

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments��� xv

Preface�� xvii

Chapter 1: Benefits of the New API■■ ��1

Chapter 2: Implementation Prerequisites■■ ���29

Chapter 3: ES 2.0 Fundamentals■■ ��55

Chapter 4: 3D Modeling■■ ��93

Chapter 5: Texturing and Shading■■ ��141

Chapter 6: Taking the Development Ahead■■ ���169

Index��195

1

Chapter 1
Benefits of the New API

In this chapter I introduce you to OpenGL ES 2.0, and account for its increasing popularity compared
to older graphic rendering APIs for embedded devices. I describe OpenGL ES 2.0’s support from
computer-graphics communities and leading embedded and mobile device vendors, which helps to
ensure its increasing popularity. Finally, I show how easy it is to get started with ES 2.0 on Android
devices, when we take our first step towards game development, by creating a blank OpenGL
surface view.

This chapter assumes you have some experience of setting up Android Software Development Kit
(SDK) for Eclipse and installing SDK Platform for various API levels from SDK Manager.

Modern Graphic-rendering API
OpenGL ES (Open Graphics Library for Embedded Systems) is an API (Application Programming
Interface) for rendering 3D graphics on embedded devices, such as mobiles, tablets, and gaming
consoles.

The OpenGL ES 1.0 and ES 1.1 APIs (referred to jointly as OpenGL ES 1.x) were released by the
non-profit Khronos Group as a fixed-function graphic-rendering API. OpenGL ES 1.x API does not
provide graphics application developers full access to underlying hardware, because most rendering
functions in this API are hard-coded, leading to popular names—“fixed-function graphic rendering
API” or “fixed-function pipeline.”

Unlike OpenGL ES 1.x API, OpenGL ES 2.0 API was released as a programmable graphic-rendering
API (programmable pipeline), giving developers full access to the underlying hardware through
shaders (discussed in Chapter 3).

Graphics rendered through a fixed-function pipeline involve device-provided algorithms for most
rendering effects. These algorithms (and the rendering functions based on them) cannot be modified.
They are fixed because they were made for special purpose graphics cards, for a specific data-flow.
Because of the fixed functionality of OpenGL ES 1.x API, graphics hardware could be optimized for
faster rendering.

2 CHAPTER 1: Benefits of the New API

In contrast, a programmable graphic-rendering API is a more flexible API and requires a general
purpose graphics card, enabling graphic developers to unleash the huge potential of modern GPUs.
Technically, the programmable pipeline is slower than the fixed function pipeline; however, graphics
rendered using the programmable pipeline can be greatly enhanced because of flexibility offered by
new general purpose graphics cards. OpenGL ES 2.0 combines GLSL (OpenGL Shading Language)
with a modified subset of OpenGL ES 1.1 that has removed any fixed functionality. Chapter 3
discusses OpenGL Shading Language.

Figure 1-1.  ADS (Ambient Diffuse Specular) shading in OpenGL ES 2.0

Note  GLSL is the OpenGL Shading Language for programming vertex and fragment shaders. Shaders are
programs in programmable pipelines that help users work on two separate aspects of object rendering: vertex
marking and color filling.

With OpenGL ES 2.0, enhancements in various effects, such as lighting/shading effects (as shown
in Figure 1-1—a basic shading example), no longer have any restrictions, compared to ES 1.x. What
is required is transformation of creative ideas for any such effects into algorithms, then into custom
functions executed on the graphics card, which would be impossible in ES 1.x.

OpenGL ES 2.0 is derived from the larger OpenGL 2.0 API, the programmable pipeline for rendering
3D graphics on desktops. ES 2.0 is a suitable subset of OpenGL, optimized for resource constrained
display devices, such as mobiles, tablets, and gaming consoles. ES 2.0 contains only the most
useful methods from OpenGL 2.0 API, with redundant techniques removed. This allows OpenGL ES
2.0 on handheld devices to deliver rich game content like its parent API.

3CHAPTER 1: Benefits of the New API

Devices Love It
As of October 1, 2012, more than 90% of all Android devices were running version 2.0 of OpenGL
ES. Devices running version 2.0 are also capable of emulating version 1.1. However, an activity in
Android cannot use both versions together, stemming from the fact that OpenGL ES 2.0 API is not
backwards compatible with ES 1.x. Note that, although an activity cannot use both versions together,
an application can still use them together. (Information about OpenGL ES version distribution across
Android devices is available at http://developer.android.com/about/dashboards/index.html, and
Figure 1–2 shows a chart representing that distribution.)

Figure 1-2.  OpenGL ES version distribution

Note  To demonstrate the use of both ES 1.x and ES 2.0 APIs in an application, the GLES ACTIVITY
application is provided in the source code for this chapter. This application contains activities Main and
Second. The Main activity uses ES 1.x, whereas the Second activity uses ES 2.0. To load this application into
your Eclipse workspace, under “File Menu,” select “Import,” and then import the archive file glesactivity.
zip from the Chapter1 folder.

OpenGL ES 2.0 constitutes such a huge share of distribution (Figure 1-2), because of widespread
support from leading CPU and GPU manufacturing industries. (A complete list of companies with
their conformant ES 1.x/2.0 products can be found at http://www.khronos.org/conformance/
adopters/conformant-products#opengles.) The following vendors have actively participated in
consolidating support for OpenGL ES 2.0 on Android since 2010:

(Leading GPU manufacturers)

NVIDIA	

AMD	

Imagination Technologies	

http://developer.android.com/about/dashboards/index.html
http://www.khronos.org/conformance/adopters/conformant-products%23opengles
http://www.khronos.org/conformance/adopters/conformant-products%23opengles

4 CHAPTER 1: Benefits of the New API

(Leading CPU manufacturers)

ARM	

Texas Instruments	

STMicroelectronics	

Implementer companies make use of the Khronos developed technologies at no cost in license
fees. However, they do not claim that a product is “compliant,” unless the technologies enter
and pass conformance testing. The following are the implementers of OpenGL ES 2.0 for various
embedded devices:

Intel	

Marvell	

NVIDIA	

Creative Technology Ltd.	

QUALCOMM	

MediaTek Inc.	

Apple, Inc.	

NOKIA OYJ	

Digital Media Professionals	

Panasonic	

Note  Although most embedded platforms are up and running with OpenGL ES 2.0, the Khronos Group
announced on August 6th, 2012, the release of the OpenGL ES 3.0 specification, bringing significant functionality
and portability enhancements to OpenGL ES API. OpenGL ES 3.0 is backwards compatible with OpenGL ES
2.0, enabling applications to incrementally add new visual features to applications. The full specification and
reference materials are available for immediate download at http://www.khronos.org/registry/gles/.

Easy App Development: Let’s Create an OpenGL
Surface View
ES 2.0 applications can be easily developed for Android devices using the Android SDK. The best
part about creating such applications using this SDK is that there is no need for any external library
(something that can be quite burdensome for new ES 2.0 application developers on iPhone).

There is another way to create Android ES 2.0 applications—using the Android Native Development
Kit (NDK). In some cases, NDK can make ES 2.0 applications faster than those made using SDK.
NDK lets users code in native languages, such as C and C++. This makes it possible to use popular
libraries written using C/C++, but only at the cost of increased complexity. Beginner ES 2.0 application

http://www.khronos.org/registry/gles/

5CHAPTER 1: Benefits of the New API

developers may find this difficult to deal with, which can ultimately make NDK counter-productive.
NDK is typically a tool for advanced Android developers, but be assured the performance gap between
most ES 2.0 applications created using SDK and NDK is becoming negligible.

Note  Do not use NDK simply because you like coding your applications in C/C++; use it only for cases in
which performance is critical to your application. Also, remember that Dalvik VM is becoming faster, reducing
the performance gap between SDK and NDK.

Determining OpenGL ES Version
To demonstrate the ease of developing ES 2.0 applications for Android devices, a quick example is
given here for creating an OpenGL surface view. This view is different from the XML view (UI layout)
you have generally created for most Android applications. (Chapter 3 contains a detailed account of
OpenGL surface view.)

Before I discuss this example, you need to determine the version of OpenGL ES on your Android
device. To do so, let’s create a blank Activity:

1.	 In the Eclipse toolbar, click the icon to open wizard to create a new Android
project.

2.	 Uncheck the “Create custom launcher icon” option, and click “Next,” as
shown in Figure 1-3.

6 CHAPTER 1: Benefits of the New API

Note  You might be accustomed to an older version of the SDK. The older version lacked some tools present
in the newer version. Make sure you have these tools installed using your SDK Manager. If you prefer working
offline, always allow time to update the SDK.

Figure 1-3.  Creating a new Android application

3.	 For “Create Activity,” select BlankActivity and click “Next.” Select
MasterDetailFlow (Figure 1-4) only if you are experienced in developing
applications for tablets. This book only addresses BlankActivity, because we
are not developing for tablets.

7CHAPTER 1: Benefits of the New API

4.	 Set the “Activity Name” and “Layout Name” as “Main” and “main,”
respectively (Figure 1-5). In cases in which the Android application has only
one activity, most coders name the Java file Main.java.

Figure 1-4.  Selecting the type of Activity

8 CHAPTER 1: Benefits of the New API

5.	 Click “Finish” if you have already installed the “Android Support Library.”
If you haven’t installed it, then click “Install/Update,” wait until it is installed,
and then click “Finish” (please note that you might not get the option to
install “Android Support Library” if using an older version of the ADT plugin).

Figure 1-5.  Creating a new blank Activity

9CHAPTER 1: Benefits of the New API

1.	 In the Problems view, click the small plus-sign (+) button near “Warnings” and
the list of warnings will be displayed.

2.	 Double click any warning. SDK will move the edit cursor to the line containing
the warning.

3.	 Now, press Ctrl and 1 on the keyboard. SDK will then suggest ways to remove
the warning(s).

4.	 Select the “Organize imports” (Figure 1-7) option, and the warnings will be
removed.

Figure 1-6.  Project warnings

After the blank Activity (Main.java) is created, SDK will show warnings for unused imports, as
shown in Figure 1-6. To remove these warnings:

10 CHAPTER 1: Benefits of the New API

5.	 If warnings persist, clean the project by selecting the “Clean” option under
“Project Menu” in Eclipse, as shown in Figure 1-8. Remember this step,
because Eclipse might not update the project binaries after modification(s).
Cleaning will update/refresh them.

Figure 1-7.  Organizing imports

11CHAPTER 1: Benefits of the New API

After warnings have been removed, replace the entire (XML) UI layout in your project’s res/layout/
main.xml with the contents of Listing 1-1. Notice the main difference between Listing 1-1 and the
default UI layout (of the blank Activity template) is the root tag RelativeLayout.

Note  Although it is not necessary to remove all the warnings from your application (because the application
can still work with these warnings), get into the habit of clearing them, especially in cases in which unused
imports or other redundant code can cause your application to be larger than necessary.

The few lines that cause warnings may look insignificant now; however, later in the book, we will be dealing
with examples in which those lines might add up to bloat the performance of your application. The Android
lint tool always highlights such warnings and, in some cases, can optimize the binaries by itself. This does not
happen always, however, so remember to clear those warnings.

Figure 1-8.  Cleaning our project

12 CHAPTER 1: Benefits of the New API

Listing 1-1.  GLES VERSION/res/layout/main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 
 <TextView
 android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="@dimen/padding_medium"
 android:text="@string/hello_world"
 tools:context=".Main" />
 
</LinearLayout>
 
Listing 1-1 places a TextView on the screen. This TextView is as wide as the screen in any orientation
and has an id of “textview1.” Additionally, its padding-dimensions and text are defined in the
dimens.xml and strings.xml files, respectively, inside this project’s res/values folder.

Now, replace the onCreate method of the blank Activity (Main.java) with the onCreate method from
Listing 1-2.

Listing 1-2.  GLES VERSION/src/com/apress/android/glesversion/Main.java

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 
 final ActivityManager activityManager = (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);
 final ConfigurationInfo configurationInfo = activityManager.getDeviceConfigurationInfo();
 final boolean supportsEs2 = configurationInfo.reqGlEsVersion >= 0x20000;
 
 TextView tv = (TextView) findViewById(R.id.textview1);
 if (supportsEs2) {
 tv.setText("es2 is supported");
 } else {
 tv.setText("es2 is not supported");
 }
}
 
In the onCreate method (Listing 1-2), we obtain the device configuration attributes and use
them to detect the version of OpenGL ES running on the device. Next, we find the TextView in
the UI layout of our application by its id (“textview1”) and use it to display the result using its
setText method.

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

13CHAPTER 1: Benefits of the New API

Now the application is ready for use. However, before running this application on a real device, we
will test it on the Android Emulator. If you haven’t created a virtual device yet, start the AVD Manager
and complete the following steps:

1.	 Click “New” to open the window to create a new virtual device.

2.	 Name this virtual device “IceCreamSandwich”. We are targeting (at least) the
Ice Cream Sandwich emulator, so we will name it IceCreamSandwich. You
may also modify this name to indicate the resolution of virtual device.

3.	 Under target, select API level 15, as shown in Figure 1-9.

Figure 1-9.  Using AVD Manager

4.	 Enter the size for the SD card.

5.	 Enable “Snapshot” to avoid going through the Android bootup sequence
every time you start the virtual device.

6.	 To create this virtual device at a specific resolution, select a built-in skin.

7.	 Click “Create AVD” to create the virtual device.

AVD Manager will take some time to prepare the virtual device. After the device is successfully
created, it will be listed in the AVD Manager with a green tick at the beginning. Select the created
virtual device and click “Start.”

14 CHAPTER 1: Benefits of the New API

Let the device boot. With Snapshot enabled, the device will start from where it left off the next
time. When the Home screen is visible in the virtual device (Figure 1-10), return to Eclipse and run
the application.

Figure 1-10.  IceCreamSandwich on Android Emulator

As of January 2013, Android Emulator supported ES 1.x only (some hosts allow Emulators to access
their GPU for ES 2.0, but, for most, Android Emulator supports ES 1.x only—Figure 1-11).

15CHAPTER 1: Benefits of the New API

Now, test this application on a real device. (Here, we use a Motorola Milestone—Figure 1-12—running
Gingerbread, Android version 2.3.3). Close the Emulator and connect your Android handheld using
USB. Return to Eclipse, and run the application again.

Figure 1-11.  Emulator does not support ES 2.0

Figure 1-12.  Gingerbread on Motorola Milestone

16 CHAPTER 1: Benefits of the New API

If your device shows “es2 is not supported,” then try this application on another device you know
supports ES 2.0; if your device supports ES 2.0 as shown in Figure 1-13, you can now create an
OpenGL surface view. To do so, first you need to create a new Android application.

Figure 1-13.  Motorola Milestone supports ES 2.0

Creating the OpenGL Surface
Once you create a new Android application (Figure 1-14), open the Main.java file. Replace the contents
of this file with the code given in Listing 1-3. Table 1-1 gives the description of lines in this code.

Figure 1-14.  Creating new Android application for OpenGL surface view application

17CHAPTER 1: Benefits of the New API

Listing 1-3.  GL SURFACE/src/com/apress/android/glsurface/Main.java

public class Main extends Activity {
 private GLSurfaceView _surfaceView;
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 _surfaceView = new GLSurfaceView(this);
 _surfaceView.setEGLContextClientVersion(2);
 _surfaceView.setRenderer(new GLES20Renderer());
 setContentView(_surfaceView);
 }
 
} 

Table 1-1.  onCreate method, lines description

Line Description

1. Calls onCreate method of the super class Activity, which takes Bundle as argument

2. Requests an OpenGL surface view by calling the view constructor GLSurfaceView,
which takes Context as argument

3. Sets the version of OpenGL ES (in this case, ES 2.0) that will be used by the current
context’s surface view

4. Starts a separate renderer thread that will cause the rendering (drawing) to begin

5. setContentView method sets _surfaceView object as the content view

Because the GLSurfaceView class is not yet imported (Figure 1-15), press Ctrl and 1 for quick fixing
errors as shown in Figure 1-16. (“Quick fix” is a commonly used problem correction tool in Eclipse.)
SDK will import the class, and you will then see only 1 error.

18 CHAPTER 1: Benefits of the New API

Figure 1-15.  Errors after modifying the template code of class Main

Figure 1-16.  “Quick fix errors” using Ctrl and 1

19CHAPTER 1: Benefits of the New API

To fix the last error, we have to create the GLES20Renderer class. Amazingly, SDK automates
even this step, so you can “quick fix” it. Select the first option (Figure 1-17), to create the class
GLES20Renderer, which implements an interface GLSurfaceView.Renderer.

Figure 1-17.  Android automating class creation

20 CHAPTER 1: Benefits of the New API

After Android has created our Renderer class (Figure 1-19), you might observe warnings in the
Problems view, depending on the ADT version you are using. These include:

The import 	 android.support.v4.app.NavUtils is never used.

The import 	 android.view.Menu is never used.

The import 	 android.view.MenuItem is never used.

Figure 1-18.  GLES20Renderer class implementing interface GLSurfaceView.Renderer

21CHAPTER 1: Benefits of the New API

These warnings are indicated for unused imports in Main.java file. Quick fix these warnings if you
are on Eclipse. Finally, replace the class GLES20Renderer with the code given in Listing 1-4. You
will see an error after replacing the code—“GLES20 cannot be resolved to a variable.” This error is
caused because the class android.opengl.GLES20 is not imported yet. So, import it.

Listing 1-4.  GL SURFACE/src/com/apress/android/glsurface/GLES20Renderer.java

public class GLES20Renderer implements Renderer {
 
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 GLES20.glClearColor(0.0f, 0.0f, 1.0f, 1);
 }
 
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 }
 
 public void onDrawFrame(GL10 gl) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 }
 
}
 

Figure 1-19.  Auto-generated methods for GLES20Renderer class

22 CHAPTER 1: Benefits of the New API

Figure 1-20.  Blank OpenGL surface view

Take a closer look at this application’s code listings (Listings 1-3 and 1-4). Understanding the structure
of such projects and the flow of control will speed up your learning process. Chapters 2 and 3 describe
the details of this application, the classes used, the interface Renderer, and the ES 2.0 functions used.

ES 2.0 Is for the Ambitious
As I mentioned earlier, OpenGL ES 2.0 is derived from OpenGL 2.0 API, the programmable pipeline
for rendering graphics on desktop hardware. If you are able to understand the concepts behind
the programmable pipeline for ES 2.0, you will easily understand OpenGL 2.0 API. It is worth
reiterating that OpenGL API is meant only for desktops, not for embedded devices. There are
various programming languages you can use to create 3D graphics applications based on OpenGL
API, such as Python, C, and C++. Similar to the OpenGL API, there are other programmable
graphic rendering APIs (for various platforms), and understanding the OpenGL ES 2.0 API makes
understanding the others easy:

Note  In Listing 1-4, you will see that the sequence of auto-generated methods for GLES20Renderer
class is modified. This shows the actual sequence in which these methods are called. If you closely observe
these methods, you might wonder what the purpose of GL10 type for argument gl is. GL10 is a public
interface that implements GL. GLES20Renderer class must implement the inherited abstract methods of
GLSurfaceView.Renderer interface, and the methods of this interface use GL10 type for arguments.

After removing all errors and warnings, run the application. A blank, blue colored OpenGL surface
view, similar to Figure 1-20, will appear.

23CHAPTER 1: Benefits of the New API

	Direct3D (the 3D graphics API within Microsoft’s DirectX SDK) is also based
on programmable pipeline; however, it uses the .NET Framework, not Java, for
coding. If you understand the .NET Framework and can code applications in C#,
check out Microsoft XNA for Windows and Xbox. XNA is a collection of tools
that facilitate video game development. XNA Framework is based on the .NET
Framework and is the most popular framework for creating 2D/3D games based
on the programmable pipeline.

	Stage3D and its subset Starling are ActionScript 3 3D/2D frameworks used for
game development. Stage3D is available on desktop through Flash Player 11
and AIR 3. Stage3D and Starling use low-level GPU APIs running on OpenGL,
DirectX on desktop, and OpenGL ES 2.0 on mobiles. If you know how to code
in ActionScript 3, you have already mastered one of the prerequisites for Adobe
programmable pipeline game development.

Web Graphics Library (	 WebGL) is a JavaScript API for rendering interactive
2D/3D graphics in web browsers without plug-ins; it can be mixed with HTML.
There are many JavaScript libraries for working with WebGL. One is three.js,
a cross-browser JavaScript library used with HTML5 Canvas. WebGL is based
on OpenGL ES 2.0, and, like OpenGL/OpenGL ES, WebGL is designed and
maintained by Khronos. Google Maps is one of the most popular WebGL
applications. In addition to this, Chrome Experiments (Figure 1-21) contains a
showcase of various applications powered by WebGL.

Figure 1-21.  Chrome Experiments

24 CHAPTER 1: Benefits of the New API

Chrome Experiments is a showcase for creative web experiments, the vast majority of which are
built with the latest open technologies, including HTML5, Canvas, SVG, and WebGL. These were
made and submitted by talented artists and programmers from around the world.1

The experiments are meant for Chrome browsers, but Mozilla Firefox and Safari are also able to run
most of these.

Where Are the Developers?
Most Android devices (more than 90%) have sufficient capabilities to run version 2.0 of OpenGL ES;
however, most game developers have not fully exploited such capabilities, because game vendors
(i.e., desktop, console, and handheld) develop their own frameworks/engines for creating games and none
are completely based on ES 2.0. These frameworks are not designed for multi-paradigm game programming.
Instead, they are object-oriented with complete designs for integrating all aspects of the game, mainly:

1.	 Screen: splash screen, options screen, and game screen

2.	 Input: keyboard input, touch input, UI input from buttons, and input from
motion sensors like Accelerometer and position sensors like Magnetometer,
which are common on most Android devices

3.	 Audio: audio for splash screen and background scores, audio for player/
enemy movements and attacks, and audio for options screen and other
sounds in the game

It takes time to build and test these game frameworks. The longer it takes to build one, the more
variety is offered in terms of types of games. Much literature is available for creating complete game
frameworks for Android. The most recent book is Beginning Android Games, Second Edition by
Mario Zechner and Robert Green (Apress, 2012). Beginning Android Games provides a complete
idea of how to build an Android game framework; however, all the rendering classes in this book are
based on ES 1.0, meaning, once understand ES 2.0, you can translate the fixed functions of ES 1.x
into your custom (ES 2.0) functions.

For game developers who have used any open-source or proprietary game development
frameworks/engines for handheld devices, based on the fixed-function pipeline, ES 2.0 poses a big
problem. However, game developers can take advantage of this situation. They can learn ES 2.0
for developing games, or they can become game framework developers for ES 2.0. Because there
are few ES 2.0 game developers and even fewer game frameworks, most game developers are also
game framework developers.

Here are some popular games on Android based on OpenGL ES 2.0:

Death Rally (seen in Figure 	 1-22) is “an action packed combat racer with cars,
guns, and explosive fun. Death Rally has been played more than 60 million times
by more than 11 million gamers worldwide!”2 (More on Remedy Entertainment
can be found at http://remedygames.com).

1http://www.chromeexperiments.com/about/
2http://remedygames.com

http://remedygames.com/
http://www.chromeexperiments.com/about/
http://remedygames.com/

25CHAPTER 1: Benefits of the New API

“Unlike existing mobile benchmarking applications available for Android enthusiasts, 	
the Electopia OpenGL ES 2.0 benchmark is written by game development experts
in a manner representative of advanced, real world mobile games. Electopia
provides accurate graphics performance measurements, along with unique
features like the ability to isolate GPU performance from other system factors,
such as LCD resolution.”3 (More information about Electopia (seen in Figure 1-23)
and Tactel can be found at http://electopia1.android.informer.com/).

Figure 1-22.  Death Rally by Remedy Entertainment

3http://electopia1.android.informer.com/

http://electopia1.android.informer.com/
http://electopia1.android.informer.com/

26 CHAPTER 1: Benefits of the New API

Figure 1-23.  Electopia by Tactel AB

“Raging Thunder is a gut-churning, tire burning racer, giving you control of the most 	
extreme muscle cars in the world! Race against time, CPU controlled opponents, or
up to three other speed addicts in this fast-paced, exhilarating, coin-op style racing
game.” 4 More about Raging Thunder (seen in Figure 1-24) can be found at
https://play.google.com/store/apps/details?id=com.polarbit.ragingthunder.

Figure 1-24.  Raging Thunder by polarbit

4https://play.google.com/store/apps/details?id=com.polarbit.ragingthunder

https://play.google.com/store/apps/details?id=com.polarbit.ragingthunder
https://play.google.com/store/apps/details?id=com.polarbit.ragingthunder

27CHAPTER 1: Benefits of the New API

Summary
This chapter discussed the basic differences between ES 1.x and 2.0 APIs, and how those
differences are likely to persist because of the great support for programmable pipeline from leading
CPU/GPU hardware manufacturers.

Since learning any new software technology can be difficult, the chapter also features an
introductory tour of the vast scope of programmable graphic rendering APIs on various platforms,
including modern browsers. It shows you how to create a simple app that makes use of ES 2.0,
illustrating how painless it is to use this API on Android using the Android SDK.

In Chapter 2 you can read about some useful techniques for using OpenGL ES with UIs, such as
buttons and motion/position sensors, before diving into the ES 2.0 environment for rendering 3D
graphics.

29

Chapter 2
Implementation Prerequisites

This chapter does not jump straight into ES 2.0 fundamentals, because there are some prerequisites,
such as knowledge of device inputs, for implementing OpenGL ES on Android devices. Most coders
are prone to errors when working with device inputs, which play a crucial role in making ES 2.0
applications interactive, unless they have a sound understanding of the inputs and the associated
classes at work behind the scenes.

Before diving into the basic concepts of the programmable pipeline, I shall explain the efficient
usage of user interface (UI) on handhelds. You will learn to use buttons to update the rendering on an
OpenGL surface and then we will look into using screen and sensors to obtain inputs, which can be
used to move and animate game objects.

Selecting a Development Device: Why Upgrade to
Gingerbread?
For an interactive graphics application, such as a game, leaving a good impression on users requires
fulfilling certain conditions. The most crucial of these is lag time (latency). We often observe delays
or lags when interacting with graphics applications, especially during gameplays. This is completely
unacceptable, because a few milliseconds can spoil the entire user experience. If developers do not
take steps to prevent this, users simply switch to other similar applications that are lag-free.

Although this is not true of earlier Android versions, graphics applications developed on
Gingerbread do not suffer from delays or lags. (Reasons for this can be found at
http://www.badlogicgames.com/wordpress/?p=1315). Additionally, Google IO 2011: Memory
management for Android Apps, a conference session held by Google (the video for this session is
available on YouTube), explains that pre-Gingerbread garbage collectors are the primary cause for
a laggy response from applications, although sometimes the application itself could be flawed or
buggy.

At the time of writing, less than 6% of all Android devices have Donut, Eclair, or Froyo versions. It
is common for owners to upgrade to Gingerbread. As a result, Gingerbread accounts for more than
40% of the Android OS version distribution (Figure 2-1).

http://www.badlogicgames.com/wordpress/?p=1315

30 CHAPTER 2: Implementation Prerequisites

Debuggable versions of heavy applications are slower than the optimized exported apk versions,
and, if you are developing on pre-Gingerbread versions of Android, the garbage collector makes
your application even slower (both debuggable and exported apk). There is no way to tackle this,
since faster (concurrent) garbage collectors have only been available since Gingerbread. So, when
beginning development of interactive graphics applications (based on ES 1.x or ES 2.0), be sure to
do so on Gingerbread.

Choosing Inputs That Your Game Needs
Gameplay requires the use of inputs (or controls), through which the game logic comes to life. On
handhelds, these inputs range from the basic UI (button-views, seekbars, touch, etc.) to motion
and position sensors and peripherals. Although the gaming experience is enhanced by innovations,
such as peripheral controls from controller manufacturers like Zeemote, game developers should
attempt to minimize any need for external inputs (Figure 2-2 shows the Zeemote controller, which is
coupled with the Android device via Bluetooth). Developers should even minimize (and optimize) the
use of any UI that is natively available on Android handhelds, such as button-views and motion and
position sensors. After all, a game for mobile devices becomes popular largely because it can be
played anywhere and requires simply touching buttons on the screen, dragging a finger across the
screen, or using sensors.

Figure 2-1.  Android OS: version distribution

Note  The Android OS version distribution is available at http://developer.android.com/about/
dashboards/index.html, and Figure 2-1 provides a chart representing this.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

31CHAPTER 2: Implementation Prerequisites

Casual, Tower-Defense, and Puzzle games are the most popular genres of games on handhelds.
In most of these games, the innovation and simplicity of the UI design (layout and use of visual
elements, as well as the use of sensors) makes them widely accepted across all devices, by all
groups of people, whether the game uses buttons to make a character jump or touch to position a
basket and collect fruit (Figure 2-3).

Figure 2-2.  Zeemote JS1 game controller

Figure 2-3.  Catchy Basket by MetaDesign Solutions Pvt Ltd

32 CHAPTER 2: Implementation Prerequisites

Simple UI designs in such games do not reflect limitations in the underlying hardware, since most
Android devices offer powerful and feature-rich UIs. We just want the UI design to be as simple as it
can be, in order to make the gameplay easy.

Although we have not yet discussed how to render graphics using ES 2.0, to develop an
understanding of UI design (for gameplay inputs) I shall introduce a feature of 3D graphic rendering
APIs called 3D-Transformation. 3D-Transformation is the process of changing sizes, orientations, or
positions of objects by mathematical operations, such as Matrix Multiplication. There are three types
of 3D-Transformation:

Geometric or Modeling transformation	

Coordinate or Viewing transformation	

Perspective or Projection transformation	

At this stage, Geometric transformation (Modeling transformation) should be sufficient to better
understand the game UI. Geometric transformation has three types:

	Translation: shifting an object to a new position

	Scaling: changing the dimensions of an object

	Rotation: rotating an object about a center

In Geometric transformation, an object is transformed to a new position (translation), a new size
(scaling), or a new configuration (rotation). This transformation is achieved using matrices for various
types of geometric transformation. Therefore, translation is achieved by using a translate matrix,
scaling is achieved by using a scale matrix, and rotation is achieved by using a rotate matrix.

Note  It is possible to combine various transformations in a single matrix. For now, I do not want to expose you
to advanced concepts. Chapter 3 demonstrates combining transformations, using Android’s matrix math utilities.

Figure 2-4 shows a spacecraft trying to dodge incoming rocks. Assuming the image is a 3D scene in
a game within which the motion of spacecraft is confined along the x and y axes, the only possible
way to successfully dodge the rocks is by translating along the x-axis (in the directions in which
the longer arrows are pointing). In graphic rendering APIs, this can only be achieved by translation
transformation.

33CHAPTER 2: Implementation Prerequisites

Figure 2-4.  Translation using UI: Buttons

Note  Throughout this book, we work in landscape mode, especially when working with game layout, so we
can stay focused on one approach, instead of choosing between landscape and portrait modes. Moreover,
landscape mode provides a wider view so UI elements, such as button-views and seekbars, can be widely
laid out for a spacious look to the game.

Graphic rendering APIs allow us to associate matrices with objects to animate them, and, for such a
movement along the x-axis, APIs allow constant updating to the translate matrix associated with the
object. For translation along the x-axis, we only need a measure of the (number of) moves along the
x-axis. Hence, it should only require a UI design consisting of buttons for moves along the positive
x-axis and the negative x-axis. Two buttons, one for left move and one for right move, are enough to
dodge the incoming rocks in this case.

Unlike gaming consoles, handhelds do not have controllers. Most games on handhelds use the
screen to place the visual elements used as inputs for gameplay. Unlike the spacious screen of a
tablet, space on a mobile screen is very limited. This is why we focus on the UI design on mobiles,
rather than on tablets. Therefore, after designing the game UI, we need to reduce the area occupied
by visual elements, such as button-views, to avoid cluttering UI and GPU rendered 3D graphics. You
may wonder about the relationship between the rendering of game UI (visual elements like button-
views and seekbars) and OpenGL’s GPU rendering. Chapter 3 provides in-depth insight regarding
that relationship. The examples in the following section, however, should help you understand the
practical difference between game UI and OpenGL rendering.

34 CHAPTER 2: Implementation Prerequisites

In Figure 2-4, two buttons were used to translate objects separately along the positive x-axis and
the negative x-axis. These buttons can easily be eliminated, by logically dividing the screen (or the
widget layout occupying the entire width of the screen if not the entire height) into two equal parts
(as shown in Figure 2-5). We can get the x-coordinate of the touch using MotionEvent.getX(). If this
value is less than the x-coordinate of the mid-point of the screen, it imitates a left button touch for
translating the object to the left, and a right button touch in the other case. This imitation is under
our control, because the conditional block for half screen touches can now handle the matrix update
code. Such innovations help make efficient use of space on a mobile screen.

Figure 2-5.  Translation using UI: Screen

Note  Every visual element (that inherits from View) in an Android application can be assigned a touch
listener using the setOnTouchListener method. This method registers a listener for the callback method
onTouch, which is invoked when a touch event is sent to this visual element. The onTouch method takes
two arguments (of type View and MotionEvent). The View argument is for the view (visual element) that
the touch event has been dispatched to, whereas the MotionEvent argument contains full information about
the event (for example, the x and y coordinates of touch, which are accessed using the getX() and getY()
methods of the MotionEvent class).

After translation, rotation is the most commonly used geometric transformation in games. Graphic
rendering APIs allow us to associate rotation matrices with objects, just like the translation matrices.
Like translation, rotation is implemented in a variety of ways. We can logically divide the screen for
clockwise-anticlockwise spins, use buttons for spins, or use motion and position sensors to detect
tilt (left-right) for different types of spins. In some cases, translation can be made automatic (a clever
design principle becoming very common in popular modern games) so the screen can be used for
rotation. This way, a lot of screen space can be left for a spacious look to the game.

35CHAPTER 2: Implementation Prerequisites

Tank Fence
Having explained the necessary relationship between inputs for gameplay and object transformation
(using graphic rendering APIs), it’s time to introduce the game we will be working with.

This game is Tank Fence, a simple 3D shooting game in which the player gets to control a tank to
guard a region against invaders. The UI for this game (Figure 2-6) consists of buttons for forward-
backward movement of the tank, another button for firing weapons at the invaders, and touch (or
optional use of motion and position sensors) to rotate the tank. The buttons intended for forward-
backward movement will actually update the translate matrix we associate with the tank, and the
touch (or optionally motion & position sensors) will update the rotate matrix used in combination
with the translate matrix.

Figure 2-6.  Tank Fence

We will start working on this game after discussing ES 2.0 fundamentals (Buffers, GLSL, State
Management and 3D-Transformation) in Chapter 3, and we will design the objects for the game
(tank and invaders) using Blender in Chapter 4. But before that, let’s see how to create menus for
the game.

Creating Menus for the Game
Most games initialize with a main menu for options or settings, and the main menu displays after a
splash screen, which is where the logo of the game is displayed. We won’t use a splash screen, but
I will explain the basic features and functioning of the GAME MENU application from the source
code to help you get started with menus for the game.

36 CHAPTER 2: Implementation Prerequisites

Under “File Menu” in Eclipse, select “Import” and then select “Existing Projects into Workspace.”
Import the archive file gamemenu.zip from the Chapter2 folder. This will load the GAME MENU
application into your workspace.

Notice that the structure of the GAME MENU application is similar to the GL SURFACE application
we created in Chapter 1. Unlike that application, however, we have a modified entry point; class
Main in the Main.java file now extends the ListActivity class for hosting a ListView (with
id @android:id/list) to display the menu options. The options are inside the options.xml file
(Listing 2-1) inside the res/values folder.

Listing 2-1.  GAME MENU/res/values/options.xml

<resources>
 <string-array name="options">
 <item name="game">New Game</item>
 <item name="score">High Score</item>
 <item name="player">Edit Player</item>
 <item name="sound">Toggle Sound</item>
 <item name="data">Clear Data</item>
 </string-array>
</resources>
 
In the onCreate method of class Main (GAME MENU/src/com/apress/android/gamemenu/Main.java),
setListAdapter is called to set the default formatting for the ListView items, as well as to collect
the options (string-array) for display from the options.xml file (using the getStringArray method).
To initiate a response by clicking the items in the ListView, class Main implements the interface
OnItemClickListener.

The real action happens inside the inherited method onItemClick. This is a callback method that is
invoked when we click an item in the ListView. This method provides a lot of information about the
clicked item. At this stage, we need to know the position of the clicked item in the ListView. This
information is stored inside the third argument of the onItemClick method (int arg2). Keeping in
mind that the first item in the list is at position 0, Listing 2-2 shows how to handle the clicks.

