Enable=1
DCD 0x40000012 ; Base Address = 0x40000000, region 2,

; valid=1
DCD 0x03050033 ; R/W, TEX=0,S=1,C=0,B=1, 64MB, Enable=1
DCD 0xA0000013 ; Base Address = 0xA0000000, region 3,

; valid=1
DCD 0x01040027 ; R/W, TEX=0,S=1,C=0,B=0, 1MB, Enable=1

MPUconfigEnd

LDR RO,=0xEQ00ED94 ; MPU Control register
MOV R1,#1 ; Enable MPU

STR R1, [RO]

This solution, of course, can be used only if all the required information is known beforehand.
Otherwise, a more generic approach has to be used. One way to handle this is to use a subroutine
(MpuRegionSetup) that can set up a region based on a number of input parameters and then call it sev-
eral times to set up different regions:

void MpuRegionSetup(unsigned int addr, unsigned int region,
unsigned int size, unsigned int ap, unsigned int MemAttrib,
unsigned int srd, unsigned int XN, unsigned int enable)
{ // Setup procedure for each region
MPU->RBAR = (addr & OxFFFFFFEO) | (region & OxF) | 0x10;
MPU->RASR = ((XN & 0x1)<<28) | ((ap & 0x7)<<24) |
((MemAttrib & 0x3F)<<16) | ((srd&0xFF)<<8) |
((size & 0x1F)<<1)| (enable & 0x1);
return;
}
void MpuRegionDisable(unsigned int region)
{ // Function to disable an unused region
MPU->RBAR = (region & OxF) | 0x10;
MPU->RASR 0; // disable
return;
}
void MpuSetup(void)
{ // Setup the whole MPU
MPU->CTRL = 0; // Disable MPU first
MpuRegionSetup(0x00000000, 0, Ox17, 3, 7, 0, 0, 1); // Region 0,16M
MpuRegionSetup(0x20000000, 1, 0x19, 3, 7, 0, 0, 1); // Region 1,64M
MpuRegionSetup(0x40000000, 2, 0x19, 3, 5, 0, 0, 1); // Region 2,64M



MpuRegionSetup(0xA0000000, 3,
MpuRegionDisable(4); // Disable
MpuRegionDisable(5); // Disable
MpuRegionDisable(6); // Disable
MpuRegionDisable(7); // Disable

MPU->CTRL = 1;
return;

// Enable MPU

}

13.3 Setting Up the MPU

0x13, 1, 4, 0, 0,
unused region
unused region
unused region
unused region

1);

~N o o1 B~

// Region 3,
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M

In this example, we included a subroutine that is used to disable a region that is not used. This
is necessary if you do not know whether a region has been programmed previously. If an unused
region is previously programmed to be enabled, it needs to be disabled so that it doesn’t affect the new

configuration.

The MPU setup routines can be rewritten in assembly as

MpuSetup

; setup regions
PUSH {RO-R6, LR}
LDR RO,=0xEO00ED94
MOV R1, {0
STR R1,[RO]
; --- Region #0 ---
LDR R0O,=0x00000000
MOV R1,#0x0
MOV R2,#H0x17
MOV R3,#0x3
MOV R4 ,#0x7
MOV R5,#0x0
MOV R6,#0x1
BL MpuRegionSetup
; --- Region #1 ---
LDR R0O,=0x20000000
MOV R1,7#0x1
MOV R2,#0x19
MOV R3,#0x3
MOV R4 ,#0x7
MOV R5,#0x0
MOV R6,#0x1
BL MpuRegionSetup
; --- Region #4-#7 Disab
MOV RO, 4
BL MpuRegionDisable
MOV RO, {5
BL MpuRegionDisable
MOV RO, {6
BL MpuRegionDisable
MOV RO, {7
BL MpuRegionDisable
LDR RO,=0xEO00ED94

le

; MPU Control Register

; Disable MPU

Base Address
Region number
Size

AP

Region
; Region
; Region
; Region

O O O O

o

: MemAttrib
: Sub R disable
{XN, Enable}

; Region
Region
Region 0:

o

: Base Address
Region number
: Size

: AP

; Region
; Region
; Region

Region

— o e

—

: MemAttrib
Sub R disable
{XN, Enable}

Region
; Region 1:
; Region 1:

setup for region #2 and

; MPU Control Register

; A subroutine to setup the MPU by calling subroutines that

= 0x00000000

=0

= 0x17 (16MB)

