
Thread Injection
By Nick Cano

This tutorial for Thread Injection is intended for x86 processes. Due to slight differences in registers it
wont work on x64 processes, but it can easily be converted.

Introduction:
Code-caving is the practice of injecting machine code into a remote process and making it
execute. In this tutorial, I will cover a method of code-caving which I like to call thread
injection. Thread injection is a seven step process.

1. Detect target process
2. Identify main thread
3. Suspend main thread
4. Obtain thread context
5. Create and write the code-cave
6. Spoof instruction pointer to execute the code-cave
7. Resume the thread, continue execution, and free memory

Step 1: Detect target process
The first step to creating a code-cave is identifying the process into which we want to inject our
code. There is literally a multitude of ways to doing this – find the one that works best for your
program. For examples sake, I will simply find the process by window name. To do this, I
utilize two WinAPI functions: FindWindow() and GetWindowThreadProcessId().

Step 2: Identify main thread
Our next step is to identify the main thread of our process. This can also be done a number of
ways. The easiest method is to call GetWindowThreadProcessId() again, but I personally prefer
to pull it from a structure called the TIB (Thread Information Block). The TIB is a windows
structure which holds data about the currently running thread. The TIB is stored by the FS
process register, and can be obtained by reading the FS register. One may ask themselves “If we
need to use a register to identify the TIB, wouldn't that mean we would have to code-cave to
obtain it?” The answer is no. Every process on the system stores the TIB at the same memory
location. Moreover, the TIB container a pointer to itself at offset 0x18. What this means is that
we can simply find the TIB for our current process, obtain its memory location and read data at
that address from our target process.

DWORD FindProcessByWindowName(char* windowName)
{

DWORD procID = NULL;
HWND window = FindWindowA(NULL, windowName);

if (window)
GetWindowThreadProcessId(window, &procID);

return procID;
}

Above you can see code which will locate the address of the TIB. From here there are two ways
we can proceed:

1. Read a 4-byte value from pointerTID + 0x20 (the structural offset for CurrentThreadID
is 0x20 bytes)

2. Create a structure defining the TIB and read the whole block

Both of the methods mentioned above will be shown below, but this tutorial will proceed using
the second method.

The method shown above will suffice in nearly all cases. It is, however, helpful to have the
entire TIB in case we want to work with certain things like the PEB (Process Enviroment
Block). For this reason, I will show how to read the TIB into a structure as a proof-of-concept.
However, since we only need certain data, I will only use a partial structure.

 DWORD pointerTID;
 _asm
 {

 MOV EAX, FS:[0x18]
 MOV [pointerTID], EAX

 }

 DWORD threadID;
 HANDLE hProcess = OpenProcess(PROCESS_VM_READ, false, procID);
 ReadProcessMemory(hProcess, (LPVOID)(pointerTID + 0x20), &threadID, 4, NULL);
 CloseHandle(hProcess);

 return threadID;

 partialTIB TIB;
 HANDLE hProcess = OpenProcess(PROCESS_VM_READ, false, procID);
 ReadProcessMemory(hProcess, (LPVOID)pointerTID, &TIB, sizeof(partialTIB), NULL);
 CloseHandle(hProcess);

 return TIB;

struct partialTIB
{

DWORD SEHFrame;
DWORD StackTopPointer;
DWORD StackBottomPointer;
DWORD Unknown;
DWORD FiberData;
DWORD ArbitraryDataSlot;
DWORD LinearAddressOfTIB;
DWORD EnviromentPointer;
DWORD ProcessID;
DWORD CurrentThreadID;

};

Step 3: Suspend main thread
Now that we have detected our target thread, we must suspend its execution. To do this, we use
two WinAPI functions: OpenThread() and SuspendThread(). Since we must open the thread
again to get its context and resume it, we can leave it opened and store the HANDLE for
efficiency.

Step 4: Obtain thread context
This is another very simple step. We will call one WinAPI function, GetThreadContext(), in
order to obtain the control context of the thread. The control context will give us the current
instruction pointer which we will use in our code-cave to return back to regular execution.

Step 5: Create and write the code-cave
This next step is very trivial. Creating the proper code-cave will all depend on what you want it
to achieve. In most cases, we will want to preserve our registers and flags using PUSHAD and
PUSHFD, restoring them after we execute our code. That is, however, a new tutorial in itself.
As a proof-of-concept, I will simply create a code-cave which does nothing but return back into
normal execution. In order to simply return to execution, we must make the process think that
code at the address we obtained earlier (the current instruction from the thread context) was a
piece of code that called our cave. We do this by doing a PUSH which will put the instruction
pointer on the top of the stack. To then return execution to that code, we execute a RETN
operation. This simple code-cave should be the wrapper for any more advanced code-caves,
which would be nested after the PUSH and before the RETN. The first step to creating the
previously explained code-cave is to allocate enough memory to hold all of the code.

HANDLE OpenAndSuspendThread(DWORD threadID)
{

DWORD ACCESS =
THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_SET_CONTEXT;

HANDLE thread = OpenThread(ACCESS, false, threadID);
SuspendThread(thread);
return thread;

}

CONTEXT RetriveThreadControlContext(HANDLE thread)
{

CONTEXT threadContext;
threadContext.ContextFlags = CONTEXT_CONTROL;
GetThreadContext(thread, &threadContext);
return threadContext;

}

LPVOID codeCave =
VirtualAllocEx(process, NULL, 6,
MEM_COMMIT, PAGE_EXECUTE_READWRITE);

Once we have allocated the memory, our next step is to write the code-cave to it. As with
previous tasks, this task can also be done a number of ways. The most common of which is to
write a naked function using inline-assembly and copy the code into a buffer using memcpy().
However, I prefer writing my code-caves in bycode – it becomes much easier to add dynamic
values into the code.

Step 6: Spoof instruction pointer to execute the code-cave
The last step before resuming thread execution is telling the thread to execute our code-cave.
We do this by using SetThreadContext() with the context we obtained earlier. The only thing we
must do is change the instruction pointer to the address of our codecave.

Step 7: Resume the thread, continue execution, and free memory
Our final step requires us to call ResumeThread(), Wait for our code-cave to execute, and clean
up the mess we left behind. It is safe to assume that our code-cave will have executed within
two seconds, so we will wait two seconds before using VirtualFreeEx() to free our previously
allocated memory. We will also close any handles we left open.

Conclusion:
That's it! We've successfully hijacked a running thread, spoofed it's context and executed our
own code in a remote process. You should be able to find the full project, along with further
tutorials, on the same host as this tutorial.

 DWORD push = 0x68;
 DWORD retn = 0xC3;

 WriteProcessMemory(process, codeCave, &push, 1, NULL); // "PUSH" opcode
 WriteProcessMemory(process, (LPVOID)((DWORD)codeCave+1), &InstructPtr 4, NULL); //return adr
 WriteProcessMemory(process, (LPVOID)((DWORD)codeCave+5), &retn, 4, NULL); //"RETN" opcode

 threadContext.Eip = (DWORD)codeCave;
 threadContext.ContextFlags = CONTEXT_CONTROL;
 SetThreadContext(thread, &threadContext);

 ResumeThread(thread);
 Sleep(2000);

 VirtualFreeEx(process, codeCave, 6, MEM_DECOMMIT);
 CloseHandle(process);
 CloseHandle(thread);