Listing 2-2.  GAME MENU/src/com/apress/android/gamemenu/Main.java

public void onItemClick(AdapterView<?> arg0, View arg1, int arg2, long arg3) {
 if (arg2 == 0) {
 startActivity(new Intent(Main.this, Game.class));
 }
 else if (arg2 == 1) {
 Dialog d = new Dialog(this);
 d.setContentView(R.layout.highscore);
 d.setTitle("High Score");
 d.show();
 }

37CHAPTER 2: Implementation Prerequisites

Note  The GAME MENU application consists of default responses for handling most of the clicked items in
the ListView. If you are an advanced Android developer, you can extend these responses later, but right now
they are sufficient.

Since the list is displayed in the same order as the items inside the options.xml file (string-array
in Listing 2-1 contains this list), it becomes easy to create if blocks to handle each clicked item
according to its position in the list.

Inside the if block for “High Score” and “Edit Player” items (Listing 2-2), there are lines of code to
invoke a dialog, which has some styling applied to it, which is defined in the res/layout folder. The
dimens.xml and strings.xml files inside the res/values folder contain the padding-dimensions and
the text (respectively) for the dialogs. Figures 2-7 and 2-8 show these dialogs.

Figure 2-7.  Game menu: high score

 else if (arg2 == 2) {
 Dialog d = new Dialog(this);
 d.setContentView(R.layout.editplayer);
 d.setTitle("Edit Player");
 d.show();
 }
}
 

38 CHAPTER 2: Implementation Prerequisites

When clicked, the “New Game” item starts a new activity to display an OpenGL surface view on
the screen (Figure 2-9). The Java class for this new activity is identical to class Main from the
GL SURFACE application; it has simply been renamed to Game. (The associated Renderer class for
this activity is also identical to the GLES20Renderer class from the GL SURFACE application).

Figure 2-8.  Game menu: edit player

Figure 2-9.  Game menu: new game

To make sure the GAME MENU application takes over the entire screen and is oriented in landscape
mode, all the activity elements in the AndroidManifest.xml file must include the attributes and
values shown in Listing 2-3. Table 2-1 provides the line descriptions for Listing 2-3.

39CHAPTER 2: Implementation Prerequisites

Listing 2-3.  GAME MENU/AndroidManifest.xml

android:configChanges="keyboard|keyboardHidden|orientation"
android:screenOrientation="landscape"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
 

Table 2-1.  Listing 2-3, lines description

Line Description

1. Hint Android to avoid performing the default reset of activity when the specified configurations change

2. Set landscape orientation

3. Make the activity full-screen

Now, we move on to an important topic to discuss using OpenGL views along with XML-based
layouts and views.

Setting Views Using setContentView and addContentView
Activity content can be set to an explicit view using the setContentView method, which is a public
method of the android.app.Activity class. Using this method, a View is placed directly into the
activity’s view hierarchy. This View can be as simple as a button-view (Listing 2-4, Figure 2-10) or it
can itself be a complex view hierarchy, consisting of various layouts and views within it.

Listing 2-4.  SETCONTENTVIEW/src/com/apress/android/setcontentview/Main.java

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 
 Button button = new Button(this);
 button.setText("SETCONTENTVIEW");
 setContentView(button);
}
 

Note  Layout widgets, such as LinearLayout,as well as the widgets with visual representation, such as
Button, (Listing 2-4) are all subclasses of the android.view.View class.

40 CHAPTER 2: Implementation Prerequisites

We saw in Chapter 1 that the setContentView method can set an OpenGL surface as the activity’s
content view. This is possible because GLSurfaceView (android.opengl.GLSurfaceView) is a subclass
of View.

On Android, all OpenGL rendering is hosted by GLSurfaceView. To modify this rendering using
visual elements like button-views, we must separate them from GLSurfaceView. Android provides
a convenient way to do so, using the addContentView method (addContentView(View view,
LayoutParams params)).

The addContentView method is also a public method of the android.app.Activity class. Unlike the
setContentView method, the addContentView method requires an extra argument to obtain the view’s
layout information.

Figure 2-10.  setContentView with button-view

41CHAPTER 2: Implementation Prerequisites

Using the addContentView method, we add an additional content view to the activity. In an activity,
if the argument passed to the setContentView method is an OpenGL surface and the first argument
passed to the addContentView method is a layout widget, the OpenGL surface is laid out below the
layout widget (Figure 2-11). To get a better understanding, let’s create a new application:

1.	 Click the wizard to create a new Android project.

2.	 Set the application and project name as “ADDCONTENTVIEW.”

3.	 Uncheck the “Create custom launcher icon” option and click “Next.”

4.	 For “Create Activity,” select BlankActivity and click “Next.”

5.	 Set the “Activity Name” and “Layout Name” as “Main” and “main,”
respectively.

6.	 Click “Finish.”

7.	 Copy the files GLES20Renderer.java and Main.java from GL SURFACE
application into the package for ADDCONTENTVIEW application (confirm
overwriting of Main.java).

setContentView(_surfaceView); in Main.java (ADDCONTENTVIEW application) sets an OpenGL
surface as the activity’s content view. Now, we add a layout widget (with button-views) as an
additional content view (Listing 2-5).

Listing 2-5.  ADDCONTENTVIEW/src/com/apress/android/addcontentview/Main.java

LinearLayout layout = new LinearLayout(this);
layout.setOrientation(LinearLayout.VERTICAL);
layout.setPadding(0, 200, 0, 0);
 

1.	 After line 16 (the line with the call to the setContentView method) in Main.
java, add the lines of code from Listing 2-5 to create a LinearLayout layout
with vertical orientation and top-padding of 200 pixels (if you are on Eclipse,
you can quick fix errors to import the class android.widget.LinearLayout).

2.	 Create two buttons for this layout and name them “Up” and “Down,”
respectively.

3.	 After setting width and height for the buttons using setWidth and setHeight,
set their layout parameters (Listing 2-6).

Listing 2-6.  ADDCONTENTVIEW/src/com/apress/android/addcontentview/Main.java

Button buttonUp = new Button(this);
buttonUp.setText("Up");
buttonUp.setWidth(110);
buttonUp.setHeight(85);
LinearLayout.LayoutParams layoutParamsButtonUp = new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.WRAP_CONTENT,
 LinearLayout.LayoutParams.WRAP_CONTENT);
layoutParamsButtonUp.setMargins(0, 0, 0, 20);
 

42 CHAPTER 2: Implementation Prerequisites

Button buttonDown = new Button(this);
buttonDown.setText("Down");
buttonDown.setWidth(110);
buttonDown.setHeight(85);
LinearLayout.LayoutParams layoutParamsButtonDown = new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.WRAP_CONTENT,
 LinearLayout.LayoutParams.WRAP_CONTENT);
layoutParamsButtonDown.setMargins(0, 20, 0, 0);
 

Figure 2-11.  OpenGL with XML/UI view

Note  If using Eclipse, do not forget to quick fix the errors.

4.	 Finally, add these buttons to the layout and add the layout widget as an
additional content view using the addContentView method (Listing 2-7).

Listing 2-7.  ADDCONTENTVIEW/src/com/apress/android/addcontentview/Main.java

layout.addView(buttonUp, layoutParamsButtonUp);
layout.addView(buttonDown, layoutParamsButtonDown);
layout.setGravity(Gravity.CENTER | Gravity.RIGHT);
 
addContentView(layout, new LayoutParams(LayoutParams.MATCH_PARENT,
 LayoutParams.MATCH_PARENT));
 

Using the addContentView method, visual elements like button-views are easily separated from the
OpenGL rendering (Figure 2-11). This allows us to use OpenGL views along with XML-based layouts
and views to conveniently control the 3D rendering on OpenGL surfaces using the UI.

43CHAPTER 2: Implementation Prerequisites

Sleek Design of XML Views
Now, we make some changes to the ADDCONTENTVIEW application to give a sleek design to the
XML-based views, which we also use in the Tank Fence game:

1.	 In Main.java, clear all lines of code from the onCreate method after
setContentView(_surfaceView);

so the method body is reduced to:
 
super.onCreate(savedInstanceState);
surfaceView = new GLSurfaceView(this);
surfaceView.setEGLContextClientVersion(2);
surfaceView.setRenderer(new GLES20Renderer());
setContentView(_surfaceView);
 

2.	 Add the lines of code from Listing 2-8 after the setContentView method to
create a LinearLayout with LayoutParams layoutParamsUpDown and gravity
bottom-left to keep the LinearLayout away from the back button while
in landscape mode (we set screenOrientation to landscape later in this
section). Quick fix errors (if any) to import the required classes.

Figure 2-12.  ADDCONTENTVIEW INFLATER application

Note  Instead of writing Java code to create layout widgets with button-views, you can use
LayoutInflater to inflate XML-based layouts and views. The ADDCONTENTVIEW INFLATER application
(output seen in Figure 2-12) from the source code helps you get started with layout inflaters.

44 CHAPTER 2: Implementation Prerequisites

Listing 2-8.  SLEEK UI/src/com/apress/android/sleekui/Main.java

LinearLayout layout = new LinearLayout(this);
LinearLayout.LayoutParams layoutParamsUpDown = new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.MATCH_PARENT,
 LinearLayout.LayoutParams.MATCH_PARENT);
layout.setGravity(Gravity.BOTTOM | Gravity.LEFT);
 

3.	 To inflate XML-based views from a layout file, get access to the inflater
service by calling: getSystemService(Context.LAYOUT_INFLATER_SERVICE);

4.	 Create a View object to reference the inflated view returned by the
inflater.inflate method (as shown in Listing 2-9).

Listing 2-9.  SLEEK UI/src/com/apress/android/sleekui/Main.java

LayoutInflater inflater = (LayoutInflater) getSystemService(Context.LAYOUT_INFLATER_SERVICE);
View linearLayoutView = inflater
 .inflate(R.layout.updown, layout, false);
 

5.	 After quick fixing the errors for unimported classes, rename the file main.xml
(inside res/layout folder) as updown.xml.

6.	 Add the following string resources (Listing 2-10) to the strings.xml file
(inside res/values folder):

Listing 2-10.  SLEEK UI/res/values/strings.xml

<string name="up">UP</string>
<string name="down">DOWN</string>
 

7.	 Remove all lines from the updown.xml file and add the layout shown in Listing 2-11.

Listing 2-11.  SLEEK UI/res/layout/updown.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="5dp"
 android:layout_marginLeft="5dp"
 android:background="@android:drawable/alert_dark_frame"
 android:orientation="vertical"
 android:paddingBottom="11dp" >
 
 <Button
 android:layout_width="90dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="25dp"
 android:contentDescription="@string/app_name"
 android:text="@string/up" />
 

http://schemas.android.com/apk/res/android

45CHAPTER 2: Implementation Prerequisites

 <Button
 android:layout_width="90dp"
 android:layout_height="wrap_content"
 android:contentDescription="@string/app_name"
 android:text="@string/down" />
 
</LinearLayout>
 

8.	 Add the inflated view (from 4) to the LinearLayout layout by calling layout.
addView(linearLayoutView), then, add the layout as an additional content
view by calling: addContentView(layout, layoutParamsUpDown);

The purpose of using the layout from Listing 2-11 is to ensure:

	Wide buttons are used: Buttons should have layout_width of 90dp (density
independent pixels). Buttons should be at least that wide, because graphics
applications, such as games, require users to interact continuously with UI
elements, such as buttons, and, they are easy to click if wide enough.

	LinearLayout does not get hidden: Make sure the LinearLayout maintains a gap
from the left corner of the screen and it has layout_marginLeft and layout_
marginBottom of 5dp.

	Buttons have color contrast with other views: By setting a dark background
for LinearLayout using android:background="@android:drawable/alert_dark_
frame", it becomes easy to spot light-colored buttons, which helps quick
interaction during gameplays. Use of layouts with border or background is a
great way to debug your designs.

Be sure this activity takes the entire screen in landscape mode (as shown in Figure 2-13). Add the
lines of code from Listing 2-3 to the activity element inside the manifest file for this application.

Figure 2-13.  Landscape mode with UI

46 CHAPTER 2: Implementation Prerequisites

Working with Buttons and the Counter Class
Here, we finally discuss the functioning of an application that updates the rendering on an OpenGL
surface using a layout (that we just created). To load that application into your workspace, import the
archive file updowncounter.zip from the Chapter2 folder.

Inside the UPDOWN COUNTER application (Figures 2-14 and 2-15), if you browse the layout folder,
you will see the files updown.xml and counter.xml. The updown.xml file contains the layout from
the previous topic. However, now the buttons contain ids “up” and “down” defined in the id.xml
file (inside res/values folder), which also contains another id “counter,” corresponding to the
TextView inside the counter.xml file. The TextView (Figures 2-14 and 2-15) has some basic styling
applied to it.

Buttons are assigned ids so they can be referenced from the Activity defined in Main.java file. This
application contains the Renderer class from the previous application with slight modifications.

This application uses an important class Counter (this class will also be used in the Tank Fence
game) to track the number of clicks on the up and down buttons. (The reasons for using
synchronized blocks in this class are discussed in Chapter 3.) Let’s see how this application works
using the class Counter and GLES20Renderer:

Each time a button is clicked, the static field 	 _upDown (of class Counter) is
modified by a call to getUpDownNextValue or getUpDownPreviousValue (called
inside the click listeners for buttonUp and buttonDown).

The 	 glClearColor method (inside the GLES20Renderer class) takes float type
arguments (in rgba format, in the 0 to 1 range) for coloring the entire OpenGL
surface; hence, calling glClearColor(0.0f, 0.0f, 0.0f, 1); makes the entire
screen black, as shown in Figure 2-14.

The 	 clearScreenWithColor method defined in the GLES20Renderer class takes an
int type argument to modify the blue color component inside the glClearColor
method.

When the 	 onDrawFrame method gets called (on refresh of the OpenGL surface), it
invokes the clearScreenWithColor method by passing it the current value of the
_upDown field (which is controlled by the buttons). This leads to a new color of
the OpenGL surface each time the button is clicked (this will only happen if the
blue color component is supplied a value in the 0 to 1 range).

47CHAPTER 2: Implementation Prerequisites

Figure 2-14.  Synchronized counter application

Figure 2-15.  Using buttons to affect the rendering

This example gives you the basic idea of controlling the rendering on OpenGL surface by the use of
UI like button-views (Figure 2-15).

Similar to the technique used here, the following topics use touch and sensors in place of buttons to
control graphic rendering on the OpenGL surface.

Take a closer look at the Counter class (UPDOWN COUNTER/src/com/apress/android/updowncounter/
Counter.java) and the way it has been used with UI and Renderer. Understanding its usage is
necessary to understand the concepts for using UI with OpenGL rendering.

48 CHAPTER 2: Implementation Prerequisites

Using Touch for Rotation
For the Tank Fence game, we implement rotation using the screen (or optionally using sensors). We
won’t use buttons for rotation. In this topic, you learn to use the screen using screen touch to update
the rotate matrix associated with an object.

The rotate matrix associated with an object requires the desired angle of rotation (in degrees) to
rotate the object by that angle about a particular axis.

If you want to use the screen to rotate an object about the axis perpendicular to it (the screen) so
that the angle of rotation is proportional to the horizontal distance moved by a finger across the
screen, take the ratio of the total horizontal distance moved to the width of the screen. For example,
we can create a class that implements the interface OnTouchListener, and, inside the implemented
method onTouch, we can use the code shown in Listing 2-12 to find the horizontal distance moved.

Listing 2-12.  TOUCH ROTATION/src/com/apress/android/touchrotation/Main.java

if (event.getAction() == MotionEvent.ACTION_DOWN) {
 _touchedX = event.getX();
} else if (event.getAction() == MotionEvent.ACTION_MOVE) {
 float touchedX = event.getX();
 float dx = Math.abs(_touchedX - touchedX);
 
We get the device width by accessing the display metrics members, and we obtain the ratio of dx
to the device width. We then convert this ratio into degrees, which can be used by the rotate matrix
to rotate the object. This concept is utilized by the TOUCH ROTATION application (Figure 2-16),
in the source code for this chapter. This application (via class Main) also takes into account the
direction (left or right) in which the finger moves across the screen so as to handle clockwise and
anticlockwise rotations separately.

To create such an application, we need two classes:

	Renderer class: to render an object as well as expose the rotate matrix (or
related attributes like rotation angle) associated with this object

	Main class: to calculate the angle of rotation and update the rotate matrix using it

Load the TOUCH ROTATION application into your workspace. It contains both classes as described.
You do not need to worry about the class GLES20Renderer at this stage; all that it does is:

Renders a 3D object, which has a 	 rotate matrix (_RMatrix) associated with it

Exposes access to the field 	 _zAngle, which stores the angle of rotation to
update the rotate matrix

49CHAPTER 2: Implementation Prerequisites

The Main class implements a touch listener for calculating the ratio of the total horizontal distance
moved to the width of the screen (inside its onTouch method). Because of the default sensitivity
settings, if this ratio is 1/2, the object performs a complete rotation about the axis perpendicular
to the screen. This class also contains if blocks to compare consecutive finger moves across the
screen for clockwise and anticlockwise rotations (please note that the finger has to be lifted before
the next swipe across the screen). The _TOUCH_SENSITIVITY and _filterSensitivity fields are used
to make the rotations smooth. You can modify these fields to adjust the sensitivity of touch.

Rotation Using Android Sensors
Now we discuss the use of Android sensors as UI to update the 3D rendering on an OpenGL surface
(Figures 2-17 to 2-21). Because of the varying support for sensors across various Android devices,
we restrict the use of sensors to:

	Accelerometer (Motion sensor)

	Gravity sensor (Motion sensor)

	Magnetometer (Position sensor)

We access the sensors available on an Android device using the Android sensor API. This API
helps us perform important sensor-related tasks on an Android handheld, such as determining the
availability of a sensor, requesting raw sensor data, and registering sensor event listeners.

To get started with this API, create an instance of the sensor service, as shown in Listing 2-13.

Listing 2-13.  SENSOR ROTATION/src/com/apress/android/sensorrotation/Main.java

SensorManager sm = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
 

Figure 2-16.  Rotating arrow with touch

50 CHAPTER 2: Implementation Prerequisites

To create an instance of a specific sensor, use the class Sensor. The SensorManager class provides a
method getDefaultSensor(int type) to access Sensor objects specified by the int type. However,
we start receiving notifications for sensor events by registering a SensorEventListener. As in the
application discussed in the previous section, the Main class for sensor application also implements
a listener, but this time a SensorEventListener (android.hardware.SensorEventListener).

The interface SensorEventListener contains an important callback method onSensorChanged that
provides the raw sensor data through the argument SensorEvent event. You may wonder how
frequently SensorEvent reports new values. While registering a listener, we must also specify the
delay or measurement rate for the listener. These rates are defined as static constants inside the
SensorManager class (Listing 2-14).

Listing 2-14.  SENSOR ROTATION/src/com/apress/android/sensorrotation/Main.java

sm.registerListener(this,
 sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_NORMAL);
sm.registerListener(this,
 sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
 SensorManager.SENSOR_DELAY_NORMAL);
sm.registerListener(this, sm.getDefaultSensor(Sensor.TYPE_GRAVITY),
 SensorManager.SENSOR_DELAY_NORMAL);
 

Apart from reporting raw sensor data, the SensorEvent object also lets us know about the accuracy
of data returned, so we can stop processing the data if it cannot be trusted (Listing 2-15).

Using the getType method of the Sensor class, we can get information about the type of sensor that
generated the sensor event. This allows our application to conveniently switch between sensors for
obtaining different type of raw sensor data.

Figure 2-17.  Rotating arrow using motion and position sensors

http://eclipse-javadoc:%E2%98%82=SENSOR%20ROTATION/C:%5C/Program%20Files%5C/Android%5C/android-sdk%5C/platforms%5C/android-15%5C/android.jar%3Candroid.hardware(Sensor.class%E2%98%83Sensor

51CHAPTER 2: Implementation Prerequisites

Listing 2-15.  SENSOR ROTATION/src/com/apress/android/sensorrotation/Main.java

public void onSensorChanged(SensorEvent event) {
 if (event.accuracy == SensorManager.SENSOR_STATUS_UNRELIABLE) {
 return;
 }
 
 switch (event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER: {
 _accelVals = event.values.clone();
 _accelValsFiltered[0] = _accelValsFiltered[0] * (1.0f - _a)
 + _accelVals[0] * _a;
 _accelValsFiltered[1] = _accelValsFiltered[1] * (1.0f - _a)
 + _accelVals[1] * _a;
 _accelValsFiltered[2] = _accelValsFiltered[2] * (1.0f - _a)
 + _accelVals[2] * _a;
 break;
 }
 case Sensor.TYPE_MAGNETIC_FIELD: {
 _magVals = event.values.clone();
 _magValsFiltered[0] = _magValsFiltered[0] * (1.0f - _a)
 + _magVals[0] * _a;
 _magValsFiltered[1] = _magValsFiltered[1] * (1.0f - _a)
 + _magVals[1] * _a;
 _magValsFiltered[2] = _magValsFiltered[2] * (1.0f - _a)
 + _magVals[2] * _a;
 break;
 }
 case Sensor.TYPE_GRAVITY: {
 _gravVals = event.values.clone();
 break;
 }
 

Figure 2-18.  Rotating toward west through north (device facing up)

52 CHAPTER 2: Implementation Prerequisites

In Listing 2-15, the variables named _*Vals or _*Filtered are fields (float[3]) that store sensor
data. They are multiplied with some (strange seeming) values to smooth the sensor data.

Finally, by calling the getRotationMatrix method (a public method of SensorManager class), the
rotation matrix is computed, which can be directly used as a rotate matrix to rotate any 3D object
rendered using OpenGL. Now, let’s talk about the SENSOR ROTATION application from the source
code for this chapter.

Like the TOUCH ROTATION application, the SENSOR ROTATION application contains a Renderer
class for rendering a 3D object; and, once again, this class makes it possible to access the fields
for rotating the object. However, class Main now implements the interface SensorEventListener to
process the raw sensor data.

If you run this application on your Android device, you should see some text displayed in the
top-left corner of the screen, because we have added a TextView as an additional content view.
It is used to show:

	Angle of the object about the axis perpendicular to the screen (within an
approximate range of -140° to 140°)

	Fraction, that is, extent of deviation from the mean position (within an
approximate range of -1 to 1)

	Pitch or tilt about the longer edge of device (within an approximate range
of -1 to 1)

	Gravity (within a range of 0 to 9.80665; it will never go beyond that range, even
if testing this app inside a black hole!)

Because of some default settings in this application, when the object (arrow head) points along the
positive y-axis (when the device is in landscape mode), east is indicated. This direction is the mean
position of the object. Angle and Fraction are positive when the object points toward the left of mean
position (Figure 2-18), and they are negative for the other case (Figure 2-19). We don’t have to worry
about Pitch; the Angle is sufficient to rotate the object.

Figure 2-19.  Rotating toward west through south (device facing up)

53CHAPTER 2: Implementation Prerequisites

If you place your device flat on a surface and incline it, you should observe that, beyond a certain
inclination, the rotation stops (Figures 2-20 and 2-21). The SENSOR ROTATION application contains
this feature, because the object should only rotate when the device is held (almost) parallel to
the surface.

Figure 2-20.  Stagnating rotation for large inclinations (Gravity 3.10)

Figure 2-21.  Stagnating rotation for large inclinations (Gravity 0.87)

To achieve this, the device is considered parallel only if _gravityFiltered is greater than or equal to 6.
Inside the if block for handling this condition, there are lines of code to scale the angle of rotation
(depending on the extent of inclination) to make it smooth. After scaling the angle, the results are
displayed on a TextView (Listing 2-16).

54 CHAPTER 2: Implementation Prerequisites

Listing 2-16.  SENSOR ROTATION/src/com/apress/android/sensorrotation/Main.java

if (_gravityFiltered >= 6
 && _gravityFiltered <= SensorManager.GRAVITY_EARTH * 1) {
 scaling = _SENSITIVITY
 + (2 - (_gravityFiltered / SensorManager.GRAVITY_EARTH));
 _orientationFiltered = _orientationFiltered * (1.0f - _a)
 + _outR[0] * _a;
 float zAngle = scaling * _orientationFiltered * 90;
 GLES20Renderer.setZAngle(zAngle);
 _textView.setText("Angle: "
 + Float.valueOf(zAngle).toString() + "\n");
 _textView.append("Fraction: "
 + Float.valueOf(_orientationFiltered).toString()
 + "\n");
 _textView.append("Pitch: "
 + Float.valueOf(_values[1]).toString() + "\n");
 _textView
 .append("Gravity: "
 + Float.valueOf(_gravityFiltered)
 .toString() + "\n");
}
 
The logic used in the TOUCH ROTATION and SENSOR ROTATION applications for obtaining inputs
is also used in the Tank Fence game to implement the UI. So once again, go carefully through the
class Main and the callback methods from these applications. This will make you more efficient with
UI for applications.

Summary
At the beginning of this chapter I laid down some basic design principles for mobile game
development in order to explain the role of sleek designs for our games. We then worked out a few
examples to help you understand the practical differences between game UI and OpenGL rendering.
Finally, we looked at the development of applications that update the rendering on OpenGL surfaces
using the inputs obtained from buttons and sensors.

In the next chapter, you will learn about the OpenGL ES 2.0 environment on Android, and then we
will create simple ES 2.0 applications to help us develop your understanding of the basic concepts
of a programmable pipeline.

55

Chapter 3
ES 2.0 Fundamentals

In the previous chapter you learned about the relationship between inputs for gameplay and
transformations of OpenGL ES rendered graphics. I discussed the Tank Fence game and the
functioning of GAME MENU application. Finally, we worked out methods to respond to events fired
from button-views and sensors.

Here, in Chapter 3, we start working on ES 2.0 fundamentals, so we can render graphics using the
GPU and resolve hardware accelerated graphic rendering details into a suitable form to teach the
practical usage of OpenGL ES 2.0 API. My focus is on explaining programmable graphic rendering
concepts, such as GLSL, through basic examples, rather than explaining object-oriented principles
for creating an ES 2.0 application framework.

EGL on Android
EGL1 is an interface between the native windowing system of an OS and the ES 2.0 API. It helps
perform various important steps, from setting up a connection with (native) display to allowing the
use of ES 2.0 functions. Fortunately on Android, most of the following steps are automatic:

1.	 EGL initialization, after its connection with the native display

2.	 Selection of surface configuration for various settings, such as the bit depth
for color components

3.	 EGL context creation using the configuration in step 2

4.	 “Make current” of context for use with a rendering surface

5.	 Addition of context to an EGL window (that is, the rendering surface)

1http://en.wikipedia.org/wiki/EGL_(OpenGL)

http://en.wikipedia.org/wiki/EGL_(OpenGL)

56 CHAPTER 3: ES 2.0 Fundamentals

The GLSurfaceView Class
The GLSurfaceView class (android.opengl.GLSurfaceView) performs this automation by
managing EGL. Although most of the steps previously listed are automatic, step 2 requires you
to specify the version of OpenGL ES you intend to use on your rendering surface by calling the
setEGLContextClientVersion(int version) method, as shown in Listing 3-1.

Listing 3-1.  GL SURFACE/src/com/apress/android/glsurface/Main.java

_surfaceView.setEGLContextClientVersion(2);
 

Note  There are other setEGL* methods you can use to configure the EGL context (for example, methods
to configure the bit depth for RGB color components on the rendering surface); however, for all ES 2.0
applications used in this book, we have only made one configuration change by setting the version of OpenGL
ES using setEGLContextClientVersion.

To use this class to render graphics on an EGL window (that is, the rendering surface), we first create
an instance of type GLSurfaceView (android.opengl.GLSurfaceView), as shown in Listing 3-2. Then,
we specify the version of OpenGL ES, so we can configure the current EGL context to become
OpenGL ES 2.0 compatible.

Listing 3-2.  GL SURFACE/src/com/apress/android/glsurface/Main.java

public class Main extends Activity {
 private GLSurfaceView _surfaceView;
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 _surfaceView = new GLSurfaceView(this);
 _surfaceView.setEGLContextClientVersion(2);
 _surfaceView.setRenderer(new GLES20Renderer());
 setContentView(_surfaceView);
 }
 
}
 

Note  We have been calling the rendering surface different names—EGL window, OpenGL surface, OpenGL
surface view, OpenGL view, and GL surface. Do not get confused; they are all the same.

57CHAPTER 3: ES 2.0 Fundamentals

Setting up the Renderer
Although the GLSurfaceView class can automate many steps, it cannot directly render graphics on
the rendering surface. This requires a Renderer object that does the actual rendering. We specify
the renderer using the setRenderer(GLSurfaceView.Renderer renderer) method. Abstract methods
of the GLSurfaceView.Renderer interface (android.opengl.GLSurfaceView.Renderer) can be easily
implemented within an anonymous inner type. However, for all ES 2.0 applications in the source
code, we created a separate Renderer class—GLES20Renderer—similar to the Renderer class from
the GL SURFACE application (Listing 3-3).

Listing 3-3.  GL SURFACE/src/com/apress/android/glsurface/GLES20Renderer.java

public class GLES20Renderer implements Renderer {
 
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 GLES20.glClearColor(0.0f, 0.0f, 1.0f, 1);
 }
 
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 }
 
 public void onDrawFrame(GL10 gl) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 }
 
}
 
After specifying the Renderer object, add this surface to the view hierarchy of the current activity
using the setContentView method discussed in Chapter 2.

Renderer Thread
Using the GLSurfaceView class and the addContentView method, we can conveniently decouple
OpenGL ES graphics from XML-based views (discussed in Chapter 2, section “Setting Views Using
setContentView and addContentView”), so that the XML-based views get displayed on top of the
rendering surface hosting the 3D graphics (as shown in Figure 3-1).

58 CHAPTER 3: ES 2.0 Fundamentals

Decoupling for Dedicated Performance
This decoupling is not restricted to a “physical” sense. Behind the scenes, the GLSurfaceView class
(via Renderer object) renders the OpenGL ES graphics on a separate thread to dissociate any
rendering functionality from the UI/main thread. This helps to avoid the cramming of UI thread with
various ES 2.0 calls, and, while 3D graphics are rendered on a dedicated thread, Android can still
maintain the UI thread to receive events from XML-based views, as well as sensors. We call this
dedicated thread our renderer thread.

Figure 3-1.  Decoupling of OpenGL ES graphics from XML-based views

Note  In the Android sensor API, the callback method onSensorChanged requests data in an asynchronous
manner, so the UI thread is not blocked while waiting for a piece of data.

We can use standard Java techniques (Thread class/Runnable interface) to communicate between
the UI and renderer thread. However, for all the examples in the source code in which we have to
update the rendering based on inputs received from UI, we have only used static field(s) in various
classes to share data between these two threads. To ensure thread safety while the static field is
being accessed, we used either the volatile keyword with static field or the synchronized block.

Thread Safety
When multiple threads access a static field:

1.	 Each thread may cache the field’s value locally; as a result, when we read its
value from a thread (after it is updated), an old value can be read. To avoid
this, the static field is marked as volatile (this has been used in the TOUCH
ROTATION and SENSOR ROTATION applications). This forces the thread to
read the global value of the field.

59CHAPTER 3: ES 2.0 Fundamentals

2.	 Threads might attempt to update the field simultaneously; as a result, a race
condition may arise, leading to an undesired value of the field. To avoid this,
a static object can be synchronized (as shown in the UPDOWN COUNTER
application) to ensure only one thread gets into the synchronized block
(at a given time).

Using static field(s) to share data is only an alternative to standard Java techniques for cross-thread
communication. We leave out the standard Java techniques to keep you away from multithreading;
we want to focus on ES 2.0 fundamentals on Android. For most of our examples, the alternatives
suffice, because, out of the two threads (UI/main thread and renderer thread), only the former is
updating the static field(s).

Implemented Methods
The GLSurfaceView class requires a renderer that does the actual rendering; it is specified using the
setRenderer(GLSurfaceView.Renderer renderer) method. In the following sections, we talk more
about the abstract methods—onSurfaceCreated, onSurfaceChanged, and onDrawFrame—inherited by
the class GLES20Renderer, which implements the interface GLSurfaceView.Renderer.

Anatomy of a Renderer
While creating the GL SURFACE application in Chapter 1, we intentionally sorted the methods of
the class GLES20Renderer in a specific order. We did so to signify the actual sequence in which these
methods get called. To understand this, we create an application similar to GL SURFACE, but before
that, let’s discuss Listing 3-4 - pseudo code to describe the internal functioning of a renderer thread
(after GLSurfaceView is set as the activity’s content view, as shown in Listing 3-2).

Listing 3-4.  High Level Overview of Renderer Thread’s Functioning

// after setContentView(_surfaceView);
_surfaceView.draw() { // there is no such method actually
 Renderer.surfaceCreated();
 Renderer.surfaceChanged(_width, _height);
 
 while(true) {
 Renderer.drawFrame();
 if(_deviceOrientationChanged) {
 _surfaceView.draw();
 break;
 }
 if(_stopped) {
 return;
 }
 }
}
 
Rendering begins with a call to the Renderer.surfaceCreated (that is, Renderer.onSurfaceCreated)
method. Inside this method, we can place ES 2.0 functions for rendering graphics using the GPU.

60 CHAPTER 3: ES 2.0 Fundamentals

However, the surfaceCreated method is the block in which we usually add code for basic State
Management apart from setting the background color for our rendering surface.

To accommodate any change in the orientation of device, the surfaceChanged (that is,
Renderer.onSurfaceChanged) method is called.

To render graphics on a frame by frame basis, the call to the Renderer.drawFrame (that is,
Renderer.onDrawFrame) method takes place inside a while loop, which ends only if the application
(or the activity using the rendering surface) is stopped.

Inside this loop, as soon as any orientation change is detected, _surfaceView begins the rendering
again, starting from the surfaceCreated method.

Listing 3-4 is an attempt to approximately describe the internal functioning of a renderer thread (after
an OpenGL surface view has been set as the activity’s content view). However, it is clear enough to
help understand the use of abstract methods implemented by the GLES20Renderer class.

GL SURFACE CHANGED Application
Now, we create an application to test whether these methods get called in the order we specified in
the GL SURFACE application. To do so, create a new Android application GL SURFACE CHANGED,
and set the “Activity Name” to “Main.” Then, copy the files Main.java and GLES20Renderer.java from
GL SURFACE into the package folder for this application (Eclipse will warn you that Main.java exists
in the selected destination; confirm overwriting of Main.java).

Modify the GLES20Renderer class by adding the line of code shown in Listing 3-5 to its
onSurfaceCreated method.

Listing 3-5.  GL SURFACE CHANGED/src/com/apress/android/glsurfacechanged/GLES20Renderer.java

Log.d("onSurfaceCreated","invoked");
 
We have not yet imported the Log class. Quick fix the error to import this class. Although there are
various methods we can use to log messages to the LogCat view (for example, Log.v and Log.i), we
have used the d method to log a debug message.

Add lines similar to Listing 3-5 in the remaining methods, so the Renderer class becomes similar to
Listing 3-6.

Listing 3-6.  GL SURFACE CHANGED/src/com/apress/android/glsurfacechanged/GLES20Renderer.java

public class GLES20Renderer implements Renderer {
 
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 GLES20.glClearColor(0.0f, 0.0f, 1.0f, 1);
 Log.d("onSurfaceCreated","invoked");
 }
 
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 Log.d("onSurfaceChanged","invoked");
 }
 

61CHAPTER 3: ES 2.0 Fundamentals

 public void onDrawFrame(GL10 gl) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 Log.d("onDrawFrame","invoked");
 }
 
}
 
When you run this application on your Android device, you see an OpenGL surface (Figure 3-2)
like the one we created in Chapter 1. If you change your device’s orientation, the OpenGL surface
rearranges itself to fit the new orientation.

Figure 3-2.  GL SURFACE CHANGED application in portrait mode

Note  Before you run this application, make sure you did not include the attributes
(android:configChanges and android:screenOrientation) and values given in Listing 2-3 to the
activity element of your manifest file.

62 CHAPTER 3: ES 2.0 Fundamentals

After changing the device’s orientation, exit the application. Next, open the LogCat view in Eclipse
and add a filter text:invoked, as shown in Figure 3-3. This allows us to spot the debug messages
we logged using Listing 3-6.

If you look at the debug messages in the LogCat view, you will see that the messages are in an order
similar to that in Figure 3-3. As mentioned, rendering begins with a call to the onSurfaceCreated
method. Then the onSurfaceChanged method gets called to accommodate any change in orientation,
and both of these methods are called again if we change the device’s orientation. The onDrawFrame
method is always called (repeatedly) after these two.

You can also make changes to the manifest file for this application to see what happens when
the attributes and values given in Listing 2-3 are added to the activity element. When you run the
application after making these changes, you will see a modifed order of debug messages in the
LogCat view.