= 0x3 (full
access)

= 0x7

=0

=0,1

= 0x20000000

=1

= 0x19 (64MB)

= 0x3 (full

access)

= 0x7

=0

=0,1

13
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MOV RL.#1
STR R1,[RO] ; Enable MPU
POP {RO-R6,PC} ; Return

MpuRegionSetup
; MPU region setup subroutine
Input RO : Base Address
; R1 : Region number
; R2 : Size
H R3 : AP (access permission)
; R4 : MemAttrib ({TEX[2:0], S, C, B})
R R5 : Sub region disable
; R6 : {XN,Enable}
PUSH {RO-R1, LR}

BIC RO, RO, #0x1F ; Clear unused bits in address

BFI RO, R1, #0, #4 ; Insert region number to RO[3:0]

ORR RO, RO, {0x10 ; Set valid bit

LDR R1,=0xE000ED9C ; MPU Region Base Address Register

STR RO, [R1] ; Set base address reg

AND RO, R6, #0x01 ; Get Enable bit

UBFX R1, R6, #1, #1 ; Get XN bit

BFI RO, R1, #28, #1 ; Insert XN to RO[28]

BFI RO, R2, #1 , #5 ; Insert Region Size field (R2[4:01) to
; ROL5:1]

BFI RO, R3, {24, 43 ; Insert AP fields (R3[2:0]) to RO[26:24]

BFI RO, R4, {16, {6 ; Insert memattrib field (R4[5:0]) to
; RO[21:16]

BFI RO, R5, #8, #8 ; Insert subregion disable (SRD) fields
; to RO[15:8]

LDR R1,=0xEQ00EDAOD ; MPU Region Base Size and Attribute
; Register

STR RO, [R1] ; Set base attribute and size reg

POP {RO-R1, PC} ; Return

MpuRegionDisable
; Subroutine to disable unused region
; Input RO : Region number
PUSH {R1, LR}

AND RO, RO, #0xF ; Clear unused bits in Region Number
ORR RO, RO, {#0x10 ; Set valid bit
LDR R1,=0xE000ED9C ; MPU Region Base Address Register

STR RO, [RI1]
MOV RO, {0

LDR R1,=0xEQ00EDAO ; MPU Region Base Size and Attribute
; Register

STR RO, [R1] ; Set base attribute and size reg to 0
; (disabled)

POP {R1, PC} ; Return

The example shows the application of the Bit Field Insert (BFI) instruction in the Cortex-M3. This can
greatly simplify bit-field merging operations.
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TYPICAL SETUP

In typical applications, the MPU is used when there is a need to prevent user programs from accessing
privileged process data and program regions. Usually, this is done by the embedded OS. Between each
context switching, the MPU is reprogrammed by the OS to allow user applications to access their
application code and data and any other resources they are entitled to access. When developing the
setup routine for the MPU, you need to consider a number of regions:

1. Code region:
a. Privileged code, including a starting vector table
b. User code

2. SRAM region:
a. Privileged data, including the main stack
b. User data, including the process stack
c. Privileged bit-band alias region
d. User bit-band alias region

3. Peripherals:
a. Privileged peripherals
b. User peripherals
c. Privileged peripheral bit-band alias region
d. User peripheral bit-band alias region

From this list, we have identified 10 regions; more than the eight regions supported by the Cortex-M3
MPU. However, we can define the privileged regions by means of a background region (PRIVDEFENA
set to 1), so there are only five user regions to set up, leaving three spare MPU regions. The unused
regions might still be used for setting up additional regions in external memory, to protect read-only
data or to completely block some part of the memory if necessary. Alternatively, some of the regions
could be merged together to reduce the number of regions required.

