
Import Address Table Hooking
By Nick Cano

This tutorial for IAT Hooking is intended for x86 processes. Due to slight differences in the PE format
it will not work in x64, but can be easily converted.

Introduction:
Hooking is the practice of re-directing the flow of a program causing it to execute a code-cave
or function in an injected module in place of another piece of code. In this tutorial, I will cover a
method of hooking known as IAT (Import Address Table) Hooking. IAT Hooking is a 4 step
process (I assume you are able to manage to inject the attacking DLL on your own).

1. Read the PE (Portable Executable) Header from the target module
2. Traverse the Import Table of the target module and find the target function
3. Store the original function address so it can be called later
4. Overwrite the function address with the address of our trampoline function

Before Diving In...
Before we begin hooking functions using the IAT, we must first understand why it works. The
IAT is a standard piece of a Windows executable, which resides within the PE Header. Every
executable file which uses functions from dynamic libraries has an IAT which specifies which
libraries it needs and what functions it uses from them.

Typically, a function is called by a “CALL” operation followed by the distance to the functions
location in memory (Figure 1a). However, since DLL's aren't static in memory and the program
knows nothing about their internals, it must “learn” the locations of their internal functions once
it loads them. For this reason, functions exported from dynamic libraries are called by a
“CALL” operation, followed by a memory read to a spot in the import table where the address
for the function is stored (Figure 1b).

1a. A normal function call

1b. Call to an imported function

The location which the call reads from is statically compiled into the executable - it is a
reference to a specific entry in the import table. Originally blank, the memory at this location is
overwritten with the address of the imported function once it is located in the DLL's EAT
(Export Address Table). Since this spot in memory is read to obtain the function address every
time the function is called, we can overwrite it and trick the target executable into executing our
own function.

Step 1: Read the PE header from the target module
The first step to hooking a function from the import table is to locate the import table. To locate
the import table, we must first read the DOS Header, then read the Optional Header, and finally
grab the import table from the Optional Header's data directory. The GetModuleHandle()
WinAPI function allows us to get the start address of the processes main module and read the
PE Header from that.

Step 2: Traverse the Import Table of the target module and find the target function
Now that we have read the PE header and found the import table, we must loop through it until
we can locate the target function. To do this, we iterate through the “Thunk” data of the import
table, reading the function names until we find a match.

HMODULE module = GetModuleHandle(0);
IMAGE_IMPORT_DESCRIPTOR* importDescriptor = GetImportTable(module);

IMAGE_IMPORT_DESCRIPTOR* GetImportTable(HMODULE module)
{

IMAGE_DOS_HEADER* dosHeader = (IMAGE_DOS_HEADER*)module;

if (dosHeader->e_magic != 0x5A4D)
return NULL;

IMAGE_OPTIONAL_HEADER* optionalHeader =
(IMAGE_OPTIONAL_HEADER*)
((BYTE*)module + dosHeader->e_lfanew + 24);

if (optionalHeader->Magic != 0x10B)
return NULL;

if (optionalHeader->DataDirectory
[IMAGE_DIRECTORY_ENTRY_IMPORT].Size == 0 ||

optionalHeader->DataDirectory
[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress == 0)
return NULL;

return (IMAGE_IMPORT_DESCRIPTOR*)
((BYTE*)module + optionalHeader->DataDirectory
[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);

}

while (importDescriptor->FirstThunk)
{

int n = 0;
IMAGE_THUNK_DATA* thunkData = (IMAGE_THUNK_DATA*)

((BYTE*)module + importDescriptor->OriginalFirstThunk);

Step 3: Store the original function address so it can be called later
Once we have located our function, we must obtain the old address so we can access the real
function if needed. To do this, we read a 4-byte value from the first thunk of the current Import
Descriptor, offset by the index of the thunk containing the function data.

Step 4: Overwrite the function address with the address of our trampoline function
The last step of IAT Hooking is to actually place the hook. To do this, we ensure the location of
the function address is writable and we write our function's address to it. To make certain the
memory is writable, we must utilize the VirtualProtect() WinAPI function. To hide any traces of
our presence, we also restore the memory access to its original state afterward.

Conclusion:
That's it! We've successfully read the PE Header, located the import table and spoofed the
addresses of our target function, tricking the target module into believing the function it needs is
our trampoline function. You should be able to find the full project, along with further tutorials,
on the same host as this tutorial.

while (thunkData->u1.Function)
{

char* importFunctionName = (char*)((BYTE*)module +
(DWORD)thunkData->u1.AddressOfData + 2);

if(strcmp(importFunctionName, functionName) == 0)
{

//Step3
//Step4

}

n++;
thunkData++;

}
importDescriptor++;

}

PDWORD lpAddr =
(DWORD*)((BYTE*)module + importDescriptor->FirstThunk) + n;

DWORD original = *lpAddr;

DWORD oldProtection;
VirtualProtect(lpAddr, sizeof(DWORD), PAGE_READWRITE, &oldProtection);
(DWORD)lpAddr = newFunctionAddress;
VirtualProtect(lpAddr, sizeof(DWORD), oldProtection, &oldProtection);
return original;