Although I talked about the purpose of abstract methods inherited by the GLE20Renderer class, I
did not mention anything about the arguments passed to those methods. The only arguments that
matter here are the int width and int height arguments, which are passed to the onSurfaceChanged
method. The following section discusses the use of width and height arguments.

Until now, we have been addressing the OpenGL ES 2.0 environment on Android, as well as how
ES 2.0 is invoked inside our activity. The following sections introduce the core concepts of the
OpenGL ES 2.0 API, and we create basic examples to see ES 2.0 in action.

Figure 3-3.  LogCat view, filtering log by text

63CHAPTER 3: ES 2.0 Fundamentals

Framebuffer
When rendering graphics using ES 2.0, what we finally see in the EGL window (that is, the rendering
surface) is colored pixels. There has to be a piece of memory that stores this data (color per pixel),
so it can be displayed on the EGL window. Framebuffer is that large piece of memory used to
represent 3D graphics as a 2D array of pixel data, more specifically, the kind of framebuffer we are
talking about is a color buffer. Display devices read the color buffer to determine the intensity values
for RGB color components for each pixel on the screen (that is, a portion of screen displaying the
EGL window). Please note that the color buffer can also store an additional alpha component along
with the RGB color components for each pixel on the EGL window.

In the section “EGL on Android”, I mentioned that the GLSurfaceView class automates the selection
of surface configuration for rendering surface. Let’s elaborate a bit on that.

The default surface configuration that the GLSurfaceView class selects is RGB_565. This means that
the memory allocated for each element (corresponding to a pixel on the EGL window) in the color
buffer is 16 bits, where 5 bits are allocated for each red and blue color components, and 6 bits for
the green color component (because the human visual system is more sensitive to green). We will
stick to this default configuration (please note that the newer Android devices have this default
configuration as RGB_888).

Note  A pixel (originally short for “picture element”) is a minute, uniquely identifiable illuminated region
on the display screen. It is not the smallest element on the display screen. The display device has the
responsibility to determine what should be the smallest addressable screen element; however, these elements
are way too small to be noticed individually, which is why they are combined in groups to form pixels.

Double Buffering
Based on what we’ve discussed so far, you might think that, when we update OpenGL ES graphics
using the Renderer class (on a frame by frame basis), we only affect a single color buffer associated
with the EGL window. However, when we render graphics on the EGL window, we actually update
the “back” color buffer associated with it, and, when rendering gets completed, this buffer is
swapped with a “front” color buffer. For this reason, the color buffer is said to be double buffered
(please note that the swapping of buffers must be in sync with the refresh rate of the display screen).
Double buffering is necessary to ensure that the displayable “front” color buffer is not being updated
while the display device is reading it.

Note  As we have seen, various steps are automatically taken care of in the background so we can easily
use OpenGL ES on Android. Once again, Android takes the burden away from us and manages the swapping
of “front” and “back” color buffers via the GLSurfaceView class.

64 CHAPTER 3: ES 2.0 Fundamentals

Clearing the Color Buffer
Before we start rendering graphics on the EGL window, we have to clear the (associated) color
buffer with a specific color. We do this by calling the GLES20.glClear method and passing it an
argument GLES20.GL_COLOR_BUFFER_BIT (since Android API level 8, you can access OpenGL ES 2.0
constants and functions using the class android.opengl.GLES20). Because we render graphics on
a frame by frame basis, the glClear method is called inside the onDrawFrame method. This ensures
that the color buffer is cleared with a default color before it is updated with pixel data from graphics
rendered using OpenGL ES. To set this default color, we must call the glClearColor method prior to
calling the glClear method. Using the glClearColor method, we specify the color value (in the range
[0, 1]) that all elements in the color buffer should be initialized to. As you saw in the GL SURFACE
application in Chapter 1, the clear color was set to (0.0, 0.0, 1.0, 1.0) so the screen was cleared to
blue. Please note that, although the glClear method is usually called inside the onDrawFrame method,
the glClearColor method is called inside the onSurfaceCreated method.

Note  We used the glClear method in almost all applications so far, but the argument we usually
passed (like, in GL SURFACE application) was different from what we discussed in this topic. This was done
intentionally, so you get into the habit of using the code snippet shown in Listing 3-7; there would be no
change in the output if we removed the extra part (| GLES20.GL_DEPTH_BUFFER_BIT) from the argument.

Listing 3-7.  GL SURFACE CHANGED/src/com/apress/android/glsurfacechanged/GLES20Renderer.java

GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);

Setting the Viewport
When the display device accesses “front” color buffer to display a final image of the graphics
rendered using OpenGL ES, it needs to know about the viewport - that is, the area on the display
screen on which this image is to be mapped.

We set the viewport using the glViewport(int x, int y, int width, int height) method, where
(x, y) is a position on the display screen, measured from its bottom-left corner (in pixels). The
rest of the arguments are for setting the size of viewport in pixels. To ensure the viewport is visible,
(x, y) should lie within the bottom-left (x=0, y=0) and top-right (x=width, y=height) corners of the
display screen.

We typically want the viewport to be the same size as the display screen (Figure 3-4). So, while
setting the size of the viewport, we make use of the int width and int height arguments of the
onSurfaceChanged method. These arguments store the width and height of the display screen in any
orientation. For this reason, we need to call the glViewport method inside the onSurfaceChanged
method. Whenever the orientation of the device changes, the onSurfaceChanged method helps keep
track of the new width and height of the display screen in landscape or portrait orientations.

65CHAPTER 3: ES 2.0 Fundamentals

Figures 3-4 and 3-5 are screen shots from the GL CUBEMAP TEXTURE application (inside the
source code for Chapter 5). Figure 3-4 shows the screen shot for the default viewport setting - that
is, glViewport(0, 0, width, height). This setting fits the viewport on the display screen exactly.

Figure 3-4.  Rendering graphics on the entire screen

Figure 3-5.  Setting the viewport as one-fourth of screen area

By calling glViewport(0, 0, width/2, height/2); the viewport area is reduced to a quarter of
the display screen, as shown in Figure 3-5. You can modify the viewport settings for any of the
application discussed, and you can try to shift the viewport at various positions on the display
screen. If you set the viewport smaller than the display screen, you will still see the clear color
(specified using glClearColor) in the area outside viewport. This is so because the call to the
glClear method is unaffected by the call to the glViewport method. Therefore, regardless of
viewport area, the rest of the display screen also gets colored.

66 CHAPTER 3: ES 2.0 Fundamentals

Note  Similar to color buffer, there is another kind of framebuffer associated with the EGL window, which is
discussed in the final section of this chapter.

GLSL
Finally, we can start the discussion on GLSL, but please note that, for all examples we work with in
this topic, we restrict their rendering to two dimensions (as shown in Figure 3-6), because we haven’t
yet discussed OpenGL ES coordinate systems.

Figure 3-6.  Normalized 2D space

GLSL (OpenGL Shading Language) is a graphics programming language that enables us to create
shader programs to perform rendering effects in a flexible manner. These programs are a part of
the programmable rendering pipeline that does not comprise of hard-coded functions to achieve
transformation, lighting, and texturing effects. The OpenGL Architecture Review Board (ARB) created
GLSL to provide an intuitive method for programming the rendering pipeline at the vertex and
fragment levels. Embedded devices, such as mobiles and tablets, support the OpenGL ES Shading
Language (also known as GLSL ES or ESSL), which is based on GLSL version 1.20.

Please note that, from this point, unless we need to talk about the comparison between GLSL and
GLSL ES, we will refer to the latter as GLSL.

67CHAPTER 3: ES 2.0 Fundamentals

Shader Program
Shader programs (or simply, shaders) are computer programs to control the functionality of graphics
pipeline in “programmable” 3D graphic rendering APIs, such as OpenGL ES 2.0. GLSL allows us to
create two types of shaders:

	Vertex shader

	Fragment shader

The most interesting fact about the ES 2.0 rendering pipeline is that no object can be rendered on
the OpenGL surface until a (valid) vertex and fragment shader have been created. Don’t think you
can get away with a “dot” on the OpenGL surface! Rendering a point also requires a vertex and
fragment shader.

A vertex shader takes the geometry data, such as vertices in 3D space, of an object and transforms
this data to the 2D coordinates at which it appears on the display screen. Then the rendering
pipeline generates appropriate fragments for this object, which are then processed by a fragment
shader for coloring, lighting, and/or texturing of the object (as shown in Figure 3-9).

Note  In 3D computer graphics, the terms graphics pipeline or rendering pipeline most commonly refer to
the method of converting a 3D scene (as a collection of points, lines, and polygons), which is supported by
the graphics hardware, into a 2D “raster” image (that is, a collection of pixels or dots) as output. OpenGL and
Direct3D are the most popular 3D graphic rendering APIs, both describing very similar graphic pipelines.

Understanding various stages in the graphics pipeline can be overwhelming for new graphics developers. So,
we don’t discuss each explicitly. However, in the context of GLSL, we surely understand two programmable
stages in the ES 2.0 graphics pipeline.

Note  Each fragment represents a pixel (x, y) on the display screen that is yet to be processed by a fragment
shader for coloration.

Finally, the fragment data is stored in a framebuffer to provide color values for those pixels on the
display screen that represent this object. Simply, a vertex shader defines the final position of an
object on the display screen (as a collection of vertices), as shown in Figure 3-7, whereas a fragment
shader defines the final color of pixels that are filled by this object (Figure 3-9).

68 CHAPTER 3: ES 2.0 Fundamentals

Vertex Shader Example
Now, we discuss a vertex shader (written using GLSL) to define a point. As you know, a renderer
specified using the setRenderer(GLSurfaceView.Renderer renderer) method actually renders
graphics on the OpenGL surface. We usually create shaders directly inside this renderer
(GLES20Renderer class) as literal strings (Listing 3-8).

Listing 3-8.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointVertexShaderCode =
 "void main() {"
 + " gl_PointSize = 15.0;"
 + " gl_Position = vec4(0.0,0.0,0.0,1);"
 + "}";
 
The syntax of shaders is similar to that of the C programming language. If you can read and
understand a simple C program, you will quickly grasp the basic structure of shaders.

GLSL shaders have a single entry point, called the main function, as shown in Listing 3-8.
Additionally, they have built-in variables to provide useful information to the rendering pipeline.
The point vertex shader (_pointVertexShaderCode) in Listing 3-8 makes use of two important built-in
variables—gl_PointSize and gl_Position.

As the name suggests, gl_PointSize specifies the size of a “point” in pixels. This built-in variable
can only be used with a specific type of geometric object in ES 2.0—a point sprite.

Figure 3-7.  Vertex marking

69CHAPTER 3: ES 2.0 Fundamentals

In ES 2.0, any object (for example, triangle, square, and cube) rendered on the OpenGL surface
can only be expressed as a combination of any one of the following fundamental geometric objects
(known as primitives):

	Point sprite

	Line

	Triangle

We describe a primitive by a set of vertices (a single vertex in case of one point sprite, two vertices
for a line, and three vertices for a triangle) and optional data for colors and textures. The vertex
shader shown in Listing 3-8 is for rendering a point sprite primitive; this primitive is a square shaped
point, and, as already stated, we specify its size using the gl_PointSize built-in.

Figure 3-8.  Point sprite

Note  You may wonder exactly how we specify the type of primitive(s) we intend to render on the OpenGL
surface. We do this inside the onDrawFrame method, using ES 2.0 functions—glDrawArrays or
glDrawElements. These functions take primitive-type (GL_POINTS, GL_LINES, or GL_TRIANGLES) as an
argument. We deal with glDrawArrays within this section.

gl_Position is a special built-in variable. If the vertex shader does not write to it, the graphics
pipeline won’t know of the vertex (of an object) we intend to render on the OpenGL surface.
Considering the OpenGL world is similar to Figure 3-6, when we set gl_Position as vec4(0.0, 0.0,
0.0, 1), we define a point at the center of OpenGL surface (Figure 3-8). You may have understood
already that vec4 is a four-component vector (not to be confused with the physical quantity “vector”),
representing a 3D point in the OpenGL world. The last component in the vector vec4(0.0, 0.0,
0.0, 1) does not represent any visualizable quantity. It is added as a practical tool to enable
matrix multiplications for various 3D-Transformations (you can read more about this at
http://stackoverflow.com/a/2465290). If this vec4 were to represent a “vector” quantity (not a 3D
point), then, in place of ‘1,’ we have to append ‘0’ as the last component.

http://stackoverflow.com/a/2465290

70 CHAPTER 3: ES 2.0 Fundamentals

Data Types
Like regular C types, the following basic types are commonly used in GLSL:

	void: used with functions that do not return a value or for an empty argument list

	bool: represents boolean values true or false

	int: a single signed integer

	float: a single floating-point scalar

Vectors with two, three, or four components are also available for the basic types mentioned
previously:

	bvec2: a boolean vector of two components

	bvec3: a boolean vector of three components

	bvec4: a boolean vector of four components

	ivec2: an integer vector of two components

	ivec3: an integer vector of three components

	ivec4: an integer vector of four components

	vec2: a floating-point vector of two components

	vec3: a floating-point vector of three components

	vec4: a floating-point vector of four components

Apart from these, we can also construct square matrices—mat2, mat3 and mat4—from scalars,
vectors, or a combination of both scalars and vectors. Matrices are very useful data types, because
they can be associated with objects to transform them by updating the 3D-Transformation data,
such as the amount of translation and angle of rotation.

Now we’ll look at some examples of declaring and initializing variables of various types using GLSL.
For these examples, we modify Listing 3-8 in such a way that the output of the point vertex shader is
not affected.

Note  Apart from creating shaders as string literals, we can also create them in separate files. However,
since we create shaders directly inside the GLES20Renderer class (as string literals), we must append
some lines of shaders with “\n.” We only do this for lines that contain single line comments or preprocessor
directives (yes, GLSL supports comments and preprocessor directives).

For most ES 2.0 applications in the source code, you will observe that all lines of shaders are appended with
“\n.” This has been done for readability purposes only, but you should understand which lines necessarily
require “\n.”

71CHAPTER 3: ES 2.0 Fundamentals

In Listing 3-9, instead of directly assigning the value ‘15.0’ to gl_PointSize variable, another
variable pointSize is declared and initialized. Its value is assigned to gl_PointSize variable using
gl_PointSize = pointSize.

Listing 3-9.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointVertexShaderCode =
 "void main() {"
 + " // declare & initialize float scalar \n"
 + " float pointSize = 15.0;"
 + " gl_PointSize = pointSize;"
 + ""
 + " // using vec3 constructor \n"
 + " vec3 xyz;"
 + " xyz = vec3(0.0,0.0,0.0);"
 + ""
 + " // using vec4 constructor \n"
 + " vec4 position;"
 + " position = vec4(xyz[0],xyz[1],xyz[2],1);"
 + " gl_Position = position;"
 + "}";
 
A three-component vector, named “xyz,” is first declared, and then it is initialized using vec3
constructor vec3(0.0, 0.0, 0.0). One way to access the components of vectors is using the
subscript “[ ]” operator and the indexing is zero-based, so xyz[0] corresponds to the first component
of this vector. As shown in Listing 3-9, components of the xyz vector initialize the variable named
“position,” which is of type vec4. The last component of “position” is set to ‘1’, and, finally, its value
is assigned to the gl_Position variable.

Listing 3-10 demonstrates the use of component names. Depending on the number of components
that make up a given vector, each component can be accessed through the component names
{x, y, z, w}, {r, g, b, a}, or {s, t, r, q}. To access the individual components, first use the “.” operator
with the vector name, followed by the component name. However, please note that we cannot mix
the component naming conventions when accessing a vector; only one convention is used at a
time—vec4(xyz.x, xyz.y, xyz.z, 1).

Listing 3-10.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointVertexShaderCode =
 "void main() {"
 + " gl_PointSize = 15.0;"
 + ""
 + " // declare & initialize vec3 vector \n"
 + " vec3 xyz = vec3(0.0,0.0,0.0);"
 + ""
 + " // declare & initialize vec4 vector \n"
 + " vec4 position = vec4(xyz.x,xyz.y,xyz.z,1);"
 + " gl_Position = position;"
 + "}";
 

72 CHAPTER 3: ES 2.0 Fundamentals

Finally, in Listing 3-11, you see another style of using a vector constructor. If we pass a single scalar
argument to a vector constructor, its value is used to set all values of the vector. So, using vec3(0.0)
produces the same result as using vec3(0.0, 0.0, 0.0). We can also pass a vector as an argument
to a vector constructor. Since the components of a vector are set from left to right (when using a
vector constructor), vec4(vector3Name, 1) is identical to vec4(vector3Name.x, vector3Name.y,
vector3Name.z, 1).

Listing 3-11.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointVertexShaderCode =
 "void main() {"
 + " gl_PointSize = 15.0;"
 + ""
 + " // using vec3 constructor \n"
 + " vec3 xyz = vec3(0.0);"
 + ""
 + " // using vec4 constructor \n"
 + " vec4 position = vec4(xyz,1);"
 + " gl_Position = position;"
 + "}";
 

Fragment Shader Example
Continuing the vertex shader example for the point sprite primitive, we discuss a fragment shader
(Listing 3-12) to define the final color of fragment for this primitive.

Listing 3-12.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointFragmentShaderCode =
 "void main() {"
 + " gl_FragColor = vec4(1.0,1.0,1.0,1);"
 + "}";
 
Like the vertex shader, the fragment shader also contains a special built-in variable—gl_FragColor.
The fragment shader needs to write to this variable to define the final color of a fragment. As shown in
Figure 3-8, the color of the point sprite is set to white by assigning the value vec4(1.0, 1.0, 1.0, 1),
representing RGBA color, to the gl_FragColor variable.

If you understood the examples shown, to declare and initialize variables in GLSL (Listings 3-9 to 3-11),
you may want to experiment with Listing 3-12 to change how vec4 is written to the gl_FragColor
variable (Listing 3-13):

Listing 3-13.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointFragmentShaderCode =
 "void main() {"
 + " vec4 fragColor = vec4(1.0);"
 + " // i.e. fragColor = vec4(1.0,1.0,1.0,1.0); \n"
 + " gl_FragColor = fragColor;"
 + "}";
 

73CHAPTER 3: ES 2.0 Fundamentals

Although everything is fine in Listing 3-13, this code will not produce the intended result shown in
Figure 3-8, because there is an important difference between a vertex and fragment shader. To be
specific, you will get a blank screen if you replace the fragment shader code in the Renderer class in
GL POINT BASIC application with Listing 3-13.

In GLSL, variables of type int or float must specify precision qualifiers. Precision qualifiers allow
us to specify the precision with which computations for a shader variable are performed. Variables
can be declared to have low, medium, or high precision, which is specified using keywords lowp,
mediump, or highp, respectively. The default precision qualifier is specified at the top of a vertex or
fragment shader (Listing 3-14):

	precision mediump float;

	precision mediump int;

Listing 3-14.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private final String _pointFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float;"
 + "#else \n"
 + "precision mediump float;"
 + "#endif \n"
 + "void main() {"
 + " vec4 fragColor = vec4(1.0);"
 + " gl_FragColor = fragColor;"
 + "}";
 
The precision specified for float will be used as the default precision for all variables based on a
floating-point value. Similarly, the precision specified for int will be used as the default precision for
all integer-based variables.

It is not mandatory to specify precision qualifiers for variables in vertex shaders, because they have
a pre-defined default precision for int and float types. However, in fragment shaders, although
(at least) medium precision is supported for float types, (unlike vertex shaders) it is not set as the
default precision. This means that every fragment shader must explicitly declare a default precision
for float types.

ES 2.0 allows us to determine the availability of high precision for the float type, and, if it is not
available, we can fall back to medium precision by setting it as the default precision for all float
types in a fragment shader. To determine whether high precision is supported in the fragment shader,
we need to find out whether the GL_FRAGMENT_PRECISION_HIGH preprocessor macro is defined
(as shown in Listing 3-14).

74 CHAPTER 3: ES 2.0 Fundamentals

GL POINT BASIC Application
Shader code (_pointVertexShaderCode, _pointFragmentShaderCode) inside the Renderer class
(GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java) must be compiled
into a binary format so the GPU can process it. There are three ES 2.0 functions—glCreateShader,
glShaderSource, and glCompileShader—that we have to use every time we compile a vertex and a
fragment shader.

Once we have compiled the shaders for an object (recall that an object is a primitive or a
combination of the same type of primitives), we must create an ES 2.0 program for it (not to be
confused with the shader program) that links the vertex and fragment shader as a unit. Using this
program object, we render primitives on the OpenGL surface. To see these steps in action, import
the archive file glpointbasic.zip from the Chapter3 folder. This will load the GL POINT BASIC
application into your Eclipse workspace.

Using the loadShader Method
The Renderer class contains the good old methods (onSurfaceCreated, onSurfaceChanged, and
onDrawFrame), using which we can easily organize code for different purposes (which we previously
discussed). There are two primary changes in this class—shader programs and the loadShader
method—and, from this point forward, we use these in all ES 2.0 applications.

I already explained the use of shaders (to render a point sprite primitive, the Renderer class contains
both vertex and fragment shaders), so let’s talk about the loadShader method (Listing 3-15).

Listing 3-15.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

private int loadShader(int type, String source) {
 int shader = GLES20.glCreateShader(type);
 GLES20.glShaderSource(shader, source);
 GLES20.glCompileShader(shader);
 return shader;
}
 

Figure 3-9.  Fragment shading

75CHAPTER 3: ES 2.0 Fundamentals

Inside this method, there are three ES 2.0 functions to help us with the compilation of shaders. Using
int shader = GLES20.glCreateShader(type), shader-object is created for a specific type of shader
(GLES20.GL_VERTEX_SHADER or GLES20.GL_FRAGMENT_SHADER). Then, the shader source code (vertex
or fragment shader code) is loaded to this object using glShaderSource function, which is finally
compiled using glCompileShader function and is then returned. Please note that shader source code
of each type (that is, vertex and fragment shader) needs to be loaded to this shader-object before it
can be used in an ES 2.0 program.

Inside the onSurfaceCreated or onSurfaceChanged method, we use these compiled shaders by
creating an ES 2.0 program using the glCreateProgram function. Compiled shaders must be loaded
to this program using glAttachShader before they are finally linked as a unit (Listing 3-16).

Listing 3-16.  GL POINT BASIC/src/com/apress/android/glpointbasic/GLES20Renderer.java

int pointVertexShader = loadShader(GLES20.GL_VERTEX_SHADER, _pointVertexShaderCode);
int pointFragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER, _pointFragmentShaderCode);
_pointProgram = GLES20.glCreateProgram();
GLES20.glAttachShader(_pointProgram, pointVertexShader);
GLES20.glAttachShader(_pointProgram, pointFragmentShader);
GLES20.glLinkProgram(_pointProgram);

Attributes
Before we explain this application further, make few additions to the Renderer class. Include the
fields int _pointAVertexLocation and FloatBuffer _pointVFB to this class. Then, create a new
method initShapes() with type void. Inside this method, add the lines of code from Listing 3-17.
Call initShapes anywhere inside onSurfaceChanged method.

Listing 3-17.  GL POINT ADVANCED/src/com/apress/android/glpointadvanced/GLES20Renderer.java

float[] pointVFA = {
 0.1f,0.1f,0.0f,
 -0.1f,0.1f,0.0f,
 -0.1f,-0.1f,0.0f,
 0.1f,-0.1f,0.0f
};
ByteBuffer pointVBB = ByteBuffer.allocateDirect(pointVFA.length * 4);
pointVBB.order(ByteOrder.nativeOrder());
_pointVFB = pointVBB.asFloatBuffer();
_pointVFB.put(pointVFA);
_pointVFB.position(0);
 
Using this code, we create a FloatBuffer (_pointVFB) to represent four points in each quadrant
shown in Figure 3-6. After making a few additional changes to this class, you can render these
points on OpenGL surface (Figure 3-10).

76 CHAPTER 3: ES 2.0 Fundamentals

Replace the vertex shader code with lines given in Listing 3-18. This code demonstrates that we
can also supply inputs to vertex shaders “externally,” instead of directly defining and writing data to
gl_Position variable.

Listing 3-18.  GL POINT ADVANCED/src/com/apress/android/glpointadvanced/GLES20Renderer.java

private final String _pointVertexShaderCode =
 "attribute vec4 aPosition;"
 + "void main() {"
 + " gl_PointSize = 15.0;"
 + " gl_Position = aPosition;"
 + "}";
 
To supply input data, we use attribute variables. Like gl_PointSize and gl_Position variables,
attribute variables are only available in the vertex shader. They are used to specify the per-vertex
inputs to the vertex shader (per-vertex inputs, such as position and color).

Using the glGetAttribLocation method, we first access the attribute variable inside the vertex shader
of a program. Only then can we pass data to it. For the Renderer class, field _pointAVertexLocation
stores the location of the attribute variable aPosition using _pointAVertexLocation =
GLES20.glGetAttribLocation(_pointProgram, "aPosition"). Add this line after ES 2.0 function
glLinkProgram shown in Listing 3-16.

Finally, inside the onDrawFrame method, we use the FloatBuffer _pointVFB to pass per-vertex data
(in this case, the per-vertex data is the vertex itself; that is, the coordinate representing the vertex)
to the attribute variable aPosition. If we only want to render a single point sprite, there is no need to
go through all these steps. We can directly write to the gl_Position variable as shown in Listing 3-8.
To obtain output as shown in Figure 3-10, replace the onDrawFrame method with Listing 3-20.

To pass per-vertex data (such as per-vertex colors, per-vertex normals, or, as in this case,
the coordinate representing this vertex) to the aPosition variable, we use the method
glVertexAttribPointer(int indx, int size, int type, boolean normalized, int stride, Buffer ptr).
Based on the type of per-vertex data we are dealing with, we specify the size of this data as
int size. For example, if we are passing per-vertex position data (that is, vertex coordinate), for a

Figure 3-10.  GL POINT ADVANCED

77CHAPTER 3: ES 2.0 Fundamentals

single vertex (x, y, z) or a set of vertices (pointVFA in Listing 3-17), then size will be ‘3.’ Similarly, if
we are passing per-vertex colors (r, g, b, a), size will be ‘4.’

Listing 3-19.  GL POINT ADVANCED/src/com/apress/android/glpointadvanced/GLES20Renderer.java

GLES20.glVertexAttribPointer(_pointAVertexLocation, 3, GLES20.GL_FLOAT, false, 12, _pointVFB);
GLES20.glEnableVertexAttribArray(_pointAVertexLocation);
 
For data containing floating-point values, the type argument is GLES20.GL_FLOAT. We must use
this type for position, as well as for color data. We do not want to normalize the vertex data, so,
we set the boolean argument to false. We use the stride argument if storing various types of
per-vertex data inside the same float array. For all cases in which we store a single type of vertex
data, such as vertex positions, inside a float array, we set stride as ‘0’ or size * the size of type
argument. The indx and ptr arguments are for attribute location and buffer (FloatBuffer _pointVFB),
respectively. If you look closely at Listings 3-18 and 3-19, you will see that the attribute variable
inside the vertex shader code is of type vec4, whereas the size argument in glVertexAttribPointer
is ‘3.’ Well, the vertex shader can understand what we are doing here; since we are rendering a
vertex, it appends the extra component to make the rendering possible. After calling the function
glVertexAttribPointer, we must also activate the corresponding attribute location, by calling
glEnableVertexAttribArray, which takes the location of attribute variable as an argument.

Note  While glVertexAttribPointer tells OpenGL about the format (and source) of our vertex array
data, glEnableVertexAttribArray activates the given attribute location, so that, finally, OpenGL can pull
this vertex data.

Listing 3-20.  GL POINT ADVANCED/src/com/apress/android/glpointadvanced/GLES20Renderer.java

public void onDrawFrame(GL10 gl) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 GLES20.glUseProgram(_pointProgram);
 GLES20.glVertexAttribPointer(_pointAVertexLocation, 3, GLES20.GL_FLOAT, false, 12, _pointVFB);
 GLES20.glEnableVertexAttribArray(_pointAVertexLocation);
 GLES20.glDrawArrays(GLES20.GL_POINTS, 0, 4);
}
 
The call to ES 2.0 functions—glVertexAttribPointer and glEnableVertexAttribArray (and others
explained in the following section)—inside onDrawFrame is sandwiched between function calls for
using an ES 2.0 program (glUseProgram in Listing 3-20) and drawing primitives (glDrawArrays
or glDrawElements). This must be done every time we render an object (that is, a primitive or a
combination of same type of primitives).

I’ll deal with the glDrawElements function in Chapter 4. Here, I explain glDrawArrays. This method
takes three arguments—mode, first, and count—all of type int. Using mode, we specify the type
of primitive we want to render. We work with modes GL_POINTS, GL_LINES, and GL_TRIANGLES,
but please be aware that ES 2.0 also provides alternate modes (GL_LINE_STRIP, GL_LINE_LOOP,
GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN). GL_POINTS mode is very straightforward. By calling
glDrawArrays(GLES20.GL_POINTS, 0, 4), we notify the vertex shader that we want to render four

78 CHAPTER 3: ES 2.0 Fundamentals

points (point sprites) on the OpenGL surface. The second argument is ‘0,’ because we want to
render from the first vertex inside pointVFA (0.1f, 0.1f, 0.0f) in Listing 3-17.

Similarly, for rendering a line primitive, we call glDrawArrays(GLES20.GL_LINES, 0, 2), and for a
triangle primitive, we call glDrawArrays(GLES20.GL_TRIANGLES, 0, 3). Next, I’ll show you how to
render a line, triangle, and rectangle using glDrawArrays.

Drawing Line and Triangle Primitives
For the following applications, you may use the GL POINT ADVANCED application
(glpointadvanced.zip) as a template. To render a line primitive (Figure 3-11) using glDrawArrays
method, we must make sure we set its mode argument as GLES20.GL_LINES. Since a line
requires two points, while rendering a line primitive, the count argument (the last argument in the
glDrawArrays method) should be at least ‘2.’

Figure 3-11.  Line primitive

After appropriately setting the arguments for glDrawArrays, we must create an array to store
the endpoints of line(s). So, inside the template you can modify the contents of the float array
pointVFA (inside initShapes method), and, to get an output similar to Figure 3-11, define this array
as {0.0f,0.0f,0.0f, 0.5f,0.5f,0.0f}. Since this array has two points, we must call glDrawArrays
using glDrawArrays(GLES20.GL_LINES, 0, 2).

Before you run this application, remove the line “gl_PointSize = 15.0;” from the vertex shader.
As previously stated, gl_PointSize variable is only used with a point sprite primitive. To set
the width of line primitive, call the method GLES20.glLineWidth(float width) before calling
GLES20.glDrawArrays. The default width is 1.0.

Varyings
Like vertex shaders, fragment shaders have a special kind of input variable, called varying. They
are special, because they are used to store the output of the vertex shader, as well as the input of a
fragment shader.

79CHAPTER 3: ES 2.0 Fundamentals

Varyings interpolate values across a primitive, and this becomes useful when creating cool gradients
(as shown in Figure 3-12) or interpolating texture coordinates and normals (as we see in Chapter 5).

Figure 3-12.  Using varying in vertex shaders

To use a varying variable, it should be declared in a vertex and fragment shader such that it has
same type in both shaders. To understand this, import the archive file glvarying.zip from the
Chapter3 folder. This will load the GL VARYING application into your workspace. If you browse
through the contents of the Renderer class, you will see right away that it is for rendering a line
primitive.

First, notice the initShapes method inside the Renderer class. Apart from the float array for vertex
positions (lineVFA), it contains another array—lineCFA. The first four elements in this array (0, 0, 1, 1)
represent blue color, whereas the last four elements (1, 1, 0, 1) represent yellow color. This per-
vertex color data is passed to the attribute variable aColor (recall that float array for an attribute is
passed as FloatBuffer) using the ES 2.0 function glVertexAttribPointer, as shown in Listing 3-21.

Listing 3-21.  GL VARYING/src/com/apress/android/glvarying/GLES20Renderer.java

public void onDrawFrame(GL10 gl) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 GLES20.glUseProgram(_lineProgram);
 GLES20.glVertexAttribPointer(_lineAVertexLocation, 3, GLES20.GL_FLOAT, false, 0, _lineVFB);
 GLES20.glEnableVertexAttribArray(_lineAVertexLocation);
 GLES20.glVertexAttribPointer(_lineAColorLocation, 4, GLES20.GL_FLOAT, false, 0, _lineCFB);
 GLES20.glEnableVertexAttribArray(_lineAColorLocation);
 GLES20.glLineWidth(3);
 GLES20.glDrawArrays(GLES20.GL_LINES, 0, 2);
}
 
Next, take a look at the vertex and fragment shaders (Listing 3-22). Notice how the varying variable
vColor is shared by each of these shaders. As previously mentioned, its type should match in both
the shaders.

80 CHAPTER 3: ES 2.0 Fundamentals

Inside the vertex shader, vColor receives per-vertex color data (blue and yellow color) from the
attribute variable aColor. When the rendering pipeline processes the fragments using fragment
shader, it interpolates this per-vertex data across the primitive (that is, across the fragments
occupied by the primitive). This is why blue color at one endpoint of the line primitive interpolates to
yellow color at the other (Figure 3-12).

Listing 3-22.  GL VARYING/src/com/apress/android/glvarying/GLES20Renderer.java

private final String _lineVertexShaderCode =
 "attribute vec4 aPosition;"
 + "attribute vec4 aColor;"
 + "varying vec4 vColor;"
 + "void main() {"
 + " vColor = aColor;"
 + " gl_Position = aPosition;"
 + "}";
 
private final String _lineFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float;"
 + "#else \n"
 + "precision mediump float;"
 + "#endif \n"
 + "varying vec4 vColor;"
 + "void main() {"
 + " gl_FragColor = vColor;"
 + "}";
 
As explained in the section “GLSL”, every fragment shader must explicitly declare a default precision
for float types, such as vec4, which is why there is extra code at the top of fragment shader in
Listing 3-22. (Refer back to that topic for more on the basics of data types.)

Triangle Primitive
Like a line primitive, rendering a triangle primitive (Figure 3-13) requires appropriately setting the
arguments of the glDrawArrays function. We must specify the mode as GLES20.GL_TRIANGLES and the
count as a multiple of 3 (you get an imaginary triangle if you set the count to 0!).

81CHAPTER 3: ES 2.0 Fundamentals

Rendering a triangle primitive is left as an exercise for you, but, in case you find this difficult, you can
import the archive file gltriangle.zip from the source code for this chapter. This will load the GL
TRIANGLE application into your Eclipse workspace.

As previously mentioned, in ES 2.0 we can use a combination of the same type of primitives to
render various objects. Now, let’s look at rendering a rectangle using two triangle primitives.

Using glDrawArrays, with mode GL_TRIANGLES, an easy way to render a rectangle is by creating a
float array for points that form a closed loop. When we call glDrawArrays for such a collection
of points, we need to pass the count argument as ‘6.’ The float array given in Listing 3-23 is a
collection of three points for each of the upper and lower triangles.

Listing 3-23.  GL RECTANGLE/src/com/apress/android/glrectangle/GLES20Renderer.java

float rectangleVFA[] = {
 0, 0, 0,
 0, 0.5f, 0,
 0.75f, 0.5f, 0, // upper triangle
 0.75f, 0.5f, 0,
 0.75f, 0, 0,
 0, 0, 0, // lower triangle
};
 
You must make three changes to the GL POINT ADVANCED application to render a rectangle as
shown in Figure 3-14:

1.	 Remove the line “ gl_PointSize = 15.0; \n” from the point vertex shader
code (_pointVertexShaderCode).

2.	 Replace the contents of array pointVFA (inside initShapes method) with the
points given in Listing 3-23.

3.	 Modify the call to GLES20.glDrawArrays method as GLES20.
glDrawArrays(GLES20.GL_TRIANGLES, 0, 6);.

Figure 3-13.  Rendering triangle using glDrawArrays

82 CHAPTER 3: ES 2.0 Fundamentals

Normalized Device Coordinate System
To simplify things, OpenGL ES assumes that the vertices specified for primitives (Listing 3-24) are for
a 3D world, which is a normalized cube, so that all points in this cube lie within the range [1, 1, 1]
to [-1, -1, -1]. To see this, import the archive file ndc.zip from the source code for this chapter.

Listing 3-24.  NDC/src/com/apress/android/ndc/GLES20Renderer.java

float triangleVFA[] = {
 -1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f
};
 
If you read the Renderer class of the NDC application, you will see that it is trying to render a triangle
primitive. Inside the initShapes method, the float array (triangleVFA) for position is defined as
shown in Listing 3-24.