Example Use of the Subregion Disable

In some cases, we might have some peripherals accessible by user programs, and a few should be pro-
tected to be privileged accesses only, resulting in fragmentation of user-accessible peripheral memory
space. In this kind of scenario, we could do one of these things:

* Define multiple user regions
» Define privileged regions inside the user peripheral region
* Use subregion disable within the user region

The first two methods can use up available regions very easily. With the third solution, using the
subregion disable feature, we can easily set up AP to separate peripheral blocks without using extra
regions. For example, see Figure 13.4.

The same techniques can be applied to memory regions as well. However, it is more likely that
peripherals will have a fragmented privilege setup.
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Memory
space

FIGURE 13.4

Device #7
(User accessible)

Device #6
(Privileged only)

Device #5
(Privileged only)

Device #4
(User accessible)

Device #3
(User accessible)

Device #2
(Privileged only)

Device #1
(User accessible)

Device #0
(User accessible)

Subregion
disable

Background
privileged region

Foreground user region
with subregion disable
setto 0x64 (01100100)

Using Subregion Disable to Control Access Rights to Separated Peripherals.

Table 13.11 Memory Region Arrangement for MPU Setup Example Code

Address

0x00000000~
OxO0003FFF
0x00004000~
0x00007FFF
0x20000000-
Ox20000FFF
0x20001000~
0x20001FFF
0x22000000~
O0x2201FFFF
0x22020000~
O0x2203FFFF

Description

Privileged program
User program

User data

Privileged data

User data bit-band alias

Privileged data bit-band alias

Size

16 KB

16 KB

4 KB

4 KB

128 KB

128 KB

Type

Read only
Read only
Full access
Privileged
accesses

Full access

Full access

Memory
Attributes (C,
B, A, S, XN)

C,—-A - -
C,-A - -
C,B A - -
C,B A - -
C,B A - -

C,BA--

MPU
Region

Background
Region #0
Region #1
Background
Region #2

Background
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Table 13.11 Memory Region Arrangement for MPU Setup Example Code Continued

Memory
Attributes (C,
Address Description Size Type B, A, S, XN)
0x40000000-  User peripherals 1 MB Fullaccess -, B, -, —, XN
Ox400FFFFF
0x40040000-  Privileged peripherals within 128 KB  Privileged - B,- - XN
Ox4005FFFF user peripheral region accesses

0x42000000-  User peripherals bit-band alias 32 MB Fullaccess -, B, -, — XN
Ox43FFFFFF

0x42800000-  Privileged peripherals bit-band 4 MB Privileged - B, - - XN
Ox42BFFFFF alias within user region accesses

0x60000000-  External RAM 16 MB Fullaccess C,B, A — -
Ox60FFFFFF

OXEO000000-  NVIC, debug, and private 1 MB Privileged - === XN
OxFOOFFFFF peripheral bus accesses

MPU
Region

Region #3

Disabled
subregions in
Region #3
Region #4

Disabled
subregion in
Region #4
Region #5

Background

Note: A in memory attribute refers to cache allocate.

Let’s assume that the memory regions in Table 13.11 will be used. After the required regions are
defined, we can create the MPU setup code. To make the code easier to understand and modify, we used

the function that we created earlier to develop the completed MPU setup example:

void MpuSetup(void)
{ // Setup the whole MPU
MPU->CTRL = 0; // Disable MPU first

// Parameters: Address Region Size AP Mem SRD XN Enable
MpuRegionSetup(0x00004000, 0, 0x0D, 3, 0x2, 0, 0, 1); // Region O
// 0x00004000-0x00007FFF: user program , 16kB, full access,

// MemAttrib = 0x2 (TEX=0,S=0,C=1,B=0), Subregion disable = 0, XN=0

MpuRegionSetup(0x20000000, 1, O0x0B, 3, 0xB, 0, 0, 1); // Region 1
// 0x20000000-0x20000FFF: user data, 4kB, full access,
// MemAttrib = 0xB (TEX=1,S=0,C=1,B=1), Subregion disable = 0, XN=0

MpuRegionSetup(0x22000000, 2, 0x10, 3, O0xB, 0, 0, 1); // Region 2
// 0x22000000-0x2201FFFF: user bit band, 128kB, full access,
// MemAttrib = 0xB (TEX=1,S=0,C=1,B=1), Subregion disable = 0, XN=0

MpuRegionSetup(0x40000000, 3, 0x13, 3, 0x1,0x64,0,1); // Region 3

// 0x40000000-0x400FFFFF: user peripherals, 1MB, full access,

// MemAttrib = Ox1 (TEX=0,S=0,C=0,B=1), Subregion disable=0x64, XN=0
// Note: Sub-region disable = 0x64 based on figure 13.4

MpuRegionSetup(0x42000000, 4, 0x18, 3, 0x1,0x64,0,1); // Region 4
// 0x42000000-0x43FFFFFF: user peripheral bit band, 32MB, full access,
// MemAttrib = 0x1 (TEX=0,S=0,C=0,B=1), Subregion disable=0x64, XN=0
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// Note: Sub-region disable = 0x64 based on figure 13.4

MpuRegionSetup(0x60000000, 5, 0x17, 3, 0x3, 0, 0, 1); // Region 5
// 0x60000000-0x60FFFFFF: external RAM, 16MB, full access,
// MemAttrib = 0x3 (TEX=0,S=0,C=1,B=1), Subregion disable = 0, XN=0

MpuRegionDisable(6); // Disable unused region 6

MpuRegionDisable(7); // Disable unused region 7

MPU->CTRL = 5; // Enable MPU with Default memory map enabled
// for privileged accesses

return;

}
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THE SYSTICK TIMER

The SYSTICK register in the Nested Vectored Interrupt Controller (NVIC) was covered briefly in
Chapter 8. As we saw, the SYSTICK timer is a 24-bit down counter. Once it reaches zero, the counter
loads the reload value from the RELOAD register. It does not stop until the enable bit in the SYSTICK
Control and Status register is cleared (see Figure 14.1).

The Cortex™-M3 processor allows two different clock sources for the SYSTICK counter. The
first one is the core free-running clock (not from the system clock HCLK, so it does not stop when the
system clock is stopped). The second one is an external reference clock. This clock signal must be at
least two times slower than the free-running clock because this signal is sampled by the free-running
clock. Because a chip designer might decide to omit this external reference clock in the design, it might
not be available. To determine whether the external clock source is available, you should check bit 31
of the SYSTICK Calibration register. The chip designer should connect this pin to an appropriate value
based on the design.

When the SYSTICK timer changes from 1 to 0, it will set the COUNTFLAG bit in the SYSTICK
Control and Status register. The COUNTFLAG can be cleared by one of the following:

* Read of the SYSTICK Control and Status register by the processor
* Clear of the SYSTICK counter value by writing any value to the SYSTICK Current Value register

The SYSTICK counter can be used to generate SYSTICK exceptions at regular intervals. This
is often necessary for the OS, for task and resources management. To enable SYSTICK exception
generation, the TICKINT bit should be set. In addition, if the vector table has been relocated to Static

Copyright © 2010, Elsevier Inc. All rights reserved. 2 29
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TICKINT

COUNTFLAG CLKSOURCE

FIGURE 14.1
SYSTICK Registers in the NVIC.

Random Access Memory (SRAM), it would be necessary to set up the SYSTICK exception handler
in the vector table. For example:

*((volatile unsigned int *)(SCB->VTOR+(15<<2))) = (unsigned int) SysTick_Handler;
This can be written in assembly language as

; Setup SYSTICK exception handler (only needed if vector table
; is located in RAM)

MOV RO, #O0xF ; Exception type 15

LDR R1, =SysTick_handler ; address of exception handler
LDR R2, =0xE000EDO8 ; Vector table offset register
LDR R2, [R2]

STR R1, [R2, RO, LSL #2] ; Write vector to

; VectTbl0ffset+ExcpType*4

For users of Cortex Microcontroller Software Interface Standard (CMSIS) compliant device driver,
a function call “SysTick_Config” is available for configuration of the SYSTICK Timer. Please refer to
Appendix G for information on this function. You can also access the SYSTICK registers directly via
the following register names:

e SysTick->CTRL (Control and Status register)
e SysTick->L0OAD (Reload Value register)

e SysTick->VAL (Current Value register)

e SysTick->CALIB (Calibration Value register)