When you run this application, you get output similar to Figures 3-15 and 3-16 (for portrait and
landscape modes respectively). As mentioned, OpenGL ES assumes that the vertices specified for
triangle primitive are for a normalized cube world. When graphics are rendered using OpenGL ES,
this cube world is projected onto the (rectangular) 2D space of display screen, causing them to
appear skewed (Figures 3-15 and 3-16).

Figure 3-14.  Rendering rectangle using triangle primitives

83CHAPTER 3: ES 2.0 Fundamentals

OpenGL ES renders an object (that is, a primitive or a combination of the same type of primitives)
using a normalized coordinate system. Normalized Device Coordinate System (NDCS) is the
coordinate system in which the entire screen of the device corresponds to a unit cube, so all points
in this cube are within the range [1, 1, 1] to [-1, -1, -1] for x, y, and z, as shown in Figure 3-17.

Figure 3-15.  Normalized Device Coordinate System (portrait mode)

Figure 3-16.  Normalized Device Coordinate System (landscape mode)

84 CHAPTER 3: ES 2.0 Fundamentals

Another important feature of this coordinate system is that it is left handed, meaning the point
(0, 0, -1) in this coordinate system lies closer to the viewer than the point (0, 0, 1). Apart from
NDCS, there are other coordinate systems in the vertex rendering stages of the graphics pipeline;
however, we are more concerned with NDCS, because we can transform it to act like a real world.
This is illustrated in the following section.

3D-Transformation
As shown in Chapter 2, 3D-Transformation is an essential functionality of 3D graphic rendering APIs,
which we use to change sizes, orientations, or positions of objects by matrix operations. Now, I’ll
briefly explain each of the following transformations and describe the order in which these are used
in ES 2.0 applications.

Types of Transformations
3D-Transformation is of the following three types:

Geometric/Modeling transformation	

Coordinate/Viewing transformation	

Perspective/Projection transformation	

Using geometric transformation, we can transform an object to a new position (translation
transformation), a new size (scaling transformation), or a new configuration (rotation transformation).
An important feature of this transformation is that it is applied only to the object and not the
coordinate system in which it is placed.

Figure 3-17.  Normalized 3D space

85CHAPTER 3: ES 2.0 Fundamentals

Matrices for geometric transformations (translate, rotate, and scale matrices) require factors per-axis
for the corresponding transformation. Therefore, to translate an object along the x-axis (Figure 3-18),
say from (1, 0, 0) to (5, 0, 0), we need to update the translate matrix with the desired axis
(x-axis) and the factor (four in this case).

Figure 3-18.  Translation along +X axis

Figure 3-19.  Viewing transformation

Coordinate (or viewing) transformation is analogous to geometric transformation, but there is a
striking difference between the two. Instead of affecting an object, coordinate transformation affects
the viewer (Figures 3-19 and 3-20) to produce results similar to geometric transformation.

86 CHAPTER 3: ES 2.0 Fundamentals

Geometric transformation requires per-axis factors, whereas coordinate transformation requires
viewing information. This information consists of the viewer’s (eye) position, the center of
observation, and the normal (“vector” quantity) to the viewer’s head (as indicated by the orange
arrow over the Blender camera in Figures 3-19 and 3-20).

Using projection transformation, an object that is far from the viewer appears smaller. This
transformation provides a perspective into the 3D scene using a viewing volume, as indicated
by the (blue) frustum in Figure 3-21.

Projection transformation allows control of the projection of cube world of NDCS (Figure 3-17)
onto the (rectangular) 2D space of the display screen. This helps remove the skewing of rendered
graphics (since we limit the viewing volume, graphics no longer stretch when the orientation
changes). Additionally, the final coordinate system becomes right handed (that is, point (0, 0, 1)
in this coordinate system is closer to the viewer than point (0, 0, -1)).

Figure 3-20.  Viewing transformation, changing viewer’s position

Figure 3-21.  Viewing volume

87CHAPTER 3: ES 2.0 Fundamentals

The Matrix Class
Most graphic rendering APIs do not provide built-in functions for transformations. However,
frameworks hosting such APIs do provide utility methods for the same. Once again, Android comes
to the rescue, providing useful methods for transformations using the android.opengl.Matrix class
(not to be confused with the android.graphics.Matrix class). The following is a list of matrix math
utilities from this class to help easily perform the transformations discussed so far:

Geometric/Modeling transformation

	Matrix.translateM(float[] m, int mOffset, float x, float y, float z):
Translates matrix m by x, y, and z along x-axis, y-axis, and z-axis, respectively
(please note that, for all methods we use from the Matrix class, we set the
mOffset argument as ‘0,’ which means “no-offset”)

	Matrix.rotateM(float[] m, int mOffset, float a, float x, float y, float z):
Rotates matrix m by angle a (in degrees) about the specified axes

	Matrix.scaleM(float[] m, int mOffset, float x, float y, float z): Scales
matrix m by x, y, and z along x-axis, y-axis, and z-axis, respectively

Coordinate/Viewing transformation

	Matrix.setLookAtM(float[] m, int mOffset, float eyeX, float eyeY, float
eyeZ, float centerX, float centerY, float centerZ, float upX, float upY,
float upZ): Defines a view matrix m in terms of an eye point (that is, viewer’s
position), a center of view, and an up vector.

Perspective/Projection transformation

	Matrix.frustumM(float[] m, int mOffset, float left, float right, float
bottom, float top, float near, float far): Defines a projection matrix m in
terms of six clip planes

To perform these transformations, we need to associate matrices with objects (again, an object is
a primitive or a combination of same type of primitives). There are three stages—first, we declare a
new kind of input variable in our vertex shader called uniform; then we multiply this variable with an
attribute so as to transform per-vertex position data; finally, we “externally” pass data to this uniform
variable. You may have guessed that this data consists of Java float arrays.

We describe this with the help of an application, but first we explain an important concept about
combined transformations. In almost all cases, when working with transformations of objects in
interactive ES 2.0 applications, we have to use modeling transformation in combination with viewing
and projection transformations. We can use a single matrix to represent all of these transformations,
and we usually call this as MVPmatrix (that is, Model-View-Projection matrix). It bears this name to
signify the order in which we combine the transformations so they are represented as a single matrix.
We first update the MVPmatrix with any of the modeling transformations, say using the translateM
method. Then, we update it with the setLookAtM method to apply viewing transformation. Finally,
using the frustumM method, we apply projection transformation. Please note that, because of the
way matrices work, this order (that is, Model-View-Projection) becomes important when combining
transformations.

88 CHAPTER 3: ES 2.0 Fundamentals

From the source code for this chapter, import the archive file glcube.zip. This loads the GL CUBE
application into your workspace. First, turn your attention to the onSurfaceChanged method of the
Renderer class.

setLookAtM method (Listing 3-25) defines a view matrix _ViewMatrix (fields named as _*Matrix are
float arrays of size 16) in terms of an eye point (-13, 5, 10), a center of view (0, 0, 0), and an up
vector (0, 1, 0) for (x, y, z).

Listing 3-25.  GL CUBE/src/com/apress/android/glcube/GLES20Renderer.java

float ratio = (float) width / height;
float zNear = 0.1f;
float zFar = 1000;
float fov = 0.75f; // 0.2 to 1.0
float size = (float) (zNear * Math.tan(fov / 2));
Matrix.setLookAtM(_ViewMatrix, 0, -13, 5, 10, 0, 0, 0, 0, 1, 0);
Matrix.frustumM(_ProjectionMatrix, 0, -size, size, -size / ratio, size / ratio, zNear, zFar);
Matrix.multiplyMM(_MVPMatrix, 0, _ProjectionMatrix, 0, _ViewMatrix, 0);
 
In Listing 3-25, the code snippet used above the setLookAtM method (that is, the lines of code
from “float ratio = (float) width/height” to “float size = (float) (zNear * Math.tan(fov / 2))”) is used to
prepare the arguments for the frustumM method. This method defines the viewing volume in terms
of left-right, bottom-top, and near-far planes. Finally, using another utility method multiplyMM from
the android.opengl.Matrix class, the result of _ProjectionMatrix * _ViewMatrix is stored in
_MVPMatrix.

In the GL CUBE application, if any modeling transformation was used (for example, rotation), the
last line in Listing 3-25 would look similar to Listing 3-26 (Chapter4/gltankfenceelements1.zip).
Effectively, this would store the result of _ProjectionMatrix * _ViewMatrix * _RMatrix in
_MVPMatrix. Here (Listing 3-26), the _RMatrix stores the modeling transformation of type rotation.

Listing 3-26.  TANK FENCE ELEMENTS 1/src/com/apress/android/tankfenceelements1/GLES20Renderer.java

Matrix.multiplyMM(_MVPMatrix, 0, _ViewMatrix, 0, _RMatrix, 0);
Matrix.multiplyMM(_MVPMatrix, 0, _ProjectionMatrix, 0, _MVPMatrix, 0);
 
Inside the vertex shader (Listing 3-27), a uniform variable is declared (similar to the way we declare
an attribute). Uniforms are variables that store read only values. They are generally used to store
values, such as transformation matrices, that need to be updated “externally.” They are read only
within the vertex shader; however, if any geometric transformation needs performed on a frame
by frame basis, we can pass data to uniform variables at run time using the ES 2.0 function
GLES20.glUniformMatrix4fv.

Listing 3-27.  GL CUBE/src/com/apress/android/glcube/GLES20Renderer.java

private final String _cubeVertexShaderCode =
 "attribute vec3 aPosition;"
 + "attribute vec4 aColor;"
 + "varying vec4 vColor;"
 + "uniform mat4 uMVP;"
 + "void main() {"

89CHAPTER 3: ES 2.0 Fundamentals

 + " vColor = aColor;"
 + " vec4 vertex = vec4(aPosition[0],aPosition[1],aPosition[2],1.0);"
 + " gl_Position = uMVP * vertex;"
 + "}";
 
Variable gl_Position is finally assigned the value uMVP * vertex. In this multiplication, the matrix
comes before per-vertex position data, because matrices in OpenGL ES (mat2, mat3, and mat4) are
stored in column major order (the methods of Matrix class also operate on column-vector matrices
because of this). Please note that, if vertex variable inside main was of type vec3, the result of
multiplication would have been invalid, as the uniform variable uMVP is of type mat4 (recall, that mat4
is a square matrix).

Like glGetAttribLocation, glGetUniformLocation is used to obtain the location of uniform variable.
Renderer class has field _cubeUMVPLocation to store this location, and location of uniform is stored
using _cubeUMVPLocation = GLES20.glGetUniformLocation(_cubeProgram, "uMVP");.

Finally, this value is loaded to the uniform variable by calling
GLES20.glUniformMatrix4fv(_cubeUMVPLocation, 1, false, _MVPMatrix, 0). As shown in
Figure 3-22, the rendered cube is incomplete. It is an exercise for you to complete this cube.

Figure 3-22.  GL CUBE application

State Management
As you already know, there are various stages in the ES 2.0 rendering pipeline. These stages have
states that can be enabled or disabled. Here, we examine two important stages in the rendering
pipeline.

Cull Face
When we render triangle primitives, the rendering pipeline allows us to specify which triangles are
back-facing and which are front-facing. This is not by virtue of face pointing viewer, but is based
on the following orientations of the (vertices of) triangle—Clockwise (CW) and Counter-Clockwise

90 CHAPTER 3: ES 2.0 Fundamentals

(CCW). Then, using state GL_CULL_FACE, we can cull (discard) triangles that are back-facing or
front-facing.

Note  With the help of culling, our application does not send draw commands for discarded objects. This is
useful, as it can improve the rendering performance.

To understand this, import the archive file Chapter3/glcullface.zip. This loads the GL CULL FACE
application into your workspace (this application is almost identical to the GL CUBE application).
If you turn your attention to the per-vertex position data (Listing 3-28) specified in cubeVFA, you
observe that it contains vertices for six triangles (for an output similar to Figure 3-22)—two triangles
each for back/front side and two for the top side of the incomplete cube shown in Figure 3-22.

Listing 3-28.  GL CULL FACE/src/com/apress/android/glcullface/GLES20Renderer.java

float[] cubeVFA = {
 0,0,-4,
 0,2,-4,
 2,2,-4, // back half
 2,2,-4,
 2,0,-4,
 0,0,-4, // back half
 2,2,-4,
 0,2,-4,
 0,2,-2, // top half
 0,2,-2,
 2,2,-2,
 2,2,-4, // top half
 2,2,-2,
 0,2,-2,
 0,0,-2, // front half
 0,0,-2,
 2,0,-2,
 2,2,-2, // front half
};
 
Vertices for each of the triangles on the back side are arranged in a CW orientation, whereas others
are arranged in a CCW orientation. This is done intentionally to discard triangles that have CW
orientation (that is, a triangle whose vertices are arranged in a CW manner). To make the rendering
pipeline aware of the culling state, we proceed as shown in Listing 3-29.

Listing 3-29.  GL CULL FACE/src/com/apress/android/glcullface/GLES20Renderer.java

GLES20.glEnable(GLES20.GL_CULL_FACE);
GLES20.glCullFace(GLES20.GL_BACK);
GLES20.glFrontFace(GLES20.GL_CCW);
 

91CHAPTER 3: ES 2.0 Fundamentals

First we enable the state GL_CULL_FACE. Then, using the ES 2.0 function glCullFace, we specify
which face has to be culled—GL_FRONT or GL_BACK (GL_BACK is the default). Finally, using glFrontFace,
we specify the orientation to be made front-facing. As a result, we get the output as shown in
Figure 3-23 (instead of the output shown in Figure 3-22).

Figure 3-23.  GL CULL FACE application

Depth Test
Apart from the color buffer, there is another kind of framebuffer associated with the EGL window—
depth buffer. It is used for hidden surface removal. For each pixel on the OpenGL surface, it tracks
(object) vertex’s distance to the viewer to determine whether the corresponding fragment’s color
is retained on the color buffer. Therefore, if vertex B is behind vertex F, depth buffer stores the
position of F (to further compare with other vertices for that pixel, if any) and stores its fragment
corresponding to the matching pixel in color buffer.

An interesting point is that, when we only use a single ES 2.0 program in our Renderer class, “depth
testing” takes place automatically. However, if there are multiple programs, we need to explicitly
enable depth testing by calling “GLES20.glEnable(GLES20.GL_DEPTH_TEST)”. If we do not enable it,
the object rendered by the last program is considered to lie above other objects (that is, closer to the
viewer) rendered using previous programs.

Another interesting point is that depth testing may seem to give unexpected results in NDCS,
because NDCS has a left handed coordinate system. This can be corrected by adding the line
“GLES20.glDepthRangef(1, 0);” after enabling GL_DEPTH_TEST; doing so changes NDCS into a
right handed coordinate system. As discussed in the previous topic, we can also do this by using
an MVPmatrix to transform per-vertex positions. To understand this more clearly, go through the
Renderer class (GLES20Renderer) inside the GL DEPTH TEST application (Chapter3/gldepthtest.zip).
Each of the programs used in this class renders a line primitive (Figure 3-24) and uses an MVPmatrix
to transform per-vertex positions.

92 CHAPTER 3: ES 2.0 Fundamentals

Summary
In this chapter you learned more about the OpenGL ES 2.0 environment on Android by examining:

	EGL, the software that helps us connect OpenGL ES 2.0 API with Android

	GLSurfaceView class, to manage the EGL window i.e. rendering surface

	renderer thread, which renders 3D graphics on the EGL window

After learning about the relationship between UI/main thread and renderer thread, you saw some
applications that helped you understand the fundamental concepts of the OpenGL ES 2.0 API. You
learned to draw primitive shapes in ES 2.0, such as points, lines, and triangles, and added to your
knowledge of transformations that help us take control of the view settings of 3D graphics.

In the next chapter, we will work with Blender to model 3D objects for the Tank Fence game, and
then I shall explain the use of parsers to integrate these objects easily into our ES 2.0 applications.

Figure 3-24.  GL DEPTH TEST application

93

Chapter 4
3D Modeling

In this chapter you will be introduced to modeling 3D objects using the open-source software
Blender. First, you will learn the basics of the Blender interface, and how to model the objects for our
Tank Fence game. Finally, you will see how we include these objects inside ES 2.0 applications by
using parsers to read and manipulate the mesh data.

Drawing Shapes Using glDrawElements
To specify the type of primitive(s) we intend to render on the OpenGL surface, we use ES 2.0
functions—glDrawArrays or glDrawElements.

In Chapter 3 you learned about the ES 2.0 function glDrawArrays. This function is generally not
used for rendering primitives in ES 2.0 applications, such as games. This is because, when authoring
game objects in 3D-modeling software, the objects can have plenty of meshes that share vertices
leading to redundant data in float arrays for vertex positions (Listing 4-1) and, consequently,
redundant data in vertex buffers (FloatBuffer) created using these arrays. Chapter 3 provided
an example (Chapter3/glrectangle.zip) with redundant vertex data.

Listing 4-1.  GL RECTANGLE/src/com/apress/android/glrectangle/GLES20Renderer.java

float rectangleVFA[] = {
 0, 0, 0,
 0, 0.5f, 0,
 0.75f, 0.5f, 0,
 0.75f, 0.5f, 0, // duplication
 0.75f, 0, 0,
 0, 0, 0, // duplication
}; 
 
To avoid this redundancy, use glDrawElements and provide a float array consisting of unique
vertices of the object, as well as another (short) array consisting of element indices to access
vertices (from the float array) representing primitive(s).

94 CHAPTER 4: 3D Modeling

GL POINT ELEMENTS Application
Without modifying the output of the GL POINT ADVANCED application, as shown in Figure 3-10
(Chapter3/glpointadvanced.zip), you can replace the call to glDrawArrays with glDrawElements.
Please note that the shader code remains the same. In the Renderer class of the GL POINT
ADVANCED application, turn your attention to the initShapes method. Much as we create
a FloatBuffer for the vertex array (Listing 4-2), we create a ShortBuffer for the index array
(Listing 4-3).

Listing 4-2.  GL POINT ADVANCED/src/com/apress/android/glpointadvanced/GLES20Renderer.java

private void initShapes() {
 float[] pointVFA = {
 0.1f,0.1f,0.0f, // first quadrant
 -0.1f,0.1f,0.0f, // second quadrant
 -0.1f,-0.1f,0.0f, // third quadrant
 0.1f,-0.1f,0.0f // fourth quadrant
 }; 
 ByteBuffer pointVBB = ByteBuffer.allocateDirect(pointVFA.length * 4);
 pointVBB.order(ByteOrder.nativeOrder());
 _pointVFB = pointVBB.asFloatBuffer();
 _pointVFB.put(pointVFA);
 _pointVFB.position(0);
}
 
Listing 4-3.  GL POINT ELEMENTS/src/com/apress/android/glpointelements/GLES20Renderer.java

private void initShapes() {
 float[] pointVFA = { // vertex (float) array
 0.1f,0.1f,0.0f, // 0
 -0.1f,0.1f,0.0f, // 1
 -0.1f,-0.1f,0.0f, // 2
 0.1f,-0.1f,0.0f // 3
 }; 
 ByteBuffer pointVBB = ByteBuffer.allocateDirect(pointVFA.length * 4);
 pointVBB.order(ByteOrder.nativeOrder());
 _pointVFB = pointVBB.asFloatBuffer();
 _pointVFB.put(pointVFA);
 _pointVFB.position(0);
 
 short[] pointISA = { // index (short) array
 0,1,2,3
 };

Note  Meshes are primary shapes, such as triangles, used to represent real world objects in modeling
softwares similar to Blender. The following section, “Blender for Modeling,” discusses them.

95CHAPTER 4: 3D Modeling

 ByteBuffer pointIBB = ByteBuffer.allocateDirect(pointISA.length * 2);
 pointIBB.order(ByteOrder.nativeOrder());
 _pointISB = pointIBB.asShortBuffer();
 _pointISB.put(pointISA);
 _pointISB.position(0);
} 
 
After setting the position of the FloatBuffer using _pointVFB.position(0), create a short array to
store (zero-based) index positions of the vertices in array pointVFA, as shown in Listing 4-3. If you
want to render all the vertices from this vertex array, store all the indices {0, 1, 2, 3} in the short
array (say pointISA). Then, store this index array in a ShortBuffer, as shown in Listing 4-3. Here,
_pointISB is a field (that is, a member variable) of type ShortBuffer.

Finally, in the onDrawFrame method, remove the call to glDrawArrays, and replace it with the line of
code in Listing 4-4.

Listing 4-4.  GL POINT ELEMENTS/src/com/apress/android/glpointelements/GLES20Renderer.java

GLES20.glDrawElements(GLES20.GL_POINTS, 4, GLES20.GL_UNSIGNED_SHORT, _pointISB);
 
glDrawElements takes four arguments. The first argument is the mode (for the type of primitive), the
second argument is the count of indices stored in the index array (if in place of ‘4’ you specify ‘3’, the
point sprite in the fourth quadrant won’t be rendered), the third argument is data type of index array,
and the last argument is the index array buffer or the address of index array (Chapter 5 discusses
the address argument). In Listing 4-4, the arguments are GL_POINTS, 4, GL_UNSIGNED_SHORT, and
ShortBuffer _pointISB, respectively.

To see the Renderer class with all of these changes, import the archive file
Chapter4/glpointelements.zip. This loads the GL POINT ELEMENTS application into your
workspace. Please note that the shader _pointFragmentShaderCode still works if you remove the
precision settings outside the main function.

Drawing Line and Triangle Primitives
Here, I describe how to create a wireframe rectangle, as shown in Figure 4-1, with the help of line
primitives and glDrawElements. Import the archive file Chapter3/glline.zip into your workspace,
and start making changes to the Renderer class in the loaded application GL LINE.

96 CHAPTER 4: 3D Modeling

Inside the initShapes method, initialize the vertex array lineVFA with vertices (four unique vertices)
representing a rectangle. After storing this vertex array as a FloatBuffer, create the index array to
access the vertices in lineVFA. Each line primitive requires two vertices; so, to create a wireframe
rectangle from line primitives, use four sets of two vertices. Depending on the vertices you used
inside lineVFA, you can create the index array containing eight indices, as shown in Listing 4-5.
_lineISB is the buffer to store index array as a ShortBuffer. It is declared as a member variable.

Listing 4-5.  GL LINE ELEMENTS/src/com/apress/android/gllineelements/GLES20Renderer.java

private void initShapes() {
 float lineVFA[] = {0.2f,0.2f,0.0f, -0.2f,0.2f,0.0f, -0.2f,-0.2f,0.0f, 0.2f,-0.2f,0.0f};
 ByteBuffer lineVBB = ByteBuffer.allocateDirect(lineVFA.length * 4);
 lineVBB.order(ByteOrder.nativeOrder());
 _lineVFB = lineVBB.asFloatBuffer();
 _lineVFB.put(lineVFA);
 _lineVFB.position(0);
 
 short lineISA[] = {0,1, 1,2, 2,3, 3,0}; // 1,2 & 3 duplicated
 ByteBuffer lineIBB = ByteBuffer.allocateDirect(lineISA.length * 2);
 lineIBB.order(ByteOrder.nativeOrder());
 _lineISB = lineIBB.asShortBuffer();
 _lineISB.put(lineISA);
 _lineISB.position(0);
}
 
Finally, to render this wireframe rectangle, replace the call to glDrawArrays with glDrawElements
using suitable arguments.

As shown in Listing 4-6, the mode argument is GL_LINES, the count argument is ‘8’, the type argument
is GL_UNSIGNED_SHORT, and the last argument is the ShortBuffer.

Figure 4-1.  Rendering line primitives

97CHAPTER 4: 3D Modeling

Listing 4-6.  GL LINE ELEMENTS/src/com/apress/android/gllineelements/GLES20Renderer.java

GLES20.glDrawElements(GLES20.GL_LINES, 8, GLES20.GL_UNSIGNED_SHORT, _lineISB);
 
Rendering triangle primitives is left as an exercise for you; however, if you have any confusion
about this, go through the Renderer class inside the GL TRIANGLE ELEMENTS application
(Chapter4/gltriangleelements.zip). If you run this application, you see output similar to Figure 4-2.

Figure 4-2.  Triangle primitives using glDrawElements

Figure 4-3.  Rendering a rectangle using triangles

Now, I describe how to create a rectangle (Figure 4-3) with the help of triangle primitives using
glDrawElements. Once again, start by modifying the Renderer class inside the GL RECTANGLE
application (Chapter3/glrectangle.zip).

98 CHAPTER 4: 3D Modeling

Inside the initShapes method, remove the duplicate vertices from the vertex array rectangleVFA
shown in Listing 4-1. The array rectangleVFA is modified in Listing 4-7 to define a rectangle with
different vertices. To render a rectangle using glDrawElements, this array must contain unique
vertices corresponding to the corners of a rectangle.

Listing 4-7.  GL RECTANGLE ELEMENTS/src/com/apress/android/glrectangleelements/GLES20Renderer.java

float rectangleVFA[] = {
 0.2f,0.2f,0.0f, -0.2f,0.2f,0.0f, -0.2f,-0.2f,0.0f, 0.2f,-0.2f,0.0f
 };
ByteBuffer rectangleVBB = ByteBuffer.allocateDirect(rectangleVFA.length * 4);
rectangleVBB.order(ByteOrder.nativeOrder());
_rectangleVFB = rectangleVBB.asFloatBuffer();
_rectangleVFB.put(rectangleVFA);
_rectangleVFB.position(0);
 
short rectangleISA[] = {
 0,1,2, // upper triangle
 2,3,0 // lower triangle
 };
ByteBuffer rectangleIBB = ByteBuffer.allocateDirect(rectangleISA.length * 2);
rectangleIBB.order(ByteOrder.nativeOrder());
_rectangleISB = rectangleIBB.asShortBuffer();
_rectangleISB.put(rectangleISA);
_rectangleISB.position(0);
 
Now, create the index array with sets of indices corresponding to upper and lower triangles
(short[] rectangleISA, Listing 4-7). For example, if you used vertices {A, B, C, D} in the first,
second, third, and fourth quadrants, respectively, to represent rectangle, then, one of the possible
combinations of indices that can be used for rendering rectangle using glDrawElements with mode
GL_TRIANGLES is {0, 1, 2} and {2, 3, 0}.

Note  glDrawElements draws a sequence of primitives using a vertex array and an additional (index)
array with element indices for this vertex array. This function helps remove redundant data from the vertex
array, and, as Chapter 5 shows, OpenGL ES may even cache recently processed vertices/indices and reuse
them without resending them to the rendering pipeline.

Finally, replace the call to glDrawArrays with the line of code in Listing 4-8.

Listing 4-8.  GL RECTANGLE ELEMENTS/src/com/apress/android/glrectangleelements/GLES20Renderer.java

GLES20.glDrawElements(GLES20.GL_TRIANGLES, 6, GLES20.GL_UNSIGNED_SHORT, _rectangleISB);
 
In Listing 4-8, the arguments passed to glDrawElements are straightforward. The GL_TRIANGLES
argument specifies the mode (that is, the type of primitive), ‘6’ specifies the count of indices
in the index array, GL_UNSIGNED_SHORT specifies the data type of the index array, and the last

99CHAPTER 4: 3D Modeling

argument specifies this index array as a ShortBuffer. Please note that, in the output,
as shown in Figure 4-3, the rectangle is blue in color, as the fragment color is explicitly set
to blue—gl_FragColor = vec4(0,0,1,1);

Now that you have a basic understanding of glDrawElements, you can start learning about
3D-content authoring software—in this case, Blender. Using Blender, we model 2D/3D objects,
which can be parsed for vertex and index arrays for use with glDrawElements.

Blender for Modeling
Blender is a powerful 3D application for modeling, animation, rendering, compositing, video editing,
and game creation. It is an open-source application and is available for the following OSes:

Linux	

Mac OS X	

Windows	

FreeBSD	

You can download Blender from the website www.blender.org. As it supports a wide range of OSes,
you should take care to get the appropriate version for your OS.

Figure 4-4.  Loading the factory settings

Note  Blender works the same on Windows and Mac OS X, but the keyboard on Mac does not have an Alt key.
So, for all Blender examples demonstrated, replace the Alt key with the Option key, if you are using Mac.

Before moving ahead, when you start Blender, be sure to load its factory settings by selecting the
option “Load Factory Settings” under the File menu, as shown in Figure 4-4.

http://www.blender.org/

100 CHAPTER 4: 3D Modeling

Blender has a number of modes for working with objects (Figure 4-5).Here, we look at:

	Object Mode

	Edit Mode

Figure 4-5.  3D View Window in Object Mode

Note  To toggle between these modes, hit the Tab key.

Default Layout
If you have loaded the factory settings and have not altered the default layout, you see the
following five basic components in the Blender interface. These components are called windows.
(Figures 4-54 to 4-57 at the end of this chapter show screen shots of the windows.)

1.	 Info Window : at the top

2.	 3D Window a.k.a. 3D View : at the center

3.	 Timeline Window : at the bottom

4.	 Outliner Window : at the upper-right corner

5.	 Properties Window : at the lower-right corner

All windows in Blender have a header, although in some cases the header may be located at the
bottom of the window. Figure 4-5 shows the 3D View (window), with its header at the bottom
(for options—View, Select, Object, etc.). Please note that the entire layout shown in Figure 4-5
represents the 3D View.

101CHAPTER 4: 3D Modeling

The Outliner window (the right half of Figures 4-7 and 4-8) lists all the objects added to the
world-space of the 3D View. Outliner window is used for selecting, deleting (Figure 4-17),
and hiding objects modeled in Blender.

The Properties window (Figure 4-6) displays panels of functions. A panel is a set of related functions
(for example, all of the rendering options are grouped under a panel “Render”). The header of the
Properties window is a row of buttons—called Context buttons—that allow you to select which
groups of panels are shown.

The Info window (see Figures 4-4 and 4-19) consists of useful menus (for example, File, Add,
and Help), and it is only composed of a header.

Note  You do not have to worry about the Timeline window; it is used for animations.

Figure 4-6.  Properties Window

Most panels can be collapsed or expanded by clicking the solid black triangle, positioned left of the
panel label, as shown in Figure 4-6. Similar to the Properties window, the 3D View also consists of
panels. In the following sections, we discuss these panels further.

Using Object Mode
The default mode in Blender is the Object mode. We usually work in this mode to translate, rotate,
or scale object(s) added to the world-space of the 3D View.

102 CHAPTER 4: 3D Modeling

By default, the world-space loads with a cube at the center of the grid surface—the floor on which
objects are placed. In addition, a camera and a lamp are also positioned somewhere close to the
grid surface. The lamp aids the visibility of the object(s) when we render the world-space (as viewed
from the camera) using the F12 key. This is a shortcut key for the “Render Image” command in
Blender.

Figure 4-7.  Toggling the properties shelf in the 3D View Window

Note  Do not modify the positions of the lamp and camera. If you accidentally did, simply restart Blender.

To quickly select an object in the world-space, from the Outliner window, click the corresponding
object label (for example, label “Cube”), as shown in Figure 4-7. You can toggle the visibility of an
object in the world-space by clicking the “eye” image-button, corresponding to the object. Similarly,
you can toggle the visibility of an object in the rendered image (F12) by clicking on the “camera”
image-button, shown in Figure 4-7.

Panels in 3D View
The 3D View consists of toggleable parts—the tool shelf and properties shelf.

The tool shelf (Figure 4-5) consists of a useful panel, “Object-Tools.” In this panel, you see buttons to
translate, rotate, and scale object(s).

You can expand the properties shelf by clicking the small “plus” button at the top-right corner of the
3D View. This button is highlighted within white border in Figure 4-7. Figure 4-8 shows the expanded
properties shelf.

103CHAPTER 4: 3D Modeling

Unlike the functions in tool shelf ➤ Object-Tools panel, we explicitly provide (object) transformation
values in functions listed under the properties shelf ➤ Transform panel.

Figure 4-8.  Properties shelf in 3D View Window

Note  Do not confuse the properties shelf (Figures 4-7 and 4-8) with the Properties window (Figure 4-6).

Translating Objects
Now, you will see how to translate objects along an axis. Select the cube object in the
world-space by clicking the label “Cube” in the Outliner window. From the “Object-Tools”
panel, click the “Translate” button under the label “Transform.”

Figure 4-9.  Object-Tools panel in the tool shelf

104 CHAPTER 4: 3D Modeling

Once you’ve done this, press the X key. The cube in the world-space can now translate along
a particular axis (Figure 4-10), which is the global x-axis in the world-space (of 3D View).

Figure 4-10.  Enabling constrained translation

Figure 4-11.  Translating cube along global X axis

In Blender, translation of objects along a particular axis is called constrained translation. Just as you
translated a cube along the global x-axis (Figure 4-11), you can also translate it along the y-axis and
z-axis by pressing the Y and Z keys, respectively, after clicking the “Translate” button.

As you have previously seen, the “Object-Tools” panel also provides functions to rotate and scale
objects. Try these before you move ahead. The steps are the same as when you translated the cube.

Using the Lasso-Select Command
Now, I will show you how you can easily select multiple objects for various types of transformations.
First, open the lassoSelect.blend file from the source code for this chapter (Blender/lassoSelect.blend)
by double-clicking it.

The lassoSelect Blender file loads with three cubes in the world-space, as shown in Figure 4-12.
Cubes can be added using the Add menu from the Info window.

105CHAPTER 4: 3D Modeling

To select multiple objects using the lasso-select command, press Ctrl and then left-click and drag to
enable the lasso. Now, without releasing the left-mouse-button (or left-touchpad-button), drag the
lasso around the objects to completely encompass them (Figure 4-13).

Figure 4-12.  Default scene: lassoSelect Blender file

After completely surrounding the desired objects, release the left-mouse-button (or left-touchpad-button).
This highlights the (lasso) selected objects (as shown in Figure 4-14), using which we can easily
transform multiple objects.

Figure 4-13.  Selecting multiple objects

106 CHAPTER 4: 3D Modeling

To rotate highlighted objects (Figure 4-15), press the R key to enable rotation and, as you did
previously, press another key (X, Y, or Z) corresponding to the axis about which you want to rotate
the objects. To render image, as shown in Figure 4-16, press F12.

Figure 4-14.  Highlighted objects

Note  In place of transforming objects using buttons, listed under the "Object-Tools" panel (Figure 4-9),
you can also use shortcut keys. Table 4-1 contains a list of commonly used shortcut keys in Blender.

Figure 4-15.  Rotating multiple objects

107CHAPTER 4: 3D Modeling

Similarly, you can translate and scale the highlighted objects by pressing the G and S keys,
respectively. Before moving ahead, try transforming multiple objects using various shortcut keys
listed in Table 4-1.

Table 4-1.  Object Mode Shortcuts

Shortcut Description

MiddleClick Move Rotate grid

Shift MiddleClick Move Translate grid

Ctrl + (OR) WheelUp Zoom In

A Toggle “select all”

RightClick Select object

Shift RightClick Toggle “multi-select object”

Ctrl I Invert selection

Ctrl LeftClick Move Lasso select

G X Translate object(s) along global X

R X Rotate object(s) about global X

S X Scale object(s) along global X

F12 Render image

Figure 4-16.  Render image

108 CHAPTER 4: 3D Modeling

Modeling Objects for the Game
This section shows how to model objects for the Tank Fence game. First, however, you will find it
helpful to work through a basic example of editing a mesh. Load a new Blender file from the Info
window.

Note  Mesh is a primitive shape in Blender that can be used to model various complex shapes. There are
various types of meshes in Blender (for example, plane, cube, cone, torus), and, to use a mesh, we must
select it from the available meshes from the Add menu in the Info window.

To edit meshes by making changes to their geometry (edges, faces, and vertices), we must select
the Edit mode from the 3D View header, as shown in Figure 4-5. You can also switch between Object
and Edit modes by pressing Tab.

Note  If you accidentally deleted the cube mesh from the grid, you can add it back again. Snap (crosshair)
cursor to the center (Figure 4-18) by pressing Shift S, and add the cube mesh by selecting it from Add menu,
as shown in Figure 4-19.

Figure 4-17.  Deleting object from the Outliner Window

109CHAPTER 4: 3D Modeling

Creating an Equilateral Triangle
In the following example, you must create an equilateral triangle by editing a cube mesh. After
loading a new Blender file with cube mesh, start editing this mesh using the following steps:

1.	 From the 3D View header, select View ➤ Navigation ➤ Orbit Left. This helps
move clockwise around the cube mesh, as shown in Figure 4-20.

Figure 4-18.  Snap cursor to center

Figure 4-19.  Adding a mesh

110 CHAPTER 4: 3D Modeling

a.	 You can also middle-click and drag to rotate the grid.

b.	 This is useful, as it allows you to view the objects from different angles.

c.	 Table 4-1 provides more of these shortcuts.