For example, to generate SYSTICK exception every 1024 processor clock cycle, you can use the
following C code:

SysTick->LOAD = 1023;// Count down from 1023 to O
SysTick->VAL = 0;// Clear current value to 0
SysTick->CTRL 0x7; // Enable SysTick, enable SysTick

// exception and use processor clock
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The same operation can be written in assembly language as follows:

Enable SYSTICK timer operation and enable SYSTICK interrupt
LDR RO, =0xEOO0EQIO0 ; SYSTICK control and status register

MOV R1, #0

STR R1, [RO] ; Stop counter to prevent interrupt
; triggered accidentally

LDR RI1, =1023 ; Trigger every 1024 cycles (since counter
; decrement from 1023 to 0, total of 1024
; cycles, reload value is set to 1023)

STR R1, [RO,#4] ; Write reload value to reload register
; address

STR R1, [RO,#8] ; Write any value to current value

; register to clear current value to 0 and
; clear COUNTFLAG
MOV RI1, #0x7 ; Clock source = core clock, Enable
; Interrupt, Enable
; SYSTICK counter
STR R1, [RO] ; Start counter

The SYSTICK counter provides a simple way to allow timing calibration information to be
accessed. The top level of the Cortex-M3 processor has a 24-bit input to which a chip designer can
input a reload value that can be used to generate a 10-ms time interval. This value can be accessed by
the SYSTICK Calibration register. However, this option is not necessarily available, so you’ll need to
check the device’s datasheet to see if you can use this feature.

The SYSTICK counter can also be used as an alarm timer that starts a certain task after a number
of clock cycles. For example, if a task has to be started to execute after 300 clock cycles, we could set
up the task at the SYSTICK exception handler and program the SYSTICK timer so that the task will be
executed when the 300 cycle count is reached:

volatile int SysTickFired; // A global software flag to
// indicate SysTickAlarm executed

// Optional:Setup SYSTICK Handler, only needed if vector table
// relocated to SRAM
*((volatile unsigned int *)(SCB->VTOR+(15<<2))) = (unsigned int) SysTickAlarm;

SysTick->CTRL = 0x0; // Disable SysTick
SysTick->LOAD = (300-12); // Set Reload value
// Minus 12 because of exception latency
0; // Clear current value to 0
0; // Setup software flag to zero
0x7; // Enable SysTick, enable SysTick
// exception and use processor clock
while (SysTickFired == 0); // Wait until software flag is set by
// SYSTICK handler

SysTick->VAL
SysTickFired
SysTick->CTRL

The exception handler can be written as follows:

void SysTickAlarm(void) // SYSTICK exception handler
{
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SysTick->CTRL = 0x0; // Disable SysTick
// Execute required processing task
SCB->ICSR = SCB->ICSR & (OxFDFFFFFF); // Clear SYSTICK pend bit
// in case it has been pended again
SysTickFired++; // Update software flag so that the
// main program know that SysTick alarm
// task has been carried out
return;
}

The counter starts with an initial value of zero because it was manually cleared from the main pro-
gram. It then immediately reloads to 288 (300 — 12). We subtract 12 from the count because this is the
number of clock cycles for minimum exception latency. However, if another exception with the same
or a higher priority is running when the SYSTICK counter reaches zero, the start of the exception could
be delayed.

Note that the subtraction of 12 cycles from the reload value in this example is required for only one-
shot alarm timer usage. For periodic counting usage, the reload value should be the number of clock
cycles per period minus 1.

Because the SYSTICK counter does not stop automatically, we need to stop it within the SYSTICK
handler (SysTickAlarm). Furthermore, there’s a chance that the SYSTICK exception could have been
pended again if it was delayed by processing of other exceptions, so the pending status of a SYSTICK
exception needs to be cleared if the SYSTICK exception uses a one-off processing.

In the final step of the SYSTICK exception handler, we set a software variable called SysTickFired
so that the main program knows the required task has been carried out.