Figure 4-21.  3D View header

Figure 4-20.  Cube mesh in Edit Mode

2.	 In the Edit mode (Tab), zoom-in (Ctrl +) and press the Z key to toggle the
Wireframe mode.

a.	 Wireframe mode makes it easy to get a skeletal view of the mesh,
while it is being edited.

b.	 This makes it easy to select hidden vertices (Figures 4-22 and 4-23),
edges, and faces.

c.	 Wireframe mode can also be selected from the 3D View header, as shown
in Figure 4-21.

111CHAPTER 4: 3D Modeling

3.	 Toggle “select all” by pressing the A key.

a.	 The default mesh “select-mode” (in the Edit mode) is for vertices.
So, when the A key is pressed again, all vertices in the cube mesh
are selected.

b.	 In this default mode, when you use lasso-select to select edges or faces,
you aren’t able to. Instead, you can only select vertices.

Figure 4-22.  Selecting vertices using lasso-select

Note  The mesh select-mode is of the following types: Vertex select, Edge select, and Face select.

c.	 Buttons highlighted in white border in Figure 4-21 are used to switch
between mesh select-modes. As stated–previously, the default mode
is Vertex select.

4.	 To create an equilateral triangle, lasso-select vertices, as shown in Figure 4-22.

5.	 The remaining vertices must be removed (Figure 4-23). Press Ctrl I
to invert selection.

112 CHAPTER 4: 3D Modeling

Figure 4-24.  Selecting vertices for creating an equilateral triangle

Figure 4-23.  Deleting vertices in Edit Mode

6.	 Press Delete to display the menu with delete operations, as shown in
Figure 4-23. Click the option “Vertices,” to delete the highlighted vertices.

7.	 Press the A key to select all vertices. Three vertices are selected (Figure 4-24),
representing the corners of the equilateral triangle you must create.

8.	 Finally, press the F key to create a face from the selected vertices.

The shape you modeled is an equilateral triangle, shown in Figure 4-25. Toggle the Wireframe mode
to get a better look at the object.

113CHAPTER 4: 3D Modeling

Now, we look at a very interesting feature in the Edit mode. To do so, you get a better view across
this triangle (Figure 4-26) by orbiting right.

Figure 4-25.  Creating a face from vertices

Figure 4-26.  Orbiting right of the triangle

Note  Orbit right by selecting the option View ➤ Navigation ➤ Orbit Right from the 3D View header. Recall
that you can also middle-click and drag to orbit around the object (by rotating the grid).

114 CHAPTER 4: 3D Modeling

Using the “Extrude Region” command, we can extrude and move the current selection. By now,
if you tried experimenting with lasso-select and mesh select-modes (Vertex, Edge, and Face
select), you should understand that current selection could mean vertices, edges, faces, or objects.
Extruding a triangle—like the triangle we created (Figure 4-25)—into a 3D object, requires us to
select a face. We select a face by simply right-clicking on it (when in the Face select mode).
By pressing the E key (shortcut key for the “Extrude Region” command, Table 4-2), we extrude
this face along its surface-normal, as shown in Figure 4-27.

Figure 4-27.  Extrude Region

Figure 4-28.  Extruded equilateral triangle, Object Mode

After extruding the equilateral triangle, switch back to the Object mode to get a better view of this
3D object (Figure 4-28).

115CHAPTER 4: 3D Modeling

tankFence Blender File
Open the tankFence1.blend file from the source code for this chapter (Blender/tankFence1.blend).
It consists of the extruded equilateral triangle you created. The rotation values for the object have
been set from the properties shelf (highlighted in yellow border in Figure 4-29), so that it becomes
(almost) parallel to the grid surface.

Figure 4-29.  Material context in Properties Window

This object represents the enemy, shown in Figure 2-6. Before making more changes to this file,
select View ➤ Top from the 3D View header. This aligns the global axes in Blender, along with the
right handed OpenGL ES coordinate system (Figure 3-17), making it easy to edit the positions of
objects added to the world-space of the 3D View.

Now, continue editing this file. From the properties shelf, set the location of this object to {10.0,
10.0, and 0.0} for X, Y, and Z, respectively. This moves the object near the top-right corner of the
grid. From the Outliner window, double-click the object label “Cube.” This allows you to rename the
object. Set the name to “Enemy,” and press Enter. Similarly, rename the cascaded label (along small
“plus” button) “Cube” to “Enemy.” Click the “plus” button to reveal the object material.

Expand the Outliner window by dragging the resizable-cursor. This cursor appears when you
position the mouse pointer at the border of any window in Blender. In this case, expand the left
border of the Outliner window. Windows layed above or below the Outliner window are also
expanded. Now, turn your attention to the Properties window (Figure 4-29).

Material Context
Toggle back to the Object mode, and click the Material context-button (highlighted in yellow border
in Figure 4-29) in the Properties window. After making sure that the “Enemy” object is selected,
as shown in Figure 4-29, click the “minus” button in the material context to remove the material
associated with this object.

116 CHAPTER 4: 3D Modeling

We must link a material with this object to color it. To do so, create a new material slot (highlighted
in green border in Figure 4-29). Click the “plus” button to create a new material slot. Then, click
“New” to add a new material to this slot. Rename this material “Enemy” by over-typing the name
“Material.001” (automatically set by Blender). Under the “Diffuse” panel, set the intensity as “1.0.”
This allows you to clearly observe the material color. Finally, to set this color, click on the white bar
directly below the label “Diffuse.” This displays a color-picker. Inside, you can also type an RGB
color value. In all Blender files in the source code, I used red color (R: 1.0, G: 0.0, B: 0.0) for the
“Enemy” object.

Figure 4-30.  Setting the material diffuse-color

Note  The object name in the Outliner window, along with two other cascaded names for this object
(Figure 4-29), should be identical, including the upper/lower-case alphabets. If the object name is “Cube,”
the cascaded name should be “Cube,” and the next cascaded name (representing the material) should also
be “Cube,” as shown in Figure 4-30 (in this figure, the object name is “Enemy”).

This is a prerequisite for the Perl parser. Basically, having the same names makes it possible for the parser to
look for the components associated with the object in .obj and .mtl Blender files.

117CHAPTER 4: 3D Modeling

Player Object
From the Add menu in the Info window, add a cube mesh by selecting Add ➤ Mesh ➤ Cube. Set
its labels in the Outliner window as “Player”, as we did for the “Enemy” object. Next, remove the
material associated with this object and create a new material slot. Finally, click “New” to add a new
material to this slot. As we did previously, set the material name as the object name. After setting the
diffuse intensity as “1.0”, set the RGB color as (0.0, 0.0, 1.0).

Adding Plane Mesh
As shown in Figure 2-6, Tank Fence also contains a plane region. The player has to guard this
region. You may already understand how to add this plane in Blender. Try it yourself. Open the
tankFence3.blend file from the source code for this chapter. This file contains all the changes you
have made so far. It also contains this plane mesh (scaled to “10.0” along X and Y), with an incorrect
material name. After setting the material name to “Plane”, start editing the cube (“Player”) object.

Editing the Player Object
To make it easy to view this object, toggle the visibility of other object(s) in the world-space by
clicking the (corresponding) “eye” image-button in the Outliner window.

Now, we discuss how to make this cube look like a tank (at least somewhat!). The easiest way to do
so is by extruding any lateral surface of a cube and then scaling-down the extrusion. The way this is
exactly performed in Blender, however, is a little different.

After editing the tankFence3.blend file (for material name), rotate the grid to get a configuration similar to
Figure 4-31. Recall that you can do so by middle-clicking and then dragging the mouse to rotate the grid.

Figure 4-31.  Configuring the grid surface

118 CHAPTER 4: 3D Modeling

You do not have to extrude an entire face of a cube. Doing so will only result in a cuboid. To create a
shape similar to a tank, extrude only a part of this selected face. The extrusion tool can be used for
this purpose. To extrude a part of this selected face, press the E key to enable extrusion. The axis
along the surface-normal is displayed, as shown in Figure 4-33. Press Esc to cancel extrusion.

Figure 4-32.  Mesh select-mode: Face

Figure 4-33.  Extruding the face

After obtaining a configuration similar to Figure 4-31, zoom in. Then, from the 3D View header, select
the Face select-mode. This allows you to select any face for extrusion. Select the front-face, pointed
by the (crosshair) cursor, as shown in Figure 4-32. You can lasso-select this face or right-click on it
to select it.

119CHAPTER 4: 3D Modeling

This creates an extra face at the top of the selected face. Blender automatically makes this new
face the current selected face. Next, press the S key to scale this face. Scale it inward (Figure 4-34)
so you can then extrude it—to look like a tank gun.

Figure 4-34.  Scaling face inward

Finally, after scaling the face, press the E key to extrude it, as shown in Figure 4-35. Recall that
extrusion takes place along surface-normal. So, unlike translation, there is no need to specify any
axis for extrusion.

Figure 4-35.  Extruding the scaled face

120 CHAPTER 4: 3D Modeling

Now, open the tankFence5.blend file from the source code for this chapter
(Blender/tankFence5.blend). It consists of all the game objects you created. If you toggle
to Edit mode, observe that all the objects (that is, faces of objects) are already triangulated.
To export this file as .obj (and accompanying .mtl) format, complete the following steps:

1.	 To ensure the required “Import-Export” add-on is available, select the option
“User Preferences” under File menu.

2.	 In the “User Preferences” editor, click the Context button corresponding to
the “Addons”. Then, from the “Categories” panel, select “Import-Export”, as
shown in Figure 4-36.

Note  .obj is a geometry definition file format first developed by Wavefront Technologies. This file format
is a simple data-format that represents 3D geometry alone—namely, the position of each vertex, normals,
faces (that make each polygon defined as a list of vertices), and texture-vertices. The .mtl file format
is a companion file format that describes surface shading (material) properties of objects within one or
more .obj files.

You can read more about these file formats at
http://en.wikipedia.org/wiki/Wavefront_.obj_file.

Before we export the mesh data, recall what you learned in the beginning of this chapter. Based on
what we’ve already discussed, you should understand that the kind of mesh data we have to export
should be composed of triangles.

Blender makes it very easy to “triangulate” faces of an object. To do so, after selecting the object,
toggle to Edit mode. Then, press Ctrl T to triangulate faces. That’s all!

Note  Although the default (mesh) select-mode is Vertex select, Blender understands that you want to
triangulate faces.

Exporting Mesh Data
Now that you have seen the modeling of objects for Tank Fence, we discuss how to export the mesh
data to .obj files. If you had difficulty understanding the examples previously discussed, you may
find it helpful to go through the Blender files in the source code for this chapter.

http://en.wikipedia.org/wiki/Wavefrontunderscore.objunderscorefile

121CHAPTER 4: 3D Modeling

3.	 Scroll down the available list of add-ons to find the add-on corresponding
to .obj format. It should be named similar to “Wavefront obj format”.

4.	 Check this add-on to enable it in Blender. This allows you to export the
mesh data to .obj files. Finally, close this editor.

5.	 Under File menu, select Export ➤ Wavefront (.obj).

6.	 From the “Export-Obj” panel, check the option “Include Normals”.
Set “Forward:” and “Up:” as “Y Forward” and “Z Up”, respectively.

7.	 Save this configuration (changes made in step 6) by clicking the “plus”
button, alongside the select-list “Operator Presets” (Figure 4-37).

Figure 4-36.  User Preferences: Addons

122 CHAPTER 4: 3D Modeling

8.	 Finally, click the “Export Obj” button. This exports the mesh data to .obj file.
Another file (.mtl) accompanies .obj file. Obj or object-file-format contains
geometry definitions for various objects, whereas Mtl or material-file-format
contains material colors for these objects.

Figure 4-37.  Export-Obj panel

123CHAPTER 4: 3D Modeling

Parsing Objects for OpenGL ES
Now, we demonstrate the use of a Perl (.obj) parser to parse the triangulated mesh data in .obj
files. This parser is still in its early stages (it does not support textures for objects), but it has
sufficient functionality to collect the following data from .obj (and .mtl) files:

It can collect basic data about objects, such as names and materials.	

Listing 4-9 contains a few lines from the beginning of the file 	 tankFence5.obj,
whereas Listing 4-10 contains a few lines from the file tankFence5.mtl
(you exported these files using tankFence5.blend file).

Listing 4-9.  Chapter4/Blender/tankFence5.obj

Blender v2.63 (sub 0) OBJ File: 'tankFence5.blend'
www.blender.org
mtllib tankFence5.mtl
o Plane
v 10.000000 -10.000000 0.000000
v -10.000000 -10.000000 0.000000
v 10.000000 10.000000 0.000000
v -10.000000 10.000000 0.000000
vn 0.000000 0.000000 1.000000
usemtl Plane
s off
f 3//1 4//1 2//1
f 1//1 3//1 2//1

Table 4-2.  Edit Mode Shortcuts

Shortcut Description

Ctrl Tab Switch mesh select-mode

Ctrl T Triangulate Faces

Ctrl Z Undo last operation

Ctrl Shift Z Redo operation

Z Toggle Wireframe mode

F Make Face

E Extrude Region

RightClick Select single vertex, edge or face

Shift RightClick Multi-select vertex, edge or face

Delete Show Delete menu

G X Translate selection along global X

R X Rotate selection about global X

S X Scale selection along global X

http://www.blender.org/

124 CHAPTER 4: 3D Modeling

Listing 4-10.  Chapter4/Blender/tankFence5.mtl

Blender MTL File: 'tankFence5.blend'
Material Count: 3
newmtl Enemy
Ns 96.078431
Ka 0.000000 0.000000 0.000000
Kd 1.000000 0.000000 0.000000
Ks 0.500000 0.500000 0.500000
Ni 1.000000
d 1.000000
illum 2
 
newmtl Plane
Ns 96.078431
Ka 0.000000 0.000000 0.000000
Kd 1.000000 1.000000 1.000000
Ks 0.500000 0.500000 0.500000
Ni 1.000000
d 1.000000
illum 2

Recall the names of objects you modeled–Plane, Enemy, and Player. Listing 4-9 	
contains the block of data for Plane object. Perl parser stores object names
(for example, “Plane”, “Enemy”) and uses them to read the material file to
get the material colors. So, corresponding to the Plane object, it stores white
color—indicated as "Kd 1.000000 1.000000 1.000000" (RGB format) in
Listing 4-10.

It can collect mesh data for triangle meshes, such that this data is ready for use 	
with glDrawElements with mode GL_TRIANGLES.

	glDrawElements with mode GL_TRIANGLES requires a float array with unique
vertices (representing a shape) and element indices (representing triangle
meshes) for this float array.

Perl parser stores unique object vertices. These vertices are listed (Listing 4-9) 	
below object name (for example, “o Plane”) as "v vx vy vz".

Element indices are also stored. 	 Obj format makes it easy for the parser to find
element indices, representing meshes.

Face definitions (Listing 4-9) 	 "f 3 4 2" already contain vertex indices,
representing meshes. The set {3, 4, 2} represents a triangle mesh with vertices
v3, v4, and v2 (v1 is the first vertex that appears in .obj file, v2 is the second
vertex, and so on).

The kind of face definition this parser searches for should also contain normal 	
indices. Normal indices are included in face definitions after double slashes.
Normals are included as "vn 0.000000 0.000000 1.000000".

For advanced programming in OpenGL ES, such as the computation of shading 	
values, this parser also stores normals corresponding to the triangle meshes
(that is, per-face normals).

125CHAPTER 4: 3D Modeling

For every vertex of an object, it also calculates the normalized average of 	
adjacent normals. This makes the shading effects smooth.

The material names should be the same as that of the corresponding object 	
names.

When these conditions are met, parser takes the name of Blender file and 	
parses the corresponding .obj and .mtl files. Finally, it produces a text file
as its output. This file contains mesh data that can be readily used with
glDrawElements with mode GL_TRIANGLES.

Installing Perl
To get this parser into action, your system requires a Perl (version 5) installation. Of course, if you are
on a *nix system, Perl comes pre-installed. There are eight steps to install Perl on Windows 7:

1.	 For this demonstration, we use ActivePerl—a closed-source distribution
of Perl from ActiveState. (You can read more about ActiveState at
http://en.wikipedia.org/wiki/ActiveState.) Download the ActivePerl
installer corresponding to your system from www.activestate.com/activeperl.
I downloaded the installer highlighted in Figure 4-38, as I have 32-bit
Windows 7.

Note  Perl (version 5) comes pre-installed with most *nix systems, so there is nothing to install or configure.
After creating a Perl script (for example, program.pl), you must add execute permissions to run it. From
shell, run "chmod + x program.pl". Now, to run this script, you can simply type "program.pl".

If you are launching the script by running "perl program.pl", the script does not need execute
permissions. If, however, you are executing it using "program.pl" or "./program.pl", it does need
execute permissions.

Note  tankFence5.obj and tankFence5.mtl files are also available in the source code for this chapter.
You can open and read through them in your favorite text editor to understand more about Obj and Mtl mesh
data. Do not modify them!

http://en.wikipedia.org/wiki/ActiveState
http://www.activestate.com/activeperl

126 CHAPTER 4: 3D Modeling

Figure 4-40.  Security-warning window

Figure 4-38.  ActivePerl installers

Figure 4-39.  Selecting the installer from downloads folder

2.	 After the installer has downloaded, select it from the downloads folder
(Figure 4-39) and double-click it. You may see User Account Control dialog
after this. If so, click “Yes”.

3.	 Next, click “Run” in the Security Warning window, as shown in Figure 4-40.

127CHAPTER 4: 3D Modeling

4.	 Click “Next” in the ActivePerl Setup Wizard (Figure 4-41).

Figure 4-41.  ActivePerl Setup Wizard

5.	 Accept the license agreement and click “Next.”

6.	 In the Custom Setup window, set the installation location and click “Next.”
As Figure 4-42 illustrates, I install ActivePerl under “D:\.”

128 CHAPTER 4: 3D Modeling

7.	 In the Setup Options window (Figure 4-43), leave everything to the default
settings and click “Next.”

Figure 4-42.  ActivePerl Setup Wizard: Custom Setup

Figure 4-43.  ActivePerl Setup Wizard: Setup Options

129CHAPTER 4: 3D Modeling

8.	 Finally, click “Finish” (Figure 4-44) to complete the setup.

Figure 4-44.  Complete the setup

Once you have installed ActivePerl, you see the folder “D:\Perl” (assuming you installed ActivePerl
under “D:\”). This folder contains native binary distributions of Perl for Windows. Next, let’s see how
you can get the parser.

Downloading Parser
You can download the Perl (mesh) parser from my Bitbucket account—
https://bitbucket.org/prateekmehta. Click on the repository “blender_obj_perl_parser_bitbucket”.
Next, click the download link from the “repo-stats” section, as shown in Figure 4-45. This downloads
the archive file prateekmehta-blender_obj_perl_parser_bitbucket-2cb343b9e1a5.zip. Now, move
this file in a folder of your choice, and then extract it. I extract it under “D:\”. This creates the folder
“D:\prateekmehta-blender_obj_perl_parser_bitbucket-2cb343b9e1a5”, with contents as shown
in Figure 4-46.

https://bitbucket.org/prateekmehta

130 CHAPTER 4: 3D Modeling

This folder contains the main parser file—parser.pl—and another Perl file, inside the “Utility” folder.
The parser.txt file contains mesh data from a Blender file. It contains both Obj and Mtl data. This
text file is provided so you can go through the structuring of (input) data (Obj and Mtl), which is
necessarily required by the parser.

Now, create a folder “Blender,” and copy the Obj and Mtl files from the source code for this chapter
from section “Exporting mesh data” (Figure 4-47) into it. I copy these files under “D:\Blender.”

Figure 4-45.  Downloading parser

Figure 4-46.  Extracted parser

131CHAPTER 4: 3D Modeling

Using the Parser
To use this parser, you must provide correct paths to a couple of necessary files. So, open the
parser.pl file in a text editor of your choice to make the following changes:

1.	 In line 40, replace the string value for scalar $obj_file_parent_path with the
full path for the folder in which you have copied the Obj and Mtl files. On
Windows, if the folder containing these files is “Blender” and is directly
under “D:\”, then line 40 should be set to $obj_file_parent_path = 
“D:/Blender/”;. Similarly, if you are on a *nix system, inside your home
directory (/home/username/), and the Obj and Mtl files are inside /home/
username/Blender/, set the value of scalar $obj_file_parent_path as
“home/username/Blender/”.

2.	 In line 326, replace the path (only the path, not the scalars with white
spaces—“ $rx $ry $rz”) inside backticks with full path to the precision.pl
file, that is, if you moved the folder (prateekmehta-blender_obj_perl_parser_
bitbucket-2cb343b9e1a5) with Perl files directly under “D:\”, then line 326
should be set to @output = ̀D:\\prateekmehta-blender_obj_perl_parser_
bitbucket-2cb343b9e1a5\\Utility\\precision.pl $rx $ry $rz`;. Similarly, proceed
in a suitable way if you are on a *nix system.

Figure 4-47.  Selecting Obj and Mtl files

Note  If you are on a Windows system with ActivePerl installed, you may also remove the first
line—"#!C:/wamp/bin/perl/bin/perl.exe"—from the parser.pl file. It will not affect the output.

If you are on a *nix system and relying on the executable permission to work for you, you must modify this
line to point to your local Perl path.

132 CHAPTER 4: 3D Modeling

After making these edits, you can parse mesh files. On Windows, you must double-click on the
parser.pl file (if ActivePerl is installed) to execute it. ActivePerl sets a special icon for files with
.pl extensions, similar to the blue-green icon in Figure 4-46. On *nix system, you can run the
parser.pl file by invoking the Perl interpreter and giving your file as input. I demonstrate how to
execute the parser.pl file using ActivePerl. As mentioned previously, double-click on the parser.pl
file to execute it. This opens the command prompt.

Now, you must enter the name of the Obj file—“tankFence5” (Obj and Mtl files should have
identical names). Recall that you copied the Obj and Mtl files (Figure 4-47)—tankFence5.obj
and tankFence5.mtl—to a separate folder. Since you specified the path of this folder (when editing
parser.pl), Perl can look it up now.

Press Enter after you specify the name of the Obj file (Figure 4-48). Then, click “Open” in the
Security Warning window (if you are on a Windows 7 system), as shown in Figure 4-49. You may
also uncheck the checkbox in this window. This allows the parser to execute without waiting for
confirmation.

Figure 4-48.  Command prompt: Specifying the Obj file

133CHAPTER 4: 3D Modeling

When the parser has executed, you can get back to the folder in which you copied the Obj and Mtl
files. You will observe a new file inside this folder (Figure 4-50). This is the output of the parser, a text
file that contains mesh data, ready for use with glDrawElements with mode GL_TRIANGLES.

Figure 4-49.  Security-warning window: Unchecking confirmation

Figure 4-50.  Output text file

Using the Mesh Data
Before we discuss how to use the contents of this output text file, we describe the blocks of mesh
data inside this file. So, open the file tankFence5.txt in your favorite text editor and start reading
through.

134 CHAPTER 4: 3D Modeling

1.	 Scroll down at the end of this file, until you reach the “color:” block. Recall the
colors we used inside Blender for the game objects—red for Enemy, blue for
Player, and white for Plane. These colors are written as per-vertex colors in
the output text file. The “color:” block is important, as it helps determine the
order of objects across various blocks in this file. Inside the “color:” block,
per-vertex white color appears first for the Plane object. So, all other blocks
also begin with mesh data for Plane object. The mesh data for Player follows
this, and finally Enemy object.

2.	 The “color:” block contains rows of "1.000000f,1.000000f,1.000000f,1,"
; this represents per-vertex white color for the Plane object. Then, this block
contains rows of "0.000000f,0.000000f,1.000000f,1,", which represent
per-vertex blue color for the Player object. Similarly, it contains the per-vertex
red color for the Enemy object.

3.	 Scroll to the top of this file. The “normal:” block consists of per-vertex
normals. You use this (in Chapter 5) for advanced programming in OpenGL
ES, such as the computation of shading values. Although the parser
internally stores per-vertex, as well as per-face (face is a triangle mesh)
normals, it uses the per-face normals when averaging normals adjacent to a
vertex normal. The output shown in this block is the averages of these face
normals adjacent to per-vertex normals. Note again that the mesh data in
every block follows the same order as in the “color:” block.

4.	 The next two blocks, “vertex:” and “index:”, are the most important blocks.
You must have understood already that they represent unique vertices and
element indices, respectively. The mesh data in these blocks is ready for use
with glDrawElements (with mode GL_TRIANGLES). Also note that in the label
“size:<NUMBER > ” in the “index:” block, <NUMBER > specifies the count of
indices, passed as an argument to glDrawElements.

Figure 4-51.  TANK FENCE ELEMENTS 1: Player object

135CHAPTER 4: 3D Modeling

Figure 4-52.  TANK FENCE ELEMENTS 2: Using color from output text file

Figure 4-53.  TANK FENCE ELEMENTS 3: Adding other objects

The section “Drawing line and triangle primitives” discussed using glDrawElements with
mode GL_TRIANGLES. It also talked about the GL TRIANGLE ELEMENTS application
(Chapter4/gltriangleelements.zip) to render triangle primitives, as shown in Figure 4-2.
Similar to this application, there are three other applications (in the source code for this
chapter)—TANK FENCE ELEMENTS 1, 2, and 3—in which the use of parser’s output text file
has been demonstrated. Now, we explain the first application–TANK FENCE ELEMENTS 1.
The others build up from this application to add per-vertex color (using the block “color:” from
the output text file), as well as Plane and Enemy objects (Figures 4-52 and 4-53 show their outputs).

136 CHAPTER 4: 3D Modeling

Adding the Player Object
The Main class in the TANK FENCE ELEMENTS 1 application is identical to the Main class from
the TOUCH ROTATION application (Figure 2-16), inside the source code for Chapter 2. This class
provides the angle of rotation to rotate the rendered object.

The Renderer class (GLES20Renderer) is also similar to the one we created at the beginning of
this chapter. The only difference is the naming convention (for example, _tankProgram in place of
_triangleProgram) and the field _tankUMVPLocation. _tankUMVPLocation is the location of uniform
variable uMVP (of type mat4). Recall that this matrix is used to transform the vertices of the rendered
object, in this case, the vertices of the tank (that is, the Player object you modeled in Blender).

Now, turn your attention to the inittank method in the Renderer class. Also open the file
tankFence5.txt (parser’s output) in any text editor. In the tankFence5.txt file, scroll down to the
block “vertex:”. As mentioned previously, the mesh data in every block follows the same order as
in the “color:” block. So, the following set of vertices in the tankFence5.txt file corresponds to the
vertex float array for the Plane object:
 
10.000000f,-10.000000f,0.000000f,
-10.000000f,-10.000000f,0.000000f,
10.000000f,10.000000f,0.000000f,
-10.000000f,10.000000f,0.000000f,
 
Similarly, the set of vertices from "-1.562685f,-2.427994f,0.000000f," to "0.781342f,3.437026f,
1.500000f," corresponds to the vertex float array for the Player object (that is, the tank initialized
in the inittank method). The float array tankVFA (in the inittank method) is composed of these
vertices, and they have been copied from the “vertex:” block in the output text file.

Below this block, the “index:” block contains indices, representing triangle meshes. The following
sets of indices correspond to the index short array for the Plane object:

2,3,1,
0,2,1,

Similarly, the sets of indices from "4,5,1," to "14,10,15," correspond to the index short array for
the Player object. The short array tankISA (in the inittank method) is composed of these indices;
they have been copied from the “index:” block. As discussed, the label “size:<NUMBER > ” above
this set specifies the count of indices to be passed as an argument to glDrawElements:

size:84
4,5,1,
..
14,10,15,

The label “size:84” in the “index:” block specifies the count of indices for the
Player object (please note that the Player object is the tank initialized in the inittank method).
Because of this, in the onDrawFrame method, the following call is made:
GLES20.glDrawElements(GLES20.GL_TRIANGLES, 84, GLES20.GL_UNSIGNED_SHORT, _tankISB);.

137CHAPTER 4: 3D Modeling

In Figure 4-51 (screen shot from the TANK FENCE ELEMENTS 1 application), the color of the tank
is made yellow by directly writing to the gl_FragColor shader variable—gl_FragColor = 
vec4(1.0,1.0,0.0,1);. Instead of directly writing to this variable, the application TANK FENCE
ELEMENTS 2 includes the per-vertex colors copied from the “color:” block at the bottom of
tankFence5.txt file (recall that, while modeling the tank, we colored it blue—Figure 4-35). By now,
you should understand the kind of shader variables used for this purpose—an attribute variable
(say aColor) and a varying variable (say vColor), each of type vec4. The TANK FENCE ELEMENTS 3
application adds other objects–Plane and Enemy. It is left as an exercise for you to go through this
application.

Basic Components in the Blender Interface: Screenshots
This additional section provides screen shots for the five basic components in Blender.

Figure 4-54 shows the Info window. It is positioned at the top of the Blender interface. As previously
explained, it consists of useful menus, such as File, Add, and Help.

Figure 4-55.  3D Window/3D View Window

Figure 4-54.  Info Window

Figure 4-55 shows the 3D Window, also known as the 3D View (window). The 3D Window is where
we spend most of our time in Blender. In this window, we can rearrange the objects and edit their
individual vertices. We can also define animation. This window is positioned at the center of the
Blender interface.

138 CHAPTER 4: 3D Modeling

Figure 4-56 shows the Timeline window. It is positioned at the bottom of the Blender interface. As
you may have guessed, Timeline is the core of the animation process in Blender. It is most often
used to scrub animations.

Figure 4-56.  Timeline Window

Figure 4-57.  Outliner Window (up) and Properties Window (down)

Figure 4-57 shows the Outliner window (up) and the Properties window (down). The Outliner window
is used for selecting, deleting, and hiding objects modeled in a scene. As previously discussed, the
Properties window displays panels of functions. The Outliner window is positioned at the upper-right
corner of the Blender interface, and the Properties window is positioned at the lower-right corner.

139CHAPTER 4: 3D Modeling

Note  Scenes are a very useful tool for managing your projects. The cube mesh in the empty space you
see when you open Blender for the first time is the default scene. (You can read more on scenes at
http://wiki.blender.org/index.php/Doc:2.6/Manual/Interface/Scenes.)

Summary
This chapter introduced the ES 2.0 function glDrawElements, which helps avoid the redundancy of
mesh data. It demonstrated the basic use of Blender, the open-source 3D content creation suite.
It also discussed the use of a parser to create ready to use mesh data from Blender Obj files.
Finally, this chapter showed how to use this data inside ES 2.0 applications.

Chapter 5 considers two common ways to enhance the look of our ES 2.0 applications—using
textures and lighting/shading effects.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Interface/Scenes

141

Chapter 5
Texturing and Shading

In this chapter, you will learn about two common ways to enhance the look of our ES 2.0
applications — texturing and shading. First, I will talk about using single textures and then I will show
you how you can combine textures with colors. After this, you will learn using multiple textures with
rendered objects. Finally, I will discuss lighting and shading effects in ES 2.0, which are achieved
using our own logic for the interaction between surface and light sources.

Vertex Buffer Objects
The per-vertex data, specified (for rendering objects) using arrays, is stored in the main memory;
however, when a call to glDraw* (glDrawArrays or glDrawElements) is made, this data must be copied
from the main memory to the GPU memory.

To avoid this we can use vertex buffer objects, which help to cache the vertex data in GPU memory.
This can significantly reduce power consumption, as well as the transfer of data from main memory
to GPU memory, which is otherwise incurred if we do not use these buffer objects.

Types of Buffer Objects
There are two types of vertex buffer objects—array buffer objects and element array buffer objects.
The array buffer objects are used to cache the per-vertex data, such as vertices {x, y, z}, colors
{r, g, b, a}, normals {Nx, Ny, Nz}, and so on, and the element array buffer objects are used to
cache the corresponding indices of these arrays.

142 CHAPTER 5: Texturing and Shading

Using Buffer Objects
To use buffer objects, we first need to generate them. To do this, call the method GLES20.glGenBuffers.
This method has two overloaded versions. The one we use here takes three arguments:

The first argument specifies the number of buffer objects that must be 	
generated.

The second argument specifies the array to store the returned (integer) ids, 	
representing objects. Please note that the id “0” is reserved by OpenGL ES.

The third argument specifies the offset of type 	 int. For all examples discussed,
we set this argument to “0”, meaning “no-offset”.

After generating buffer object(s), call the method GLES20.glBindBuffer. This method is used to make
a buffer object the current array buffer object or the current element array buffer object.

So, depending on the use of the buffer object, the first argument passed to this method is either
GLES20.GL_ARRAY_BUFFER or GLES20.GL_ELEMENT_ARRAY_BUFFER. The second argument passed to this
method is the id of the buffer object, as shown in Listing 5-1. Here, _tankBuffers is an int array of
size 2. The size is 2, because we need two buffer objects.

Note  Do not confuse OpenGL ES buffer objects with java.nio.*Buffer objects, such as java.nio.
ShortBuffer, java.nio.FloatBuffer, and so on.

Listing 5-1.  TANK FENCE 1/src/com/apress/android/tankfence1/GLES20Renderer.java

GLES20.glGenBuffers(2, _tankBuffers, 0);
GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, _tankBuffers[0]);
GLES20.glBufferData(GLES20.GL_ARRAY_BUFFER, tankVFA.length * 4, _tankVFB, GLES20.GL_STATIC_DRAW);
GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, _tankBuffers[1]);
GLES20.glBufferData(GLES20.GL_ELEMENT_ARRAY_BUFFER, tankISA.length * 2, _tankISB, GLES20.GL_STATIC_
DRAW);
 
Finally, after making a buffer object the current buffer object, we need to pass it the corresponding
vertex or index data using the ES 2.0 function glBufferData. As shown in Listing 5-1, after the call to
glBindBuffer(GLES20.GL_ARRAY_BUFFER, _tankBuffers[0]), glBufferData is called, with arguments
"GLES20.GL_ARRAY_BUFFER", "tankVFA.length * 4", "_tankVFB", and "GLES20.GL_STATIC_DRAW".

As with glBindBuffer, the first argument passed to glBufferData is either GL_ARRAY_BUFFER or
GL_ELEMENT_ARRAY_BUFFER, denoting the target/type of the buffer object. The second argument
denotes the size of array (of per-vertex or index data) in bytes. The third argument denotes the
Buffer (java.nio.Buffer) for the corresponding vertex or index data. Finally, the last argument can
be any one of the following values:

	GL_STATIC_DRAW

	GL_DYNAMIC_DRAW

	GL_STREAM_DRAW

143CHAPTER 5: Texturing and Shading

These values are defined as static constants in the android.opengl.GLES20 class. They provide a hint
to OpenGL ES on how the application is going to use the data stored in the buffer object. Of these
values, GL_STATIC_DRAW and GL_DYNAMIC_DRAW are most commonly used.

As the name suggests, GL_STATIC_DRAW is used when the application does not modify the data
stored in the buffer object, whereas GL_DYNAMIC_DRAW is used when the buffer object data is specified
repeatedly by the application (and used many times to draw primitives). In the context of the Tank
Fence game, only missiles use the GL_DYNAMIC_DRAW buffer usage. The buffer object corresponding
to missiles undergoes rewrites in a repeated manner, so as to update the vertex data (and the
corresponding indices) representing the centers of missiles. The remaining objects in this game
(that is, the plane, enemy, and player) use the GL_STATIC_DRAW buffer usage.

Note  We will work with the missile objects in Chapter 6. They are introduced here so you can understand
the GL_DYNAMIC_DRAW buffer usage.

So far, we’ve only looked at how buffer objects are generated and then filled with corresponding
data. We still have not discussed the way in which buffer objects’ data is passed to the shaders (to be
specific, a vertex shader). Listing 5-2 shows that doing so is quite easy and almost similar to how
you have been passing data (per-vertex and index data) without the use of buffer objects.

Passing a buffer object’s data (to the shaders) also requires you to make this buffer object the current
buffer object, by calling glBindBuffer, as shown in Listing 5-2. Then, call glVertexAttribPointer to
tell OpenGL about the format and source of our vertex array data
(as discussed in Chapter 3). Finally, call glEnableVertexAttribArray to activate the given attribute
location. You may have noticed that the call to glVertexAttribPointer (Listing 5-2) no longer
requires you to explicitly specify the FloatBuffer (java.nio.FloatBuffer). This is because calling
glBindBuffer makes the specified buffer object (as in this case, array buffer object) the current
buffer object. Similarly, glDrawElements does not require you to explicitly specify the ShortBuffer
(corresponding to the element array buffer object), if you assigned it as the current buffer object,
as shown in Listing 5-2. So, in place of FloatBuffer or ShortBuffer, argument “0” is passed when
calling glVertexAttribPointer or glDrawElements.