POWER MANAGEMENT
Sleep Modes

The Cortex-M3 provides sleep modes as a power management feature. During sleep mode, the system
clock can be stopped, but the free-running clock input could still be running to allow the processor to
be woken by an interrupt. The two sleep modes are as follows:

* Sleep: Indicated by the SLEEPING signal from the Cortex-M3 processor
* Deep sleep: Indicated by the SLEEPDEEP signal from the Cortex-M3 processor

To decide which sleep mode will be used, the NVIC System Control register has a bit field called
SLEEPDEEP (see Table 14.1). The actions of SLEEPING and SLEEPDEEP depend on the particular
Microcontroller Unit (MCU) implementation. In some implementations, the action will be the same in
both cases.

The sleep modes are invoked by Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instructions.
Events can be interrupts, a previously triggered interrupt, or an external event signal pulse via the
Receive Event (RXEV) signal. Inside the processor, there is a latch for events, so a past event can wake
up a processor from WFE (see Figure 14.2).

For users of a CMSIS compliant device driver, WFI and WFE instructions can be accessed by __ WFI( )
and __ WFE( ) intrinsic functions. The System Control register can be accessed using the “SCB->SCR”
register name.
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WFI WFE
< Event latch=1?
Clear event latch No
SLEEPDEEP =1?__Y Yes
No Yes Clear event latch
and continue to
Enter sleep Enter sleep (both next instruction
(SLEEPING signal SLEEPING and
high, SLEEPDEEP SLEEPDEEP
signal low) signal high)

FIGURE 14.2
Sleep Operations.

Table 14.1 System Control Register (OXEOOOED10)
Bits Name Type Reset Value Description

4 SEVONPEND R/W 0 Send Event on Pending; wakes up from WFE if
a new interrupt is pended, regardless of whether
the interrupt has priority higher than the current

level

3 Reserved — — —

2 SLEEPDEEP R/W 0 Enable SLEEPDEEP output signal when entering
sleep mode

1 SLEEPONEXIT R/W 0 Enable Sleep-On-Exit feature

0 Reserved — — —

What exactly happens when the processor enters sleep mode depends on the chip design. The
common case is that some of the clock signals can be stopped to reduce power consumption. How-
ever, the chip can also be designed to shut down part of the chip to further reduce power, or it is also
possible that a design can shut down the chip completely, and all the clock signals will be stopped.
In a case where the chip is shut down completely, the only way to wake the system from sleep is via
a system reset.

To wake the processor from WFI sleep, the interrupt will have to be higher priority than the current
priority level (if it is an executing interrupt) and higher than the level set by the BASEPRI register or
mask registers (PRIMASK and FAULTMASK). If an interrupt is not going to be accepted due to prior-
ity level, it will not wake up a sleep caused by WFI.

The situation for WFE is slightly different. If the interrupt triggered during sleep has lower or equal
priority than the mask registers or BASEPRI registers and if the SEVONPEND is set, it could still
wake the processor from sleep. The rules of waking the Cortex-M3 processor from sleep modes are
summarized in Table 14.2.
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Table 14.2 WFI and WFE Wakeup Behavior

WFI Behavior Wake Up IRQ Execution
IRQ with BASEPRI

IRQ priority > BASEPRIv Y Y

IRQ priority =< BASEPRI N N

IRQ with BASEPRI and PRIMASK

IRQ priority > BASEPRI Y N

IRQ priority =< BASEPRI N N

WFE Behavior

IRQ with BASEPRI, SEVONPEND = 0

IRQ priority > BASEPRI Y Y
IRQ priority =< BASEPRI N N
IRQ with BASEPRI, SEVONPEND = 1

IRQ priority > BASEPRI Y Y
IRQ priority =< BASEPRI Y N
IRQ with BASEPRI and PRIMASK, SEVONPEND = 0

IRQ priority > BASEPRI N N
IRQ priority =< BASEPRI N N
IRQ with BASEPRI & PRIMASK, SEVONPEND = 1

IRQ priority > BASEPRI Y N
IRQ priority =< BASEPRI Y N

Sleep-On-Exit Feature

Another feature of sleep mode is that it can be programmed to go back to sleep automatically after the
interrupt routine exit. In this way, we can make the core sleep all the time unless an interrupt needs to
be served. To use this feature, we need to set the SLEEPONEXIT bit in the System Control register
(see Figure 14.3).