Listing 5-2.  TANK FENCE 1/src/com/apress/android/tankfence1/GLES20Renderer.java

GLES20.glUseProgram(_tankProgram);
GLES20.glUniformMatrix4fv(_tankUMVPLocation, 1, false, _MVPMatrix, 0);
GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, _tankBuffers[0]);
GLES20.glVertexAttribPointer(_tankAPositionLocation, 3, GLES20.GL_FLOAT, false, 12, 0);
GLES20.glEnableVertexAttribArray(_tankAPositionLocation);
GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, _tankBuffers[1]);
GLES20.glDrawElements(GLES20.GL_TRIANGLES, 84, GLES20.GL_UNSIGNED_SHORT, 0);
 
To understand this better, import the archive file Chapter5/tankfence1.zip. This loads the
TANK FENCE 1 application into your Eclipse workspace. You will also find other similar applications
in the source code - TANK FENCE 2 and TANK FENCE 3. These three applications will help you
move in a stepwise manner to use buffer objects for the plane, enemy, and player (game objects in
the Tank Fence game). The outputs of these applications are similar to the TANK FENCE ELEMENTS
* series of applications. The only difference between these applications is the use of buffer objects.

144 CHAPTER 5: Texturing and Shading

Figure 5-1.  Using color masks

Using Color Masks
Before moving further, I will also talk about using color masks in ES 2.0. Color masks allow you to
enable or disable writes to specific components (red, green, blue, and alpha) in the color buffer.

You can set color masks using the ES 2.0 function glColorMask. This function takes four Boolean
arguments, where each argument corresponds to the “writable” state of a component in the color buffer.
To use this function correctly, color mask(s) should be set before each call to any glDraw* function.

To understand this function, consider the following example. Suppose you render two
rectangles—rectangleOne (cyan colored) and rectangleTwo (white colored)—and you want to
render only the green component of rectangleOne and the red component of rectangleTwo.

To make this work, before you render each of these rectangles (by calling any of glDraw* ES 2.0
functions) using their separate programs, you must set the color masks in the following manner:

For rectangleOne, set the color mask by calling 	 GLES20.glColorMask(false,
true, false, true). Since the green and alpha components are enabled, only
the green color will be visible.

For rectangleTwo, set the color mask by calling 	 GLES20.glColorMask(true,
false, false, true). Since the red and alpha components are enabled, only
the red color will be visible.

Note  Recall that you can set a single color for the rendered object by directly writing to the built-in shader
variable—gl_FragColor. To set white color for the rendered object, write the vec4 - (1.0, 1.0, 1.0, 1)
to the gl_FragColor variable. Similarly, to set cyan color, write the vec4 - (0.0, 1.0, 1.0, 1).

145CHAPTER 5: Texturing and Shading

To demonstrate this, import the application GL MASK (Chapter5/glmask.zip) into your Eclipse
workspace. This application is almost identical to the GL RECTANGLE application in the source
code for Chapter 3, except for the Renderer class in GL MASK application, which renders two
rectangles (Figure 5-1) instead of just one.

Listing 5-3 contains lines of code (from the GL MASK application) to set color masks for two rectangles.
Please note that, to avoid the first call to glColorMask affecting the color masks set for the second
rectangle, color masks for all components are reset by calling glColorMask(true, true, true, true).

Listing 5-3.  GL MASK/src/com/apress/android/glmask/GLES20Renderer.java

GLES20.glUseProgram(_rectangleTwoProgram);
GLES20.glVertexAttribPointer(_rectangleTwoAVertexLocation, 3, GLES20.GL_FLOAT, false,
0, _rectangleTwoVFB);
GLES20.glEnableVertexAttribArray(_rectangleTwoAVertexLocation);
GLES20.glColorMask(false, true, false, true);
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 6);
GLES20.glColorMask(true, true, true, true);
 
GLES20.glUseProgram(_rectangleOneProgram);
GLES20.glVertexAttribPointer(_rectangleOneAVertexLocation, 3, GLES20.GL_FLOAT, false,
0, _rectangleOneVFB);
GLES20.glEnableVertexAttribArray(_rectangleOneAVertexLocation);
GLES20.glColorMask(true, false, false, true);
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 6);
GLES20.glColorMask(true, true, true, true); // reset color masks for glDraw* calls ahead

Textures
Textures can be of two types—procedural textures and image textures. Procedural textures are
generated on the fly, based on some algorithm, whereas image textures, as the name suggests, are
textures loaded from image files, such as a .jpg, .png, and so on. This section demonstrates how to
use image textures in ES 2.0.

Note  Procedural and image textures are general classes of textures. In ES 2.0, however, textures are of two
types—2D textures and cubemap textures.

Textures in OpenGL ES are 2D arrays of texture units known as texels. Similar to defining geometry
for primitives (using the Cartesian coordinates x, y, and z), to apply texture(s) to a surface, specify
the texture coordinates that correspond to the indices into this texture array data. Unlike the
coordinates for geometry, texture coordinates use s and t (or u and v) as shown in Figure 5-2. Since
texture coordinate space is normalized, both s and t range from 0 to 1. Please note that texture
coordinates do not have units, so as to make them independent of the dimensions of source image
or final rendered surface (composed of the texture).

146 CHAPTER 5: Texturing and Shading

Note  The process that applies a texture to some geometric object is called UV mapping.

Figure 5-2.  Texture coordinate space: 64x64 texture

To attach a 2D texture to a surface, we need to provide (s, t) coordinates from this texture
such that it can cover the surface. If the specified coordinates (from texture) do not fit the surface
completely, we can use texture wrap modes (provided by OpenGL ES) to help the textures wrap
the surface, such as by repeating, mirroring, or clamping themselves. As a beginner, you may find it
difficult to deal with all of these modes, so I shall only talk about the repeat wrap mode, defined as
a static constant GL_REPEAT in the android.opengl.GLES20 class. Now, I shall demonstrate common
uses of textures using ES 2.0.

Note  In OpenGL ES 2.0, textures can have non-power-of-two (npot) dimensions. However, the support for
such textures is still limited to some devices. So, for all the applications in the source code in which we have
demonstrated the use of textures, we have only used textures with power-of-two dimensions.

2D Texture
First, let’s look at defining texture coordinates. Consider an example in which we wrap a texture
around a square object. As shown in Figure 5-2, the bottom-left and top-right corners of the texture
(image) are specified by (s, t) coordinates as (0, 0) and (1, 1), respectively. If the specified
(s, t) coordinate is outside the range [0, 1], you can specify texture wrap mode, independently
for both the s-coordinate and t-coordinate. Using wrap mode GL_REPEAT, texture outside this range is
simply repeated.

This square can be rendered using triangle primitives, as shown in Figure 5-3. Suppose we use
glDrawElements to render it. The short array planeISA in Listing 5-4 consists of one of the ways
to specify the indices, to access vertices from planeVFA vertex array (to render this square).
To wrap texture around this square, when vertices are fetched using index array planeISA, texture
coordinates must also be fetched. To make sure that texture coordinates are fetched in the same
order as that of the vertices, you need to understand the sequence shown in Table 5-1.

147CHAPTER 5: Texturing and Shading

Having read Table 5-1, you should understand how texture coordinates have to be mapped to vertex
coordinates for a square object (or, in fact, any rectangular object). Now, there are two important
things to note here:

When passing texture coordinates to a vertex shader, you do not need to pass 	
them separately for every primitive. Instead, pass them the way you pass
vertices. In the context of this example, where you are wrapping a texture
around a square object (or any rectangular object), define a texture coordinate
array with four texture coordinates (Listing 5-4), instead of six (Table 5-1), similar
to how you define a vertex coordinate array with four vertices, as shown in
Listing 5-4.

Figure 5-3.  Wrapping texture around a square object

Table 5-1.  Wrapping Texture on a Square Object: Specifying Texture Coordinates

Position Index Vertex Coordinate Texture Coordinate

top-right 2 (10, 10, 0) (1, 1)

top-left 3 (-10, 10, 0) (0, 1)

bottom-left 1 (-10, -10, 0) (0, 0)

bottom-right 0 (10, -10, 0) (1, 0)

top-right 2 (10, 10, 0) (1, 1)

bottom-left 1 (-10, -10, 0) (0, 0)

Listing 5-4.  GL TEXTURE/src/com/apress/android/gltexture/GLES20Renderer.java

float[] planeVFA = {
 10.000000f,-10.000000f,0.000000f, // bottom-right
 -10.000000f,-10.000000f,0.000000f, // bottom-left
 10.000000f,10.000000f,0.000000f, // top-right
 -10.000000f,10.000000f,0.000000f, // top-left
};
 

148 CHAPTER 5: Texturing and Shading

float[] planeTFA = { // texture coordinate array
 // 1,0, 0,0, 1,1, 0,1
 1,1, 0,1, 1,0, 0,0
};
 
short[] planeISA = {
 2,3,1, // top-right, top-left, bottom-left
 0,2,1, // bottom-right, top-right, bottom-left
};
 
Android uses the top-left corner as 	 (0, 0) of the texture coordinate space,
whereas OpenGL uses the bottom-left corner as (0, 0), which is why you must
vertically flip the texture coordinates specified in the texture coordinate array.
Therefore, (1, 0) becomes (1, 1), and (1, 1) becomes (1, 0), and so on.

Loading the Image Data
Using a texture in ES 2.0 first requires you to create a texture object. This texture object is
represented by an unsigned integer (texture id), which is a reference to the texture object. The ES 2.0
function used to generate texture objects is called glGenTextures. In Android (SDK), it is accessed
as the GLES20.glGenTextures method. This method has two overloaded versions. The one we use
takes three arguments. In the first argument, specify the number of texture objects to be generated.
Wrapping a single texture around a square only requires one texture object. The second argument
is the array that will store the returned texture ids, referencing texture objects. To generate a single
texture object, this array must be at least of size one, as shown in Listing 5-5 (int array textures).
The last argument is the offset, and we will set this to “0”.

Listing 5-5.  GL TEXTURE/src/com/apress/android/gltexture/GLES20Renderer.java

int[] textures = new int[1];
GLES20.glGenTextures(1, textures, 0);
_textureId = textures[0];
 
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, _textureId);
InputStream is1 = _context.getResources().openRawResource(R.drawable.brick);
Bitmap img1;
try {
 img1 = BitmapFactory.decodeStream(is1);
} finally {
 try {
 is1.close();
 } catch(IOException e) {
 // e.printStackTrace();
 }
}
GLES20.glPixelStorei(GLES20.GL_UNPACK_ALIGNMENT, 1);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
// or GL_LINEAR
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);
// or GL_LINEAR

149CHAPTER 5: Texturing and Shading

GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_REPEAT);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_REPEAT);
GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, img1, 0);
 
As ES 2.0 supports two types of textures (that is, 2D textures and cubemap textures), when you
have generated a texture object, you must bind its corresponding id to any of these types (that is,
2D texture or cubemap texture).

This is done by calling the method GLES20.glBindTexture. This method takes two arguments.
The first argument is the texture type, defined as constants—GLES20.GL_TEXTURE_2D and
GLES20.GL_TEXTURE_CUBE_MAP. The second argument is the texture id corresponding to a texture object.

Finally, after generating a texture object and binding it, load the image data. To do so, call the
method GLUtils.texImage2D. This method has three overloaded versions. The one we use takes four
arguments—int type, int level, Bitmap bitmap, and int border. The type argument specifies the
texture type. The level argument specifies the mipmap level to load; set this to “0”, which means
mipmap level “0”.

Note  Textures have minification and magnification filtering modes associated with them (when the size of
the projected primitive on the screen is smaller than the size of the texture, minification is caused, whereas
when the size of the projected primitive on the screen is larger than the size of the texture, magnification
is caused). When the minification and magnification filters are set to GL_NEAREST, the specified texture
coordinate is used to fetch a single texel (texel nearest to the specified texture coordinate) from the texture.
This is known as nearest sampling. When the minification and magnification filters are set to GL_LINEAR, the
specified texture coordinate is used to fetch a bilinear sample (average of four texels) from the texture about
the texture coordinate.

Nearest sampling can produce visual artifacts when a texture is wrapped (around a surface) by the
interpolation of texture coordinates from one vertex to another. Mipmapping is the solution to avoid this
artifact.

The idea behind mipmapping is to build a chain of images known as a mipmap chain. The mipmap chain
begins with the originally specified image (mipmap level “0”), then continues with each subsequent image
being one-half as large in each dimension as the one before it. This chain continues until we reach a
single 1 x 1 texture at the bottom of the chain.

To learn more about such advanced OpenGL ES 2.0 concepts, read OpenGL®ES 2.0 Programming Guide by
Aaftab Munshi, Dan Ginsburg and Dave Shreiner (Addison-Wesley, 2008), from which this quotation is taken.

The third argument is the Bitmap resource, which has to be decoded for use (as shown in Listing 5-5). In
the last argument, you must specify the border. For most cases, this is set as “0”, meaning “no-border.”

In Listing 5-5, the code snippet used between the calls to GLES20.glBindTexture and GLUtils.texImage2D
is used to fetch the image resource, which is used as a texture, and set the texture parameters.
You must understand the use of the following call—glTexParameteri(GLES20.GL_TEXTURE_2D,

150 CHAPTER 5: Texturing and Shading

GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_REPEAT). This sets the repeat wrap mode for the s-coordinate
of texture. The call to glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER,
GLES20.GL_NEAREST) sets the minification filter to GL_NEAREST. To try the two filtering modes in a real
application, modify the Renderer class in the GL TEXTURE application to reflect these changes. You can
load this application into your Eclipse workspace by importing the archive file Chapter5/gltexture.zip.

In the Renderer class of this application, set the GL_TEXTURE_MIN_FILTER and GL_TEXTURE_MAG_FILTER
- each of these modes, to use GL_LINEAR filter. The output, after making this change, is similar to
Figure 5-4, but the texture will be hazy because of bilinear sampling caused by the use of GL_LINEAR
filter. The following line of code—GLES20.glPixelStorei(GLES20.GL_UNPACK_ALIGNMENT, 1)—in
Listing 5-5 is used to specify the byte boundary for the rows of pixel (image) data.

Figure 5-4.  Using single texture with an object

sampler2D Uniform Variable
Now, take a look at the shader code for texturing. The vertex–fragment shader pair in Listing 5-6
demonstrates the basics of how 2D texturing is done in a shader.

Listing 5-6.  GL TEXTURE/src/com/apress/android/gltexture/GLES20Renderer.java

private final String _planeVertexShaderCode =
 "attribute vec4 aPosition; \n"
 + "attribute vec2 aCoord; \n"
 + "varying vec2 vCoord; \n"
 + "uniform mat4 uMVP; \n"
 + "void main() { \n"
 + " gl_Position = uMVP * aPosition; \n"
 + " vCoord = aCoord; \n"
 + "} \n";
 
private final String _planeFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"

151CHAPTER 5: Texturing and Shading

 + "precision highp float; \n"
 + "#else \n"
 + "precision mediump float; \n"
 + "#endif \n"
 + "varying vec2 vCoord; \n"
 + "uniform sampler2D uSampler; \n"
 + "void main() { \n"
 + " gl_FragColor = texture2D(uSampler,vCoord); \n"
 + "} \n";
 
The attribute variable aCoord (of type vec2) in the vertex shader receives the texture coordinate
(Listing 5-4) and passes it to the fragment shader as a varying variable vCoord (of type vec2). The
fragment shader uses this varying variable to get the interpolated texture coordinates for fetching the
texture units (texels) from the loaded texture.

The uniform variable uSampler in the fragment shader (Listing 5-6) is of type sampler2D. Variables
of type sampler* (sampler2D and samplerCube) are special types of a uniform variable, used to fetch
from a texture map. The sampler* uniform has to be loaded with a value specifying the number of
current texture (in a zero-based manner).

Note  sampler2D uniform is used with 2D textures, and samplerCube uniform is used with cubemap
textures.

This value is loaded using the glActiveTexture function. If a single texture is used, this function
takes constant GL_TEXTURE0 as argument, as shown in Listing 5-7. For every successive texture
used, the next higher constant is used.

Listing 5-7.  GL TEXTURE/src/com/apress/android/gltexture/GLES20Renderer.java

GLES20.glUseProgram(_planeProgram);
 
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, _textureId);
GLES20.glUniform1i(_planeUSamplerLocation, 0);
 
GLES20.glUniformMatrix4fv(_planeUMVPLocation, 1, false, _MVPMatrix, 0);
GLES20.glVertexAttribPointer(_planeAPositionLocation, 3, GLES20.GL_FLOAT, false, 12, _planeVFB);
GLES20.glEnableVertexAttribArray(_planeAPositionLocation);
GLES20.glVertexAttribPointer(_planeACoordinateLocation, 2, GLES20.GL_FLOAT, false, 8, _planeTFB);
GLES20.glEnableVertexAttribArray(_planeACoordinateLocation);
GLES20.glDrawElements(GLES20.GL_TRIANGLES, 6, GLES20.GL_UNSIGNED_SHORT, _planeISB);
 
The subsequent call to glBindTexture binds the active texture to its texture type. Finally, to make
this texture ready for use with the shader program, call glUniform1i and pass it the sampler location
as an argument, and an additional argument specifying the number of current texture (in a zero-based
manner). So, for the first texture used, this value is “0”.

152 CHAPTER 5: Texturing and Shading

The built-in function texture2D in the fragment shader (Listing 5-6) is used to fetch from the texture
map. It takes the sampler2D uniform and vec2 texture coordinate as arguments. This function returns
a vec4, representing the color fetched from the texture map. If the format of the texture is RGB, then
the vec4 returned is (R, G, B, 1.0). If this format is RGBA, then the vec4 returned is (R, G, B, A).

Using Texture and Color
Along with the color (vec4) fetched from the texture map, we can also use additional colors (Figure 5-5)
with the rendered object. Inside the fragment shader, you can create a color represented as a variable
of type vec4. Then, you can add this color to the texture color.

Figure 5-5.  Using texture and color

By now you should understand that you can either create a color directly inside the fragment shader
or you can use an attribute variable in the vertex shader to receive colors separately for each vertex
and pass this per-vertex color (as a varying variable) to the fragment shader. Listing 5-8 contains
the vertex and fragment shader code required to set the fragment color as a combination of texture
color and varying color.

Listing 5-8.  GL TEXTURE COLOR/src/com/apress/android/gltexturecolor/GLES20Renderer.java

private final String _planeVertexShaderCode =
 "attribute vec4 aPosition; \n"
 + "attribute vec2 aCoord; \n"
 + "attribute vec4 aColor; \n"
 + "varying vec2 vCoord; \n"
 + "varying vec4 vColor; \n"
 + "uniform mat4 uMVP; \n"
 + "void main() { \n"
 + " gl_Position = uMVP * aPosition; \n"
 + " vCoord = aCoord; \n"
 + " vColor = aColor; \n"
 + "} \n";
 

153CHAPTER 5: Texturing and Shading

private final String _planeFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float; \n"
 + "#else \n"
 + "precision mediump float; \n"
 + "#endif \n"
 + "varying vec2 vCoord; \n"
 + "varying vec4 vColor; \n"
 + "uniform sampler2D uSampler; \n"
 + "void main() { \n"
 + " vec4 textureColor; \n"
 + " textureColor = texture2D(uSampler,vCoord); \n"
 + " gl_FragColor = vColor + textureColor; \n"
 + "} \n";
 

Cubemap Textures
Cubemap textures are another type of texture in ES 2.0. They are called cubemap textures, because
a cubemap texture is composed of six 2D textures in which each texture represents one of the six
faces of a cube.

Texels from a cubemap texture are fetched in a complex way, compared to how they are fetched
from a 2D texture. However, defining a texture coordinate array for a cubemap texture is a lot easier
than doing so for a 2D texture.

Listing 5-9 contains array definitions from the GL CUBEMAP TEXTURE application (the output is
seen in Figure 3-5) from the source code for this chapter (Chapter5/glcubemaptexture.zip). This
application demonstrates using a cubemap texture.

As indicated in Listing 5-9, cubeVFA is the vertex coordinate array, cubeISA is the index array, and
cubeTFA is the texture coordinate array. Arrays cubeVFA and cubeTFA are similar, except that the
texture coordinates in cubeTFA are filled with ones. Compared to the (s, t) coordinates used
in 2D textures, cubemap textures use an additional coordinate, because fetching texels from a
cubemap texture requires 3D vectors. Please note that we do not have to worry about the underlying
process that does so. Fetching texels automatically takes place using the built-in ES 2.0 function
textureCube, called inside the fragment shader.

Listing 5-9.  GL CUBEMAP TEXTURE/src/com/apress/android/glcubemaptexture/GLES20Renderer.java

float[] cubeVFA = { // vertex (float) coordinate array
 -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f,
 -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f
};
 
short[] cubeISA = { // index (short) array
 0,4,5, 0,1,5, 5,6,2, 5,1,2,
 5,6,7, 5,4,7, 7,6,2, 7,3,2,
 7,3,0, 7,4,0, 0,3,2, 0,1,2
};
 

154 CHAPTER 5: Texturing and Shading

float[] cubeTFA = { // texture (float) coordinate array
 -1,-1,1, 1,-1,1, 1,1,1, -1,1,1,
 -1,-1,-1, 1,-1,-1, 1,1,-1, -1,1,-1
};
 

Loading Images for a Cubemap Texture
Similar to 2D textures (Listing 5-5), when you generate a texture object for a cubemap texture,
you need to bind its corresponding id to the texture type. For a cubemap texture, this is done by
GLES20.glBindTexture(GLES20.GL_TEXTURE_CUBE_MAP, _textureId);.

Similarly, to set the texture parameters for using a cubemap texture, the first argument passed to the
GLES20.glTexParameteri method should be GLES20.GL_TEXTURE_CUBE_MAP.

Because a cubemap texture has six faces, instead of a single call to the GLUtils.texImage2D
method, you need to call this method six times, corresponding to each face. To do so, pass the first
argument as a constant (Listing 5-10) specifying the face:

	GLES20.GL_TEXTURE_CUBE_MAP_POSITIVE_X

	GLES20.GL_TEXTURE_CUBE_MAP_NEGATIVE_X

	GLES20.GL_TEXTURE_CUBE_MAP_POSITIVE_Y

	GLES20.GL_TEXTURE_CUBE_MAP_NEGATIVE_Y

	GLES20.GL_TEXTURE_CUBE_MAP_POSITIVE_Z

	GLES20.GL_TEXTURE_CUBE_MAP_NEGATIVE_Z

For the GL CUBEMAP TEXTURE application, I have used six different textures. So six different
Bitmap resources are used, two of which are shown in Listing 5-10.

Listing 5-10.  GL CUBEMAP TEXTURE/src/com/apress/android/glcubemaptexture/GLES20Renderer.java

InputStream is1 = _context.getResources().openRawResource(R.drawable.brick1);
Bitmap img1;
try {
 img1 = BitmapFactory.decodeStream(is1);
} finally {
 try {
 is1.close();
 } catch(IOException e) {
 // e.printStackTrace();
 }
}
GLUtils.texImage2D(GLES20.GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, img1, 0);
InputStream is2 = _context.getResources().openRawResource(R.drawable.brick2);
Bitmap img2;
try {
 img2 = BitmapFactory.decodeStream(is2);
} finally {

155CHAPTER 5: Texturing and Shading

 try {
 is2.close();
 } catch(IOException e) {
 // e.printStackTrace();
 }
}
GLUtils.texImage2D(GLES20.GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, img2, 0); 

samplerCube Uniform Variable
The fragment shader code for a cubemap texture uses samplerCube uniform in place of sampler2D
(Listing 5-6) uniform. Listing 5-11 shows the fragment shader code from the GL CUBEMAP
TEXTURE application. It uses the built-in function textureCube to fetch from the cubemap texture.
This function is almost identical to the texture2D function. The only difference is that the texture
coordinate is a vec3, instead of vec2 and the sampler* type must be samplerCube.

Listing 5-11.  GL CUBEMAP TEXTURE/src/com/apress/android/glcubemaptexture/GLES20Renderer.java

private final String _cubeFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float; \n"
 + "#else \n"
 + "precision mediump float; \n"
 + "#endif \n"
 + "varying vec3 vCoord; \n"
 + "uniform samplerCube uSampler; \n"
 + "void main() { \n"
 + " gl_FragColor = textureCube(uSampler,vCoord); \n"
 + "} \n"; 

Multi-Texturing
You can also extend the GL TEXTURE application to use more than one texture for the rendered
object. Use of two textures (Figure 5-6) with the rendered object is demonstrated in the GL MULTI
TEXTURE application (Chapter5/glmultitexture.zip) with output as seen in Figure 5-7.

Figure 5-6.  Textures from GIMP

156 CHAPTER 5: Texturing and Shading

The two textures used in this application have identical dimensions. For this reason, the same
texture coordinate array is used to fetch texels from both these textures. As you may have guessed,
using two 2D textures with the rendered object does require two separate sampler2D uniforms.
Listing 5-12 contains the vertex-fragment shader pair from this application.

Listing 5-12.  GL MULTI TEXTURE/src/com/apress/android/glmultitexture/GLES20Renderer.java

private final String _planeVertexShaderCode =
 "attribute vec4 aPosition; \n"
 + "attribute vec2 aCoord; \n"
 + "varying vec2 vCoord; \n"
 + "uniform mat4 uMVP; \n"
 + "void main() { \n"
 + " gl_Position = uMVP * aPosition; \n"
 + " vCoord = aCoord; \n"
 + "} \n";
 
private final String _planeFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float; \n"
 + "#else \n"
 + "precision mediump float; \n"
 + "#endif \n"
 + "varying vec2 vCoord; \n"
 + "uniform sampler2D uSampler1; \n"
 + "uniform sampler2D uSampler2; \n"
 + "void main() { \n"
 + " vec4 textureColor1,textureColor2; \n"
 + " textureColor1 = texture2D(uSampler1,vCoord); \n"
 + " textureColor2 = texture2D(uSampler2,vCoord); \n"
 + " gl_FragColor = textureColor1 * textureColor2; \n"
 + "} \n";
 

Figure 5-7.  GL MULTI TEXTURE application

157CHAPTER 5: Texturing and Shading

Because the texture2D function returns a vec4 texture color, there is no restriction as to how you
combine the texture colors. You can perform any operation between the texture colors, and finally
set the resultant color as the fragment color. As shown in Listing 5-12, texture colors textureColor1
and textureColor2 are multiplied, and the resultant color is set as the fragment color:

gl_FragColor = textureColor1 * textureColor2;
When using multiple 2D textures, you must generate texture objects for each texture to be used.
Please note that, although a cubemap texture uses six 2D textures, a cubemap texture is a separate
type of texture in ES 2.0, which explains why it only requires a single texture object.

So, to use two 2D textures, two texture objects must be generated, as shown in Listing 5-13. Each
of the texture ids must be bound to the texture type, which, in this case, is GL_TEXTURE_2D. Similarly,
other ES 2.0 functions to successfully load the image data—glPixelStorei, glTexParameter* and
texImage2D—must be separately called for each texture object, regardless of the number of Bitmap
resources used (Listing 5-13).

Listing 5-13.  GL MULTI TEXTURE/src/com/apress/android/glmultitexture/GLES20Renderer.java

int[] textures = new int[2];
GLES20.glGenTextures(2, textures, 0);
_textureId1 = textures[0];
_textureId2 = textures[1];
 
// load the 1st texture
 
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, _textureId1);
InputStream is1 = _context.getResources().openRawResource(R.drawable.brick1);
Bitmap img1;
try {
 img1 = BitmapFactory.decodeStream(is1);
} finally {
 try {
 is1.close();
 } catch(IOException e) {
 // e.printStackTrace();
 }
}
GLES20.glPixelStorei(GLES20.GL_UNPACK_ALIGNMENT, 1);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
// GL_LINEAR
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_REPEAT);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_REPEAT);
GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, img1, 0);
 
// load the 2nd texture
 
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, _textureId2);
InputStream is2 = _context.getResources().openRawResource(R.drawable.brick2);
Bitmap img2;

158 CHAPTER 5: Texturing and Shading

try {
 img2 = BitmapFactory.decodeStream(is2);
} finally {
 try {
 is2.close();
 } catch(IOException e) {
 // e.printStackTrace();
 }
}
GLES20.glPixelStorei(GLES20.GL_UNPACK_ALIGNMENT, 1);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
// GL_LINEAR
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_REPEAT);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_REPEAT);
GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, img2, 0);
 

Lighting Effects Using Shader Programs
OpenGL ES 1.1 provides built-in lighting models to compute the lighting equations for various types
of light source (point light, spot light, and so on). However, in ES 2.0, you must do all the math
necessary to perform lighting effects. For this, you must know about lighting and shading. Lighting
(physics terminology) is the interaction between a surface (made up of a specific material) and a light
source. Shading is a technique in computer-graphics that uses lighting to determine the final color of
a fragment.

Illumination Models
A model for the interaction of light with a surface is called an illumination model (also known as a
lighting model). In computer-graphics, the commonly used illumination models are Lambert and
Phong. In the Lambert model, the reflection of light from an object’s surface is independent of the
viewing direction (that is, the vector pointing from the viewer to the object’s surface). In contrast, in
the Phong model, the reflection of light depends on the viewing direction. This section focuses on
the Lambert model.

Note  The type of reflection in the Lambert model is known as diffuse reflection. Diffuse reflections from the
surfaces are scattered with equal intensity in all directions, independent of the viewing direction. Surfaces
that behave this way are called Lambertian reflectors.

To implement this model, you must understand Lambert's Cosine Law. This states that the reflection
of light from a Lambertian reflector varies as the cosine of the angle between the normal to the
surface and the direction of the reflected ray.

159CHAPTER 5: Texturing and Shading

For this reason, a surface perpendicular to the direction of the incident light appears brighter than
a surface that is oblique to the direction of this light. Next, we talk about the lighting equations
involved in this model.

Diffuse Reflection: Equations for Illumination
Diffuse reflection involves two vectors—the vector S from surface to light source, and the normal N to
surface, as shown in Figure 5-8. For obvious reasons, when light arrives along N, the illumination of
the surface is highest. It is zero, when light is perpendicular to N.

Figure 5-8.  Diffuse reflection: the circle represents the point light source

Note  Although we are talking about a surface, in the context of an ES 2.0 application, this surface is a
triangle primitive represented as a set of vertices. So, in this context, the surface does not explicitly interact
with the incoming light; however, the vertices do.

If θ is the angle between N and S, then, apart from the two cases mentioned, for all other cases the
illumination will be proportional to cos(θ). Therefore, the amount of radiation striking the surface
is Iin(N.S ), where Iin is the intensity of the light source and (N.S ) is the dot product of vectors N
and S. Because only a fraction of the incoming light is actually scattered, you need to introduce a
coefficient into this equation, so that you can determine the intensity of the outgoing light:

Iout = K(Iin(N.S ))

160 CHAPTER 5: Texturing and Shading

Here, K is the reflection coefficient, which represents the fraction of the incoming light that is
scattered. Iout is the intensity of the outgoing light. Now, we describe the shading technique in
which, using this lighting equation, we evaluate Iout at each vertex of an object (specifically, the
primitives constituting this object).

Lighting Equation in Vertex Shader
To implement this lighting equation using a shader program:

Inside the vertex shader, store the current vertex (say, in a variable 	 vertex of
type vec4).

Recall that you pass data (vertex 	 FloatBuffer) to this variable by calling the
ES 2.0 function glVertexAttribPointer.

Next, store the normal corresponding to the current vertex and transform this 	
normal using the MV matrix (specifically, the upper-left 3x3 portion of the MV
matrix) of the corresponding object. This matrix, which is used to transform the
normal, is called the normal matrix.

Note  As Chapter 4 explains, the Perl (mesh) parser calculates the normalized average of adjacent
mesh-normals for every vertex, so as to obtain the normals (that is, normal vectors) along them.

Normals (that is, normal vectors) transform differently than vertices. The 	
normal matrix should be the inverse-transpose of the upper-left 3x3 portion
of the MV matrix corresponding to the object. However, as long as the MV
matrix does not include any non-uniform scalings, then you can use the
upper-left 3x3 portion of the MV matrix to transform the normals. Please
note that, in non-uniform scaling, an object is enlarged or shrunk by a factor
that is not the same along all axes.

Note  To look deeper into the concepts on non-uniform scaling of normals, refer the following URL:
http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/.

Inside the vertex shader, store the current (transformed) normal in a variable 	
of type vec3 using the following code. This normal corresponds to the N
vector, shown in Figure 5-8.

vec3 normal = normalize(vec3(uNormal * aNormal));

http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/

161CHAPTER 5: Texturing and Shading

Here, 	 uNormal is the uniform variable (of type mat3) to store the normal
matrix, and aNormal is an attribute variable that receives vertex normals.
Similar to how we pass vertices using glVertexAttribPointer, we also pass
the vertex normals. Recall from Chapter 4 (“Parsing Objects for OpenGL
ES”) that you can access the vertex normals from the “normal:” block in the
parser's output text file.

The 	 normalize function, as the name suggests, is a built-in function in ES 2.0
that helps normalize the given vector. Normalization is necessary to avoid
any scaling of the vectors.

To pass the 3x3 normal matrix to the vertex shader, use the ES 2.0 function 	
glUniformMatrix3fv, and call it as: GLES20.glUniformMatrix3fv
(_tankUNormalLocation, 1, false, _tankNormalMatrix, 0);

Here, 	 _tankNormalMatrix (float[9]) is the normal matrix, obtained by
copying the upper-left 3x3 portion of the MV matrix corresponding to the
object (Listing 5-14). You do not need to create a separate MV matrix to
copy the required values; instead, copy the values from the MVP matrix,
before it is combined with the projection transformation, as shown in the
following code.

Listing 5-14.  VERTEX POINT LIGHTING/src/com/apress/android/vertexpointlighting/GLES20Renderer.java

_tankNormalMatrix[0] = _tankMVPMatrix[0];
_tankNormalMatrix[1] = _tankMVPMatrix[1];
_tankNormalMatrix[2] = _tankMVPMatrix[2]; // from 1st column, ending at [3]
 
_tankNormalMatrix[3] = _tankMVPMatrix[4];
_tankNormalMatrix[4] = _tankMVPMatrix[5];
_tankNormalMatrix[5] = _tankMVPMatrix[6]; // from 2nd column, ending at [7]
 
_tankNormalMatrix[6] = _tankMVPMatrix[8];
_tankNormalMatrix[7] = _tankMVPMatrix[9];
_tankNormalMatrix[8] = _tankMVPMatrix[10]; // from 3rd column, ending at [11]
 
System.arraycopy(_tankMVPMatrix, 0, _tankMVMatrix, 0, 16);
Matrix.multiplyMM(_tankMVPMatrix, 0, _ProjectionMatrix, 0, _tankMVPMatrix, 0);
 

Next, to obtain the 	 S vector for the current vertex, take its difference with the
light source position.

For this, store the light source position in a global variable, inside the vertex 	
shader (Listing 5-16). This variable is usually declared as a constant variable,
by using the const keyword:

const vec4 lightPositionWorld = vec4(10.0, 10.0, 0.0, 1.0);

As we are dealing with a point light source, we just need a single vertex to 	
represent it, irrespective of the shape of the light source. If you have modeled
this light source object in Blender, you can obtain its center by reading the
global median value from the properties shelf, as shown in Figure 5-9.

162 CHAPTER 5: Texturing and Shading

Note  In the source code for this chapter, inside the Blender folder, you will find Blender files named
pointLight*. You can open these files to see how you can add a point light source. Instead of using
a sphere as a light source object, I have used an Icosphere mesh, which can be easily added using the
Add menu (from the Info window). I have used this object in both VERTEX POINT LIGHTING and
FRAGMENT POINT LIGHTING applications.In these applications, I have demonstrated lighting/shading
effects using a point light source. This application contains the Tank and Light objects, where the Light object
is an Icosphere added from Blender.

Figure 5-9.  Blender: obtaining the center of object

Because the normal vector (	 N ) is in eye-space (to get points and vectors in
eye-space, they must be transformed using their respective MV matrices),
you must also transform the S vector into eye-space, so it becomes
possible to take their dot product. For this, make sure the current vertex
position and the light source position are transformed using their respective
MV matrices. In most graphical applications, the light source is usually
fixed. However in the application I have provided for demonstrating
lighting/shading effects, I have made it optional to rotate the light source
(Listing 5-15). The vertex shader code in Listing 5-16 consists of a uniform
variable uMVLight to store the MV matrix _pointMVMatrix for the light
source.

163CHAPTER 5: Texturing and Shading

Listing 5-15.  VERTEX POINT LIGHTING/src/com/apress/android/vertexpointlighting/GLES20Renderer.java

if(!_rotatePointOnly) {
 Matrix.setIdentityM(_tankRMatrix, 0);
 Matrix.rotateM(_tankRMatrix, 0, _zAngle, 0, 0, 1);
}
Matrix.multiplyMM(_tankMVPMatrix, 0, _ViewMatrix, 0, _tankRMatrix, 0);
if(_rotatePointOnly) {
 Matrix.rotateM(_pointRMatrix, 0, _zAngle * 0.5f, 0, 0, 1);
 Matrix.multiplyMM(_pointMVMatrix, 0, _ViewMatrix, 0, _pointRMatrix, 0);
 Matrix.multiplyMM(_pointMVPMatrix, 0, _ProjectionMatrix, 0, _pointMVMatrix, 0);
}
 

The uniform variable 	 uMV inside the vertex shader stores the MV matrix for
the object. This matrix is obtained by copying the entire MVP matrix before
the MVP matrix is combined with projection transformation. As shown in
Listing 5-14, the System.arraycopy method is used to copy the MVP matrix
to MV matrix for the object. You need this MV matrix to transform the
vertex positions into eye-space.

Listing 5-16.  VERTEX POINT LIGHTING/src/com/apress/android/vertexpointlighting/GLES20Renderer.java

private final String _tankVertexShaderCode =
 "attribute vec3 aPosition; \n"
 + "attribute vec3 aNormal; \n"
 + "varying float diffuseIntensity; \n"
 + "uniform mat3 uNormal; \n"
 + "uniform mat4 uMV; \n"
 + "uniform mat4 uMVP; \n"
 + "uniform mat4 uMVLight; \n"
 + "const vec4 lightPositionWorld = vec4(10.0, 10.0, 0.0, 1.0); \n"
 + "void main() { \n"
 + " vec4 vertex = vec4(aPosition[0], aPosition[1], aPosition[2], 1.0); \n"
 + " \n"
 + " vec3 normal = normalize(vec3(uNormal * aNormal)); \n"
 + " // vec3 normal = vec3(uNormal * aNormal); \n"
 + " vec4 vertexEye = vec4(uMV * vertex); \n"
 + " vec4 lightPositionEye = vec4(uMVLight * lightPositionWorld); \n"
 + " vec3 ds = normalize(vec3(lightPositionEye - vertexEye)); \n"
 + " // vec3 ds = vec3(lightPositionEye - vertexEye); \n"
 + " \n"
 + " // diffuseIntensity = Ld * Kd * max(dot(ds, normal), ambientIntensity); \n"
 + " diffuseIntensity = max(dot(ds, normal), 0.210); \n"
 + " diffuseIntensity = 0.570 * 0.210 * diffuseIntensity; \n"
 + " \n"
 + " gl_Position = vec4(uMVP * vertex); // ensures that we provide a vec4 \n"
 + "} \n";
 

Finally, obtain the 	 S vector for the current vertex by taking its difference
with the light source position. The variable ds (Listing 5-16) stores this
difference.

164 CHAPTER 5: Texturing and Shading

To determine the intensity of outgoing light (	 Iout) at the current vertex, take the
dot product of ds and normal vectors, using the built-in function dot(vec*, vec*).

The vertex shader code in Listing 5-16 uses the built-in function 	 max(float,
float) to make sure that ambient light is also taken into account.

Ambient light sets a general level of brightness for the object. It is a 	
background light, and its intensity is constant for all the objects in the scene,
for all the surfaces, and over all directions.

Using the 	 max function, the brighter among ambient (“0.210”) and diffuse
light, is selected as the diffuseIntensity.

As discussed, to obtain the final intensity of outgoing light, multiply the 	
diffuseIntensity variable with the reflection coefficient (also set as “0.210”),
as well as the intensity of incoming light (Listing 5-16).

Finally, the diffuseIntensity varying variable is passed to the fragment shader and is set as the
fragment color, as shown in Listing 5-17. Please note that the diffuse intensity can also be combined
with the material color for the object.

Listing 5-17.  VERTEX POINT LIGHTING/src/com/apress/android/vertexpointlighting/GLES20Renderer.java

private final String _tankFragmentShaderCode =
 "precision lowp float; // not to be done in a vertex shader \n"
 + "varying float diffuseIntensity; \n"
 + "void main() { \n"
 + " vec3 diffuse = vec3(diffuseIntensity); \n"
 + " // gl_FragColor = vec4(0.1, 0.1, 0.25, 1.0) + vec4(diffuse, 1.0); \n"
 + " gl_FragColor = vec4(diffuse, 1.0); \n"
 + "} \n"; 

Because you are interpolating the final intensity of light (Figure 5-10), shading effect will be more
pronounced, as shown in Figure 5-11 (output of VERTEX POINT LIGHTING application from the
source code), which can lead to unrealistic effects on some occasions.

165CHAPTER 5: Texturing and Shading

Figure 5-11.  Interpolation of lighting (shade)

Figure 5-10.  Unwrapped faces around a vertex

Interpolating Vertex Normal
To make the shading effects more realistic, instead of interpolating diffuse intensity, you can
interpolate vertex normal across fragments. To demonstrate this, I have created an application -
FRAGMENT POINT LIGHTING. Load this application into your Eclipse workspace by importing the
archive file Chapter5/fragmentpointlighting.zip.

166 CHAPTER 5: Texturing and Shading

As shown in Listing 5-18, in place of the vertex shader, the fragment shader is now implementing the
lighting equation. The normal for current vertex is transformed into eye-space in the vertex shader,
and, because it is of type varying, it gets interpolated across the fragments. This leads to more
realistic shading effects, as shown in Figure 5-12.

Listing 5-18.  FRAGMENT POINT LIGHTING/src/com/apress/android/fragmentpointlighting/GLES20Renderer.java

private final String _tankVertexShaderCode =
 "attribute vec3 aPosition; \n"
 + "attribute vec3 aNormal; \n"
 + "varying vec4 vertex; \n"
 + "varying vec3 normal; \n"
 + "uniform mat3 uNormal; \n"
 + "uniform mat4 uMV; \n"
 + "uniform mat4 uMVP; \n"
 + "uniform mat4 uMVLight; \n"
 + "void main() { \n"
 + " vertex = vec4(aPosition[0], aPosition[1], aPosition[2], 1.0); \n"
 + " normal = normalize(vec3(uNormal * aNormal)); \n"
 + " \n"
 + " gl_Position = vec4(uMVP * vertex); // ensures that we provide a vec4 \n"
 + "} \n";
 
private final String _tankFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float; \n"
 + "#else \n"
 + "precision mediump float; \n"
 + "#endif \n"
 + "varying float diffuseIntensity; \n"
 + "varying vec4 vertex; \n"
 + "varying vec3 normal; \n"
 + "uniform mat3 uNormal; \n"
 + "uniform mat4 uMV; \n"
 + "uniform mat4 uMVP; \n"
 + "uniform mat4 uMVLight; \n"
 + "const vec4 lightPositionWorld = vec4(10.0, 10.0, 0.0, 1.0); \n"
 + "void main() { \n"
 + " float diffuseIntensity; \n"
 + " vec4 vertexEye = vec4(uMV * vertex); \n"
 + " vec4 lightPositionEye = vec4(uMVLight * lightPositionWorld); \n"
 + " vec3 ds = normalize(vec3(lightPositionEye - vertexEye)); \n"
 + " \n"
 + " diffuseIntensity = max(dot(ds, normal), 0.210); \n"
 + " diffuseIntensity = 0.570 * 0.210 * diffuseIntensity; \n"
 + " vec3 diffuse = vec3(diffuseIntensity); \n"
 + " // vec4 materialColor = vec4(0.1, 0.1, 0.25, 1.0); \n"
 + " // gl_FragColor = vec4(0.1, 0.1, 0.25, 1.0) + vec4(diffuse, 1.0); \n"
 + " gl_FragColor = vec4(diffuse, 1.0); \n"
 + "} \n";
 

167CHAPTER 5: Texturing and Shading

Figure 5-12.  Realistic lighting effects by interpolating normals

Summary
At the start of this chapter, I explained various ways to use textures with the rendered object.
I discussed using:

single texture	

combination of textures	

combination of texture and color	

cubemap texture	

Then, I talked about the Lambert illumination model and how to implement it using shader programs.

In the next chapter, we will continue the development of our Tank Fence game, where I will introduce
two new classes to help us deal with Missile and Enemy game objects.

169

Chapter 6
Taking the Development Ahead

In this chapter, we will continue the development of our Tank Fence game. For this, we will be using
the TANK FENCE 3 application from the previous chapter. First, you have to make small changes
to the UI of this application. Then, I will introduce two new classes to help us deal with Missile and
Enemy game objects.

Specifying the Render Mode
In some graphical applications, rendering may not be required in a persistent manner, such as an
application where you simply rotate a 3D object about various axes. For such applications, rendering
is only required when a specific event has been dispatched (e.g., touch event).

If there was a way we could explicitly request rendering (upon listening the dispatched event), it
would be easy to reduce the power consumption on the device hosting the application. This is
especially crucial for GPU-powered OpenGL ES applications, running on mobiles and tablets.

In the previous chapters, I showed you various instances where the Android SDK eliminates most of
our workload. Yet again, the SDK makes it possible to access another useful functionality with just a
few lines of code.

By calling the public method requestRender() of the GLSurfaceView class, we can render a frame
on demand. But we can request rendering in this way only if we have set the render mode as
RENDERMODE_WHEN_DIRTY. We can set the render mode by calling the public method setRenderMode()
after we have set the renderer (Listing 6-1). By passing the argument GLSurfaceView.RENDERMODE_
WHEN_DIRTY, the renderer only renders when the surface is created, or when requestRender() is
called.

Note  Listing 6-1 is not the complete implementation of the onCreate() method from the GL RENDER
MODE application.

170 CHAPTER 6: Taking the Development Ahead

Listing 6-1.  GL RENDER MODE/src/com/apress/android/glrendermode/Main.java

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 _surfaceView = new GLSurfaceView(this);
 _surfaceView.setEGLContextClientVersion(2);
 _surfaceView.setRenderer(new GLES20Renderer());
 _surfaceView.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(_surfaceView);
 
The GL RENDER MODE application (Chapter6/glrendermode.zip) from the source code for this
chapter demonstrates on-demand rendering of frames. This application is almost identical to the
TOUCH ROTATION application (Chapter2/touchrotation.zip). As shown in Listing 6-2, rendering
can be explicitly requested (_surfaceView.requestRender()) every time the 3D graphics have to be
updated by any desired event.

Listing 6-2.  GL RENDER MODE/src/com/apress/android/glrendermode/Main.java

public boolean onTouch(View v, MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 _touchedX = event.getX();
 } else if (event.getAction() == MotionEvent.ACTION_MOVE) {
 float touchedX = event.getX();
 float dx = Math.abs(_touchedX - touchedX);
 _dxFiltered = _dxFiltered * (1.0f - _filterSensitivity) + dx
 * _filterSensitivity;
 
 if (touchedX < _touchedX) {
 _zAngle = (2 * _dxFiltered / _width) * _TOUCH_SENSITIVITY
 * _ANGLE_SPAN;
 _zAngleFiltered = _zAngleFiltered * (1.0f - _filterSensitivity)
 + _zAngle * _filterSensitivity;
 GLES20Renderer.setZAngle(GLES20Renderer.getZAngle()
 + _zAngleFiltered);
 _surfaceView.requestRender();
 } else {
 _zAngle = (2 * _dxFiltered / _width) * _TOUCH_SENSITIVITY
 * _ANGLE_SPAN;
 _zAngleFiltered = _zAngleFiltered * (1.0f - _filterSensitivity)
 + _zAngle * _filterSensitivity;
 GLES20Renderer.setZAngle(GLES20Renderer.getZAngle()
 - _zAngleFiltered);
 _surfaceView.requestRender();
 }
 }
 return true;
}
 

171CHAPTER 6: Taking the Development Ahead

Adding the Fire Button
Now we can continue developing the Tank Fence game. Begin by modifying the TANK FENCE 3
application from the previous chapter, with output as shown in Figure 4-53. In Chapter 2, we worked
on the UPDOWN COUNTER application. As in the UI for that application, we also need up and down
buttons for the Tank Fence game.

For this, simply copy the file updown.xml (UPDOWN COUNTER/res/layout/updown.xml) to the res/layout
folder of the TANK FENCE 3 application. You also need to create the corresponding string and item
(id) resources for the buttons.

Note  The string resources, such as <string name="up">UP</string>, are required so that they can
be referenced when setting the labels for the buttons, for example - <Button android:id="@id/up"
android:text="@string/up" ... />.

A new id resource (for an element such as button) can be directly created using the + sign (@+id), or it can be
created as an item (id) resource - <item name="up" type="id"/>. Similar to the way a string resource is
referenced (@string/up) we can also reference this id resource when setting the id for an element
(@id/up). Although this technique is not very popular, it is very useful to keep track of the elements (visual
and non-visual) used in our application.

Both string and id resources have to be placed within the resource tag. Commonly, the string resources
are added to the res/values/string(s).xml file, and the id resources are added to the
res/values/id(s).xml file.

After this, we need to add another button to fire missiles. For this, create a new layout file missile.xml inside the
res/layout folder. Add the lines of code from Listing 6-3 to this file.

Listing 6-3.  TANK FENCE GAME 1/res/layout/missile.xml

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@id/up"
 android:layout_width="90dp"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:layout_marginBottom="10dp"
 android:layout_marginRight="10dp"
 android:contentDescription="@string/app_name"
 android:minHeight="60dp"
 android:text="@string/fire" />
 
As I mentioned already, you also need to define the string and item (id) resources. Before I talk about
the code in Main class, copy another file - Counter.java, from the UPDOWN COUNTER application
to the src folder of the TANK FENCE 3 application.

http://schemas.android.com/apk/res/android

172 CHAPTER 6: Taking the Development Ahead

In the Main class, clear all the lines of code inside the onCreate() method after the variable rllp
(of type RelativeLayout.LayoutParams) is defined. Then, add the lines of code given in Listing 6-4.

Figure 6-1.  Fire button

Note  As with other code listings in this book, Listing 6-4 is from the final (completed) copy of the file we
are working with. So, although we are working with the TANK FENCE 3 application, Listing 6-4 shows code
from the TANK FENCE GAME 1 application – containing the final copy of the Main.java file. (The completed
copies may contain slightly modified variable names.)

Listing 6-4.  TANK FENCE GAME 1/src/com/apress/android/tankfencegame1/Main.java

rl.setGravity(Gravity.BOTTOM);
 
LayoutInflater inflater = (LayoutInflater) getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 
View linearLayoutView = inflater
 .inflate(R.layout.updown, rl, false);
View buttonView = inflater
 .inflate(R.layout.missile, rl, false);
 
rl.addView(linearLayoutView);
rl.addView(buttonView);
addContentView(rl, rllp);
 
setUpDownClickListeners();
getDeviceWidth();
 
First, we set the layout’s gravity to Gravity.BOTTOM. This will align the nested elements with
its bottom. Then, after inflating the views they are added to the layout. Finally, by calling the
addContentView() method, the entire layout is added as an additional content view - as shown in
Figure 6-1.

173CHAPTER 6: Taking the Development Ahead

Because screen touch is used to rotate the tank, this application requires the device width
(you can refer back to the section - “Using Touch for Rotation” in Chapter 2 to re-examine this logic).
It is obtained by accessing the display metrics members, which are used in the getDeviceWidth()
method, shown in Listing 6-5.

Listing 6-5.  TANK FENCE GAME 1/src/com/apress/android/tankfencegame1/Main.java

public void getDeviceWidth() {
 DisplayMetrics dm = new DisplayMetrics();
 getWindowManager().getDefaultDisplay().getMetrics(dm);
 int width = dm.widthPixels;
 int height = dm.heightPixels;
 if (width > height) {
 _width = width;
 } else {
 _width = height;
 }
}
 
As you may have guessed, the setUpDownClickListeners() method (Listing 6-6) sets the click
listeners for the up and down buttons. These buttons will be used for forward-backward movement
of the tank. The extent of this movement (or the number of steps moved) is stored inside a counter.
Similar use of a counter has been discussed in the section “Working with Buttons and the Counter
Class” in Chapter 2.

Listing 6-6.  TANK FENCE GAME 1/src/com/apress/android/tankfencegame1/Main.java

public void setUpDownClickListeners() {
 Button buttonUp, buttonDown;
 
 buttonUp = (Button) findViewById(R.id.up);
 buttonDown = (Button) findViewById(R.id.down);
 
 buttonUp.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 synchronized (this) {
 Counter.getUpDownNextValue();
 }
 }
 });
 buttonDown.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 synchronized (this) {
 Counter.getUpDownPreviousValue();
 }
 }
 });
}
 

174 CHAPTER 6: Taking the Development Ahead

Combining Translation with Rotation
Now, we want the tank to be able to drive away from the center of the screen (upon up/down button
click), while it is free to rotate about the global z-axis (i.e., the axis normal to the screen and passing
through its center). For that, declare a new field in the Renderer class (TANK FENCE 3/src/com/
apress/android/tankfence3/GLES20Renderer.java) - _tankTMatrix of type float[16]. After this,
replace the following lines of code in the onDrawFrame() method with the lines of code in Listing 6-7.
 
Matrix.setIdentityM(_tankRMatrix, 0);
Matrix.rotateM(_tankRMatrix, 0, _zAngle, 0, 0, 1);
Matrix.multiplyMM(_tankMVPMatrix, 0, _ViewMatrix, 0, _tankRMatrix, 0);
Matrix.multiplyMM(_tankMVPMatrix, 0, _ProjectionMatrix, 0, _tankMVPMatrix, 0);
 

Listing 6-7.  TANK FENCE GAME 2/src/com/apress/android/tankfencegame2/GLES20Renderer.java

Matrix.setIdentityM(_tankTMatrix, 0);
Matrix.setIdentityM(_tankRMatrix, 0);
Matrix.translateM(_tankTMatrix, 0, 0, Counter.getUpDownValue(), 0);
Matrix.rotateM(_tankRMatrix, 0, _zAngle, 0, 0, 1);
Matrix.multiplyMM(_tankMVPMatrix, 0, _tankRMatrix, 0, _tankTMatrix, 0);
Matrix.multiplyMM(_tankMVPMatrix, 0, _ViewMatrix, 0, _tankMVPMatrix, 0);
Matrix.multiplyMM(_tankMVPMatrix, 0, _ProjectionMatrix, 0, _tankMVPMatrix, 0);
 
The call to translateM() method will translate matrix _tankTMatrix (by the value returned by
Counter.getUpDownValue()) along the global y-axis. To combine rotation with translation in the
specified manner (Figure 6-2), the following call is made: Matrix.multiplyMM(_tankMVPMatrix, 0,
_tankRMatrix, 0, _tankTMatrix, 0), which will translate the tank along the global y-axis and
then rotate it about the global z-axis. Please note that to achieve this, the order is important - i.e.,
translation comes ahead of rotation.

Figure 6-2.  Combined translation and rotation transformations

175CHAPTER 6: Taking the Development Ahead

To see these steps in action, import the archive file tankfencegame2.zip from the source code for
this chapter. This will load the TANK FENCE GAME 2 application into your Eclipse workspace. Some
additional changes are also made to this application:

	Shader code in the Renderer class does not make use of attributes to provide
colors. The color is directly written to the gl_FragColor variable.

The code inside the 	 onDrawFrame() method is refactored and is extracted to two
separate methods:

	 void updateModel(int upDownValue, float zAngle)

	 void renderModel(GL10 gl)

The 	 updateModel() method contains the lines of code from Listing 6-7. From this
point onwards, the updateModel() method will contain the code that updates the
matrices which in turn update the position of objects.

The 	 renderModel() method, as the name suggests, contains the code that
renders graphics. This comprises the calls to methods, such as glUseProgram,
glUniform*, glVertexAttribPointer, glEnableVertexAttribArray, glDraw*.

To ensure that rendering of every frame takes the same amount of time, we need 	
to calculate the time taken by the current frame and then sleep it accordingly.
Because of the way garbage collection takes place in Java, the time taken for
rendering of each frame is not guaranteed to be the same. By calling Thread.
sleep() method (as shown in Listing 6-8) in the Renderer thread, we can adjust
this time. Also note that before the rendering begins, it is always good to call
the garbage collector explicitly so that it can free up the memory occupied by
objects that are no longer in use.

Note  Although it is all right to block the Renderer thread, for instance by calling the Thread.sleep()
method, the UI thread should never be blocked.

Listing 6-8.  TANK FENCE GAME 2/src/com/apress/android/tankfencegame2/GLES20Renderer.java

public void onDrawFrame(GL10 gl) {
 System.gc();
 
 long deltaTime,startTime,endTime;
 startTime = SystemClock.uptimeMillis() % 1000;
 gl.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 
 updateModel(Counter.getUpDownValue(), _zAngle);
 renderModel(gl);
 
 endTime = SystemClock.uptimeMillis() % 1000;
 deltaTime = Math.abs(endTime - startTime);

176 CHAPTER 6: Taking the Development Ahead

 if (deltaTime < 20) {
 try {
 Thread.sleep(20 - deltaTime);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}
 
In Listing 6-8, the local variable deltaTime stores the time taken by the current frame, which is
nothing but the time taken by the method calls updateModel() and renderModel(). If deltaTime is
less than 20 milliseconds, the Renderer thread is blocked for (20 - deltaTime) milliseconds. If it is
more than that, the thread is not blocked.

Including Missiles for the Tank
For the Tank Fence game, point sprites will be used as missiles. Although we can use other
primitives to represent missiles, using point sprites for this purpose will make things a lot easier.

Create a new Java class called Missile, inside the src folder for the TANK FENCE GAME 2
application. Because we are using point sprites to represent missiles, the Missile object (Listing 6-9)
must contain fields to store the x, y, and z coordinates of the source and destination position of point
sprite. For this, create the corresponding fields as shown in Listing 6-9.

Listing 6-9.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/Missile.java

public class Missile {
 private float _sourcePositionX;
 private float _sourcePositionY;
 private float _sourcePositionZ;
 private float _destinationPositionX;
 private float _destinationPositionY;
 private float _destinationPositionZ;
 private float _angleZ;
 private float _slopeZ;
 private float _interceptY;
 
 public Missile(float positionX, float positionY, float positionZ, float angleZ) {
 _sourcePositionX = positionX;
 _sourcePositionY = positionY;
 _sourcePositionZ = positionZ;
 _destinationPositionX = positionX;
 _destinationPositionY = positionY;
 _destinationPositionZ = positionZ;
 _angleZ = angleZ;
 _slopeZ = (float) Math.tan(Math.toRadians(_angleZ + 90));
 _slopeZ = filter(_slopeZ);
 _interceptY = positionY - (_slopeZ * positionX);
 }
 private float filter(float slope) {
 boolean sign;
 

177CHAPTER 6: Taking the Development Ahead

 if(slope >= 0) {
 sign = true;
 } else {
 sign = false;
 }
 
 slope = Math.abs(slope);
 if(slope <= 0.25f) {
 slope = 0.25f;
 }
 if(slope >= 2.5f) {
 slope = 2.5f;
 }
 
 if(sign) {
 return slope;
 } else {
 return 0 - slope;
 }
 }
 public float getSourcePositionX() {
 return _sourcePositionX;
 }
 public float getSourcePositionY() {
 return _sourcePositionY;
 }
 public float getSourcePositionZ() {
 return _sourcePositionZ;
 }
 public float getDestinationPositionX() {
 return _destinationPositionX;
 }
 public float getDestinationPositionY() {
 return _destinationPositionY;
 }
 public float getDestinationPositionZ() {
 return _destinationPositionZ;
 }
 public void interpolateXY() {
 if((_angleZ > 0 && _angleZ <= 180) || (_angleZ >= -360 && _angleZ <= -180)) {
 _destinationPositionX = _destinationPositionX - 0.5f;
 }
 if((_angleZ > 180 && _angleZ <= 360) || (_angleZ > -180 && _angleZ <= 0)) {
 _destinationPositionX = _destinationPositionX + 0.5f;
 }
 _destinationPositionY = (_slopeZ * _destinationPositionX) + _interceptY;
 }
 
}
 
As the motion of the missile is confined in the x-y plane, using the slope–intercept equation we can
interpolate the source position to obtain the destination position at the end of each frame.

178 CHAPTER 6: Taking the Development Ahead

The method filter() in Listing 6-9 is used to adjust the slope. For angles lying between the X and Y
axes (Figure 6-3), the slope can be directly used to interpolate the missile source position.

Figure 6-3.  Using the actual value of slope to interpolate the missile source position

Figure 6-4.  Using the modified value of slope: Tank directed along Y axis

But for angles (almost) parallel to X or Y axis, as shown in Figures 6-4 and 6-5, the slope cannot be
directly used to interpolate the missile source position, which is why it has to be adjusted.

179CHAPTER 6: Taking the Development Ahead

In class Main (TANK FENCE GAME 2/src/com/apress/android/tankfencegame2/Main.java), in the
setUpDownClickListeners() method, get a reference to the fire button. Then, set its click listener as
shown in the following code:
 
buttonMissile.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 GLES20Renderer._buttonMissilePressed = true;
 }
});
 
Now, turn your attention to the Renderer class (TANK FENCE GAME 2/src/com/apress/android/
tankfencegame2/GLES20Renderer.java). Add the lines of code from Listing 6-10. Because we are
using point sprites to represent missiles, the shader code for a missile (Listing 6-10) just makes use
of an attribute and a uniform variable.

Listing 6-10.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/GLES20Renderer.java

private final String _missilesVertexShaderCode =
 "attribute vec3 aPosition; \n"
 + "uniform mat4 uVP; \n"
 + "void main() { \n"
 + " gl_PointSize = 15.0; \n"
 + " vec4 vertex = vec4(aPosition[0],aPosition[1],aPosition[2],1.0); \n"
 + " gl_Position = uVP * vertex; \n"
 + "} \n";
 
private final String _missilesFragmentShaderCode =
 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"
 + "precision highp float; \n"
 + "#else \n"
 + "precision mediump float; \n"
 + "#endif \n"

Figure 6-5.  Using the modified value of slope: Tank directed along X axis

180 CHAPTER 6: Taking the Development Ahead

 + "void main() { \n"
 + " gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); \n"
 + "} \n";
 
After this, add two static fields to this class, and initialize them as shown:
 
public static volatile boolean _buttonMissilePressed = false;
private static List<Missile> _missiles = new ArrayList<Missile>(100);
 
Create and link a program for the missile shader code seen in Listing 6-10, and get the attribute and
uniform locations:
 
_missilesAPositionLocation = GLES20.glGetAttribLocation(_missilesProgram, "aPosition");
_missilesUVPLocation = GLES20.glGetUniformLocation(_missilesProgram, "uVP");
 
Create a field _missilesVPMatrix of type float[16]. In the onSurfaceChanged() method, after
combining the viewing and projection transformations, copy the result into _missilesVPMatrix by
calling the System.arraycopy() method - as shown in Listing 6-11 (here, the field _MVPMatrix is
renamed to _planeVPMatrix as it will be used for VP transformation of plane and enemy objects).

Listing 6-11.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/GLES20Renderer.java

public void onSurfaceChanged(GL10 gl, int width, int height) {
 System.gc();
 
 GLES20.glViewport(0, 0, width, height);
 
 float ratio = (float) width / height;
 float zNear = 0.1f;
 float zFar = 1000;
 float fov = 0.95f; // 0.2 to 1.0
 float size = (float) (zNear * Math.tan(fov / 2));
 Matrix.setLookAtM(_ViewMatrix, 0, 0, 0, 75, 0, 0, 0, 0, 1, 0);
 // Matrix.setLookAtM(_ViewMatrix, 0, 0, -20, 50, 0, 0, 0, 0, 1, 0);
 Matrix.frustumM(_ProjectionMatrix, 0, -size, size, -size / ratio, size / ratio, zNear, zFar);
 Matrix.multiplyMM(_planeVPMatrix, 0, _ProjectionMatrix, 0, _ViewMatrix, 0);
 System.arraycopy(_planeVPMatrix, 0, _missilesVPMatrix, 0, 16);
 // Matrix.multiplyMM(_missilesVPMatrix, 0, _ProjectionMatrix, 0, _ViewMatrix, 0);
 Matrix.setIdentityM(_tankTMatrix, 0);
 Matrix.setIdentityM(_tankRMatrix, 0);
}
 
Make small changes to the onDrawFrame() method, as shown in Listing 6-12. The if blocks before
the call to updateModel() method restrict the range of field _zAngle. Now, we’ll start defining the
initMissiles() method.

181CHAPTER 6: Taking the Development Ahead

Listing 6-12.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/GLES20Renderer.java

public void onDrawFrame(GL10 gl) {
 System.gc();
 
 long deltaTime,startTime,endTime;
 startTime = SystemClock.uptimeMillis() % 1000;
 gl.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 
 if(GLES20Renderer._zAngle >= 360) {
 GLES20Renderer._zAngle = GLES20Renderer._zAngle - 360;
 }
 if(GLES20Renderer._zAngle <= -360) {
 GLES20Renderer._zAngle = GLES20Renderer._zAngle + 360;
 }
 
 updateModel(Counter.getUpDownValue(), GLES20Renderer._zAngle);
 if(GLES20Renderer._missiles.size() > 0) {
 initMissiles();
 }
 renderModel(gl);
 
 endTime = SystemClock.uptimeMillis() % 1000;
 deltaTime = Math.abs(endTime - startTime);
 if (deltaTime < 20) {
 try {
 Thread.sleep(20 - deltaTime);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}
 

The initMissiles Method
In the initMissiles() method (Listing 6-13), we create the required buffers for the missiles. As you
may have guessed it, the buffers created in this method will be used in the renderModel() method,
when glDrawElements() is called to render the missiles, as shown in Listing 6-14.

Listing 6-13.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/GLES20Renderer.java

private void initMissiles() {
 ListIterator<Missile> missileIterator = _missiles.listIterator();
 float[] missilesVFA = new float[GLES20Renderer._missiles.size() * 3];
 short[] missilesISA = new short[GLES20Renderer._missiles.size()];
 int vertexIterator = -1;
 short indexIterator = -1;
 while(missileIterator.hasNext()) {
 Missile missile = missileIterator.next();
 vertexIterator++;

182 CHAPTER 6: Taking the Development Ahead

 missilesVFA[vertexIterator] = missile.getDestinationPositionX();
 vertexIterator++;
 missilesVFA[vertexIterator] = missile.getDestinationPositionY();
 vertexIterator++;
 missilesVFA[vertexIterator] = missile.getDestinationPositionZ();
 indexIterator++;
 missilesISA[indexIterator] = indexIterator;
 }
 
 ByteBuffer missilesVBB = ByteBuffer.allocateDirect(missilesVFA.length * 4);
 missilesVBB.order(ByteOrder.nativeOrder());
 _missilesVFB = missilesVBB.asFloatBuffer();
 _missilesVFB.put(missilesVFA);
 _missilesVFB.position(0);
 
 ByteBuffer missilesIBB = ByteBuffer.allocateDirect(missilesISA.length * 2);
 missilesIBB.order(ByteOrder.nativeOrder());
 _missilesISB = missilesIBB.asShortBuffer();
 _missilesISB.put(missilesISA);
 _missilesISB.position(0);
 
 GLES20.glGenBuffers(2, _missilesBuffers, 0);
 GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, _missilesBuffers[0]);
 GLES20.glBufferData(GLES20.GL_ARRAY_BUFFER, missilesVFA.length * 4, _missilesVFB,
GLES20.GL_DYNAMIC_DRAW);
 GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, _missilesBuffers[1]);
 GLES20.glBufferData(GLES20.GL_ELEMENT_ARRAY_BUFFER, missilesISA.length * 2, _missilesISB,
GLES20.GL_DYNAMIC_DRAW);
}

 Listing 6-14.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/GLES20Renderer.java

GLES20.glUseProgram(_missilesProgram);
GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, _missilesBuffers[0]);
GLES20.glVertexAttribPointer(_missilesAPositionLocation, 3, GLES20.GL_FLOAT, false, 12, 0);
GLES20.glEnableVertexAttribArray(_missilesAPositionLocation);
GLES20.glUniformMatrix4fv(_missilesUVPLocation, 1, false, _missilesVPMatrix, 0);
GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, _missilesBuffers[1]);
GLES20.glDrawElements(GLES20.GL_POINTS, GLES20Renderer._missiles.size(),
GLES20.GL_UNSIGNED_SHORT, 0);
 
In Listing 6-13, GLES20.GL_DYNAMIC_DRAW is passed as an argument to GLES20.glBufferData()
because as I mentioned in the previous chapter, GL_DYNAMIC_DRAW is used when the buffer object
data will be specified repeatedly by the application. In the Tank Fence game, the _missiles
ArrayList will be repeatedly updated - therefore the corresponding buffers (array and element
buffers) use GL_DYNAMIC_DRAW.

183CHAPTER 6: Taking the Development Ahead

Updating the Missiles ArrayList
I still haven’t talked about how the fire button will be used to populate the _missiles ArrayList.
Before I do that, call the System.arraycopy() method as shown in Listing 6-15. And then, multiply
_missilesMMatrix with _tankCenter, where _tankCenter is initialized as -
 
private final float[] _tankCenter = new float[]{0,0,0,1};
 

Listing 6-15.  TANK FENCE GAME 3/src/com/apress/android/tankfencegame3/GLES20Renderer.java

private void updateModel(int upDown, float zAngle) {
 Matrix.setIdentityM(_tankTMatrix, 0);
 Matrix.setIdentityM(_tankRMatrix, 0);
 Matrix.translateM(_tankTMatrix, 0, 0, upDown, 0);
 Matrix.rotateM(_tankRMatrix, 0, zAngle, 0, 0, 1);
 Matrix.multiplyMM(_tankMVPMatrix, 0, _tankRMatrix, 0, _tankTMatrix, 0);
 // Model matrix for missiles: _missilesMMatrix
 System.arraycopy(_tankMVPMatrix, 0, _missilesMMatrix, 0, 16);
 Matrix.multiplyMM(_tankMVPMatrix, 0, _ViewMatrix, 0, _tankMVPMatrix, 0);
 Matrix.multiplyMM(_tankMVPMatrix, 0, _ProjectionMatrix, 0, _tankMVPMatrix, 0);
 
 float[] missileCenter = new float[4];
 // Matrix.multiplyMM(_missilesMMatrix, 0, _tankRMatrix, 0, _tankTMatrix, 0);
 Matrix.multiplyMV(missileCenter, 0, _missilesMMatrix, 0, _tankCenter, 0);
 
 if(GLES20Renderer._buttonMissilePressed) {
 GLES20Renderer._buttonMissilePressed = false;
 Missile missile = new Missile(missileCenter[0], missileCenter[1], missileCenter[2], zAngle);
 GLES20Renderer._missiles.add(missile);
 }
 
 ListIterator<Missile> missilesIterator = GLES20Renderer._missiles.listIterator();
 while(missilesIterator.hasNext()) {
 Missile missile = missilesIterator.next();
 if(missile.getDestinationPositionX() < -30 || missile.getDestinationPositionX() > 30 ||
missile.getDestinationPositionY() < -15 || missile.getDestinationPositionY() > 15) {
 missilesIterator.remove();
 } else {
 missile.interpolateXY();
 }
 }
}
 
This will allow us to obtain the center of the missile which has just been fired. As the angle of the
tank is also the angle of the missile, using the angle (zAngle) and the center (missileCenter) we can
initialize a Missile object and add it to the _missiles ArrayList.

184 CHAPTER 6: Taking the Development Ahead

When the fire button is pressed, inside the onClick() handler for the fire button (class Main), the
static field GLES20Renderer._buttonMissilePressed is set to true. This allows for the execution of
code inside the if(GLES20Renderer._buttonMissilePressed){...} block - as shown in Listing 6-15.
Here, a Missile object is instantiated and is then added to the _missiles ArrayList. Finally, by
using a ListIterator we iterate over the missiles in the _missiles ArrayList, and then check if any
missile is outside the specified bounds. If it is inside, then its position is interpolated (Listing 6-15,
Figure 6-6), else it is removed from the ArrayList.

Figure 6-6.  Boundaries for missiles

The Enemy Class
To work with the Enemy class, import the archive file Chapter6/tankfencegame4.zip. This will load the
TANK FENCE GAME 4 application into your Eclipse workspace.

The src folder for this application contains the file Enemy.java. The Enemy class is almost identical to
the Missile class - except that the fields _angleZ and _interceptY are not used in the Enemy class.

Spawning Enemies
Now, turn your attention to the lines of code (Listing 6-16) in the onSurfaceCreated() method in the
Renderer class. The intent here is to place an Enemy object in each quadrant, in such a way that
they spawn at the corners of a square - as shown in Figure 6-7.