Note that if the Sleep-On-Exit feature is enabled, the processor can enter sleep at any exception return
to thread level, even if no WFE/WFI instruction is executed. To ensure that the processor only enter sleep
when required, set the SLEEPONEXIT bit only when the system is ready for entering sleep.

Wakeup Interrupt Controller

Starting from revision 2 of Cortex-M3, additional low-power features have been added. A new unit
called the Wakeup Interrupt Controller (WIC) is available as an optional component. This controller is
coupled to the existing NVIC and is used to generate a wakeup request when an interrupt arrives.

From a software point of view, the WFI and WFE behaviors remain the same. There are no program-
mable registers in the WIC, as it gets all the required interrupt information via the interface between
WIC and NVIC. By using the WIC, the clock signals going into the processor core can be completely
stopped. When an interrupt request arrives, the WIC can send a wakeup request to the system controller
or Power Management Unit (PMU) in the chip to restore the processor clock (figure 14.4).

The availability of the WIC also provides a new method for reducing power consumption during
sleep mode. By using new technologies in digital logic design, it is now possible to power down most of
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FIGURE 14.5
WIC Mirrors the Interrupt Detection Function when Cortex-M3 is in state retention.

the Cortex-M3 processor, leaving a small portion of the logic gates to retain the current state of the logic.
This technology is called State Retention Power Gating (SRPG). By using SRPG and WIC together,
most portions of the Cortex-M3 processor can be powered down during deep sleep, leaving a small
amount of logic for state retention (see Figure 14.5). During this power down state, the WIC remains
operational and generates a wakeup request to power up and restore the system state when an interrupt
arrives. As a result, the processor can resume operation and service the interrupt request in a very short
time. The maximum interrupt latency with such arrangement depends on the time required to power up
the system. In most cases, it is in the range of 20 to 30 clock cycles. Normal sleep (SLEEPDEEP bit in
the System Control register is zero) does not trigger the power down feature.

The new power down capability is optional and may not be included in some microcontroller prod-
ucts. It requires an on-chip PMU developed by silicon vendors to control the power up and power down
sequences and might need to be programmed before the power down feature is used. Please refer to the
silicon vendor’s documentation for further information. A couple of points to be aware of: the power
down feature stops the SYSTICK timer during deep sleep, and the power down feature is disabled
when a debugger is attached (this is required because debugger needs to access the debug registers
regularly to examine the status of the processor).

MULTIPROCESSOR COMMUNICATION

The Cortex-M3 comes with a simple multiprocessor communication interface for event communication.
The processor has one output signal, called Transmit Event (TXEV), for sending out events, and an input
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signal, called RXEYV, for receiving events. For a system with two processors, the event communication

signal connection can be implemented as shown in Figure 14.6.

As mentioned in the previous section “Power Management,” the processor can enter sleep when the
WEE instruction is executed and can continue the instruction execution when an external event is received.
If we use an instruction called Send Event (SEV), one processor can wake up another processor that is in
sleep mode and make sure both processors start executing a task at the same time (see Figure 14.7).

For users of a CMSIS compliant device driver, SEV instruction can be accessed by the _ SEV( )
intrinsic functions. Using this feature, we can make both processors start executing a task at the same
time (possibly with small timing differences, depending on actual chip implementation and the software

TXEV TXEV
Cortex-M3 Cortex-M3
RXEV RXEV
FIGURE 14.6
Event Communication Connection in a Two-Processor System.
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code for checking task status). The number of processors invoked can be any number, but it requires that
one processor acts as a master to generate the event pulse to other processors.

It is important to note that the processor could also be woken by other events, such as interrupt
and debugging events. Therefore, before starting the required synchronized task, it is necessary to
check whether the wakeup was caused by task synchronization. In most multitasking systems, an
interprocessor messaging system like mailbox is still required to ensure that the tasks are synchro-
nized correctly.

It is also important to note that execution of WFE does not always cause the processor to enter sleep
mode. Therefore, WFE is normally used with looping (to reduce system power consumption) and status
checking code to check if the required synchronized task should be carried out after the WFE, as shown
in Figure 14.8.

When the WFE instruction is executed, it first checks the local event latch. If the latch is not set,
the core enters sleep mode. If the latch is set, it will be cleared and the instruction execution continues
without entering sleep mode. The local event latch can be set by previously occurring exceptions and
by the SEV instruction. So, if you execute an SEV and then execute a WFE, the processor will not enter
sleep and will simply continue on to the next instruction, with the event latch cleared by WFE.

An example of WFE usage is semaphore in a multiprocessor system. In a typical scenario like
Mutual Exclusion (MUTEX), system-level exclusive-access monitor and exclusive-access instructions
are used for spin locks for granting accesses to shared memory or a shared peripheral. A process requir-
ing a resource would need to call a function to gain the “lock™:

void get_lock(volatile int * Lock_Variable)
{ // __LDREXW and __STREXW are intrinsic functions in CMSIS
// compliant device driver libraries
int status = 0;
do {
while ( __LDREXW(&Lock_Variable) != 0); // Wait until lock
// variable is free

status = __STREXW(1, &Lock_Variable); // Try set Lock_Variable
// to 1 using STREX

} while (status != 0); // retry until lock successfully

__ DMB(); // Data memory Barrier

return;

}

The same process can be carried out in assembly code:

get_Tock ; an assembly function to get the Tock
LDR r0, =Lock_Variable
MOVS re, i1 ; use for locking STREX

get_lock_loop
LDREX rl, [r0]

CMP rl, #0

BNE get_lock_loop ; It is Tocked, retry again

STREX rl, r2, [r0] ; Try set Lock_Variable to 1 using STREX
CMP rl, 40 ; Check return status of STREX

BNE get_lock_loop ; STREX was not successful, retry

DMB ; Data Memory Barrier

BX LR ; Return
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Example Use of the WFE Feature.

On the other hand, a process using the resource should unlock the resource when it is no longer
required:

void free_lock(volatile int * Lock_Variable)
{

_ DMB(); // Data memory Barrier
Lock_Variable = 0; // Free the lock
return;

}

The same operation can be written in assembly as follows:

free_lock ; an assembly function to free the lock
LDR r0, =Lock_Variable
MOVS rl1, 40
DMB ; Data Memory Barrier
STR rl1, [r0] ; Clear lock
BX LR ; Return

The spin lock can result in unnecessary power consumption when the processor is idle. As a result,
we add WFE into these operations to reduce power consumption, while allowing the processor waiting
for the lock to be woken up as soon as the resource is free.
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void get_Tock_with_WFE(volatile int * Lock_Variable)
{
int status = 0;
do {
while ( __LDREXW(&Lock_Variable) != 0){ // Wait until Tock
__WFE();) // variable is free, if not, enter sleep until event

status = __STREXW(1, &Lock_Variable); // Try set Lock_Variable
// to 1 using STREX

} while (status != 0); // retry until lock successfully

__DMB(); // Data memory Barrier

return;

}

For the function to free the lock, the SEV instruction is used to wake up other processors that are
waiting for the lock.

void free_lock(volatile int * Lock_Variable)

{
__DMB();// Data memory Barrier
Lock_Variable = 0;// Free the Tock
__DSB();// ensure the store is complete
__SEV();// Send Event to wake up other processors
return;

}

The same operation can be written in assembly as follows:

get_Tock_with_WFE ; an assembly function to get the Tock
LDR r0, =Lock_Variable
MOVS r2, #1 ; use for locking STREX

get_lock_loop
LDREX rl1,[r0]
CBNZ rl, lock_is_set; If lock is set, sleep and retry later

STREX rl1, r2, [r0] ; Try set Lock_Variable to 1 using STREX
CMP rl, 40 ; Check return status of STREX
BNE get_lock_loop ; STREX was not successful, retry
DMB ; Data Memory Barrier
BX LR ; Return
lock_is_set
WFE ; Wait for event
B get_lock_loop ; woken up, retry again

And for the function that frees the lock, it can be written in assembly as follows:

free_lock_with_SEV ; an assembly function to free the lock
LDR r0, =Lock_Variable
MOVS rl1, #0
DMB ; Data Memory Barrier
STR rl1, 