Listing 6-16.  TANK FENCE GAME 4/src/com/apress/android/tankfencegame4/GLES20Renderer.java

// 10.0005, 10.0, 0.1005
GLES20Renderer._enemies.add(new Enemy(10.0005f, 10.0f, 0));
GLES20Renderer._enemies.add(new Enemy(-3 * 10.0005f, 10.0f, 0));
GLES20Renderer._enemies.add(new Enemy(-3 * 10.0005f, -3 * 10.0f, 0));
GLES20Renderer._enemies.add(new Enemy(10.0005f, -3 * 10.0f, 0));
 

185CHAPTER 6: Taking the Development Ahead

As we have modeled the Enemy object in Blender, we can obtain its center - {10.0005, 10.0, 0.1005}
by reading the global median value from the properties shelf, as shown in Figure 5-9.

Here, the static field _enemies is initialized as:
 
private static List<Enemy> _enemies = new ArrayList<Enemy>(10);
 
Although the _enemies ArrayList is initialized with an initial capacity of ten, only four Enemy objects
are actually used (Figure 6-7). Now, let me describe how this ArrayList is used in the Renderer class.

Recall that in the Tank Fence game, the player has to guard the (white) square region against
Enemy objects. Because of the way this object has been modeled in Blender (Figure 5-9), its default
position upon rendering is as shown in Figure 6-6. So, we need to push the Enemy objects away
from the white region—as shown in Figure 6-7. As you may have guessed, the way we do this is by
translating these objects.

The values passed to the constructor for the Enemy class (Listing 6-16) are used to translate the matrix
enemiesMMatrix, seen in Listing 6-17 (lines of code from the onDrawFrame() method, Renderer class).

Listing 6-17.  TANK FENCE GAME 4/src/com/apress/android/tankfencegame4/GLES20Renderer.java

if(GLES20Renderer._enemies.size() > 0) {
 // initenemy();
 float[] enemiesMMatrix = new float[16];
 
 ListIterator<Enemy> enemiesIterator = GLES20Renderer._enemies.listIterator();
 while(enemiesIterator.hasNext()) {
 Enemy enemy = enemiesIterator.next();
 Matrix.setIdentityM(enemiesMMatrix, 0);
 Matrix.translateM(enemiesMMatrix, 0, enemy.getSourcePositionX(), enemy.getSourcePositionY(), 0);
 renderEnemies(enemiesMMatrix);
 }
}
renderModel(gl);
 

Figure 6-7.  Spawning enemies

186 CHAPTER 6: Taking the Development Ahead

In Listing 6-16, if the arguments to the Enemy constructors are all set to “0”, then all four Enemy objects
will be rendered at {10.0005, 10.0, 0.1005}. In the first constructor, the arguments passed are
(10.0005f, 10.0f, 0). This translates the first Enemy object by 10.0005 units along x-axis and 10.0 units
along y-axis. In the second constructor, the arguments passed are (-3 * 10.0005f, 10.0f, 0). This
translates the second Enemy object by -3 * 10.0005 units along x-axis and 10.0 units along y-axis; so,
this Enemy object gets rendered in the second quadrant, as shown in Figure 6-7. Similarly, in the third
constructor the arguments passed are (-3 * 10.0005f, -3 * 10.0f, 0), and in the fourth constructor
the arguments passed are (10.0005f, -3 * 10.0f, 0) - which renders these Enemy objects in the third
and fourth quadrants respectively.

The while loop in Listing 6-17 is used to iterate over the _enemies ArrayList to get the source
positions, passed as arguments to the Enemy constructors, seen in Listing 6-16.

Within this while loop, the renderEnemies() method (Listing 6-18) is called. The matrix
enemiesMMatrix is used to translate the Enemy objects. It is passed to the uniform variable uM
(Listing 6-19) by calling the method GLES20.glUniformMatrix4fv().

Listing 6-18.  TANK FENCE GAME 4/src/com/apress/android/tankfencegame4/GLES20Renderer.java

private void renderEnemies(float[] enemiesMMatrix) {
 GLES20.glUseProgram(_enemyProgram);
 GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, _enemyBuffers[0]);
 GLES20.glVertexAttribPointer(_enemyAPositionLocation, 3, GLES20.GL_FLOAT, false, 12, 0);
 GLES20.glEnableVertexAttribArray(_enemyAPositionLocation);
 GLES20.glUniformMatrix4fv(_enemiesUMLocation, 1, false, enemiesMMatrix, 0);
 GLES20.glUniformMatrix4fv(_enemiesUVPLocation, 1, false, _enemiesVPMatrix, 0);
 GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, _enemyBuffers[1]);
 GLES20.glDrawElements(GLES20.GL_TRIANGLES, 24, GLES20.GL_UNSIGNED_SHORT, 0);
}
 
Finally, to transform the vertex positions this matrix is combined with the view-projection matrix, as
shown in Listing 6-19. Please note that the _enemiesVPMatrix (Listing 6-18) contains a copy of the
elements from _planeVPMatrix:
 
Matrix.multiplyMM(_planeVPMatrix, 0, _ProjectionMatrix, 0, _ViewMatrix, 0);
System.arraycopy(_planeVPMatrix, 0, _enemiesVPMatrix, 0, 16);
 

Listing 6-19.  TANK FENCE GAME 4/src/com/apress/android/tankfencegame4/GLES20Renderer.java

private final String _enemyVertexShaderCode =
 "attribute vec3 aPosition; \n"
 + "uniform mat4 uM; \n"
 + "uniform mat4 uVP; \n"
 + "void main() { \n"
 + " vec4 vertex = vec4(aPosition[0],aPosition[1],aPosition[2],1.0); \n"
 + " gl_Position = uM * vertex; \n"
 + " gl_Position = uVP * gl_Position; \n"
 + "} \n";
 

187CHAPTER 6: Taking the Development Ahead

Interpolating Enemy Source Position
Now, we will add the code to interpolate the source position of Enemy objects (Figures 6-8 to 6-10,
TANK FENCE GAME 5 application). For this, begin by adding fields _dx and _dy of type float to
the Enemy class. Initialize the field _dx with a positive value, less than one. The x-coordinate of the
enemy’s source position will be interpolated by _dx units.

Figure 6-8.  Setting enemy objects in motion

Figure 6-9.  Heading towards the plane center

188 CHAPTER 6: Taking the Development Ahead

The motion of each Enemy object is along linear paths, and is directed towards the center of the
plane (Figures 6-8 to 6-10). Because of this, the intercept (in the slope–intercept equation) will be
zero. The value of the field _dy can be simply obtained by multiplying the slope _slopeZ by _dx. The
y-coordinate of enemy’s source position will be interpolated by _dy units. Add the interpolate method
as shown in Listing 6-20, and also modify the Enemy() constructor as shown in Listing 6-21.

Listing 6-20.  TANK FENCE GAME 5/src/com/apress/android/tankfencegame5/Enemy.java

public void interpolateXY() {
 if(_sourcePositionX >= 0) {
 _destinationPositionX = _destinationPositionX - _dx;
 _destinationPositionY = _destinationPositionY - _dy;
 }
 if(_sourcePositionX < 0) {
 _destinationPositionX = _destinationPositionX + _dx;
 _destinationPositionY = _destinationPositionY + _dy;
 }
}
 

Listing 6-21.  TANK FENCE GAME 5/src/com/apress/android/tankfencegame5/Enemy.java

public Enemy(float positionX, float positionY, float positionZ, float slopeZ) {
 _sourcePositionX = positionX;
 _sourcePositionY = positionY;
 _sourcePositionZ = positionZ;
 _destinationPositionX = positionX;
 _destinationPositionY = positionY;
 _destinationPositionZ = positionZ;
 _slopeZ = slopeZ;
 _dy = _dx * _slopeZ;
}
 

Figure 6-10.  Enemies entering the plane

189CHAPTER 6: Taking the Development Ahead

Now, you need to make a couple of changes to the Renderer class to use the _enemies ArrayList.
The new argument in the Enemy() constructor (see Listings 6-16 and 6-21) is added so that you can
directly specify the slope. As we are spawning the Enemy objects in a symmetrical manner, we can
easily pass the slopes:
 
// 10.0005, 10.0, 0.1005
GLES20Renderer._enemies.add(new Enemy(2 * 10.0005f, 2 * 10.0f, 0, 1.00005f));
GLES20Renderer._enemies.add(new Enemy(-4 * 10.0005f, 2 * 10.0f, 0, -1.00005f));
GLES20Renderer._enemies.add(new Enemy(-4 * 10.0005f, -4 * 10.0f, 0, 1.00005f));
GLES20Renderer._enemies.add(new Enemy(2 * 10.0005f, -4 * 10.0f, 0, -1.00005f));
 
After the call to updateModel() method in onDrawFrame(), modify the while block—
while(enemiesIterator.hasNext()) as shown in Listing 6-22.

Listing 6-22.  TANK FENCE GAME 5/src/com/apress/android/tankfencegame5/GLES20Renderer.java

while(enemiesIterator.hasNext()) {
 Enemy enemy = enemiesIterator.next();
 enemy.interpolateXY();
 
 if((enemy.getDestinationPositionX() > -20 && enemy.getDestinationPositionX() < 0)
 && (enemy.getDestinationPositionY() > -20 && enemy.getDestinationPositionY() < 0)) {
 enemiesIterator.remove();
 } else {
 float dx, dy;
 Matrix.setIdentityM(enemiesMMatrix, 0);
 Matrix.translateM(enemiesMMatrix, 0, enemy.getSourcePositionX(), enemy.getSourcePositionY(), 0);
 Log.d("enemy.getDestinationPositionX()", Float.valueOf(enemy.getDestinationPositionX()).
toString());
 
 dx = enemy.getDestinationPositionX() - enemy.getSourcePositionX();
 dy = enemy.getDestinationPositionY() - enemy.getSourcePositionY();
 Matrix.translateM(enemiesMMatrix, 0, dx, dy, 0);
 renderEnemies(enemiesMMatrix);
 }
}
 
After obtaining a reference to the current Enemy object, its coordinates (x and y) are interpolated by
calling the interpolateXY() method. As discussed already, while interpolating these coordinates we
need to test if the corresponding Enemy object has entered the (white) plane. If an Enemy object
enters this plane, it is removed from the ArrayList by calling the remove() method. Else, the model
matrix enemiesMMatrix is translated. First, it is translated to the spawning position, and then it is
translated using the interpolated values. For the latter, we need to obtain the difference between the
source position (i.e., the spawning position of current Enemy object) and the current (interpolated)
position. In Listing 6-22, the local variables dx and dy are used to store this difference, separately for
the x-coordinate and the y-coordinate. Finally, the renderEnemies() method is called to render the
current Enemy object.

190 CHAPTER 6: Taking the Development Ahead

Detecting Collisions to Annihilate the Enemy
In this section I’ll describe the code for annihilating the Enemy objects using missiles (Figures 6-11
and 6-12). Begin by modifying the Renderer class of the TANK FENCE GAME 5 application. Clear
the lines of code between the if block that tests for the size of _missiles ArrayList and the call
to the renderModel() method. This should result in the following lines of code in the onDrawFrame()
method:
 
public void onDrawFrame(GL10 gl) {
 System.gc();
 
 long deltaTime,startTime,endTime;
 startTime = SystemClock.uptimeMillis() % 1000;
 gl.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
 
 if(GLES20Renderer._zAngle >= 360) {
 GLES20Renderer._zAngle = GLES20Renderer._zAngle - 360;
 }
 if(GLES20Renderer._zAngle <= -360) {
 GLES20Renderer._zAngle = GLES20Renderer._zAngle + 360;
 }
 
 updateModel(Counter.getUpDownValue(), GLES20Renderer._zAngle);
 if(GLES20Renderer._missiles.size() > 0) {
 initMissiles();
 }
 renderModel(gl);
 
 endTime = SystemClock.uptimeMillis() % 1000;
 deltaTime = Math.abs(endTime - startTime);
 if (deltaTime < 20) {
 try {
 Thread.sleep(20 - deltaTime);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}
 

191CHAPTER 6: Taking the Development Ahead

Now, start inserting code in place of the cleared lines—i.e., after the aforementioned if block, and
before the call to the renderModel() method. First, create an if block that tests whether there are any
remaining Enemy objects. Inside it, initialize the model matrix enemiesMMatrix (of type float[16]).
Then, start iterating over the Enemy objects using a ListIterator (as shown in Listing 6-23).

Listing 6-23.  TANK FENCE GAME 6/src/com/apress/android/tankfencegame6/GLES20Renderer.java

if(GLES20Renderer._enemies.size() > 0) {
 float[] enemiesMMatrix = new float[16];
 ListIterator<Enemy> enemiesIterator = GLES20Renderer._enemies.listIterator();
 
 while(enemiesIterator.hasNext()) {
 boolean renderEnemy = true;
 Enemy enemy = enemiesIterator.next();
 enemy.interpolateXY();

Figure 6-11.  Targeting the enemy

Figure 6-12.  Enemy annihilated

192 CHAPTER 6: Taking the Development Ahead

Note  We are iterating over Enemy objects inside an ArrayList, so, the “current Enemy object” refers to
the Enemy object being processed inside the while(enemiesIterator.hasNext()){...} block.

 float enemyOX = enemy.getSourcePositionX();
 float enemyOY = enemy.getSourcePositionY();
 float enemyX = enemy.getDestinationPositionX();
 float enemyY = enemy.getDestinationPositionY();
 
 if((enemyX > -20 && enemyX < 0) && (enemyY > -20 && enemyY < 0)) {
 enemiesIterator.remove();
 } else {
 if(GLES20Renderer._missiles.size() > 0) {
 ListIterator<Missile> missilesIterator = GLES20Renderer._missiles.listIterator();
 while(missilesIterator.hasNext()) {
 Missile missile = missilesIterator.next();
 float[] missileCenter = new float[]{missile.getDestinationPositionX(),missile.
getDestinationPositionY(),0};
 // change the coordinate w.r.t global center, instead of {10.0005, 10.0, 0.1005}
 float[] difference = new float[]{missileCenter[0]-(enemyX+10),missileCenter[1]-(enemyY+10),0};
 if(Matrix.length(difference[0], difference[1], 0) < 3) {
 renderEnemy = false;
 missilesIterator.remove();
 enemiesIterator.remove();
 // using break to exit while(missilesIterator.hasNext()) loop
 break;
 }
 }
 }
 }
 if(renderEnemy) {
 float dx, dy;
 Matrix.setIdentityM(enemiesMMatrix, 0);
 Matrix.translateM(enemiesMMatrix, 0, enemyOX, enemyOY, 0);
 
 dx = enemyX - enemyOX;
 dy = enemyY - enemyOY;
 Matrix.translateM(enemiesMMatrix, 0, dx, dy, 0);
 renderEnemies(enemiesMMatrix);
 }
 }
}
 
Inside the while block, initialize a (boolean) flag renderEnemy as true. If any missile collides with the
current Enemy object, this flag will be set to false, and the current Enemy object won’t be rendered.

Next, you need to interpolate the source position of the current Enemy object. As described in the
previous section, while interpolating you also need to test if the corresponding Enemy object has
entered the plane.

193CHAPTER 6: Taking the Development Ahead

After interpolating the source position of the current Enemy object, start iterating over the missiles.
Create a local variable (of type Missile) to reference the current missile. Store the center of this
missile by reading its interpolated source position. Create another local variable difference, of
type float[3]. Inside this variable, store the difference between the centers of (current) missile and
enemy objects.

Note  In Listing 6-23, the values of variables enemyX and enemyY are incremented because the
interpolated positions of Enemy objects do not represent the actual centers of the corresponding Enemy
objects (w.r.t. the global center), which is why they have to be adjusted.

Now, obviously, when this difference is zero it would imply that the centers overlap. For such a
difference, targeting (Figure 6-11) has to be very accurate. We can avoid the need for such precise
accuracy. As shown in Listing 6-23 - if(Matrix.length(difference[0], difference[1], 0) < 3) -
using the Matrix.length(float vec[0], float vec[1], float vec[2]) method, we can obtain the
length of vector vec. Here, instead of testing for a condition where length is equal to zero, we test if
the length is less than three. This makes it easier to target the Enemy objects.

Finally, if this condition holds true, set the renderEnemy flag to false. And then, remove the current
missile and the current Enemy object from their corresponding ArrayList. This will annihilate the
missile and Enemy objects, as shown in Figure 6-12.

The game is still not complete. Now, it’s your job to integrate menus with this game (as described
in the section - “Creating Menus for the Game”, Chapter 2). You can refer back to the GAME MENU
application (Chapter2/gamemenu.zip) to refresh your memory about the code requirements for
creating simple game menus.

Summary
At the start of this chapter you learned about a simple way for Android ES 2.0 applications to reduce
their power consumption. Then we continued developing the Tank Fence game; you learned about
adding the Missile and Enemy game objects.

You can extend the Tank Fence game to incorporate advanced techniques of object-oriented
programming. Beginning Android Games, Second Edition by Mario Zechner and Robert Green
(Apress, 2012) provides a complete description of how to build an Android game framework.

A■■
addContentView() method, 172
Application programming interface (API)

implementer, 4
modern graphic-rendering, 1
OpenGL ES version, 3
vendors, 3

Architecture Review Board (ARB), 66

B, C■■
Blender, 99

D■■
3D modeling

adding plane mesh, 117
Blender

factory settings, 99
modes, 100
open-source application, 99
OSes, 99

default layout
Blender interface, 100
Info window, 101
Outliner window, 101
panels, 101
Properties window, 101

game, modeling objects
deleting object, 108
equilateral triangle, 109
mesh, 108
Snap cursor, 109
tankFence Blender file, 115

glDrawElements, 93
GL POINT ELEMENTS application, 94
lasso-select command

default scene, 105
highlighted objects, 106
multiple objects selection, 105
Object mode shortcuts, 107
Render image, 107
rotating multiple objects, 106
transformations, 104

line and triangle primitives
glDrawArrays, 98
GL LINE, 96
GL RECTANGLE, 98
index array, 98
lineVFA, 96
rectangleVFA, 98
rendering line primitives, 96
wireframe rectangle, 95

material context, 115
object mode

Object-Tools panel, 103
panels, 102
properties shelf, 102
tool shelf, 102
world-space, 102

OpenGL ES, 123
parser

downloading, 129
extracted parser, 130
using, 131

perl installation
ActivePerl installers, 126
ActivePerl Setup Wizard, 127
complete setup, 129
Custom Setup, 128
downloads folder, 126
license agreement, 127
Security-warning window, 126
Setup Options window, 128

Index

195

player object
exporting mesh data, 120
extruding the scaled face, 119
extrusion tool, 118
Face select-mode, 118
grid surface, 117
scaling face inward, 119

player object, 117, 136
screenshots, 137
translating objects, 103
using mesh data, 133

_enemies ArrayList, 185
_enemiesVPMatrix, 186
_missiles ArrayList, 183

E■■
Enemy class

annihilating, 190
interpolating enemy source

position, 187
spawning enemies, 184

Enemy() constructor, 189
Equilateral triangle

3D View header, 110
cube mesh, 109
deleting vertices, 112
Extrude Region, 114
face, vertices, 113
lasso-select vertices, 111
orbiting right, 113
selecting vertices, 112

ES 2.0 applications
color masks, 144
diffuse reflection, 159
illumination models, 158
interpolate vertex normal, 165
lighting effects, shader programs, 158
lighting equation, shader program, 160
textures, 145
vertex buffer objects, 141

ES 2.0 fundamentals
3D-Transformation

coordinate, 85
geometric, 85
Matrix class (see Matrix class)

projection, 86
types, 84
view, 85

EGL
definition, 55
GLSurfaceView class, 56
renderer, set up, 57
use of, 55

framebuffer
color buffer, 64
definition, 63
double buffer, 63
GLSurfaceView class, 63
setting viewport, 64

GL POINT BASIC application (see GL POINT
BASIC application)

GLSL (see OpenGL Shading
Language (GLSL))

implemention methods
GL SURFACE CHANGED (see GL

SURFACE CHANGED application)
renderer, anatomy of, 59
setRenderer method, 59

line primitive, 78
NDCS (see Normalized device coordinate

system (NDCS))
renderer thread

addContentView method, 57
decoupling, 58
thread safety, 58
XML-based views, 57–58

state management
CULL FACE, 89
depth test, 91

triangle primitive, 80
varying

definition, 78
float types, 80
fragment shader, 80
glVertexAttribPointer, 79
initShapes method, 79
vColor, 79
vertex shaders, 79

F■■
filter() method, 178

196 Index

3D modeling (cont.)

G, H■■
getDeviceWidth() method, 173
glClearColor method, 64
glClear method, 64
glCreateProgram function, 75
glDrawArrays method, 78, 93
glDrawElements, 93, 181
GL_DYNAMIC_DRAW, 182
glGetAttribLocation method, 76
GL POINT BASIC application

attributes
aPosition variable, 76
FloatBuffer _pointVFB, 75–76
glDrawArrays, 78
glGetAttribLocation method, 76
indx and ptr arguments, 77
mode, 77
onSurfaceChanged method, 75
type argument, 77

functions, 74
loadShader method, 74
program object, 74

GL RENDER MODE application, 170
GL SURFACE CHANGED application

activity element, 62
creation, 60
LogCat view, 62
Log class, 60
onSurfaceCreated method, 60, 62
OpenGL surface, 61
potrait mode, 61
renderer class, 60
width and height arguments, 62

GLSurfaceView class, 56
glViewport method, 65

I, J, K■■
Implementation prerequisites

Buttons and Counter
class, 46

Gingerbread, 29
inputs, use of, 30
menus creation, game, 35
setContentView and add

ContentView, 39
Tank Fence game, 35

touch rotation
Android sensors, 49
screen touch, 48

XML views, sleek design of, 43
initMissiles() method, 181

L■■
Lambert model, 158

M■■
Matrix class

coordinate/viewing transformation, 87
_cubeUMVPLocation, 89
frustumM method, 88
geometric/modeling transformation, 87
GL CUBE application, 88–89
gl_Position variable, 89
MVPmatrix, 87
perspective/projection transformation, 87
setLookAtM method, 88

Mesh data, export
Edit mode shortcuts, 123
Export-Obj panel, 122
“Import-Export” add-on, 120
triangulate faces, 120

Mipmap chain, 149

N■■
Native development kit (NDK), 4
Normalized device coordinate system (NDCS)

3D space, 84
feature, 84
initShapes method, 82
landscape mode, 82–83
portrait mode, 82–83

O■■
onCreate() method, 172
onDrawFrame method, 76, 174, 180
onSurfaceChanged method, 64
onSurfaceCreated method, 62, 184
OpenGL ES, parsing objects, 123
OpenGL ES 2.0

Chrome Experiments, 23
Death Rally, 24

197Index

Direct3D, 23
Electopia, 26
game vendors, 24
Raging Thunder, 26
Stage3D, 23
web graphics library (WebGL), 23

OpenGL Shading Language (GLSL)
3D computer graphics, 67
data types

basic types, 70
components, 71
gl_PointSize variable, 71
matrices, 70
vector constructor, 72
vectors, 70

definition, 66
dimensions, 66
fragment shader, 67, 74

definition, 72
gl_FragColor variable, 72
GL POINT BASIC application, 73
int and float types, 73
precision qualifier, 73

vertex shader, 67
built-in variable, 68
geometric objects, 69
gl_PointSize, 69
gl_Position, 69
main function, 68
point sprite, 69
setRenderer method, 68
vector quantity, 69

OpenGL surface view
Android application, 16
Android automating class creation, 19
auto-generated methods, 21
blank OpenGL surface view, 22
GLSurfaceView.Renderer, 20
NDK, 4
onCreate method, 17
OpenGL ES version

Android Emulator, 15
AVD manager, 13
cleaning our project, 11
IceCreamSandwich, 14
Motorola Milestone, 15

new Android application creation, 6
new blank activity, 8
organizing imports, 10
project warnings, 9
select activity type, 7

quick fix errors, 18
template code modification, 18

P, Q■■
Perl, 125
Phong model, 158

R■■
renderEnemies() method, 186
renderModel() method, 181, 190
requestRender(), 169

S■■
setLookAtM method, 88
setRenderMode(), 169
setUpDownClickListeners() method, 173, 179
Shader programs, 158
Spawning enemies, 184
SurfaceChanged() method, 180
surfaceCreated method, 60
System.arraycopy() method, 180

T■■
Tank Fence game, 108

Enemy Class (see Enemy class)
fire button

addContentView() method, 172
getDeviceWidth() method, 173
onCreate() method, 172
res/layout folder, 171
setUpDownClickListeners()

method, 173
missiles

initMissiles() method, 181
method filter(), 178
_missiles ArrayList, 183
onDrawFrame() method, 180
setUpDownClickListeners()

method, 179

198 Index

OpenGL ES 2.0 (cont.)

shader code, 179
slope–intercept equation, 177
src folder, 176
SurfaceChanged() method, 180
System.arraycopy() method, 180

render mode, 169
translation and rotation

onDrawFrame() method, 174
translateM() method, 174
updateModel() method, 175

Textures
and color, 152
cubemap

loading Images, 154
samplerCube uniform variable, 155
six 2D textures, 153
texels, 153

2D textures
64x64 texture, 146
triangle primitives, 146
wrap mode, 146

image data, 148
Multi-Texturing, 155
procedural and image textures, 145
sampler2D Uniform Variable, 150

translateM() method, 174

U■■
updateModel() method, 175, 189

V, W, X, Y, Z■■
Vertex buffer object

array buffer objects, 141
element array buffer objects, 141
GPU memory, 141
using buffer objects

archive file, 143
arguments, 142
glBufferData, 142
GL_DYNAMIC_DRAW, 143
GLES20.glGenBuffers, 142

199Index

Learn OpenGL ES
For Mobile Game and Graphics Development

Prateek Mehta

Learn OpenGL ES
Copyright © 2013 by Prateek Mehta

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5053-1

ISBN-13 (electronic): 978-1-4302-5054-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries.
Apress Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Tom Welsh
Technical Reviewer: Shane Kirk
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jill Balzano
Copy Editor: Lori Cavanaugh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Dedicated to my parents and my brother for their everlasting support and encouragement.

And to the Stack Overflow community, for making computer programming less troublesome.

vii

Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments��� xv

Preface�� xvii

Chapter 1: Benefits of the New API■■ ��1

Modern Graphic-rendering API���1

Devices Love It���3

Easy App Development: Let’s Create an OpenGL Surface View��4

Determining OpenGL ES Version �� 5

Creating the OpenGL Surface��� 16

ES 2.0 Is for the Ambitious ��22

Where Are the Developers?��24

Summary��27

Chapter 2: Implementation Prerequisites■■ ���29

Selecting a Development Device: Why Upgrade to Gingerbread?��29

Choosing Inputs That Your Game Needs ��30

Tank Fence���35

Creating Menus for the Game��35

viii Contents

Setting Views Using setContentView and addContentView ���39

Sleek Design of XML Views��43

Working with Buttons and the Counter Class���46

Using Touch for Rotation��48

Rotation Using Android Sensors ��49

Summary ���54

Chapter 3: ES 2.0 Fundamentals■■ ��55

EGL on Android���55

The GLSurfaceView Class��� 56

Setting up the Renderer��� 57

Renderer Thread���57

Decoupling for Dedicated Performance�� 58

Thread Safety��� 58

Implemented Methods���59

Anatomy of a Renderer��� 59

GL SURFACE CHANGED Application ��� 60

Framebuffer���63

Double Buffering��� 63

Clearing the Color Buffer�� 64

Setting the Viewport��� 64

GLSL ��66

Shader Program�� 67

Vertex Shader Example�� 68

Data Types�� 70

Fragment Shader Example��� 72

GL POINT BASIC Application���74

Using the loadShader Method�� 74

Attributes�� 75

ixContents

Drawing Line and Triangle Primitives���78

Varyings�� 78

Triangle Primitive�� 80

Normalized Device Coordinate System��82

3D-Transformation���84

Types of Transformations�� 84

The Matrix Class��� 87

State Management���89

Cull Face��� 89

Depth Test��� 91

Summary��92

Chapter 4: 3D Modeling■■ ��93

Drawing Shapes Using glDrawElements��93

GL POINT ELEMENTS Application�� 94

Drawing Line and Triangle Primitives��� 95

Blender for Modeling��99

Default Layout�� 100

Using Object Mode��� 101

Translating Objects��� 103

Using the Lasso-Select Command�� 104

Modeling Objects for the Game�� 108

Parsing Objects for OpenGL ES��123

Installing Perl�� 125

Downloading Parser��� 129

Using the Parser��� 131

Using the Mesh Data��133

Adding the Player Object�� 136

Basic Components in the Blender Interface: Screenshots���137

Summary��139

x Contents

Chapter 5: Texturing and Shading■■ ��141

Vertex Buffer Objects���141

Types of Buffer Objects��141

Using Buffer Objects��142

Using Color Masks��144

Textures��145

2D Texture��� 146

Using Texture and Color�� 152

Cubemap Textures�� 153

Multi-Texturing��� 155

Lighting Effects Using Shader Programs��158

Illumination Models�� 158

Diffuse Reflection: Equations for Illumination�� 159

Lighting Equation in Vertex Shader��� 160

Interpolating Vertex Normal�� 165

Summary��167

Chapter 6: Taking the Development Ahead■■ ���169

Specifying the Render Mode��169

Adding the Fire Button���171

Combining Translation with Rotation��174

Including Missiles for the Tank���176

The initMissiles Method�� 181

Updating the Missiles ArrayList�� 183

The Enemy Class��184

Spawning Enemies��� 184

Interpolating Enemy Source Position�� 187

Detecting Collisions to Annihilate the Enemy���190

Summary��193

Index��195

xi

About the Author

Prateek Mehta (pixdip.com/admin/about.html) is pursuing his
B.Tech. degree in Information Technology Engineering at the
Indraprastha University. He is a Web and OpenGL ES application
developer, and is currently building up a graphic dev-tool based on
Apache Flex. He is awaiting collaborators for his Perl parser for Blender
geometry definition files (bitbucket.org/prateekmehta). This parser has
been made use of in this book.

Prateek lives in South West Delhi and, when not doing technical things,
works as a freelance lyricist. He spends his spare time playing
Counter-Strike, “de_dust2”, and “de_inferno” are his favorite maps,
where he is busy sniping with his AWP.

On Stack Overflow he has a keen interest in answering questions
tagged under “css” and “opengl-es-2.0”.

http://pixdip.com/admin/about.html
http://bitbucket.org/prateekmehta

xiii

About the Technical
Reviewer

Shane Kirk earned his B.S. in Computer Science from the University
of Kentucky in 2000. He’s currently a software engineer for IDEXX
Laboratories in Westbrook, Maine, where he spends his days working
with enterprise Java. He’s also a very enthusiastic Android developer with
a strong interest in building mobile solutions for working musicians.
When Shane isn’t coding, you can usually find him holed up in his home
studio working on the next album from his band The Wee Lollies
(www.theweelollies.com).

http://bitbucket.org/prateekmehta

xv

Acknowledgments

My sincere thanks go to:

Steve Anglin, for giving me this wonderful opportunity to write for Apress. Steve, I am grateful for
the time you spent guiding me away from my paranoia about publishing companies. Now, I’m so
much away from it, that I can’t help myself from writing another book, very soon!

My editors, Tom Welsh and Jill Balzano. I really appreciate their patience for putting up with a
first-time author. Jill, “freeze frame” high five for sorting out all the problems during the writing of this
book. Tom, thanks for getting me baptized in the river of revision - gennick.com/sm.html.

Lori Cavanaugh, my copy editor, for putting the finishing touches on the manuscripts, and also my
tech reviewer Shane Kirk for his helpful insights. Shane, you were really spot on with those excellent
suggestions, and I’ve no idea how you balance the beats and bytes.

My mentors, Dr. Atul Kumar and Dr. Alok K. Kushwaha, for their crucial support and
encouragement.

My friends, Anupam and Sheetanshu, for providing useful support for Android devices, and also my
pro-gamer comrade, Tejas, for exhibiting his amazing photography skills.

http://gennick.com/sm.html

xvii

Preface

This book takes Android app developers through the development of interactive OpenGL ES 2.0
applications; they will also absorb the fundamental concepts of rendering 3D graphics on Android
using OpenGL ES 2.0.

OpenGL ES 2.0 is derived from the extensive OpenGL 2.0 API, which is a popular API for rendering
3D graphics on desktops. In fact ES 2.0 is a form of this API, optimized for use on low power display
devices such as mobiles and tablets.

OpenGL ES 2.0 is a programmable graphic rendering API, so understanding it is similar to
understanding WebGL for browsers, Direct3D or OpenGL for desktops, or Stage3D on Flash. This
version offers greater flexibility than OpenGL ES 1.x in rendering 3D graphics, as it implements the
long-awaited GLSL shading language.

OpenGL ES 2.0 on Android enables programmers to create interactive as well as non-interactive
graphics applications. However, compared to non-interactive ES 2.0 applications like Live
Wallpapers, interactive ES 2.0 applications are more challenging to create because they demand
greater focus on the part of the developer.

Applications are said to be interactive when user inputs dictate changes in their appearance. With
Android SDK, interactive ES 2.0 applications can be conveniently developed because no external
libraries are required to use the OpenGL ES 2.0 API. Moreover, accessing other features of Android
handhelds such as motion/position sensors, audio, and so on, along with the OpenGL ES 2.0 API
does not require much effort. The Android SDK suffices to create most modern interactive ES 2.0
applications, such as image-editing software, games, and a lot more.

My focus will be to create a simple shooting game, using touch and motion/position sensors,
that will help you to understand important concepts like Buffers, GLSL, State Management, and
3D-Transformation for developing interactive ES 2.0 applications on Android. So, let’s Learn OpenGL ES
for mobile game and graphics development.

	Contents at a Glance
	Contents
	About the Author
	About the
Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Benefits of the New API
	Modern Graphic-rendering API
	Devices Love It
	Easy App Development: Let’s Create an OpenGL Surface View
	Determining OpenGL ES Version
	Creating the OpenGL Surface

	ES 2.0 Is for the Ambitious
	Where Are the Developers?
	Summary

	Chapter 2: Implementation Prerequisites
	Selecting a Development Device: Why Upgrade to Gingerbread?
	Choosing Inputs That Your Game Needs
	Tank Fence
	Creating Menus for the Game
	Setting Views Using setContentView and addContentView
	Sleek Design of XML Views
	Working with Buttons and the Counter Class
	Using Touch for Rotation
	Rotation Using Android Sensors
	Summary

	Chapter 3: ES 2.0 Fundamentals
	EGL on Android
	The GLSurfaceView Class
	Setting up the Renderer

	Renderer Thread
	Decoupling for Dedicated Performance
	Thread Safety

	Implemented Methods
	Anatomy of a Renderer
	GL SURFACE CHANGED Application

	Framebuffer
	Double Buffering
	Clearing the Color Buffer
	Setting the Viewport

	GLSL
	Shader Program
	Vertex Shader Example
	Data Types
	Fragment Shader Example

	GL POINT BASIC Application
	Using the loadShader Method
	Attributes

	Drawing Line and Triangle Primitives
	Varyings
	Triangle Primitive

	Normalized Device Coordinate System
	3D-Transformation
	Types of Transformations
	The Matrix Class

	State Management
	Cull Face
	Depth Test

	Summary

	Chapter 4: 3D Modeling
	Drawing Shapes Using glDrawElements
	GL POINT ELEMENTS Application
	Drawing Line and Triangle Primitives

	Blender for Modeling
	Default Layout
	Using Object Mode
	Panels in 3D View

	Translating Objects
	Using the Lasso-Select Command
	Modeling Objects for the Game
	Creating an Equilateral Triangle
	tankFence Blender File
	Material Context
	Player Object
	Adding Plane Mesh
	Editing the Player Object

	Exporting Mesh Data

	Parsing Objects for OpenGL ES
	Installing Perl
	Downloading Parser
	Using the Parser

	Using the Mesh Data
	Adding the Player Object

	Basic Components in the Blender Interface: Screenshots
	Summary

	Chapter 5: Texturing and Shading
	Vertex Buffer Objects
	Types of Buffer Objects
	Using Buffer Objects
	Using Color Masks
	Textures
	2D Texture
	Loading the Image Data
	sampler2D Uniform Variable

	Using Texture and Color
	Cubemap Textures
	Loading Images for a Cubemap Texture
	samplerCube Uniform Variable

	Multi-Texturing

	Lighting Effects Using Shader Programs
	Illumination Models
	Diffuse Reflection: Equations for Illumination
	Lighting Equation in Vertex Shader
	Interpolating Vertex Normal

	Summary

	Chapter 6: Taking the Development Ahead
	Specifying the Render Mode
	Adding the Fire Button
	Combining Translation with Rotation
	Including Missiles for the Tank
	The initMissiles Method

	Updating the Missiles ArrayList

	The Enemy Class
	Spawning Enemies
	Interpolating Enemy Source Position

	Detecting Collisions to Annihilate the Enemy
	Summary

	Index

